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Resumen 
En la actualidad, el desarrollo y aplicación de algoritmos para el reconocimiento de patrones que 

mejoren los niveles de rendimiento, detección y procesamiento de datos en diferentes áreas del 

conocimiento resulta un tema de gran interés. 

En este contexto, y específicamente en relación con la aplicación de estos algoritmos en el 

monitoreo y diagnóstico de máquinas eléctricas, el uso de señales de flujo es una alternativa muy 

interesante para detectar las diferentes fallas. 

Asimismo, y en relación con el uso de señales biomédicas, es de gran interés extraer 

características relevantes en las señales de actigrafía para la identificación de patrones que 

pueden estar asociados con una patología específica. 

En esta tesis, se han desarrollado y aplicado algoritmos basados en el procesamiento estadístico y 

espectral de señales, para la detección y diagnóstico de fallas en máquinas eléctricas, así como su 

aplicación al tratamiento de señales de actigrafía. 

Con el desarrollo de los algoritmos propuestos, se pretende tener un sistema dinámico de 

indicación e identificación para detectar la falla o la patología asociada que no depende de 

parámetros o información externa que pueda condicionar los resultados, sólo de la información 

primaria que inicialmente presenta la señal a tratar (como la periodicidad, amplitud, frecuencia y 

fase de la muestra). 

A partir del uso de los algoritmos desarrollados para la detección y diagnóstico de fallas en 

máquinas eléctricas, basados en el procesamiento estadístico y espectral de señales, se pretende 

avanzar, en relación con los modelos actualmente existentes, en la identificación de fallas 

mediante el uso de señales de flujo. 

Además, y por otro lado, mediante el uso de estadísticas de orden superior, para la extracción de 

anomalías en las señales de actigrafía, se han encontrado parámetros alternativos para la 

identificación de procesos que pueden estar relacionados con patologías específicas.  



 

 

Resum 
En l'actualitat, el desenvolupament i aplicació d'algoritmes per al reconeixement de patrons que 

milloren els nivells de rendiment, detecció i processament de dades en diferents àrees del 

coneixement és un tema de gran interés. 

En aquest context, i específicament en relació amb l'aplicació d'aquests algoritmes a la 

monitorització i diagnòstic de màquines elèctriques, l'ús de senyals de flux és una alternativa 

molt interessant per tal de detectar les diferents avaries. 

Així mateix, i en relació amb l'ús de senyals biomèdics, és de gran interés extraure 

característiques rellevants en els senyals d’actigrafia per a la identificació de patrons que poden 

estar associats amb una patologia específica. 

En aquesta tesi, s'han desenvolupat i aplicat algoritmes basats en el processament estadístic i 

espectral de senyals per a la detecció i diagnòstic d’avaries en màquines elèctriques, així com la 

seua aplicació al tractament de senyals d’actigrafia. 

Amb el desenvolupament dels algoritmes proposats, es pretén obtindre un sistema dinàmic 

d'indicació i identificació per a detectar l’avaria o la patologia associada, el qual no depenga de 

paràmetres o informació externa que puga condicionar els resultats, només de la informació 

primària que inicialment presenta el senyal a tractar (com la periodicitat, amplitud, freqüència i 

fase de la mostra). 

A partir de l'ús dels algoritmes desenvolupats per a la detecció i diagnòstic d’avaries en màquines 

elèctriques, basats en el processament estadístic i espectral de senyals, es pretén avançar, en 

relació amb els models actualment existents, en la identificació de avaries mitjançant l'ús de 

senyals de flux. 

A més, i d'altra banda, mitjançant l'ús d'estadístics d'ordre superior, per a l'extracció d'anomalies 

en els senyals d’actigrafía, s'han trobat paràmetres alternatius per a la identificació de processos 

que poden estar relacionats amb patologies específiques.  



 

 

Abstract 
 

Nowadays, the development and application of algorithms for pattern recognition that improve 

the levels of performance, detection and data processing in different areas of knowledge is a topic 

of great interest. 

 

In this context, and specifically in relation to the application of these algorithms to the monitoring 

and diagnosis of electrical machines, the use of stray flux signals is a very interesting alternative 

to detect the different faults. 

 

Likewise, and in relation to the use of biomedical signals, it is of great interest to extract relevant 

features in actigraphy signals for the identification of patterns that may be associated with a 

specific pathology. 

 

In this thesis, algorithms based on statistical and spectral signal processing have been developed 

and applied to the detection and diagnosis of failures in electrical machines, as well as to the 

treatment of actigraphy signals. 

 

With the development of the proposed algorithms, it is intended to have a dynamic indication and 

identification system for detecting the failure or associated pathology that does not depend on 

parameters or external information that may condition the results, but only rely on the primary 

information that initially presents the signal to be treated (such as the periodicity, amplitude, 

frequency and phase of the sample). 

 

From the use of the algorithms developed for the detection and diagnosis of failures in electrical 

machines, based on the statistical and spectral signal processing, it is intended to advance, in 

relation to the models currently existing, in the identification of failures through the use of stray 

flux signals. 

In addition, and on the other hand, through the use of higher order statistics for the extraction of 

anomalies in actigraphy signals, alternative parameters have been found for the identification of 

processes that may be related to specific pathologies. 
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General Introduction 

In any fields of the science, the implications of occassional interferences that pollute the useful 

information contained in measured signals can be very serious: false readings of the information 

obtained by the sensors, activation of false alarms, lack of communication between 

communication systems, etc… Many of these interferences are, from a practical point of view, 

impossible to eliminate, although it is possible to establish methods and techniques that tend to 

diminish their effect on useful signals. 

 

The previous statements confirm the interest of solving the problems that the disturbing signals 

produce, due to the consequences that such physical manifestations may provoke with their 

influence. 

 

Numerous methods have been developed in order to seek for the extraction of disturbing signal 

and to enable the identification of faults or patterns immersed in interference. These methods can 

be classified according to various criteria. However, from the point of view of the number of 

signals available to perform the task in question, they can be classified into methods that use two 

or more input signals and methods that use a single input signal. 

 

Regarding the methods that use a single signal input, they generally have the advantage of 

requiring less information for processing. This can be very useful for different applications in 

which only the input signal to be processed is available. 

 

In the field of electric machines, the analysis of the noise emitted by the motor is an interesting 

and very useful option due to the low cost of implementation for processing [1,2,3]. The idea that 

underlies the noise analysis is the interpretation of the acoustic waves produced by the 

mechanical vibrations of the motor that, according to their features and characteristics, can give 

rise to patterns identifying certain failures in electric machines. Likewise, the use of stray flux 

signals has brought considerable interest because this type of methodology is completely non-

invasive and, from the analysis of this type of signals, characteristics and patterns that can 

identify the nature and severity of the fault can be extracted [4 -10]. 

 

With regards to the methods of statistical signal processing, it can be argued that these allow the 

extraction of characteristics along the entire effective working spectral band (infinite, for the case 

of continuous signals; from 0 Hz to the half of the sampling frequency, in the case of sampled 

signals). 

 

However, its traditional application is based on the assumption of linearity and stationarity, 

limited to the estimation of second-order characteristics, which does not take advantage of the 

benefits that, for example, higher order statistical analysis could represent for its use in electrical 

and electrical signals of other nature [11-16]. 

 

The most significant peculiarity of the methods that are based on higher order statistical 

processing (calculation of cumulants) is that if the noise is Gaussian in nature; it is completely 
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canceled from its theoretical foundation. For this reason, this research is focused on the work 

with higher order statistical analysis techniques and their combination with second-order classical 

techniques. 

 

On the other hand, regarding the use of signal processing and pattern recognition in biomedical 

signals, actigraphy represents an increasingly used and appreciated exploration in sleep 

laboratories. Its greatest advantage is its easy use, low cost and the fact that it allows prolonged 

registrations in time and assessment of the patient in ambulatory conditions without interference 

on normal activity. It is considered a very useful tool for the control and monitoring of circadian 

alterations and insomnia, as well as to avoid false positives in the assessment of daytime 

sleepiness explorations such as the multiple sleep latency test and wakefulness maintenance test 

[17,18 ].  

 

This research has used extensive applications of higher-order statistical analysis and their 

combination with second-order processes such as convolution and covariance, to obtain some 

reliable pattern recognition in time series of different types. Several theoretically developed and 

experimentally tested algorithms with real signals of different kinds are proposed, providing 

satisfactory results in each case. 

 

In turn, the results have been applied to experimental physics, and to psychology through the 

analysis of response times of individuals to visual stimuli; likewise, an extension of the obtained 

results in this research has been performed for its application to electrical machines. with wound 

rotor [19-27]. 

 

1.1 Objectives of the Research 

 
General Objectives 

 

The general objective of the research is to develop algorithms based on statistical signal 

processing for pattern recognition, diagnosis, detection and identification of characteristic 

features in actigraphy signals and electrical machines, based only on the initial amplitude, 

frequency and phase information of the signal to be treated 

 

To achieve this general objective, the following process has been followed: 

 

 Review of the state of the art of the field to be treated. 

 Theoretical development of the algorithms to be evaluated based on the use of higher 

order statistics and their combination with second order processes. 

 Preparation and description of the data. 

 Application of algorithms that allow analyzing available data through different methods. 

 Validation and other possible uses of the described methods. 

 

1.2 Thesis Structure 

  
Firstly, it should be noted that this is a Ph. D. thesis based on the compilation of scientific articles 

resulting from the developed research.In this regard, it fulfils the rules established by Universitat 
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Politecnica de Valencia concerning the development of a Ph. D. thesis based on scientific papers 

compilation. Each of the papers can be read autonomously by having the aspects necessary for its 

understanding (theoretical framework, objectives, results and conclusions), but it is important to 

emphasize that the union of all of them constitutes a single work with a clear plot thread. 

 

 

The Thesis document is structured in 5 chapters: 

 

1. General Introduction 

 

   1.1 Objectives of the Research. 

   1.2 Thesis Structure. 

 

2. Publications. 

 Higher Order Spectra Analysis of Stray Flux Signals for Faults Detection in Induction 

Motors 

 Detection of adjacent and non-adjacent bar breakages in induction motors via 

convolutional  analysis of sound signals 

 Detection of Bar Breakages in Induction Motor via Spectral Subtraction of Stray Flux 

Signals 

 Detection of Nonadjacent Rotor Faults in Induction Motors via Spectral Subtraction and 

Autocorrelation of Stray Flux Signals 

 Rotor Fault Detection in Induction Motors Based on Time-Frequency Analysis Using the 

Bispectrum and the Autocovariance of Stray Flux Signals 

 Feature Extraction and Similarity of Movement Detection during Sleep,  Based on Higher 

Order Spectra and Entropy of the Actigraphy Signal:  Results of the Hispanic Community 

Health Study/Study of Latinos 

 

3. General Discussion of the Results.  

 

4. Conclusions. 

 

    4.2 Main contributions 

    4.3 Future Research Lines 

 

5. Bibliography 

 

Chapter 1 defines the framework in which the Thesis is developed. In addition, the objectives 

pursued are presented and then the structure of the Thesis is detailed. The plot line that the 

articles follow, as well as their respective impact on the achievement of the objectives are also 

described. 

 

Chapter 2 includes the six articles published in congress and scientific journals indexed in JCR. 

This chapter constitutes the main body of the Thesis. The first article is entitled: Higher Order 

Spectra Analysis of Stray Flux Signals for Faults Detection in Induction Motors and it is 
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accepted for publication in Applied Mathematics and Nonlinear Sciences from the editorial 

https://www.sciendo.com, Indexed in: Mathematical Reviews . 

The work gathers the experience of working with higher order statistics and its use in stray flux 

signals, both the theoretical and practical foundations of the work and the obtained results are 

described as well as the references to the uses of higher order statistical analysis in the detection 

of failures. in electric machines. 

 

The second work is entitled: Detection of adjacent and non-adjacent bar breakages in 

induction motors via convolutional analysis of sound signals and has been sent for publication 

in a special issue of Applied Sciences journal of the MDPI editorial. 

The work is an approach to the detection of failures in induction motors, specifically the adjacent 

and non-adjacent bars breakage, using acoustic noise. The work is based on an algorithm that 

uses the convolutional analysis of the noisy signal to obtain a unique spectral pattern of bar 

breakage. Furthermore a noise reduction algorithm that uses the cumulant of the contaminated 

signal is also proposed. The obtained results from the theoretical and practical point of view are 

shown. 

 

The third work is entitled: Detection of Bar Breakages in Induction Motor via Spectral 

Subtraction of Stray Flux Signals and it is a first approach the detection of bar break using the 

dispersion flow signals, the work was presented at the ICEM IEEE Congress and was published 

and indexed IEEE Xplore as part of the congress reports. 

 

The fourth work is entitled: Detection of Nonadjacent Rotor Faults in Induction Motors via 

Spectral Subtraction and Autocorrelation of Stray Flux Signals and is a generalization of the 

previous work presented in the ICEM conference, which also incorporates a new method of 

indication of the healthy-damaged state based on the autocovariance of the flux signal. The work 

was published in the journal IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 

 

The fifth work is entitled: Rotor Fault Detection in Induction Motors Based on Time-

Frequency Analysis Using the Bispectrum and the Autocovariance of Stray Flux Signals, 

and it is an analysis on the detection of the condition of the healthy-damaged state of the 

induction motor using two types of indicators, the first based on the median of the quadratic value 

of the covariance function and the second using the bispectrum of the flux signal. The work was 

published in Energies journal of the MDPI editorial. 

 

Finally, the sixth work is entitled: Feature Extraction and Similarity of Movement Detection 

during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: 

Results of the Hispanic Community Health Study / Study of Latinos, and it is an analysis of 

the extraction of characteristics in actigraphy signals, for patterns recognition and the clinical 

diagnosis of possible pathologies associated with movement during sleep. The work was 

published in the Sensors journal of the MDPI editorial.  

 

Chapter 3 explains the main results obtained from the research carried out during the doctoral 

period. In Chapter 4, as a conclusion, the level of compliance with the objectives set at the 

beginning of the doctoral research is analyzed, as well as the research lines that will be carried 

out to extend the results to other branches of knowledge. Finally, the bibliography used in the 

main introduction is added. 
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Abstract 

This work is a review of current trends in the stray flux signal processing techniques 

applied to the diagnosis of electrical machines. Initially, a review of the most commonly 

used standard methods is performed in the diagnosis of failures in induction machines and 

using stray flux; and then specifically it is treated and performed the algorithms based on 

statistical  analysis using cumulants and polyspectra. In addition, the theoretical 

foundations of the analyzed algorithms and examples applications are shown from the 

practical point of view where the benefits that processing can have using HOSA and its 

relationship with stray flux signal analysis, are illustrated. Keywords: Cumulants; Higher 

Order Spectra; Stray Flux; Faults Diagnosis. 

 

Keywords: Cumulants; Higher Order Spectra; Stray Flux; Faults Diagnosis. 
 

1. Introduction 

The monitoring and diagnosis of rotary electric machines have taken great importance in current 

applications of industry, aeronautics, and telecommunications, among other branches of science 

and technology. They has fostered the development of numerous methods to monitor and 

diagnose different types of failures in electric machines. These techniques have been designed to 

increase machines efficiency, safety, and performance, from the reliability and energy point of 

view [16,28]. 

In principle, each one of these techniques is based on processing different signals that can be 

captured by sensors that measure parameters such as mechanical vibrations, stator current, 

https://www.sciendo.com/
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acoustic signal, and stray flux. They let us monitor the condition of electric machines and detect 

numerous failures such as design and manufacture defects, improper ambient conditions, 

overload and over-speed, fatigue, stator insulation failure, bearing fault, broken rotor bar/end-ring 

detection, and air gap eccentricity [16]. 

 

One of the most commonly used techniques is vibration analysis [9,11,53] and motor-current 

analysis or motor current signature analysis (MCSA) [31,59,60] These techniques are based on 

the spectrum analysis using the Fourier transform for the detection of specific faults since the 

frequency spectrum shows numerous harmonics including the fundamental and the faults 

adjacent frequencies, that differ between faulty and healthy motors, because different electrical 

and mechanical faults generate different signatures [10,12,15]. 

 

On the other hand, there are other techniques based on the acoustic signal processing that 

emanates from the rotor noise [1, 11,18] Their goal is to identify and extract features of signals 

that correspond to faults [17]. For this purpose, techniques like the Fourier transform has been 

used to analyze the noise [39]. However, it presents the fundamental disadvantage hat the power 

spectrum is not immune to noise. Other techniques applied to this identification are based on 

high-resolution spectral analysis, wavelet transforms [2, 32,50] and empirical modes 

decomposition [11]. 

 

Relating to artificial intelligence-based methods for diagnosing failures [34], there are several 

works for failure classifications and pattern recognition. These works are differentiated in 

dissimilar methods of artificial intelligence such as artificial neural networks [5,24,37,43,44,51], 

genetic algorithms[49,64] support vector machines [4,19,35,52,54,63], Bayesian classifiers 

[38,40,65] 

 

In general, these methods are based on the initial information available to the system, in addition 

to learning the process that can be supervised or unsupervised, and extracting characteristics 

based on logical knowledge,using the stator current, vibration signals and sounds of the motor. 

Furthermore, failure detection methods based on higher-order statistical analysis have been 

applied to vibration signals, by considering the information provided by cumulants and moments 

of orders greater than or equal to two, as well as the spatial information that extracted from the 

analysis of higher-order spectra such as the bispectrum [29,30,45,58,6] . In addition to statistical 

estimators such as variance, kurtosis and skewness derived from the cumulants of second, third, 

and fourth orders respectively are performed. 

 

At present, the treatment of failures in electric induction machines has taken a high boom in 

relation to the analysis of the stray flux signals for the detection of failures, see the recent review 

of Jiang et al. [28]. However, it is not considered based on the use of statistical analysis of 

cumulants nor High-Order Spectra Analysis (HOSA). Since HOSA-based techniques are immune 

to Gaussian probabilistic density function noise, the spectral properties of the signal are 

preserved. So as to, HOSA-based analysis of stray flux signals can be potentially used for fault 

detection. 
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We focus on providing an update of the statistical analysis techniques based on cumulants and 

higher-order spectra applied to the diagnosis of failures using stray flux signals. The work is 

organized as follows: In Section II, we review existing fault diagnosis methods from stray flux 

signals. In Section III, we show the theoretical foundations of a statistical analysis based on high-

order cumulants and polyspectra. The use of HOSA on stray flux signals for fault detection is 

shown in Section IV. Finally, we provide some conclusions and prospective lines for future work 

in this line. 

 

2. Faults Detection Based on Stray Flux Analysis 
 

 

The magnetic flux is measured by circular search coils and hall sensors, that are concentric with 

the shaft inside the machine. They generate a voltage proportional to the magnetic field generated 

by the flux. In addition  to these sensors, other types of sensors based on optical fiber and 

radiofrequency have been already used [62]. Recently, a smart sensor has been proposed to detect 

winding insulation failures based on reconfigurable FPGA technology and using artificial neural 

networks [62]. 
 

2.1 Stator Insulation Monitoring And Failure Detection 
 

Stray flux has been proved to detect the stator winding insulation failure. The main difference for 

fault detection respect to the use of flow signals consists of the type of sensor to be used and the 

position where the measurement is taken. One way to detect this type of failure is by applying a 

load and not load test, that provides significant similarities, even if the stator current gives 

interesting diagnostic information only when the motor is loaded.  

 

Considering power supply harmonics, it is possible to easily detect the stator winding faults in the 

low frequency range of the flux spectrum. One of the most used methods to detect this type of 

failure is the timefrequency analysis based on the signal spectrogram since this analysis generates 

important amplitude components in specific harmonics [28]. 

 

 

2.2 Bearing Fault Detection 
 

It is estimated that approximately 35-55 percent of all cases of failures in electrical machines are 

Bearing Fault Detection, so this type of failure is investigated very frequently in the monitoring 

and diagnosis of electrical machines. Approximately 40 percent of these are caused by 

inappropriate use of lubricants. Some indicators that reveals that the nature of this type of failure 

lies in the increase in temperature and mechanical vibrations and the increase in the acoustic 

noise level generated by the machine [13, 22,27].Some experimental measurements were carried 

out by means of a current probe and by means of different flux probes, positioned in different 

positions [13,21], The comparison is conducted to find the main advantages which are th,e 

simplicity and the flexibility of the custom flux probe with its amplification and filtering stage 

depend on the relative position used for the experiments [42]. 
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2.3 Air Gap Eccentricity Detection 

 
Motor eccentricity failures are permissible up to 10 percent, and they do not have a significant 

influence on the characteristics of the motor and its useful life. However, a high level of 

eccentricity can cause a magnetic imbalance and therefore an increase in noise and vibrations 

[66]. Experimental results have revealed the potential of a simple search coil for the detection and 

the distinction of the accurate eccentricity nature even in the presence of similar mechanical 

faults [48]. Dynamic eccentricity produces low-frequency air gap flux components.  

However, they can be observed in stator current only under mixed eccentricity. Moreover, 

detection of dynamic eccentricity in stator current around the principal slot harmonic (PSH) is 

only useful for some combination of pole pairs and rotor slots [48, 56,57] 

 

 
 

Fig. 1 Examples of Eccentricity: a) Without eccentricity (b) Static eccentricity (c) Dynamic 

eccentricity (d) Mixed eccentricity. [42]. 

 

 

Under mixed eccentricity conditions, the stator currents contain the following frequencies [42]: 

 

 

                                                              𝑓𝑒𝑐𝑐 = 𝑓 ± 𝑘(1 − 𝑠)/𝑝𝑓                                                     (1) 

 

where 𝑠 is the machine slip. Since the frequencies related to the eccentricity and to the load 

torque overlap on the current sidebands, the frequencies provided by (1) are no longer enough for 

the diagnosis. 

 

 

2.4 Broken Bars Detection 
 

Induction motors are widely extended in industry, and among the defects which may appear, 

broken rotor bars represent 10 percent to 20 percent of the whole faults. This kind of failure does 
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not cause an immediate breakdown, but it deteriorates the machine operation, decreasing its 

performance [7,41], For the detection of this type of failure, different algorithms based on the 

stray flux signal time-frequency analysis of the Fourier and wavelets transforms have been used. 

Each technique presents its particular advantages and drawbacks. When a bar breakage occurs, a 

backward rotating magnetic field is generated due to the open-circuited bar. This creates an 

asymmetry in the rotor cage that is clearly reflected in the motors harmonic content [7,14]. 

 

The lower sideband harmonic leads to a torque (and speed) oscillation, which provokes the 

appearance of 𝑠, another harmonic in the stator current spectrum: the upper (or right) sideband 

harmonic given by 1 ± 2𝑠𝑓. Moreover, the frequency modulation on the rotational frequency 𝑓 , 

provoked by the speed oscillation, also leads to sideband harmonics in the vibration (and, 

accordingly, in the noise) spectrum: 
 

                                                   𝑓𝑏𝑏 = 𝑓𝑟𝑟 ± 2𝑘𝑠𝑓                                                  (2) 

 

3. Higher Order Statistical Analysis: Theoretical Foundations 

Higher-order spectral analysis, also known as polyspectra, is defined in terms of higher-order 

statistics (cumulants, in particular). Among the specific cases of the higher-order spectra, we find 

the third-order spectrum, also called bispectrum or Fourier Transform of the third-order temporal 

cumulant, and the trispectrum or Fourier Transform of the fourth-order temporal cumulant Figure 

2 illustrates the classification of the higher-order spectra of a signal. Although the higher-order 

statistical characteristics and the spectrum of a signal can be defined in terms of moments and 

cumulants, moments and their spectra can be very useful in the analysis of deterministic signals 

(transient and periodic), while cumulants and their spectra are of great importance in the  analysis 

of stochastic signals [36]. 

 

There are several motivations behind the use of higher-order spectra in signal processing, which 

can be used to: (1) eliminate Gaussian additive colored noise from an unknown power spectrum; 

(2) extract information due to process deviations whose probabilistic distribution function is 

Gaussian, and (3) detect and characterize the nonlinear properties in the signals, as well as 

identify nonlinear systems. The first motivation is based on the property that for stationary signals 

with Gaussian probabilistic distribution function, higher-order cumulants are equal to zero. If a 

non-Gaussian signal is received together with additive Gaussian noise, a calculation of the 

higher-order cumulant of the signal sample plus noise will eliminate the noise. Therefore, in these 

signal processing environments, there will be certain advantages for the detection and/or 

estimation of signal parameters through the cumulant of the observed data [36]. 

 

3.1 Higher-Order Statistics. Definition and Properties 
 

In this section, the definitions, properties, and the way of calculating higher-order statistics are 

introduced. Let be 𝑋 = {𝑋(𝑘)}, 𝑘 = 0, ±1, ±2, …  be a stationary random vector and its higher 

order moments exist, then: 

 

                                     𝑚𝑛
𝑋(𝜏1, 𝜏2, … , 𝜏𝑛−1) = 𝐸{𝑋(𝑘)𝑋(𝑘 + 𝜏1) … 𝑋(𝑘 + 𝜏𝑛−1)}                         (3) 
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Where 𝐸 denotes the expected value operator [6, 33,36] represents the n-th order moment of X, 

which depends only on the different temporary displacements 𝜏1, 𝜏2, … , 𝜏𝑛−1 with  𝜏𝑖=0, ±1, … It 

can be seen that the second order moment 𝑚2
𝑋(𝜏1) is the autocorrelation function of  𝑋, likewise 

𝑚3
𝑋(𝜏1) And  𝑚4

𝑋(𝜏1)   represent the third and fourth order moments, respectively. The  

cumulants are similar to the moments, the difference is that the moments of a random process are 

derived from the characteristic function of the random variable, while the cumulant generating 

function is defined as the logarithm of the characteristic function of the random variable. 

 

The n-th order cumulant of 𝑋 can be written as, see [33]: 

 

 

                       𝑐𝑛
𝑋(𝜏1,…,𝜏𝑛−1) = 𝑚𝑛

𝑋(𝜏1,…,𝜏𝑛−1) − 𝑚𝑛
𝐺(𝜏1,…,𝜏𝑛−1),      𝑛 = 3,4                         (4) 

 

 

Where  𝑚𝑛
𝐺(𝜏1,…,𝜏𝑛−1)  is the n-order moment of a process with equivalent Gaussian distribution. 

with the same average value and autocorrelation function as 𝑋, the stationary random vector. 

From (4) it is evident that for a process following a Gaussian distribution, the cumulants of order 

greater or equal than 2 are null, since 𝑚𝑛
𝑋(𝜏1,…,𝜏𝑛−1) and  𝑚𝑛

𝐺(𝜏1,…,𝜏𝑛−1) are null too [23]. 

 

Although fourth-order cumulants imply a considerable increase in calculation complexity, they 

are especially necessary when third-order cumulants are canceled in the case of symmetrically 

distributed processes, such as uniform distributed processes from [−𝑎, 𝑎], with a 𝑎 ∈  ℜ , such as 

Laplace and Gaussian processes. Third order cumulants are not canceled for processes whose 

probabilistic density function is not symmetric, such as exponential or Rayleigh processes, but 

can take extremely small values compared to the values presented by their fourth-order cumulants 

[55]. 

 

 

 
 

Fig. 2 Higher-Order Spectral classification. Here, 𝑭𝒌(∗) denote the k-dimensional Fourier 

Transform, see [36]. 
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3.2 Higher-Order Spectrum 

 
The n-th order spectrum of a stationary random vector 𝑋 = {𝑋(𝑘)}, 𝑘 = 0, ±1, ±2, … is defined 

as the multidimensional Fourier Transform 𝐹𝑘(∗) of order 𝑛 − 1 on the higher order statistical 

characteristics (moments and cumulants). The spectrum of the n-moment is defined as [23,55]. 

 

                                                     𝑀𝑛
𝑋(𝜔1, … , 𝜔𝑛−1) = 𝐹𝑛[𝑚𝑛

𝑋(𝜏1,…,𝜏𝑛−1)]                                      (5) 

 

and, similarly, the spectrum of the n-cumulant is defined as: 

 

                                                   𝐶𝑛
𝑋(𝜔1, … , 𝜔𝑛−1) = 𝐹𝑛[𝑐𝑛

𝑋(𝜏1,…,𝜏𝑛−1)]                                          (6) 

 

Note that the spectrum of the n-th order cumulant is also periodic with period 2𝜋, that is: 

 

                                    𝐶𝑛
𝑋(𝜔1, … , 𝜔𝑛−1) = 𝐶𝑛

𝑋(𝜔1 + 2𝜋, … , 𝜔𝑛−1 + 2𝜋)                                   (7) 

 
Equation expression also reads as: 
 

     𝐶𝑛
𝑋(𝜔1, … , 𝜔𝑛−1) =

1

(2𝜋)𝑛−1
∑ … ∑ 𝑐𝑛

𝑋(𝜏1, … , 𝜏𝑛−1)𝑒𝑗(𝜔1𝜏1+⋯+𝜔𝑛−1𝜏𝑛−1)∞
𝜏𝑛−1=−∞

∞
𝜏1=−∞          (8) 

 

In particular, for 𝑛 = 2  in (8), we have the power spectrum: 

 

                                                            𝐶2
𝑋(𝜔) =

1

2𝜋
∑ 𝑐2

𝑥(𝜏)𝑒−𝑗𝜔𝜏∞
𝜏=−∞                                              (9) 

 

where |𝜔| ≤ 𝜋 and 𝑐2
𝑥 represents the process covariance sequence, see [23,55] 

 

For 𝑛 = 3 in (8), we have the bispectrum: 
 

 

                              𝐶3
𝑋(𝜔1, 𝜔2) =

1

(2𝜋)2
∑ ∑ 𝑐3

𝑋(𝜏1, 𝜏2)𝑒𝑗(𝜔1𝜏1+𝜔2𝜏2)∞
𝜏2=−∞

∞
𝜏1=−∞                          (10) 

 

where |𝜔1| ≤ 𝜋 , |𝜔2| ≤ 𝜋 and 𝑐3
𝑋(𝜏1, 𝜏2) represents the the sequence of third order cumulants of 

𝑋(𝑘). The expression of the cumulant complies with the following symmetric relationships [55]: 
 

𝑐3
𝑋(𝜏1, 𝜏2) = 𝑐3

𝑋(𝜏2, 𝜏1) = 𝑐3
𝑋(−𝜏2, 𝜏1 − 𝜏2) = 𝑐3

𝑋(𝜏2 − 𝜏1, −𝜏1) = 
 

                                            = 𝑐3
𝑋(𝜏1 − 𝜏2, −𝜏2) = 𝑐3

𝑋(−𝜏1, 𝜏2 − 𝜏1)                                        (11) 

 

 

From these relationships, we can get a division of the plane (𝜏1, 𝜏2) in six regions and, 

consequently, upon wing the third-order cumulant in any of these six regions (see Figure 3), we 

can reconstruct the complete sequence corresponding to the third-order cumulants. Note that each 

one of these regions contains its border. Thus, for example, sector I is an infinite region 



 

13 
 

Publications  Chapter 2 

characterized by 0 ≤ 𝜏1 ≤ 𝜏2.For non-stationary processes, these  regions of symmetry 

disappear. From these relationships and the definition of the spectrum of third-order cumulants, 

the following relationships in the two-dimensional frequency domain can be obtained [6, 23,33]. 

 
 

                 𝐶3
𝑋(𝜔1, 𝜔2) = 𝐶3

𝑋(𝜔2, 𝜔1) = 𝐶3
𝑋(−𝜔2, −𝜔1) = 𝐶3

𝑋(−𝜔1 − 𝜔2, 𝜔2)                 (13) 

 

                                         = 𝐶3
𝑋(𝜔1, −𝜔1 − 𝜔2) = 𝐶3

𝑋(−𝜔1 − 𝜔2, 𝜔1) = 𝐶3
𝑋(𝜔2, 𝜔1 − 𝜔2)  (14)       

 
Figure 3(b) shows the 12 symmetry regions of the bispectrum when real stochastic processes are 

considered and, similar to the temporal domain, the knowledge of the bispectrum in the triangular region 

It is enough for a total reconstruction of the bispectrum. Note that, in the frequency domain, the symmetry 

regions have a finite area and in general, the bispectrum takes complex values and, consequently, the 

phase information is preserved [55].                                 

 

 

 
 

Fig. 3 Symmetry regions for (a) the third-order cumulant and for (b) the bispectrum. 

 

In the case 𝑛 = 4 , we get the trispectrum: 

 

   𝐶4
𝑋(𝜔1, 𝜔2, 𝜔3) =

1

(2𝜋)3
∑ ∑ ∑ 𝑐4

𝑋(𝜏1, 𝜏2, 𝜏3)𝑒𝑗(𝜔1𝜏1+𝜔2𝜏2+𝜔3𝜏3)∞
𝜏3=−∞

∞
𝜏2=−∞

∞
𝜏1=−∞               (15)     

 

where |𝜔1| ≤ 𝜋 , |𝜔2| ≤ 𝜋 , |𝜔3| ≤ 𝜋 and |𝜔1 + 𝜔2 + 𝜔3| ≤ 𝜋 whre 𝑐4
𝑋(𝜏1, 𝜏2, 𝜏3)represents the 

the sequence of fourth order cumulants. By combining the definition of the trispectrum and the 

fourth-order cumulants, 96 regions of symmetry appear associated with a real process. From the 

spectra of higher-order cumulants, the expressions of their respective cumulants in the temporal 

domain can be retrieved, by applying the 𝑛-order inverse Fourier transform [55]. 
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3.3 Examples of calculation of the Higher Order Spectra 
 

To illustrate in more detail the calculation of the higher-order spectra, we show several examples 

with periodic signals. 

 

 

3.3.1 Cosine signal 

 
First, let us consider the cosine signal: 

 

 

                                             𝑋 = 𝐴𝑘cos (2𝜋𝑓𝑘 + 𝜗𝑘)                                                   (16) 

 

with amplitude 𝐴𝑘 = 1 , frequency 𝑓𝑘 = 50 𝐻𝑧 , and phase 𝜗𝑘 = 𝜋/4 , discretely generated from 

a sampling frequency 𝑓𝑠 = 1000 and a duration of 1024 samples. Then the bispectrum for a 1024 

sample data window is equivalent to discretely performing the Fourier transform of the third 

order cumulant of the signal. In figures 4 (a) and (b) respectively shows the cosine signal and its 

frequency spectrum using the onedimensional Fourier Transform (FT). Likewise, as a 

comparison mode, the bispectrum of the 50 Hz cosine signal (0.05 normalized to 1) it is shown in 

Figure 5, to illustrate that the fundamental frequency of the signal prevails; and also showing 

other frequency components that by means of the one-dimensional spectrum using Fourier, they 

do not appear, which gives the bispectrum a higher resolution from the spectral point of view, 

which can be useful for dissimilar applications to find linear combinations or not, of existing 

relations between frequencies, for the development of identifying spectral patterns. 

 

 
 

Fig. 4 (a) A cosine signal of 50Hz (0.05 normalized frequency) and (b) its spectrum 

 

 

Apart from the fundamental frequency component 0.05 (50Hz) normalized to 1, there are other 

components as results of linear combinations of the fundamental frequency (16), since the 
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calculation of bispectrum results in a two-dimensional frequency and a phase matrix, see Figure 

5. 

 

 
 

Fig. 5 Contour plot of the bispectrum of the 50 Hz (0.05) cosine signal. 

 

 

On the other hand, although less used, the phase spectrum of the cosine signal of (16) is also 

shown. The phase spectrum contains an arrangement with the amplitude in degrees of the phase 

of the signal, that is taken as 𝜗𝑘 = 𝜋/4  in (16).  Its corresponding phase spectrum is shown 

below in Figure 6 . We also show the phase bispectrum, see Figure 7, where the linear phase of 

the cosine signal is resalted in the bispectrum phase matrix. The bispectrum preserves the phase 

information of every spectral component, that is the phase of the original signaland it can be 

otained from the original signal as: 

 

                                   𝜗𝐶3
𝑋(𝜔1, 𝜔2) = 𝜗𝑋(𝜔1) + 𝜗𝑋(𝜔2) + 𝜗𝑋(𝜔1 + 𝜔2)                               (17) 

 

where  𝜗𝐶3
𝑋(𝜔1, 𝜔2) represents the phases matrix of every spectral component. This relation also 

permits to retrieve the original phase of the signal. 

 

3.3.2 Harmonic signal 
 
Secondly, we have also experimented by calculating the bispectrum of a harmonic signal of the form: 
 
 

                               𝑋 = 𝐴𝑘 cos(2𝜋𝑓𝑘 + 𝜗𝑘) + 2𝐴𝑘cos (2𝜋 ∙ 3𝑓𝑘 + 𝜗𝑘)                                 (18) 
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In figure 8 (a and  (b) we show the harmonic signal in time and its frequency spectrum using the 

onedimensional Fourier Transform (FT). In figure (9) the bispectrum of the harmonic signal is 

shown. We notice that the calculation of the bispectrum preserves the fundamental frequencies of 

each signal in the sum of harmonics, analogous to the calculation of the one-dimensional FT. We 

also observe that since the bispectrum is absolutely summable, multiple frequency  components 

appear as a result of the linear combinations of the bispectrum of both cosine signals individually. 

 

We also show the phase bispectrum of the harmonic signal in figure (10)  It is more complex than 

the one of the cosine signal because the bispectrum is absolutely additive and the phase of the 

50Hz and 150Hz components are totally mixed. 

 

 

 
 

 

Fig. 6 A phase spectrum of a cosine signal of 50Hz (0.05 normalized frequency) 
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Fig. 7 Contour plot of the phase bispectrum of a cosine signal of 50Hz (0.05 normalized 

frequency) 

 

 

4. Using second and higher-order statistics with stray flux signals for faults 

detection 

 
Although the analysis based on higher-order spectra in relation to the processing using the 

classical analysis based on the power spectrum can be advantageous, and the use of the stray flux 

signals is a non-invasive method, few works are linking HOSA (Higher Order Statistic Analysis) 

and stray flux signals. This may be because computational complexity increases when using 

higher-order statistics in comparison to second-order statistics based on the Fourier one-

dimensional transform. Most of the works based on the use of HOSA for diganosing electric 

machines are based on the processing of vibration signals [3,8,20,46,47]. 

 

However, we have recently exposed the advantages of HOSA of stray flux signals [25], where an 

algorithm for the detection of the healthy-damaged state condition is proposed using temporary 

indicators in the frequency  domain based on the bispectrum. Likewise, in [26], a second-order 

statistical analysis based on the autocorrelation function is linked with stray flux signals for the 

detection of non-adjacent bar breaks. 
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Fig. 8 Ilustration of : a) Harmonic Signal b) Harmonic Signal Spectrum 

 

 

 
 

 

Fig. 9 Contour Plot of: a) Bispectrum of the Harmonic Signal described in (14)  and b) an 

expanded version of it. 
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Fig. 10 Contour plot of the phase bispectrum of a harmonic signal described in (14). 

 

5. Conclusions 

 
This work has shown a review of the techniques of processing and diagnosing of failures in 

electric induction machines. In particular, we have reported how to use them with flux signals. 

The theoretical foundations and with practical examples of the High-order statistical analysis 

(HOSA) and its potential for detecting failures in electrical machines have also been shown. On 

the other hand, validated results are also shown in references, of their use, using stray flux 

signals, which demonstrates that the linking of high-order statistical analysis techniques with the 

detection of failures in electric machines can be a very useful tool. 
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Featured Application: The investigation can give as an application that can be useful for the detection of 

adjacent and non-adjacent bars breakage, which can be developed in a portable device. It is not invasive and 

only depends on processing the acoustic noise emitted by the electric machine, to emit a result. 

Abstract: We apply second-order statistical signal processing techniques to the acoustic signal 

of an induction motor for detecting adjacent and non-adjacent bar breakages. We obtain  a 

unique identifier pattern when the signal has either one or several broken bars, inde- pendently 

of the relative  position of the bar breakages.  Our proposal provides good results  for fault 

detectability compared  to several  state-of-art works.  Moreover,  we also present  the  

identification of the faults  and the signal to noise ratio  obtained during  the preprocessing  

stage. 

Keywords: Induction machines; fault diagnosis; rotor bar breakages; autocovariance.  

1. INTRODUCTION 

Nowadays, the monitoring of acoustic  signals has found different  applications in medicine,  

in- dustry, telecommunications, and other branches of science. In the field of electric motors 

condition monitoring, the  analysis  of acoustic  noise is an  interesting option,  at  least  to  

complement  other diagnostic  measures  [3, 7, 11, 26]. For instance,  a common problem  in 

these machines  is the detec- tion of rotor  damages  such as broken bars.  These faults may even 

lead to catastrophic failures and forced motor  outages,  that can imply significant losses for the 

industries using them.  In particular, it is especially relevant  in the  case of large high voltage  

motors.   Figure  1 shows a picture  of the rotor  of an industrial induction motor  with broken  

bars. 

The underlying  idea of noise analysis is to interpret the acoustic  waves produced  by 

mechanical vibrations of breaking  bars  [8]. Such analysis  has been applied  not  only to detect  

rotor  damages but  also to  consider  the  case of adjacent  broken  rotor  bars.   To  the  best  of 

our  knowledge,  the case of acoustic  noise-based  detection  of non-adjacent bar breakages  has 

not yet been investigated; despite being a serious issue that other well-known techniques  (such as 
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current or vibration analysis) have  not  correctly  solved.   Indeed,  the  current analysis  of these  

cases may  lead  to  false-negative indications for certain  relative  positions  between  the broken  

bars [26]. 

 

 
 

Figure 1. Rotor of a real industrial motor (2000 H.P) with broken rotor bars. 

Noise-based detection  of different failures based on the use of the Fast  Fourier  Transform 

(FFT) and high-resolution spectral  analysis was considered in the following works [2, 10, 13, 17, 

18, 23, 29] However,  the  FFT  has the  main  disadvantage that it is not  immune  to noise since 

the  spectrum of a measured  signal also contains  the  spectrum of the  noise.  To overcome this 

overlapping, some authors have used high-resolution spectral analysis methods, with the 

disadvantage of not knowing a priori the number of subspaces allocated to the noise [2, 10]. 

Some of the  last  works in this  line have considered  related  methods  such as the  design of an 

active  resonant filter based  on the  Win- dowed Fourier  Transform (WFT) analysis  [21], the 

method  of selection of amplitudes of frequency - multiexpanded [12], or a spectral  estimation 

algorithm on vector  subspaces  such as MUSIC and ESPRIT[30]. Alternative approaches have 

been proposed based on wavelet methods [1, 5, 6, 9, 19, 24, 32] or on Empirical Mode 

Decomposition (EMD) methods [8]. The application of higher-order statistics analysis to the 

information contained in the bispectrum, or only in its diagonal, has been considered for 

condition monitoring in [4, 16, 27, 28].  Furthermore, the use of all the information contained in 

the bispectrum involves a two-dimensional function whose phase recovery process may involve a 

high computational cost. 

Apart  from the  analysis  of sound  signals,  other  approaches permit  to  identify  the  

number  of broken bars and to diagnose their faults, such as pattern recognition algorithms  [15, 

22, 33], termal images [14], genetic algorithms  [20], and chaos theory  [25]. 

However,  none of them  have  been proven  to  be valid  enough  for the  reliable  detection  

of the failures considered  in this work.  Hence, we propose an algorithm that uses second-order  

statistics, convolution,   and  spectral   analysis  for  fault  diagnosis  in  induction motors,   which  

also  uses  the acoustic  noise as a means  of detection.  This  algorithm is applied  not  only to 

detect  adjacent bar breakages,  but  also to investigate the  possibility  of detecting  non-adjacent 

broken  bars,  improving the  performance  of classical  techniques.   Our results show the 
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potential of this approach, that provides us valuable information to detect rotor damages or, at 

least, to complement the information provided by other quantities. 

 In Section 2, we outline the case of broken rotor bars considered in this work.  Then, we 

process the acoustic signal of the motor for reducing the noise.  This is obtained by convolving 

the input signal with its autocovariance, as it is described in Section 3. In Section 4, we show the 

experimental results and the proposed pattern recognition  method.   Finally,  conclusions are 

outlined  in Section 5. 
 

2. MATERIALS AND METHODS  

2.1. Description of the treated fault: Broken Rotor Bars (BRB) 

Previous studies have shown that a broken bar in an induction motor leads to a distortion in 

the air gap magnetic field, known as a fault field).  This fault field induces some harmonics in the  

stator current spectrum.  The  most  relevant one is the  lower sideband  harmonic  or left 

sideband harmonic,  with  the  frequency  given by (1 − 2𝑠)𝑓.  Here, 𝑓 is the power supply 

frequency, 𝑠 is the slip, which is defined by (1), where 𝑛𝑠 represent the synchronous  speed of the 

machine  (in r.p.m., calculated by  60𝑓/𝑝, 𝑝 is the number of poles), and 𝑛 is the actual  motor  

speed. 

𝑠 =
𝑛𝑠−𝑛

𝑛𝑠
, (1) 

 

The lower sideband harmonic leads to a torque (and speed) oscillation, which provokes the 

appearance of another harmonic in the stator current spectrum: the upper (or right) sideband 

harmonic given by (1 − 2𝑠)𝑓 Moreover, the frequency modulation on the rotational frequency of 

𝑓𝑅, provoked by the speed oscillation, also leads to sideband harmonics in the vibration (and, 

accordingly, in the noise) spectrum, according to (2). For further information, see [8]. 

𝐹𝐵𝐵=𝐹𝑅 ± 2𝑘𝑠𝑓 , 𝑘 ∈  ℕ0 (2) 

2.2. Proposed method for noise reduction 

We propose a method for noise reduction that permits to identify and separate the spectral 

components in the acoustic signal that do not provide useful information on the broken bars. We 

consider these components as interferences from external sources or the environment. We can 

consider them as random processes modeled as white noise. We first try to eliminate them. 

However, if it is not possible, we will reduce them in order only to process the useful information 

provided by the spectrum of the acoustic noise from the motor. 

The method goes as follows: 

 

1. We first convolute the input signal with its autocovariance, working as a matched filter. At  

the end of this section, we provide further details on the convolution of a signal with its 

covariance. 

2. The output of the convolution process is adjusted in amplitude via spectral analysis using the 

Fourier Transform, by means of the nonlinear factor derived from equation (3) 
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𝐴𝑘
′ = 4[𝐴𝑘)1/3]  𝑘 ∈   ℕ0   (3) 

where 𝐴𝑘
′  is the signal amplitude at the output of the convolution process and 𝐴𝑘 is the 

original ignal amplitude. 

 

3. An envelope detector is applied to the result of the inverse Fourier transform of the second 

step output. This enables us to demodulate the signal because of the signal spectrum 

symmetry. loss due to multiplication by a nonlinear factor when the phase and amplitude are 

combined. 

 

4. Finally, we divide the resulting signal of the last step into the signal obtained from the 

inverse Fourier Transform in order to recover the original signal. 

 

To sum up, we show the block diagram of the algorithm in Figure 2, where the input signal is 

the noisy signal or the acoustic signal from the induction motor. 

 
 

Figure 2. Block diagram of the proposed method for noise reduction 

In the rest of the section, we use second-order statistics to explain what is the effect of 

convolving a signal with its autocovariance. 

 

We recall that the autocovariance function of a stochastic process 𝑦 = {𝑦(𝑡)}𝑡≥0 is a measure 

of the dispersion of the process about the mean value, and can be defined in term of its joint 

moments, see for instance [31]. 
 

 ))()())(()((),( 2211212 tutytutyEttC yy

y 
 

)()(),( 21212 tututtR yy

y 
                                                                    

 

(3) 

where )(tu y
 is the mean of the variable )(ty and yR2

is the autocorrelation function. For a 

zero-mean process, the autocorrelation and the autocovariance functions are identical. For a 
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stationary process, we consider )(tu y
 to be constant for all 0t . If we denote this amount by 

)(tu y
, we have that the autocovariance function of (3) becomes: 

2

212212 )(),(),( tuttRttC y

yy 
                                                                      

 
 (4) 

2.3 Convolution of a signal with its autocovariance 

For real value periodic signals, the observed data can be described as follows: 





N

k

kkk tntwAtntxta
1

)()cos()()()(   (5) 

Where )(tx is the signal to be detected and )(tn is an additive zero mean stationary noise. 

Besides, 
kA ,

kf , and 
k  for Nk ,...1 stand for the amplitude, frequency and phase, respectively, 

of the harmonic signals. Then, applying second order statistics to (5) we get: 
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The autocorrelation function of a continuous-time zero-mean white noise process )(tn  with 

variance 
2

n is a Dirac delta function )(0 t . For a harmonic signal, the autocorrelation is a zero-

phase harmonic signal. Then, from (3), we get that the autocovariance )(2 tC a
, 0t  is given by: 
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It is clear from (7) that it does not preserve the waveform of the original signal. This is due to 

the loss of phase information of the original signal in the noise cancellation process. However, 

convolving )()( 2 tCta a  , we can see that we recover the phase information: 
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When the number of samples tends to infinity, )(2 
aCa can be reduced to: 

  )()( 2 aCta  


N

k kk
k w

A
1

3

)cos(
4

  (9) 

In this way, we have obtained an equivalent signal to the original periodic one but preserving 

the phase information. 

3. RESULTS 

3.1. Detection of failure  

To detect the different cases of broken bar failures, we consider five real samples of acousticnoise 

of a 1.1 kW motor at full load (100%). The motor was a 4 pole machine coupled to a D.C. 

machine acting as a load. We show a picture of the test-bench in figure 3. 

 
 

 

 

 
 

Figure 3. Picture of the laboratory test bench. 

We consider the following conditions: 

1. Healthy rotor. 

2. Rotor with one broken bar.100 

3. Rotor with two broken bars (relative positions 1-2). 

4. Rotor with two broken bars (relative positions 1-3) 

5. Rotor with two broken bars (relative positions 1-5) 

 

The total number of rotor bars in the experiments was 28, and the sampling rate used was 16 

kHz. 

Firstly, all digitized samples were processed to remove all unwanted spectral components, 

starting with the healthy rotor signal. In Figure 4, it is shown the signal spectrum of the healthy 

rotor after the digitization process and the representation of the characteristic harmonics peaks. 
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(a) 

 
(b) 

Figure 4. A) Healthy rotor spectrum after the digitization process and before processing 

with the proposed algorithm for noise reduction and B) healthy rotor spectrum after 

processing with the noise reduction. 

After obtaining the results for the healthy rotor signal, we process the digitized signal of the 

motor sound with one broken bar. We show our results in Figure 5.It is important to note that in 

Figure 5c (Signal motor spectrum with one broken bar) a third harmonic is present respect to the 

healthy motor, see Figure 4b. This harmonic may correspond to a fault identifier. To consolidate 

the hypothesis of a third harmonic present in the signals of rotors with one broken bar, the 

remaining signal samples relative to two broken bars in different relative positions were 

processed (bars 1-2, bars 1-3, and bars 1-5, respectively). Firstly, the signal with two broken bars 

in relative position 1-2 was processed. We show the obtained results in Figure 6a. 
 

As can be seen, four harmonics peaks are present, transferred in frequency respect to the 

spec-trum of the signal with the healthy motor. In this case, the greatest harmonic amplitude is 

twice that amplitude in the healthy rotor signal and also in the one broken bar signals. 

Furthermore, the signal of two broken bars in relative position 1-3, were processed. We notice in 

Figure 6b that there are two characteristic harmonics of higher amplitude. This is very significant 

since there is no repetition of the pattern of four characteristic harmonics shown in Figure 6a. 

Finally, the simple corresponding to the signal with two broken bars in the relative position 1-5 

was processed. We show the results in Figure 6c, where we notice the presence of four 

characteristic harmonics of greater amplitude. 
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(a)  

(b) 

 
(c) 

Figure 5. A) Signal spectrum with one broken bar after the digitization process and before 

processing with the proposed algorithm for noise reduction. B) Signal spectrum with one 

broken bar, after processing with the noise reduction algorithm. C) Signal spectrum with one 

broken bar, after processing with the noise reduction algorithm, with zoom in the range of 

500-1200 Hz.. 
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(a) 

 
(b) 

 
(c) 

Figure 6. A) Signal spectrum with two broken bar (relative position 1-2), after processing 

with the noise reduction algorithm. B) Signal motor spectrum with two broken bar (relative 

position 1-3), after processing with the noise reduction algorithm. C) Signal motor spectrum 

with two broken bar (relative position 1-3), after processing with the noise reduction 

algorithm. 

It is important to note that, in all processed signals, a characteristic harmonic is present, that 

is oscillating on 750Hz frequency. It is significant that the differences only appear in the 

processed signal spectra. To further illustrate the results mentioned above, we show in Figure 7 a 

comparison of all signals spectrum, processed with the proposed noise reduction algorithm. Here 

the characteristics of all harmonics peaks are shown together. At the light of these results, it is 

necessary to find a pattern which permits us to conclude if we are in the presence of a motor with 

one or two broken bars. 

The noise reduction process is used to eliminate the noise in the typical band of frequencies. 

We recall that what we process is the noise itself as a signal and only useful information is 

wanted, that is, the deterministic component of the acoustic signal described in Section 2.1 about 

noise reduction process using second-order statistic and convolution. Figures 5 and 6, 

respectively, show the peaks of frequencies that appear in the spectrum before and after the 

processing to reduce the noise. This does not imply that the harmonics shown were those 

corresponding to the fault; they were only the harmonics with peaks of highest amplitudes. The 
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novelty of the proposed algorithm is that it does not require to know the frequency component of 

the fault. It is only based on the processing of the statistical characteristics and the stationary or 

cycle stationary nature of the acoustic signal. The bar recognition patterns obtained permit us to 

distinguish between the sound of a healthy motor and a faulty one. 
 

 
 

Figure 7. Comparison of all signals spectrum, processed with the proposed noise 

reduction algorithm. 

3.2 Proposed pattern recognition method 

To set some recognition criteria that permit us to classify damages, we applied a method 

based on the descending order spectrum to the signal obtained after preprocessing (output signal 

after noise reduction). Later, we perform a spectral subtraction respect to the healthy motor 

signal. Finally, a moving average block is used as a smoothing filter to eliminate impulsive 

components of the spectral subtraction. The resulting algorithm given by this process is described 

in Figure 8. The pattern recognition algorithm requires the use, as a basic pattern, of the healthy 

motor signal. The real samples of faults obtained can be compared with the healthy one, 

analogously to the schemes of adaptive systems. 
 

 
 

Figure 8. The proposed algorithm for identifying broken bars . 
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4. DISCUSSION 

Then, we search for patterns looking at the differences in the spectrum of both signals. What 

is obtained at the output, and in each represented pattern, is a spectral pattern that identifies the 

number of broken bars present in the motor. We show the results in Figure 9, where we notice 

that there is a similar pattern when the signal has two broken bars independently of the relative 

position of the broken bars. Besides, there is an identification pattern when the signal has only 

one broken bar. 

To confirm that a pattern appears when the motor has two broken bars, we compute the 

Pearson correlation coefficients of the vectors (red, green, blue) derived from the output of the 

algorithm shown in Figure 8. 
  

 
 

Figure 9. Resulting pattern to identify the broken bars. 

We show the results in Table I, demonstrating that there is a similar pattern when we are in 

the presence of two broken bars independently of the relative position where the  breakages take 

place. 
 

Table 1. Correlation between output signals of signals with two broken bars. 

Signal Correlation 
value Bar 1-2 vs. Bar 1-

3 

0.9883 

Bar 1-2 vs. Bar 1-

5 

0.9690 

Bar 1-2 vs. Bar 1-

5 

0.9812 
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5. CONCLUSIONS 

We have shown that there are common characteristics in the amplitudes and frequencies of 

signals corresponding to different types of motors with broken bars. The noise and interferences 

of the digitized signals were reduced using an algorithm that combines statistical analysis, a 

convolution process, and an amplitude adjustment process. This adjustment is positive when 

processing only the relevant information concerning the broken bars. It was possible to obtain a 

unique identifier pattern when the signal has only one broken bar. Furthermore, we have obtained 

common patterns when we are in the presence of two broken bars, independently of their relative 

position. The patterns can be obtained by applying an algorithm that combines reordering vectors, 

the spectral subtraction, and a moving average filter. Results reveal high effectiveness, given by 

the significant signal-to-noise rate enhancement achieved and the identification pattern obtained 

for the broken bars. 
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Abstract – In this paper, statistical signal processing techniques are applied to 

electromotive force signals captured in external coil sensors for broken bars detection in 

induction motors. An algorithm based spectral subtraction analysis is applied for broken 

bar identification, independent of the relative position of the bar breakages. Moreover, 

power spectrum analyses enable the discrimination between healthy and faulty conditions. 

The results obtained with experimental data prove that the proposed approach provides 

good results for fault detectability. Moreover the identification of the faults, and the signal 

correlation indicator to prove the results, are also presented for different positions of the 

flux sensor. 
 

Index Terms-- Fault Diagnosis, Induction Motors, Flux, Signals, Spectral Analysis. 

 

1. INTRODUCTION 

 

A recent trend in the electric motor condition monitoring area relies on combining the 

information obtained from the analyses of different machine quantities (currents, vibrations, 

temperatures, etc…) to reach a more reliable conclusion about its health. This is due to the fact 

that it has been proven that the analysis of a single quantity enables to diagnose specific faults or 

anomalies but it is not enough to determine the health of the whole motor. In this context, the 

analysis of classical quantities that are well-known in the industry, such as currents or vibrations, 

has shown certain problems or drawbacks for the diagnosis of certain faults [1]. 

With regards to the condition of the rotor, neither current nor vibration analysis have proven to 

be valid in all the cases that may rise in industry; it has been reported, for instance, the 

occasional occurrence of false indications when these techniques are used [2-5].  One of the 

cases where these techniques have not shown good results when detecting rotor damages is 

under the presence of non-adjacent bar breakages in the rotor cage.  
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Under such situation, the effects of one bar breakage can be partially compensated by those of 

other breakage, for certain relative positions, making difficult the identification of the fault 

components in the resulting spectra [6-8]. This may result in incorrect indications. 

 

Due to these problems, other technologies are being explored by many researchers worldwide. 

One of these technologies relies on studying the external magnetic field in the vicinity of the 

motor [9-23]. Specifically in relation to rotor faults[24],eccentricity [25] and stator faults[26],  

It has been proven that, when certain faults are present, specific harmonics are amplified in the 

Fourier spectra of the electromotive force (emf) signals induced in external coil sensors installed 

at different positions [9,16]. More specifically, some authors have characterized the components 

amplified by rotor faults, eccentricities or even stator failures and have proven the potential of 

this technique for the detection of such faults. The simplicity, low cost and easy implementation 

of the technique makes it a very interesting option to complement the information obtained with 

other well-known technologies, especially considering the progressive reduction in price of the 

available flux sensors that comes together with an increase of their features [21]. 

 

Though most of the works related to flux monitoring have explored the applicability of the 

technique under stationary conditions [9,20], some recent works have also studied the viability 

of the method under transient operation, obtaining very promising results [23,27,28]. 

In this work, a new algorithm to detect rotor damages in induction motors based on the 

analysis of stray flux signals is proposed. It uses a spectral pattern recognition method based on 

the spectral subtraction of the power spectrum. In relation to   the   uses   of   pattern   

recognition   [29]   and   spectral subtraction [30,31] techniques , some works has been made, 

applying different points of view, to detect de specifics fault. The proposed algorithm is applied 

not only to detect adjacent bar breakages, but also non-consecutive broken bars. 

The results show the potential of this approach, that provides valuable information to detect 

rotor damages or, at least, to complement the information provided by other quantities, 

enhancing the performance of classical techniques. 

Section II describes the considered fault as well as its related harmonics. The proposed 

pattern recognition method and the experimental results are shown in Section III and IV 

respectively. Finally, conclusions are outlined in Section V. 

 

2. ROTOR BAR BREAKAGE DETECTION VIA   ANALYSIS OF FLUX SIGNALS 

 

Different authors have proven that the presence of certain faults in the motor amplifies some 

components in the stray flux spectrum [9-16]. Former works in [15-20] proposed the use of 

external coil sensors for the capture of the necessary signals and the subsequent Fourier analysis 

of these signals to detect the components amplified by the rotor damages and other faults. With 

regards to the detection of bar damages, in [32] it is suggested the study of the sideband 

components appearing at f·(1±2·s·f) (with s=slip and f=supply frequency) around the main 

frequency component in the FFT spectrum of the captured emf signals. More recent works in 

[33] and [9,11-12] proposed the study of other components in the low frequency region of the 

FFT spectrum of the emf induced in external coil sensors; according to these authors, when rotor 

faults are present, the components located at s·f and 3·s·f are amplified in that FFT spectrum. 

Therefore, the study of the amplitudes of these harmonics may become a reliable indicator of the 

presence of the fault. 
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Although most of the works developed in the literature are focused on the analysis of the emf 

signals induced in external coil sensors at steady-state operation of the motor, some recent 

papers have explored the viability of the analysis of these signals under the startup, obtaining 

very promising results [23]. These works have proven that, during transient operation, these 

components follow particular trajectories that can be used as evidences of the presence of the 

fault. 

The present work focuses on the flux-based detection of rotor faults but considering the case of 

non-adjacent broken bars, an issue that has been barely considered in past works. 

 

3. THE PROPOSED ALGORITHM 

 

To try to achieve some recognition criteria to classify the damages, a method based on spectrum 

descending order was applied to the signal obtained after preprocessing (output signal after noise 

reduction). Later, a spectral subtraction operation with respect to the signal with the healthy 

motor was also performed. Finally, a moving average block is used as a smoothing filter to 

eliminate impulsive components of the spectral subtraction. The resulting algorithm given by 

these processes is described in Fig. 1. 

The pattern recognition algorithm is based on the use as a basic pattern of the signal of the 

healthy motor. This is not a serious restriction under a practical point of view, since that signal 

could be obtained after motor commissioning or after motor inspection, once the rotor is 

guaranteed to be healthy. In the method, once the actual samples have been captured, they can be 

compared with the healthy ones. The proposed method is based on searching for patterns, by 

looking at the differences in the spectrum of both signals (actual sample vs. healthy one). The use 

of the signal of the healthy motor as a signal reference is analogous to the schemes of adaptive 

systems. What is obtained at the output and in each represented pattern is a spectral pattern that 

identifies the number of broken bars present in the motor. 

 

 
 

Fig. 1.  The proposed algorithm for identifying broken bars. 

 

4. EXPERIMENTAL RESULTS 

 

Different experiments were developed at the laboratory by using a 4-pole, 1.1 kW induction 

motor which was coupled to a DC machine acting as a load. Different cage rotors (28 bars in 

each rotor) with diverse levels of failure were available, so that each specific rotor could be 

assembled to test the corresponding rotor fault condition. More specifically, in this work the 

considered cases are: healthy rotor and rotor with two broken bars.  In this latter case, different 
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relative positions between the broken bars were tested, namely: Bars 1-2 broken (adjacent 

broken bars), bars 1-3 broken, bars 1-4 broken, bars 1-5 broken and bars 1-6 broken. 

 

In each test, the machine was started until it reached the steady-state regime. The emf signal 

induced in an external coil sensor attached to the frame of the machine was captured using a 

digital oscilloscope. More specifically, two different sensor locations were considered: position 

A (sensor attached to the lateral part of the motor frame, in the shaft side, Fig. 2 (b)) and 

position B (sensor attached to the center of the frame, Fig. 2(c)). Both the experimental test 

bench and the two considered sensor positions are shown in Fig. 2. 

 

                                     (a) 

 

 
 

             (b)                                                         (c) 

 

 
 

Fig. 2. a) Experimental test bench, b) Position A of the coil sensor, c) Position B of 

the coil sensor. 

 

The idea of the proposed algorithm to identify the broken bar pattern is to take as a 

reference the healthy state of the motor, in order to detect the corresponding faulty condition. 

The objective is to detect differences in the power spectrum, taking into account that a motor 

in a healthy state will have a certain power spectrum; if  the motor is faulty, it will no 

longer have the same spectrum, hence the foundation based on the rearrangement of the 

power spectrum and spectral subtraction, to obtain an identification pattern of broken bars 
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regardless of the relative position of the bars. The developed algorithm was conditioned by two 

goals: 1) it should be able to distinguish between healthy and faulty cases based on the 

analyses of flux data and 2) it should be able to  detect the existence of the fault regardless 

of the position of the bars hat break. 

 

A. Experimental results obtained from the measurement in position A 

 

Regarding the position A, the resulting pattern obtained for each sample after application of 

the proposed algorithm (see Fig. 1) allows us to discern when we are in the presence of a motor 

with two broken bars, since all the samples converge to the same line (see Fig. 3). 

 
 

Fig. 3.  Resulting spectral pattern obtained from position A. 

 

In Fig.3 we can also see the stepped positioning of the obtained patterns from each sample 

according to the relative positions, whose difference lies in the amplitude, that is: first 

position_1_2 (red), position_1_6 (black), position_1_5 (yellow), position_1_3 (green), the 

above except for position_1_4 (blue) which reflects a total difference with the rest of the 

obtained patterns, from each sample. This result can be very useful for discrimination between 

the healthy and faulty cases and for the identification of the two broken bars case, regardless 

of the relative position of the broken bars. 

To prove that we are in the presence of a motor with two broken bars, the Pearson correlation 

coefficient was applied between the resulting patterns obtained from the measurements carried 

out in position A. The correlation obtained between the resulting patterns is almost 1, except 

on the case of position 1_4. Table I shows the results obtained. In that table, CORRE_X_X 

is the correlation obtained from each pattern with respect to the resulting pattern of the bar 

BB_1_2. The measurement BB_1_2 was taken as reference, but another sample could have 

been taken, the correlation will give similar values with the exception of position 1_4, which 

has a certain difference as shown in the graph of Fig.3.  
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Now if we consider the mean value of the module of the obtained correlations, it gives as 

result: 0.9768 

 

TABLE I: CORRELATION VALUES OBTAINED ACCORDING TO THE RESULTING 

PATTERNS. POSITION A 

 

CORRE_12_16 = 

 

1.0000   0.9933 

0.9933   1.0000 

CORRE_12_15 = 

 

1.0000   0.9945 

0.9945   1.0000 

CORRE_12_13 = 

 

1.0000   0.9344 

0.9344   1.0000 

CORRE_12_14 = 

 

1.0000  -0.9849 

-0.9849   1.0000 

 

B. Experimental results obtained from the measurement in position B 

 

As for the position B, it is verified by the resulting pattern (see Fig.4) that there are two broken 

bars and just as in the position A, we can discern in which relative position is the position 1_4 

(blue) and the position 1_6 (black) which are differentiable from the rest of the others, since 

their correlation value is negative as well as the results of the measurement at position A. 

 

 
 

Fig. 4.  Resulting spectral pattern obtained from position B. 

 

With respect to the other positions, these follow a stepped descendently pattern as in Fig.2, 

although not in the same order. The correlation obtained between the resulting patterns as in 

position A is almost 1, except on the position 1_4 and position 1_6, whereby these two 

positions can be discerned. In Table 2 the results are shown. Now if we proceed in the same 
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way as for position A, with the average value of the module of the correlations obtained, it  

gives  as  result: 0.7309. The correlation levels obtained in the measurements made in  both  

relative  positions  A  and  B  respectively, oscillate between 0.7 and 0.98, which can be a 

variable indicator to identify broken bars using the flux signals. 

 

TABLE II: CORRELATION VALUES OBTAINED ACCORDING TO THE RESULTING 

PATTERNS. POSITION B 

 

CORRE_12_16 = 

 

1.0000  -0.7361 

-0.7361   1.0000 

CORRE_12_15 = 

 

1.0000   0.8457 

0.8457   1.0000 

CORRE_12_13 = 

 

1.0000   0.7875 

0.7875   1.0000 

CORRE_12_14 = 

 

1.0000  -0.5542 

-0.5542   1.0000 

 

 

C. Discrimination between healthy and damaged state based on the spectra. 

 

The discrimination between healthy and faulty conditions can be carried out by simply 

comparing the corresponding spectra of the captured emf signals. However, this procedure may 

be influenced by the occurrence of non-adjacent breakages since, depending on the relative 

positions between the bars that break, the amplitudes of the fault harmonics may sensibly differ. 

However, as pointed out in previous works [8, 

10, 11,26], the analyses of the FFT spectra may be helpful at least to have an evidence on if the 

anomaly may be present. A rough analysis of the characteristics of the FFT spectra for each one 

of the considered positions of the sensor is presented below. 

 

Characteristics of the spectra for position A: 

 

 All   the   analysed   signals   have   little   external interference or noise in the 

spectrum; this ripple noise can come from the same data acquisition system, from 

the AC line or from the sensor (see Figures 5 and 6). 

 The same considerations are applicable to the signals captured for the sensor at 

position A, although, in this case, the amplitudes of all fault harmonics are less 

significant. This is due to the lower portion of flux that is captured at this position 

(see Fig. 5). 
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Fig. 5.   Comparison of the spectrum of the healthy motor (a), with the broken bars 

spectrum( (b) to (f) ). Relative Position: A 
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Characteristics of the spectra for position B: 

 

 All samples have the expected fundamental harmonic at 50Hz (see Figures 5 and 6), as 

well as a noticeable 150Hz component Sideband components are  present  for  all  faulty  

cases although their amplitudes vary depending on the relative position between broken 

bars (maximum amplitude for adjacent bars, in agreement with previous works [8, 

10,11, 26]. 

 If the low frequency regions are zoomed fault harmonics are detectable at components 

s·f and 3s·f. Once again their amplitudes are influenced by the relative positions of the 

breakages. But their presence may be an evidence of the existence of the fault. 

 The eccentricity harmonics at 25Hz and 75 Hz increase their amplitudes for all faulty 

cases but this is probably due to the assembly process of the rotor during the tests. 

 The spectra corresponding to positions 1_6 and 1_5 are very similar. The same 

happens between the spectra of the position 1_3 and 1_5. 

 

With the previously extracted characteristics, it is possible to distinguish visually between the 

spectrum of the healthy motor and the damaged one (see Fig.6). 
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Fig. 6.   Comparison of the spectrum of the healthy motor (a), with the broken bars 

spectrum ((b) to (f)). Relative Position: B 

 

5. CONCLUSIONS 

 

This work proposes the use of induction motor stray flux signals for the identification of bar 

breakages regardless of their relative position. During the experiments carried out, it was shown 

that it is possible with the proposed algorithm to detect the fault and even distinguish the 

relative position of the bars that break. 

 

The proposed method is based on the frequency spectral subtraction of the power spectrum, 

furthermore it is use the Pearson correlation coefficient, which was applied to demonstrate the 

similarity of all the resulting patterns, obtained for two broken bars. 

In order to identify between healthy and damaged state, the analysis of the Fourier spectrum may 

be sufficient; the differences between the spectrum of the healthy motor and the faulty states in 

both positions A and B can be noticed visually, by means of the harmonics appearing both at 

lower frequencies and around the main component 
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Detection of Nonadjacent Rotor Faults in Induction Motors via Spectral 

Subtraction and Autocorrelation of Stray Flux Signals  
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Senior Member, IEEE, and J. Alberto Conejero 

 

Abstract—In this paper, statistical signal processing techniques are applied to electromotive 

force signals captured in external coil sensors for adjacent and nonadjacent broken bars 

detection in in- duction motors. An algorithm based on spectral subtraction anal- ysis is 

applied for broken bar identification, independent of the relative position of the bar 

breakages. Moreover, power spectrum analyses enable the discrimination between healthy 

and faulty con- ditions. The results obtained with experimental data prove that the 

proposed approach provides good results for fault detectability. Moreover, the 

identification of the faults, and the signal correla- tion indicator to prove the results are also 

presented for different positions of the flux sensor. 
 

Index Terms—Fault diagnosis, flux, induction motors, signals, spectral analysis. 

 

 

 

I. INTRODUCTION 
   

  A recent trend in the electric motor condition monitoring area relies on combining the 

information obtained from the analyses of different machine quantities (currents, vibrations, 
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temperatures, etc.) to reach a more reliable conclusion about its health. This is due to the fact 

that it has been proven that the analysis of a single quantity enables to diagnose specific faults 

or anomalies but it is not enough to determine the health of the whole motor. In this context, the 

analysis of classical quantities that are well known in the industry, such as currents or vibrations, 

has shown some problems or drawbacks for the diagnosis of certain faults [1]. 

With regards to the condition of the rotor, neither current nor vibration analyses have proven 

to be valid in all the cases that may rise in industry; it has been reported, for instance, the oc- 

casional occurrence of false indications when these techniques are used [2]–[5]. One of the 

cases where these techniques have not shown good results when detecting rotor damages is 

under the presence of nonadjacent bar breakages in the rotor cage. In this regard, over recent 

decades, several works have reported problems of current-based techniques to detect such fault: 

in the early 1980s Hargis et al. already pointed out that when the bro- ken bars are separated by 

π/2 electrical radians, current analysis may underestimate the number of broken bars and may 

even fail to detect the defect [6]. Years later, Benbouzid [7] ratified the previous statement, 

remarking that the lower sideband harmonic (LSH) may not be discernible when the breakages 

occur at spe- cific relative locations. The statement of the problem led several authors to deepen 

in the physical study of the phenomenon by developing suitable electric motor models that 

were aimed to analyze the relation between the relative positions of the broken bars and the 

results of motor current signature analysis (MCSA). This is the case of [8], in which a model of 

a 22-bar, four-pole machine was built considering all the potential cases of double breakages; 

the authors concluded again that the amplitude of the LSH greatly depends on the relative 

position between the bro- ken bars. Other physical analyses of the problem that reached 

analogous conclusions can be found in [9] and [10], while em- pirical analyses were performed 

in [11]. Finally, in [12], it is presented a physical analysis of the air gap magnetic anomaly for 

the case of any double bar breakage, including multiple ex- perimental tests that confirmed the 

effect of the bar breakage location on the MCSA results. This work proved that when two 

broken bars are separated by a distance equal to half the pole pitch, the LSH amplitude can be 

significantly lower than that reached for the case of only one broken bar. 

In spite of the number of works dealing with the nonadjacent broken bars issue, note that most 

of them are focused on present- ing rigorous analyses of the problem which ratify the difficulties 

of classical diagnosis methods. However, none of the previous works has proposed reliable 

solutions to the problem, neither based on current analysis nor on analysis of other quantities. 

More recently, several groups of authors have proposed novel strategies that were intended to 

solve the nonadjacent broken bars diagnosis issue. In this regard, Riera-Guasp et al. [13] pro- 

posed a method for detecting nonadjacent bar breakages, which relies on the study, both at steady-

state and under starting, of high-order harmonics (located at f·(5–4·s) and f·(5–6·s), with f  = 

supply frequency and s = slip) produced by the fault in the stator current. The problem of this 

approach is that these harmonics often have low amplitudes and are not always easily discernible 

neither on the Fourier spectrum of the steady-state current nor on the time-frequency analysis of the 

starting current. On the other hand, Antonino-Daviu et al. [14] compares the per- formance of 

MCSA and zero sequence current (ZSC) analysis to detect both adjacent and nonadjacent bars. 

This works con- cludes that the ZSC analysis may be promising to avoid potential false-negative 

indications of MCSA. However, this method re- quires the measurement of currents in all three 

motor phases (in delta configuration) for the later computation of the ZSC, which is not easy in 

many real industrial applications. In a more recent work, Gyftakis et al. [15] proposed a reliable 

indicator to detect nonadjacent broken bars based on the filtered Park’s/extended Park’s vector 

approach. This method relies on monitoring the higher harmonic index of the Park’s vector. Their 
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results were confirmed via multiple experimental tests. Once again, the prob- lem is that 

measurement of all three currents is necessary, a requirement that may significantly complicate the 

industrial ap- plicability of the approach. 

Due to the important problems of the methods relying of cur- rent analysis to detect nonadjacent 

broken bars, other technolo- gies based on alternative quantities are being explored. In this 

context, in [16], it is proposed the installation of a Hall Effect sensor between two stator slots and 

the subsequent fast Fourier transform (FFT) analysis of the registered data. The disadvan- tage of 

this method, which proves to be effective under low slip operating conditions, is the unpractical 

nature of the approach due to the necessity of sensor installation during motor assem- bly. 

However, this work demonstrates the potential of the flux analysis for such diagnosis, even 

though it is focused on the analysis of the internal flux in the machine. 

An alternative flux-based method that could have a more prac- tical feasibility would rely on the 

analysis of the motor stray flux. In this regard, the study of the external magnetic field in the 

vicinity of the motor has been proposed as a very interesting al- ternative for the diagnosis of 

several motor faults, namely: adja- cent rotor faults [17]–[19], eccentricities [20], [21], stator faults 

[22]–[24] or even gearbox problems [25]. It has been proven that when certain faults are present, 

specific harmonics are am- plified in the Fourier spectra of the electromotive force (EMF) signals 

induced in external coil sensors installed at different po- sitions. The simplicity, low cost, and easy 

implementation of the technique make it a very interesting option to complement the information 

obtained with other well-known technologies, especially considering the progressive reduction in 

price of the available flux sensors that comes together with an increase of their features [26]. 

Though most of the previous works related to flux monitoring have explored the applicability of 

the tech- nique under stationary conditions, some recent works have also studied the viability of 

the method under transient operation, obtaining very promising results [27]–[29]. 

In spite of all these advances, very few works have deepened in the application of the stray-flux 

analysis technique to detect nonadjacent broken bars in induction motors. One of the few 

available papers in this topic is [30], which relies on the extrac- tion of certain spectral flux 

component over time. Once again, the main constraint is that it focuses on the amplitudes of 

high- order harmonics that may not always be easily detectable. 

In this work, a new algorithm to detect rotor damages, in in- duction motors based on the 

analysis of stray flux signals, is proposed. It uses a spectral pattern recognition method based on 

the spectral subtraction of the power spectrum of the cap- tured flux signals. The proposed 

algorithm is applied not only to detect adjacent bar breakages, but also nonadjacent broken bars. 

In this paper, different positions of the considered sen- sor are assessed. The results, which are 

an extension of those already presented in [31], show the potential of this approach, which 

provides valuable information to detect nonadjacent rotor damages. One important advantage of 

the proposed approach, in comparison with other methods, is its simple implementation and 

practical feasibility, since only one sensor measurement is required. Moreover, this can be done in 

a non-invasive way, with- out perturbing the operation of the machine. This is a crucial 

advantage in industry, where non-invasive nature and simplicity are crucial requirements for the 

massive penetration of fault di- agnosis techniques. Finally, the method relies on clear variations of 

the detected patterns which are discernible even for low fault severity levels and that are based 

on the overall flux spectrum rather than on particular harmonics that could be easily affected by 

other phenomena or which may have reduced amplitudes. The validity of the proposed approach 

is proven through sev- eral experimental tests that have been developed with the aid of an in-

house built sensor that enables to measure the necessary quantity in a simple and fast way. 
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II.  ROTOR BAR BREAKAGE DETECTION VIA ANALYSIS OF FLUX SIGNALS 

 

Different authors have proven that the presence of certain faults in the motor amplifies some 

components in the stray flux spectrum [17]–[25], [32]. Most of these works proposed the use of 

external coil sensors for the capture of the necessary signals and the subsequent Fourier analysis 

of these signals to detect the components amplified by rotor damages and other faults. 

Regarding the detection of bar damages, in [32], it is suggested the study of the sideband 

components appearing at f·(1±2·s·f) (with s stands for the slip and f for the supply frequency) 

around the main frequency component in the FFT spectrum of the cap- tured EMF signals. More 

recent works such as [17] and [33] propose the study of other components in the low frequency 

re- gion of the FFT spectrum of the EMF induced in external coil sensors; according to these 

authors, when rotor faults are present, the components located at s·f and 3·s·f are amplified in that 

FFT spectrum. Therefore, the study of the amplitudes of these har- monics may become a 

reliable indicator of the presence of the fault. 

 

 
 

 

Fig. 1.    Block diagram of the proposed algorithm for identifying broken bars. 
 

Although most of the works developed in the literature are focused on the analysis of the EMF 

signals induced in external coil sensors at steady-state operation of the motor, some recent 

papers have explored the viability of the analysis of these signals under the startup, obtaining 

very promising results [27], [28], [34]. These works have proven that, during transient 

operation, the fault components follow particular trajectories that can be used as evidences of 

the failure. 

The present work focuses on the flux-based detection of ro- tor faults but considering the case 

of nonadjacent broken bars. As commented above, despite several works have stated the dif- 

ficulties that conventional methods have under this situation, very few works have tried to 

proposed effective solutions to the problem. 

 

III.  PROPOSED ALGORITHM 

 

To try to achieve some recognition criteria to classify the damages, a method based on the 

spectrum descending order is applied to the signal obtained after preprocessing (output signal 

after noise reduction). Later, a spectral subtraction operation with respect to the signal of the 

healthy motor is also performed [35], [36]. Finally, a moving average block is used as a 

smoothing filter to eliminate impulsive components of the spectral subtraction. The resulting 

algorithm given by these processes is described in Fig. 1. 

The pattern recognition algorithm is based on the use, as a basic pattern, of the signal of the 

healthy motor. This is not a serious restriction under a practical point of view, since that signal 
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could be obtained after motor commissioning or after motor inspection, once the rotor is 

guaranteed to be healthy. In the method, once the actual samples have been captured, they can 

be compared with the healthy ones. The proposed method is based on searching for patterns, by 

looking at the differences in the spectrum of both signals (actual sample versus healthy one). 

The use of the signal of the healthy motor as a signal reference is analogous to the schemes of 

adaptive systems. What is obtained at the output, is a spectral pattern that identifies the number 

of broken bars present in the motor. 

 

For finite duration discrete-time signals {𝑥(𝑛)}𝑛=0
𝑁−1 (which represents the signal to be processed) 

and {𝑦(𝑛)}𝑛=0
𝑁−1 (which represents the healthy motor signal that is taken as reference sig- nal), both 

of length N samples, the classic method for estimation of the power spectrum is the periodogram. 

The periodogram is defined as: 

 

                          𝑃𝑥𝑥(𝑓) =
1

𝑁
|∑ 𝑥(𝑚)𝑒𝑗2𝜋𝑓𝑚𝑁−1

𝑚=0 |
2

=
1

𝑁
|𝑋(𝑓)|2                                         (1) 

 

 
 

Fig. 2.    Method to perform the proposed algorithm. 
 

In our case, the algorithm is based on performing the power spectrum for both signals, namely: 

the input signal x and the reference signal y. Afterward, we proceed to sort the power spectrum 

using descend method. The obtained results for both signals after sorting the power spectrum are 

used for spectral subtraction. The overall process to perform the proposed algo- rithm is shown in 

Fig. 2. As a final step, we propose the application of a moving average filter for smoothing. The 

novelty of this algorithm relies on the use of a reference signal which controls the entire process, 

in addition to the use of spectral subtraction and the ordering of the power spectrum. 

Computational complexity of the algorithm is low, since it is based on second-order statistics. 

 

 

IV.  EXPERIMENTAL RESULTS 

 

Different experiments were developed at the laboratory by using a four-pole, 1.1-kW induction 

motor which was coupled to a dc machine acting as a load. The detailed characteristics of the 
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tested motor and load can be found in the Appendix. Different cage rotors (28 bars in each rotor) 

with diverse levels of failure were available, so that each specific rotor could be assembled to test 

the corresponding rotor fault condition. More specifically, in this work, the considered cases are: 

healthy rotor and rotor with two broken bars. In this latter case, different relative positions 

between the broken bars were tested, namely: bars 1–2 broken (adjacent broken bars), bars 1–3 

broken, bars 1–4 broken, bars 1–5 broken, and bars 1–6 broken. 

 

In each test, the machine was started until it reached the steady-state regime. The EMF signal 

induced in an external coil sensor attached to the frame of the machine was captured using a 

digital YOKOGAWA DL-850 oscilloscope. The flux sensor was built in the laboratory and was 

based on a coil with 1000 turns with an external diameter of 80 mm and an internal diameter of 39 

mm. Two different sensor locations were considered: Posi- tion A (sensor attached to the lateral 

part of the motor frame, in the shaft side, Fig. 3(b)) and Position B (sensor attached to the center 

of the frame, Fig. 3(c)). The signals were captured using a sampling rate of 5 kHz and the 

acquisition time for the steady-state signals was 40 s. Both the experimental test bench and the 

two considered sensor positions are shown in Fig. 3. 

 

In order to detect the corresponding faulty condition, the idea of the proposed algorithm to 

identify the broken bar pattern 
 

 
 

Fig. 3. (a) Experimental test bench. (b) Position A of the coil sensor. (c) Position B of the coil 

sensor. 
 

 

 

is to take, as a reference, the healthy state of the motor. The objective is to detect differences in 

the power spectrum, taking into account that a motor in a healthy state will have a certain power 

spectrum. When the motor is faulty, it will no longer have the same spectrum. Hence, our method 
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will be based on the rearrangement of the power spectrum and spectral subtraction to obtain an 

identification pattern of broken bars regardless of the relative position of the bars. The developed 

algorithm was conditioned by two goals: 1) it should be able to distinguish between healthy and 

faulty cases based on the analyses of flux data; and 2) it should be able to detect the existence of 

the fault regardless of the position of the bars that break. 

 

A. Experimental Results Obtained From the Measurement in Position A 

 

Regarding Position A, the resulting pattern obtained for each sample after the application of the 

proposed algorithm (see Fig. 1) allows us to discern when we are in the presence of a motor 

with two broken bars, since all the samples converge to the same line (see Fig. 4). 

In Fig. 4, we can also see the stepped positioning of the obtained patterns from each sample 

according to the relative positions, whose difference lies in the amplitude, that is: first po- 

sition_1_2 (red), position_1_6 (black), position_1_5 (yellow), position_1_3 (green), the above 

except for position_1_4 (blue) which reflects a total difference with the rest of the obtained 

patterns, from each sample. This result can be very useful for discrimination between the 

healthy and faulty cases and for the identification of the two broken bars case, regardless of the 

rel- ative position of the broken bars. 

 

 
 

Fig. 4.    Resulting spectral pattern obtained from Position A. 
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TABLE I. CORRELATION VALUES OBTAINED ACCORDING TO THE 

RESULTING PATTERNS: POSITION A. 

 

 
 

To prove that we are in the presence of a motor with two broken bars, the Pearson correlation 

coefficient was applied between the resulting patterns obtained from the measurements carried 

out in Position A. The correlation obtained between the resulting patterns is almost 1, except on 

the case of Position 1_4. Table I shows the results obtained. In that table, CORR_POS_X_X is 

the correlation obtained from each pattern with respect to the resulting pattern of the bar 

BB_1_2. The measurement BB_1_2 was taken as reference, but another sample could have 

been taken; the correlation will give similar values with the excep- tion of Position 1_4, which 

has a certain difference as shown in the graph of Fig. 4. Now, if we consider the mean value of 

the module of the obtained correlations, it gives as result: 0.9768. 

 

B.  Experimental Results Obtained From the Measurement in Position B 

 

As for Position B, it is verified by the resulting pattern (see Fig. 5) that there are two broken 

bars and just as in Position A, we can discern in which relative position is Position 1_4 (blue) 

and Position 1_6 (black) which are differentiable from the rest of the others, since their 

correlation value is negative as well as the results of the measurement at Position A. 

 

 
 

Fig. 5.    Resulting spectral pattern obtained from Position B. 
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TABLE I I CORRELATION VALUES OBTAINED ACCORDING TO THE 

RESULTING PATTERNS: POSITION B 

 

 
 

With respect to the other broken bar relative positions (1_2, 1_3, and 1_5), these follow a 

stepped descendent pattern as in Fig. 2, although not in the same order. The correlation obtained 

between the resulting patterns as in Position A is almost 1, except on Position 1_4 and Position 

1_6, whereby these two positions can be discerned. In Table II, the results are shown. Now, if 

we proceed in the same way as for Position A, with the average value of the module of the 

correlations obtained, it yields: 0.7309. The correlation levels obtained in the measurements 

made in both relative Positions A and B, respectively, oscillate between 0.7 and 0.98, which can 

be a variable indicator to identify broken bars using the flux signals. 

Note that the power spectra of Figs. 4 and 5 have been sorted according to the amplitude in 

descending form, as a way to organize the vector to evaluate the spectral subtraction, whose 

objective is to obtain differences in the spectrum in relation to the healthy state. By carrying out 

the spectral subtraction of the spectra, only the components in the failure bands will remain, 

since the components of fundamental frequencies as well as the noise that may exist in the 

spectrum are cancelled out. 

The fault components appear in the spectrum in the bands adjacent to the fundamental 

frequency. When the spectrum is sorted, the frequency components are placed in descending 

order according to their amplitude value; the amplitude values of the components where there is 

a fault will take a new position in the new ordered amplitude vector, but this information is not 

relevant, since what is intended is to find out a common pattern for when there are two broken 

bars, regardless of their relative position, so, in this case, the information relative to the location 

in the frequency domain is not so relevant. 

 

C.  Discrimination Between Healthy and Damaged States Based on the Spectra 

 

The discrimination between healthy and faulty conditions can be carried out by comparing the 

corresponding spectra of the captured EMF signals. However, this procedure is influenced by 

the occurrence of nonadjacent breakages since, depending on the relative positions between the 

bars that break, the amplitudes of the fault harmonics may sensibly differ [30]. However, as 

pointed out in previous works [17], [33], the analyses of the Fourier spectra may be helpful at 

least to have evidence that an anomaly may be present. A rough analysis of the characteristics 

of the Fourier spectra for each one of the considered positions of the sensor (see Figs. 6 and 7) 

is presented next. Table III synthesizes the conclusions of both figures and includes the case of 

a single broken bar for comparison purposes. 
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Characteristics of the spectra for Position A are as follows. 

 

1)  All the analyses show the presence of the main rotor fault component (LSH), which is 

typically used for diagnosing the fault and that is located at f·(1–2·s). However, note that 

there are clear differences between the amplitude of this harmonic for healthy and faulty 

conditions, a fact that may enable to discriminate between both conditions (see Fig. 6). 

2)  Note that, for the different cases of broken bars, the am- plitude of the LSH significantly 

changes. The maximum amplitude is reached when the broken bars are consecutive 

(Positions 1–2), whereas the minimum amplitudes happen when the broken bars are at 

Positions 1–4 and 1–5. This fact clearly confirms the influence of the relative position of 

the broken bars on the fault component amplitude. In any case, in spite of these differences 

between faulty cases, the differences are evident versus healthy condition. 

 

Characteristics of the spectra for Position B are as follows. 

 

1)  All samples have the expected fundamental harmonic at 50 Hz (see Fig. 7). 

2)  As in Position A, sideband components are present for all faulty cases although their 

amplitudes vary depending on the relative position between broken bars (maximum 

amplitude for adjacent bars, in agreement with the con- clusions of previous works 

focused on current analysis [12]). 

3)  Again, there is a significant variation between the lower sideband amplitude for the faulty 

cases. In some relative positions, the compensation effect between both break- ages may 

lead to very low amplitudes of the sideband that may lead to difficulties for discriminating 

versus healthy condition. 

4) If the low frequency regions (not shown in the figures due to space restrictions) are 

studied, fault harmonics are detectable at components s·f and 3s·f [33]. One again their 

amplitudes 
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Fig. 6. Comparison of the 

spectrum of (a) healthy motor, 

with (b)–(f) broken  bars spectra. 

Sensor Position: A  

Fig 7. Comparison of the 

spectrum of (a) healthy motor, 

with (b)– (f) broken bars spectra. 

Sensor Position: B 
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TABLE III. LSH FREQUENCY AND AMPLITUDE FOR EACH TESTED CONDITION 

AND FOR EACH SENSOR POSITION 

 
 

 

amplitudes are influenced by the relative positions of the breakages. But their presence is 

evidence of the existence of the fault. 

In conclusion, the analyses of the spectra can enable to distinguish visually between healthy and 

faulty conditions but the influence of the relative position between broken bars may make the 

discrimination difficult in some cases. Due to this, the algo rithm proposed in the first part of 

this paper can be especially useful to diagnose this situation and avoid false-negative indi- 

cations. 

 

D.  Discrimination Between Healthy and Damaged States Based on the Autocovariance 

Function. 

 

From the previous results based on the information of the frequency spectrum, differences 

between both spectra can be visually appreciated for the healthy and damaged states. However, 

it is convenient to obtain an indicator that emits a constant or a variable value in a certain range 

when it is in the presence of a healthy motor and when the motor is damaged. In relation to this, 

in this section, an algorithm based on the square value of the median of the autocovariance of 

the flux signal is proposed. It is decided to use the median and not the mean value so that the 

amplitude peak in the flux signal has no influence at the time of the calculation of the indicator. 

The reason for using the quadratic value of the median of the autocovariance is explained by the 

fact that it is necessary to obtain a quantitative indicator which clearly differs between healthy 

and faulty conditions. Although other quantities such as the mean value, quadratic mean of 

variance have been also evaluated, they have not led to so sensitive results as the proposed 

quantity. The theoretical foundations of the proposed algorithm are described next: for a 

stationary periodic real signal, the autocovariance function of a random, stationary process 

{x(n)} is a measure of the dispersion of the process around its mean value and is defined as a 

function dependent on the first and second-order moments as follows: 
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𝑐2
𝑋(𝜏) = 𝑚2

𝑋(𝜏) − (𝑚1
𝑋)2 

 

where 𝑐2
𝑋(𝜏)  is the autocorrelation function. From the above equation, it can be noted that if the 

process is of value zero mean value, the autocovariance coincides with the autocorrelation 

function. Then, replacing in (2) and applying second-order statistics we have: 

 

𝑐2
𝑋(𝜏) =

1

𝑁
∑ 𝑥(𝑡) ∙ 𝑥(𝑡 + 𝜏)

𝑁−1−𝜏

𝑡=0

 

 

Then, after obtaining the autocovariance function, we proceed to calculate the square value of the 

median, for each sample used in the experiment, which is as follows: 

Let x1 , x2 , x3 ,..., xn be the data of a sample ordered in in- creasing order and designating the 

median Me   as: if n is odd, the median is the value occupied by the position : 

 𝑀𝑒𝑐2
𝑋(𝜏) =

𝑐2
𝑋(𝜏)(𝑛+1)

2
 then if n is not odd, the median is the arithmetic mean of the two central 

values. Then, it would be: 

𝑀𝑒𝑐2
𝑋(𝜏) =

𝑐2
𝑋(𝜏)(𝑛/2) + 𝑐2

𝑋(𝜏)(𝑛/2+1)

2
 

 
Substituting to find out the temporary indicator: 

 

𝐼𝑛𝑑𝑡 = (𝑀𝑒𝑐2
𝑋(𝜏))2 

 

The obtained results applying the proposed algorithm as a temporary indicator for the detection 

of the healthy–damaged state of the motor are shown in Fig. 8, likewise these are summarized in 

Table IV. 
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Fig. 8. Comparison between: (a) indicator for healthy state condition for both sensor 

positions A and B and (b) indicator for broke state condition for both sensor positions A 

and B. 

 

TABLE IV VALUES OF THE INDICATOR AND MULTIPLICATION FACTOR 

FOR BOTH SENSOR POSITIONS A AND B 

 
As it can be observed in Table IV, there is a notable difference in the values of the indicator 

obtained for Position A with respect to those obtained for Position B, even for the same 

condition. This indicates that the sensor position plays an important role. Note also that there are 
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important differences between the value of the indicator for healthy condition and its 

corresponding value for each fault condition (second and third columns). In order to obtain a 

measure of this difference, a multiplication factor is introduced (see fourth column); it is defined 

as the ratio between the value of the indicator for the corresponding faulty condition and its value 

for healthy state. This ratio gives an idea of the fault severity in comparison with the healthy 

condition. 

Note that the relative Positions 1–3_A, 1–3_B, and 1–6_B, respectively, are the positions where 

more noticeable differences of the indicator are obtained in relation to the values obtained for the 

healthy condition. For the other relative positions, the differences are not so clear; a fact that 

indicates that, in addition to the sensor position, the relative position of the broken bar also has 

certain influence in the results. 

 

V.  CONCLUSION 

 

This work proposes the use of induction motor stray flux sig- nals for the identification of bar 

breakages regardless of their rel- ative position. During the experiments carried out, it was shown 

that it is possible with the proposed algorithm to detect the fault and even distinguish the relative 

position of the bars that break. The proposed method is based on the frequency spectral sub- 

traction of the power spectrum and on the subsequent computa- tion of the Pearson correlation 

coefficient, which was calculated to demonstrate the similarity of all the patterns obtained for the 

case of two broken bars [37], [38]. 

In order to identify between healthy and damaged states, a rough analysis of the power spectrum 

may be sufficient in some situations; the differences between the spectrum of the healthy motor 

and the faulty states in both Positions A and B can be noticed visually, by means of the 

harmonics appearing both at lower frequencies and around the main component. 

Furthermore in relation to this, a potential indicator to evalu- ate the condition of the motor and 

discriminate between healthy and damaged states has been evaluated experimentally. This in- 

dicator is based on the calculation of the square value of the median of the autocovariance 

function of the stray flux signal. 

It is shown that there are quantitative differences in the obtained values when evaluating the 

indicator for both states (healthy and faulty) and it was demonstrated that the position of the flux 

sen- sor as well as the relative position of the broken bar may have influence at the time of 

calculation of the indicator. According to the obtained results, the indicator evaluated when the 

sensor is at Position B seems to be more sensitive than when the sensor is at Position A. 
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APPENDIX 

 

See Tables V and VI. 
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Abstract: The aim of this work is to find out, through the analysis of the time and frequency 

domains, significant differences that lead us to obtain  one or several variables that may result in 

an indicator that  allows diagnosing the condition of the rotor  in an induction motor from the 

processing of the stray  flux signals. For this,  the calculation of two  indicators is proposed: the 

first is based on the frequency domain and it relies on the calculation of the sum of the mean  

value  of the bispectrum of the flux signal.  The use of high order spectral analysis is justified in 

that with  the one-dimensional analysis resulting from  the  Fourier Transform, there  may  not  

always be solid  differences at the spectral level  that  enable us  to distinguish between healthy 

and  faulty conditions.  Also,  based on the high-order spectral analysis, differences may  arise 

that,  with  the classical  analysis with  the Fourier  Transform, are not evident, since the high 

order  spectra from the Bispectrum are immune to Gaussian noise, but not the results  that can be 

obtained using the one-dimensional Fourier transform. On the other hand,  a second indicator 

based on the temporal domain that is based  on the calculation of the square value of the median 

of the autocovariance function of the signal  is evaluated.  The obtained results are satisfactory 

and let us conclude the affirmative hypothesis of using  flux signals for determining the condition 

of the rotor  of an induction motor. 
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1. Introduction 
 

In the electric motor condition monitoring area, there  is a continuous search  for new 

techniques that  are able to enhance the performance and  to avoid the drawbacks of the 

currently existing ones. In this context, the analysis of alternative machine quantities is 

being explored, as a way to complement the information provided by the well-known 

methods that are widespread in the industry (currents and vibrations). This is especially 

important, taking into consideration that no single quantity has been proved to be reliable 

enough to diagnose the condition of the whole machine,  and that the best option seems 

to be to combine the information obtained from different sources  [1–3]. 

Induction motor fault detection (FD) methods, such as stray flux data analysis  [4–8], have 

specific advantages that make them especially attractive for certain applications. Fault 

diagnosis and processing techniques based on stray flux signals are completely non 

invasive and their set up is relatively  simple, although the application of this approach 

requires a specific  sensor and  a priori knowledge of the distribution of the magnetic 

field around the electrical machine, which depends, in general, on the manufacturing 

characteristics of the induction motor  [1]. 

In reference [6], fault  detection from  the analysis of stray  flux signals is based on the 

variation of the amplitude versus the load of a specific harmonic for two different 

positions of the flux sensor. The advantage of this method is that it does not require 

information about  the machine behavior in a healthy state. In reference  [4], the use of an 

analytical model  that allows us to determine the magnetic flux approximation under 

conditions of healthy  and faulty states for the case of a short circuit between the stator 

turns and  the broken bars  is explained. We also refer to [7] for another method for 

short circuitdetection using  stray flux signals. 

Fault diagnosis using  stray flux signals is based  on spectral analysis,  through statistical 

methods, of the harmonics signals obtained from the flux sensor  at different relative  

positions. Compared with classical  methods based on analysis of currents such as 

MCSA (Monte  Carlo Statistical Analysis), a disadvantage is that  the results may  

depend on the position of the sensor, and  it is not possible to theoretically establish a 

general rule to obtain  the optimum position in the measurement. Moreover, there  are  

no  defined thresholds to  determine the  severity of the  fault  based on  the  analysis 

of these quantities. 

In spite of the drawbacks of stray flux data analysis, the progressive cost decrement of 

necessary flux sensors together with  the aforementioned advantages of this 

technique have  led to a renewed dynamism in the research  devoted to the study  of this 

technique. Recent works have even extrapolated its application to transient analysis, 

showing especial advantages in comparison with other methods [9]. Stray flux analysis is 

adequate to avoid  occasional  false indications appearing when  other techniques are 

applied to rotor fault detection  [10]. Moreover,  the suitability of stray flux analysis for 
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non-adjacent bar breakage detection has been  explored in [11,12]. Regarding 

statistical analysis using stray  flux signals, an algorithm has  been  proposed in [13] 

that  relies  on the  use  of the  mean value and  the standard deviation of the spectral 

components. Its performance has been tested with  three  levels of faults, see also 

[14,15]. 

In the present work,  an algorithm to determine the rotor condition of induction motors 

from the analysis of stray  flux signals is proposed. The detection of the healthy and  

faulty state conditions is based  on a time-frequency analysis of the bispectrum and of 

the autocovariance function. The results are  satisfactory and  show  the  potential of 

this  approach, which provides valuable information to detect the state  of the rotor  

or, at least, to supplement the information provided by other quantities, improving 

the performance of classical techniques. 

 

2. Materials and Methods 
 

2.1. Data Acquisition 
 

The experimental test bench was based on a 1.1 kW induction motor that  was driving 

a direct current generator. Stray flux measurements were obtained by registering the  

electromotive force waveforms induced in an external coil sensor that was attached 

tovarious positions of the motor frame. The flux sensor was a coil with 1000 turns with an 

external diameter of 80 mm and an internal diameter of 39 mm. 

Different operating conditions of the motor were considered.  To differentiate the  

results by working regimes, our samples were taken  during the motor  startup (the 

motor  was fed at 60% of the rated voltage) and  at steady state  (in this case the motor 

was fed 100% of the nominal voltage). We have obtained eight samples of flux signals 

of a healthy motor and sixteen samples of flux signals of a motor with damaged rotor 

(one broken bar).  All the measurements in the experiments were taken under similar 

characteristics in both cases, in order to facilitate subsequent comparisons. In both 

experiments, the sampling frequency was 5 kHz. 

   We show in Tables 1 and 2 the different conditions of the experiments for capturing   

  The flux signals of the healthy and faulty motors during start-up (60% of the supply    

  voltage), as well as the corresponding sensor positions (see Figure 1). 

 

Table 1. Characteristics of the experiment for the healthy motor during start-up 

Sample Position Load Speed (r/min) 

Torque 

(Nm) 

Supply 

Voltage(%) Time(s) 

0 DMA NL 988 0.49 60 1 

2 DM NL 988 0.49 60 1 

4 E NL 987 0.51 60 1 

6 L NL 986 0.54 60 1 
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Table 2. Characteristics of the experiment for the damaged motor with a broken bar 

during start-up 

Sample Position Load Speed(r/min) 
Torque 

(Nm) 

Supply Voltage 

(%) 
Time(s) 

0 DMA NL 985 0.49 60 1 

2 DM NL 988 0.49 60 1 

4 E NL 987 0.49 60 1 

6 L NL 985 0.49 60 1 

8 DMA FL 755 5.1 60 1 

10 DM FL 750 5 60 1 

12 E FL 760 5 60 1 

14 L FL 765 5 60 1 

  

 

 

Figure 1. Different positions considered of the flux sensor 

Similar experiments were carried out with the motor under permanent regime (100% of the 

supply voltage). We summarize in Tables 3 and 4 the experimental conditions of the motor 

operation at steady state. 

Table 3. Characteristics of the experiments for the healthy motor at steady-state 

Sample Position Load Speed (r/min) 

Torque 

(Nm) 

Supply Voltage 

(%) Time(s) 

1 DMA NL 994 0.49 100 8 

3 DM NL 994 0.48 100 8 

5 E NL 995 0.51 100 8 

7 L NL 995 0.5 100 8 

 

 

 

Pos. DM

Pos. DMA

Pos. E

Pos. L

Pos. E
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Table4. Characteristics of the experiment for the damage motor with a broken bar at steady-

state 

Sample Position Load Speed (r/min) 
Torque 

(Nm) 

Supply Voltage 

(%) 
Time(s) 

1 DMA NL 994 0.52 100 8 

3 DM NL 994 0.53 100 8 

5 E NL 994 0.55 100 8 

7 L NL 997 0.58 100 8 

9 DMA FL 940 6.2 100 8 

11 DM FL 940 6.13 100 8 

13 E FL 940 6.1 100 8 

15 L FL 940 6.09 100 8 
 

 

2.2 Analysis in the Frequency Domain: Theoretical Foundation   

Let be ...3,2,1,0)},({ nnx  a stationary random vector and its high-order moments exist, 

then[13-14]: 

                                )}()...()({),...,,( 11121   kk

x

k nxnxnxEm                               (1) 

 

represents, the moment of order k for that vector, which depends only on the different time 

intervals ,...1,0,,... 12,1  ik  for all i . Since, in practice cumulants are functions dependent on 

the expected value, they must be estimated, since we have a finite amount of data to 

process {𝑥(𝑛)}𝑛=0
𝑁−1.  

These estimators are of a stationary nature and are characterized by first and second order 

statistical functions such as mean value and variance.Then, be 𝑥(𝑛)a stationary process of zero 

mean value. The third ordercumulant is given by [15]: 

 

                                  𝐶3𝑥(𝜏1, 𝜏2) =
1

𝑁
∑ 𝑥(𝑛) ∙ 𝑥(𝑛 + 𝜏1) ∙ 𝑥(𝑛 + 𝜏2)𝑁2

𝑛=𝑁1                         (2) 

where𝑁1 y 𝑁2are chosen in such a way that the summation involves onlyx(n) with𝑛 ∈ [0, 𝑁 − 1], 
𝑁is the number of samples in the cumulant region to be evaluated. Likewise, the bispectrum is 

defined by the Fourier Transform of the third order cumulant, which is given by [15]: 

 

𝐵𝑥
𝑁(𝑓1, 𝑓2) = ∑ ∑ 𝐶3𝑥(𝜏1, 𝜏2) ∙ 𝑒−2𝜋𝑓1𝜏1 ∙ 𝑒−2𝜋𝑓2𝜏2𝑁−1

𝜏2=−𝑁−1
𝑁−1
𝜏1=−𝑁−1 =

1

𝑁2 𝑋(𝑓1, 𝑓2) ∙ 𝑋(𝑓1) ∙ 𝑋(𝑓2)               (3) 

where 𝑋(𝑓) is the Fourier Transform of the sequence {𝑥(𝑛)}𝑛=0
𝑁−1. 

 

For the detection of the healthy and damaged state condition of the induction motor, an algorithm 

based on the summation of the mean value of the bispectrum absolute vale of the flux 
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signal is proposed. The theoretical description is shown as follows from the obtained result of 

equation (3): 

 

                           (𝐵𝑥−𝑚𝑒𝑎𝑛
𝑁 (𝑓)) =

1

𝑁
∑ |𝐵𝑥

𝑁(𝑓1, 𝑓2)|𝑖
𝑁
𝑖=1  ,∇𝑖 = 1, … , 𝑁                       (4) 

where 𝑁 is the number of rows of the square matrix (𝑁𝑥𝑁) obtained from the bispectrum. The 

obtained result in (4) is a 1𝑥𝑁 vector that contains the average frequency values of the amplitude 

bispectrum matrix of the flux signal.  From the obtained result in (4), we define an indicator 

variable in the frequency domain by the following expression, as the summation of every average 

frequency values of the amplitude bispectrum:  

 

                                           𝐼𝑛𝑑𝑓 = ∑ 𝐵𝑥−𝑚𝑒𝑎𝑛
𝑁 (𝑓)(𝑖)

𝑁
𝑖=1                                        (5) 

 

that will be used for the detection of the healthy and faulty condition of the induction motor. 

 

2.3 Temporal Domain Analysis  

First, we process the flux signals in the time domain, using the initial data of the experiment, see  

Tables 1-4. During the start-up, it is shown that the indicator variable in the frequency domain 

leads to good results and a palpable difference is observed, which enables us to discriminate 

between healthy and damaged state conditions of arotor. However, when the motor works at 

steady state, at 100% of the rated voltage, the method based on the analysis in the frequency 

domain is not completely effective. 

 

Therefore, to solve the aforementioned issues and to obtain a reliable indicator to be applied in 

both situations, enabling the discrimination between healthy and damaged rotors, an algorithm 

based on the autocovariance function of the stray flux signals is proposed. This algorithm is based 

on the square value of the median of the autocovariance matrix of the flux signal. The theoretical 

foundations of the proposed are described below: 

 

The autocovariance function of a random, stationary process {𝑥(𝑛)}𝑛=0
𝑁−1 is a measure of the 

dispersion of the process around its mean value and is defined as a function dependent on the first 

and second order moments as follows [16]: 

 

                                                2

122 )()()( xxx mmc                                                        (6) 

where )( 12 
xm is the  autocorrelation function and )( 1

xm is the first order moment. From (6) it can 

be noted that if the process is of zero mean value, the autocovariance coincides with the 

autocorrelation function. Then replacing in (6) )( 12 
xm and applying second order statistics we 

have: 
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                                        𝑐2
𝑥(𝜏) =

1

𝑁
∑ 𝑥(𝑡) ∙ 𝑥(𝑡 + 𝜏)𝑁−1−𝜏

𝑡=0                                           (7) 

 

 

Then, after obtaining the autocovariance function, we proceed to calculate the square value of the 

median, for each sample used in the experiment, which is as follows [16]: 

 

Let be x1, x2, x3, … , xnthe data of a ordered sample in increasing order and designating the 

median as Me, ifnit is odd the median is the value that the position occupies : Me(c2
x) =

c2
x(τ)(n+1)

2
 , 

then if nit is pair the median is the arithmetic mean of the two central values. Then, it would be 

like: 

 

                                𝑀𝑒(𝑐2
𝑥) =

𝑐2
𝑥(𝜏)

(
𝑛
2

)
+𝑐2

𝑥(𝜏)
(

𝑛
2

+1)

2
                                                    (8) 

substituting to find out the temporary indicator: 

 

                                                                        𝐼𝑛𝑑𝑡 = (𝑀𝑒(𝑐2
𝑥))2                                                (9) 

 

The obtained result in (9) will be taken as the variable of indication in the time domain for the 

detection of the healthy and faulty conditions in the induction motor. 

 

3. Results 

3.1 Results in the frequency domain 

Using the data obtained in the experiments, we have applied the algorithm described in the 

Section 2.2 in order to obtain the indication variable in the frequency domain, based on the 

bispectrum of the flux signal. This enabled us to discriminate between the healthy and faulty 

conditions of an induction motor. The bispectrum has been calculated in a window of 1024 

samples, which results in a square matrix, where the number of rows and columns coincides with 

the data window to be processed, i.e.,1024𝑥1024. 

 

We have used the algorithm based on the bispectruminstead of the analysis based on the one-

dimensional Fourier transform. The reason is the following: when applying the proposed method 

using the sum of the mean of the frequency spectrum absolute value, no relative differences were 

observed between the healthy and the damagedstates if the one-dimensional Fourier transform is 

used, as mentioned above. 

 

This statement has been checked using sample 0 (position DMA of Table 1) corresponding to the 

samples of flux signals of the healthy motor and comparing the results with sample 0 (position 

DMA of Table 2) corresponding to the samples of flux signals of the motor with one broken rotor 

bar. The obtained results are shown in Figure 2 and Table 5, respectively. 

 

 



 

77 
 

Publications  Chapter 2 

 

 
 

Figure 2.Comparison of the frequency spectra of the flux signals for the healthy state 

(Blue) and for the faulty state with one broken bar (red). Sample 0, DMA position. 

Table5. Obtained results by applying the one-dimensional Fourier Transform and 

calculating the indicator (equation (4) and (5)). 

Sample Obtained Indicator in Frequency 

Domain 

0, DMA position, healthy 

state 

9.1160e-04 

0, DMA position, damage 

state (one broken bar) 

8.8375e-04 

 

In Table 5, the difference that exists between both values of the indicator is 2.7857e-05, which is 

not significant to reliably discriminate between healthy and faulty conditions. Likewise, in figure 

2, no relevant differences are observed at first sight in the spectra of both samples for the same 

position (DMA). 

 

Taking into consideration the previous results, we decided to use the bispectrum of the flux 

signals.The algorithm of equations (4) and (5) was applied to obtain an indication variable that 

was able to detect differences between the healthy and damaged conditions. Figure 3 shows the 

bispectrum of the flux signal in the healthy state (sample 0, position DMA) and faulty state 

(sample 0, position DMA). 

 

As can be seen in Figure 3, the bispectrum has two circles corresponding to fundamental 

frequency values of the form (f1, f2) in this case (0.01.0.01), which corresponds to the frequency 

of 50 Hz (normalized to 1), depicted in Figure 2, corresponding to the frequency spectrum using 

the one-dimensional Fourier transform. 
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Similarly, around these two points there are other four circles which correspond to the frequency 

values, multiples of the fundamental frequency of 50 Hz. As shown in Figure 3, there are 

differences between the bispectrum of the flux signal of the healthy motor and of the damaged 

motor. These six circles visualized in the contour of the bispectrum appear in all the analyzed 

samples, both in the healthy and in the faulty state conditions. This can be observed in Figures 4-

9. 

 

 
(a) 

 
(b) 

Figure 3. (a) Contour of Bispectrum of the motor flux signal in healthy condition 

(sample 0, DMA position) (b) Contour of Bispectrum of the motor flux signal in faulty 

condition (sample 0, DMA position). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Contour of the bispectrum of the motor flux signal: (a) Sample 1 of the healthy motor, 

(b) Sample 1 of the damaged motor, (c) Sample 2 of the healthy motor, (d) Sample 2 of the 

damaged motor. 
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(a) 

 
(b) 

Figure 5. Contour of the bispectrum of the motor flux signal:  a) Sample 3 of the healthy 

motor and b) Sample 3 of the damaged motor 

 
(a) 

 
(b) 

Figure 6. Contour of the bispectrum of the motor flux signal: a) Sample 4 of the healthy 

motor, b) Sample 4 of the damaged motor 
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(a) 

 
(b) 

Figure 7. Contour of the bispectrum of the motor flux signal: (a) Sample 5 of the healthy motor 

and (b) Sample 5 of the damaged motor. 

 

 
(a) 

 
(b) 

Figure 8. Contour of the bispectrum of the motor flux signal: (a) Sample 6 of healthy the motor, 

(b) Sample 6 of the damaged motor.  
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(a) 

 
(b) 

Figure 9. Contour of the bispectrum of the motor flux signal: a) Sample 7 of healthy 

motor and b) Sample 7 of damaged motor 

In Figures 3-6 we show the differences in the bispectrum between the healthy and the damaged 

motors, for the different positions at which the measurements of the flux signals were taken. Note 

that in some graphs there are more substantial differences, such as in Figure 3 as well as in Figure 

4c,d. The differences depend on the position in which the measurement was taken, as well as on 

the load, and on the supply, and will also depend on obtaining a more or less significant 

difference in relation to the value of the indicator in the frequency domain (Equation (5)). 

 

The calculation of the indicator in the frequency domain based on Equations (4) and (5) was 

performed for the data in Tables 1-4 which correspond to the motor under healthy and faulty 

conditions. The obtained results are shown in Tables 5 and 6. 

 

Table 6. Results of the indicator in the frequency domain based on equations (4) and (5) 

for the data of the experiment with the healthy motor during start-up. 

Sample Position Load Speed(r/min) 

Torque 

(Nm) 

Supply  

Voltage (%) Time(s) 

Indicator 

0 DMA NL 988 0.49 60 1 30.38804 

2 DM NL 988 0.49 60 1 27.28881 

4 E NL 987 0.51 60 1 28.56996 

6 L NL 986 0.54 60 1 26.75429 

 

From the results shown in Tables 6 and 7 it can be seen that for similar operating conditions, the 

indicator in the frequency domain depends on the position of the sensor, as can be seen for 

samples 0, 4, 8 and 14. In these cases, the relative differencesare appreciable and it is possible to 

discern between one state and the other.  
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On the other hand, the difference in the values of the indicator for the other positions, such as 

with samples 2 and 6, is not significant. In any case, the values of the indicator for the faulty 

condition are always greater than those of the equivalent healthy one. 

Table 7. Results of the indicatorin the frequency domain based on equations (4) and (5) 

for the data of the experiment with the faulty motor with a broken bar, during start-up. 

Sample Position Load Speed(r/min) 
Torque 

(Nm) 

Supply  

Voltage (%) 
Time(s) 

Indicator 

0 DMA NL 985 0.49 60 1 38.15795 

2 DM NL 988 0.49 60 1 28.76003 

4 E NL 987 0.49 60 1 38.77947 

6 L NL 985 0.49 60 1 28.88013 

8 DMA FL 755 5.1 60 1 32.06025 

10 DM FL 750 5 60 1 25.04451 

12 E FL 760 5 60 1 23.42840 

14 L FL 765 5 60 1 41.01978 

 

On the other hand, we show in Tables 8 and 9 show the values of the indicator when the motor 

works at steady-state (100% of the nominal voltage). 

 

Table 8. Results of the indicatorin the frequency domain based on equations (4) and (5) 

for the data of the experiments with the healthy motor at steady state. 

Sample Position Load Speed(r/min) 

Torque 

(Nm) 

Supply 

Voltage (%) Time(s) 

Indicator 

1 DMA NL 994 0.49 100 8 1.152108 

3 DM NL 994 0.48 100 8 1.192266 

5 E NL 995 0.51 100 8 0.597756 

7 L NL 995 0.5 100 8 0.726403 

Table 9. Results of the indicator in the frequency domain based on equations (4) and (5) 

for the data of the experimentswith the faulty motor with a broken bar at steady state. 

Sample Position Load Speed(r/min) 
Torque 

(Nm) 

Supply 

Voltage (%) 
Time(s) 

Indicator 

1 DMA NL 994 0.52 100 8 0.842987 

3 DM NL 994 0.53 100 8 0.854711 

5 E NL 994 0.55 100 8 0.975386 

7 L NL 997 0.58 100 8 0.709328 

9 DMA FL 940 6.2 100 8 3.707399 

11 DM FL 940 6.13 100 8 3.254082 

13 E FL 940 6.1 100 8 3.979508 

15 L FL 940 6.09 100 8 2.998851 
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From the results shown in Tables 8 and 9 it is noted that the differences between the values of the 

indicator in the frequency domain for healthy and faulty conditionsare not significant when the 

motor works at steady state. This may be due to the fact that, during startup, certain harmonics 

vary in frequency and amplitude [9]. This does not happen under the steady state regime, during 

which the harmonics maintain well-defined frequencies and amplitudes, as long as the load level 

does not change. 

 

From the results shown in the above tables, it can be deduced that, under the healthy condition, 

the indicator in the frequency domainreachesa maximum value of 30.38804, and the minimum 

value is 0.597756. On the other hand, the indicator for the faulty condition (motor with a broken 

bar) ranges between 0.709328 and 41.0198. The value of the indicator for the healthy condition 

never exceeds the value of 31 for all measurements. 

 

All the comparisons related to the values of the indicator have been carried out between 

measurements that were obtained under similar operating conditions. This leads to the conclusion 

that the position of the sensor plays a crucial role and that significant differences are not obtained 

in every position.  

 

All the comparisons related to the values of the indicator have been carried out between 

measurements that were obtained under similar operating conditions. This leads to the conclusion 

that the position of the sensor plays a crucial role and that significant differences are not obtained 

in every position. 

 

3.2 Results in the time domain 

Taking into consideration the previous results obtained in the frequency domain, a new algorithm 

algorithm based on the square value of the median of the autocovariance matrix of the flux signal 

was proposed, as described in Equation (8). This gives a fault detection indicator in the time 

domain.  

 

The results obtained after applying this last algorithmare shown in Figure 10, and they are 

summarized in Tables 10–13 based on the square value of the median of the autocovariance 

matrix of the flux signal was proposed. 
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Figure 10 .Values of the indicator in the time domain for all the samples used in the 

experiments. 

Table 10. Results of the indicatorin the time domain, based on equations (6), (7) and (8), 

for the data of the experiments with the healthy motor during startup. 

Sample Position Load Speed(r/min) 

Torque 

(Nm) 

Supply 

Voltage (%) Time(s) 

Indicator 

0 DMA NL 988 0.49 60 1 0.071959 

2 DM NL 988 0.49 60 1 0.027691 

4 E NL 987 0.51 60 1 0.435514 

6 L NL 986 0.54 60 1 0.537173 

 

The previous results show that there is a notable difference between the values of the indicator 

when the motor works at steady-state (100% of the rated supply), but not during the start-up, 

when it works at 60% of the rated supply. 
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Table 11. Results of the indicatorin the time domain, based on equations (6)-(8), for the 

data of the experiments with the motorwith one broken bar during startup. 

Sample Position Load Speed(r/min) 
Torque 

(Nm) 

Supply 

Voltage(%) 
Time(s) 

Indicator 

0 DMA NL 985 0.49 60 1 0.003537 

2 DM NL 988 0.49 60 1 0.009451 

4 E NL 987 0.49 60 1 0.009606 

6 L NL 985 0.49 60 1 2.046191 

8 DMA FL 755 5.1 60 1 0.370122 

10 DM FL 750 5 60 1 0.033363 

12 E FL 760 5 60 1 0.005345 

14 L FL 765 5 60 1 2227.965 

Table 12. Results of the indicator, based on equations (6)-(8), for the data of the healthy 

motor experimentsat steady state regime. 

Sample Position Load Speed(r/min) 

Torque 

(Nm) 

Supply Voltage 

(%) Time(s) 

Indicator 

1 DMA NL 994 0.49 100 8 31.38462 

3 DM NL 994 0.48 100 8 58.30218 

5 E NL 995 0.51 100 8 6.948441 

7 L NL 995 0.5 100 8 19.03505 

Table 13. Results of the indicator, based on equations (6)-(8), for the data of the faulty 

motor experimentsat steady state regime. 

Sample Position Load Speed(r/min) 
Torque 

(Nm) 

Supply Voltage 

(%) 
Time(s) 

Indicator 

1 DMA NL 994 0.52 100 8 24.67371 

3 DM NL 994 0.53 100 8 3.342042 

5 E NL 994 0.55 100 8 14.26557 

7 L NL 997 0.58 100 8 7.897072 

9 DMA FL 940 6.2 100 8 181.7043 

11 DM FL 940 6.13 100 8 190.5501 

13 E FL 940 6.1 100 8 334.8858 

15 L FL 940 6.09 100 8 126.3791 

 

4. Discussion 

We group the previous results with respect to the flux sensor location in order to compare the 

indicator values obtained in the frequency and time domains, for different fault conditions and 

operating regimes, see Tables 14 and 15. 
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Table 14.Results of the time and frequency indicators for the DMA position 

Sample Position Load 

Speed 

(r/min) 

Torque 

(Nm) 

Supply 

Voltage. 

(%) Time(s) 

Frequency 

Indicator 

Time 

Indicator 

State 

0 

 

DMA NL 988 0.49 60 

 

1 

 

30.38804 0.071959 Healthy 

DMA NL 994 0.49 38.15795 0.003537 Faulty 

1 

 

DMA NL 994 0.49 100 

 

8 

 

1.152108 31.38462 Healthy 

DMA NL 994 0.52 0.842987 24.67371 Faulty 

 

For the sample corresponding to the DMA position, the difference of the indicators values is 

noticeable at the startup, when working in the frequency domain. The difference in the temporal 

indicator between the healthy and faulty condition is preceded by a multiplication factor of 20. 

When the motor works at steady-state (with 100% of the rated supply), the difference in the 

values of the time indicator is appreciable. At startup, the indicator in the frequency domain is 

always greater for the faulty state; the opposite occurs with the temporary indicator at steady-

state. 

 

Table 15. Results of the time and frequency indicators for the DM position 

Sample Position Load 

Speed 

(r/min) 

Torque 

(Nm) 

Supply 

Voltge. 

(%) Time(s) 

Frequency 

Indicator 

Time 

Indicator 

State 

2 

 

DM NL 988 0.49 60 

 

1 

 

27.28881 0.027691 Healthy 

DM NL 988 0.49 28.76003 0.009451 Faulty 

3 

 

DM NL 994 0.48 100 

 

8 

 

1.192266 58.30218 Healthy 

DM NL 994 0.53 0.854711 3.342042 Faulty 

 

For the sample corresponding to the DM position, the difference of the indicators values at 

startup is not as noticeable compared to the values obtained at the DMA position, when working 

in the frequency domain. The difference in the time indicator between the healthy and damaged 

state is preceded by a multiplication factor of 3. When the motor works at steady-state, the 

difference of the time indicator is as significant as for the DMA position. At startup, the indicator 

in the frequency domain is always greater for the faulty condition; the opposite occurs with the 

temporal indicator at steady-state. 

 

For the sample corresponding to the E position, there is a significant difference between the 

values of the indicator in the frequency domain at the startup, as with the DMA position. The 

difference in the temporal indicator between the healthy and the faulty condition is preceded by a 

multiplication factor of 45. At steady-state, with 100% of the rated voltage, the differences of the 

temporal indicators are significant. At startup, the indicator in the frequency domain is always 

greater for the faulty state; the same occurs in this case for the time indicator at steady-state, 

contrary to what happens in positions DM and DMA. 
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For the sample corresponding to the L position, the difference of the indicator at start-up is not 

clearly noticeable when working in the frequency domain as with the DMA and E sensor 

positions. The difference in the temporal indicator between the healthy and the faulty conditions 

is preceded by a multiplication factor of 4. When working at steady-state, the difference of the 

temporal indicator is significant. The indicator in the frequency domain is higher for the faulty 

state during start-up; the opposite occurs with the temporal indicator at steady-state. 

 

From the results obtained in Tables 14-17 for the four sensor positions analyzed (DMA, DM, 

E,L) the following can be concluded: 

 

 The indicator in the frequency domain for the healthy condition varies in a range 

of 26 ≤ 𝐼𝑛𝑑𝑓 ≤ 30and for the faulty condition it varies from28 ≤ 𝐼𝑛𝑑𝑓 ≤ 38 

during start-up; in this regime, the values of the indicator in the frequency domain 

for the healthy state are always lower than its values for the faulty state. 

 The indicator in the time domain for the healthy state varies by a factor of 

6 ≤ 𝐼𝑛𝑑𝑡 ≤ 58  and for the faulty state 3 ≤ 𝐼𝑛𝑑𝑡 ≤ 24when the motor operates at 

steady state.  

 The best results are obtained when the measurement is carried out in the DMA 

position, since the values of both indicators are within the limits of obtained 

values. 

 In order to discern between the healthy and faulty conditions, the signal obtained 

from the flux sensor must first be evaluated during the start-up, for which the 

indicator is calculated based on the analysis in the frequency domain. At steady-

state, the signal should be better evaluated using the time indicator. 

 A diagnostic decision based on the limit valuesfor both indicators should be finally 

adopted. In order to obtain a more reliable conclusion of the rotor condition, the 

two indicators must be evaluated. 

 

Table 16.Results of the time and frequency indicators for the E position. 

Sample Position Load 

Speed 

(r/min) 

Torque 

(Nm) 

Supply 

Voltage. 

(%) Time(s) 

Frequency 

Indicator 

Time 

Indicator 

State 

4 

 

E NL 987 0.51 60 

 

1 

 

28.56996 0.435514 Healthy 

E NL 987 0.49 38.77947 0.009606 Faulty 

5 

 

E NL 995 0.51 100 

 

8 

 

0.597756 6.948441 Healthy 

E NL 994 0.55 0.975386 14.26557 Faulty 
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Table 17.Results of the time and frequency indicators for the L position. 

Sample Position Load 

Speed 

(r/min) 

Torque 

(Nm) 

Supply 

Voltage 

(%) Time(s) 

Frequency 

Indicator 

Time 

Indicator 

State 

6 

 

L NL 986 0.54 60 

 

1 

 

26.75429 0.537173 Healthy 

L NL 985 0.49 28.88013 2.046191 Faulty 

7 

 

L NL 995 0.5 100 

 

8 

 

0.726403 19.03505 Healthy 

L NL 997 0.58 0.709328 7.897072 Faulty 

 

The accuracy of the proposed method as a classification of the condition of the damaged-healthy 

state of the induction motor depends, to a large extent, on the relative position where the 

measurement is made. Although regardless of the obtained results and the relative positions of 

each measurement, it can be noted that the average of the indication values obtained for the 

indicator in the frequency domain never exceeds the value of 28.250275 for the healthy state and 

33.644395 for the damaged case. Similarly, if the analysis is performed for the indicator in the 

time domain, we have an average value of 28.91757275 for the healthy state, and of 12.5445985 

for the faulty one. That is, in an a priori analysis, a result of the indication variable greater than 

these values, both for the frequency and time domains, can be concluded as an affirmative 

diagnosis of failure, as shown for the cases of the DMA and E positions. 

 

5. Conclusions 

 
The spectral analysis based on the bispectrum of the flux signals captured at external positions of 

an induction motor was proposed in order to provide a criterion to discriminate between healthy 

and faulty rotor conditions in induction motors. To this end, an algorithm based on the sum of the 

mean value of the bispectrum module of the induction motor flux signal was theoretically 

described and implemented. 

 

To demonstrate the results experimentally, several real samples of flux signals were registered, 

both for healthy and faulty conditions of the rotor cage, and for different operating conditions. 

The proposed algorithms are based on the sum of the mean value of the bispectrum module of the 

flux signal and on the square value of the median of the autocovariance function. The results have 

shown they can be considered as indicators that enable us to provide a criterion for the 

discrimination between healthy and faulty conditions of the motor. We can also conclude that the 

position where the measurement of the flux signal is carried out is an important factor, as well as 

the operating regime of the motor.  

In conclusion, the study carried out in this paper implies that, with the analysis of stray flux 

signals, it is possible to obtain indicator variables that discriminate between faulty and healthy 

motors, which is an improvement and a complementtoexisting results obtained by using classical 

techniques for the diagnosis of failures in electrical machines and, in the future, may be a 

contribution to the development of portable industrial diagnostic devices. 

 

As future work, it is proposed to carry out an estimation analysis of the accuracy of the proposed 

method and to obtain an algorithm for the optimization of the relative position of the flux sensor 

at the time of the measurement. 
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Abstract:  The  aim  of  this  work was  to  develop a  new  unsupervised  exploratory 

method of characterizing feature extraction and  detecting similarity of  movement during 

sleep  through actigraphy signals. We here  propose some  algorithms, based on signal  

bispectrum and  bispectral entropy, to determine the unique features of independent 

actigraphy signals. Experiments were carried out  on  20  randomly  chosen actigraphy 

samples of  the  Hispanic Community Health Study/Study of Latinos  (HCHS/SOL) 

database, with  no information other  than  their  aperiodicity. The Pearson correlation 

coefficient  matrix and  the histogram correlation matrix were  computed to study the  

similarity of movements during sleep.   The results obtained allowed us to explore the 

connections between certain  sleep actigraphy patterns and certain  pathologies. 

 

Keywords: actigraphy; bispectrum; entropy; feature extraction 

 

1. Introduction 
 

Actigraphy is now being increasingly used to explore sleep patterns in sleep laboratories. 

Its main advantages include its easy setup, its low cost, and  the fact that  prolonged 

records can be obtained over time, permitting patient activity in ambulatory conditions 

without interfering with  their  daily routines. It is considered to be a valuable tool for 
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mailto:pfernandez@mat.upv.es
mailto:aconejero@upv.es
mailto:juanmig@ibime.upv.es
http://dx.doi.org/10.3390/s18124310


 

93 
 

Publications  Chapter 2 

controlling and monitoring circadian alterations and insomnia, as well as avoiding false 

positives in the assessment of daytime sleepiness tests, such as the multiple sleep latency  

test, and the wakefulness maintenance test [1–5]. 

Many  recent  studies have  validated the  practice of actigraphy, for  example, in  [6] 

several wrist-worn sleep  assessments, actigraphy devices were  compared. A 

relationship has been  found between sleep disorders and their effects on certain  

conditions, such as hypertension and obesity  [7], and it is now even possible  to analyze 

sleep depth by actigraphy signals  [8]. 

A review of the current state of higher-order statistics (HOS) and their use in biosignal 

analysis can be found in [9]. As most of the biomedical signals are non-linear, non-

stationary, and non-Gaussian in nature, iHOS (Higher  Order  Statistics) analysis  is 

preferable to second-order correlations and power spectra [9]. On this issue, several studies, 

such as [10] have been published on the screening of pediatric sleep apnea–hypopnea 

syndrome, and the automated classification of glaucoma stages in [11]. 

Concerning the detection of similarity of movements, in [12,13] although classification 

patterns were obtained from sleep/awake states according to the characteristics of the 

actigraphy signal, they were  not  based on  higher order spectra.  In fact,  the  common 

approach is to analyze individual actigraphy records over several  days, so that the 

studies cited above were not focused  on the analysis of the activity signal  as a random 

process that  is dependent on the movement of a certain part  of the body. 

The present work  is based  on the bispectral analysis of actigraphy signals  and their 

relationship with  bispectral entropy. The increase of movements as a form  of feature 

extraction measurement, and  the detection of similarities of movements during sleep 

are shown as features to be considered. The results obtained indicate the  potential of 

this  approach for the  study of sleep  disorders, and their  connection with  other 

conditions. The work is organized as follows:  Materials and  Methods are  described in 

Section  2, the  results are  given  in Section  3, the  Discussion in Section  4, and  the 

Conclusions and future work  are outlined in Section 5. 

 

2. Materials and Methods 
 

2.1. Data Acquisition 

 

The experiments were carried out on 20 samples  of actigraphy signals obtained from 

the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Database [14–17] 

chosen at random, through the  use  of the  “randi” Matlab function.  The  Sueño  

Ancillary Study recruited 2252 HCHS/SOL participants to wear  wrist-worn 

actigraphy devices  (Actiwatch Spectrum, Philips Respironics, Royal Philips, 

Netherlands,) between 2010 and 2013. The participants were instructed to wear the 

watch  for a week.  Records  were scored  by a trained technician of the Boston Sleep 

Reading Center  [17]. 

 

2.2. Methods 
 

Actigraphy signals have a random nature that can be visualized in terms of 

uniformity in the bispectrum. This uniformity depends on the non-impulsive 
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characteristics of the signal, which are reflected in the spectrum as frequency peaks.  

Since the bispectrum is a function that presents unique characteristics for each signal in 

terms of frequency and phase it can easily be seen in a graph.  This led us to explore an 

entire methodology based on calculating the bispectrum and the bispectral entropy, 

which would  be able to detect similar characteristics in movement patterns during sleep. 

Twenty cases of actigraphy signals were analyzed to extract their characteristics, which 

were then used to determine similarities and differences among the signals. 

 

The activity signals were first normalized to 1, and then  segmented to determine the 

subjects’ daily  activity record. The bispectrum of the total sample of the activity signal  

recorded was  seven days.  The experiments were conducted on two age groups 

between 18 and  44 years  old, and  45 and 64 years old. 

 
 

2.3. Theoretical Foundations: Bispectrum 

 

Let {𝑥(𝑛)}𝑛, 𝑛 = 0, ±1, ±2, … be a stationary random vector and let us also suppose that we can 

compute its higher order moments [19], where:  

                     𝑚𝑘
𝑥(𝜏1, 𝜏2, … , 𝜏𝑘−1) = 𝐸(𝑥(𝑛) ∙ 𝑥(𝑛 + 𝜏1) … 𝑥(𝑛 + 𝜏𝑘−1))                                   (1) 

represents the moment of order 𝑘 of that vector. This moment only depends on the different time 

slots 𝜏1, … , 𝜏𝑘−1 where 𝜏𝑖 = 0, ±1, … for all 𝑖. The cumulants are similar to the moments, but the 

difference is that the moments of a random process are derived from the characteristic function of 

the random variable, while the cumulants generating function is defined as the logarithm of the 

characteristic function of that random variable. The 𝑘-th order cumulant of a stationary random 

process {𝑥(𝑛)}𝑛 can be written as [20]: 

                  (𝜏1, 𝜏2, … , 𝜏𝑘−1) = 𝑚𝑘
𝑥(𝜏1, 𝜏2, … , 𝜏𝑘−1)  −  𝑚𝑘

𝐺(𝜏1, 𝜏2, … , 𝜏𝑘−1),                           (2) 

where 𝑚𝑘
𝐺(𝜏1, 𝜏2, … , 𝜏𝑘−1)

 
is the 𝑘-th order moment of a process with an equivalent Gaussian 

distribution that presents the same mean value and autocorrelation function as the vector {𝑥(𝑛)}𝑛. 

 

It is evident from (2) that a process following a Gaussian distribution has null cumulants for 

orders greater than 2, since 𝑚𝑘
𝑥(𝜏1, 𝜏2, … , 𝜏𝑘−1) = 𝑚𝑘

𝐺(𝜏1, 𝜏2, … , 𝜏𝑘−1), and so that 

𝑐𝑘
𝑥(𝜏1, 𝜏2, … , 𝜏𝑘−1) = 0 [20-21]. 

 

In practice, we estimate cumulants and polyspectra from a finite amount of data {𝑥(𝑛)}𝑛=0
𝑁−1 . 

These estimates are also random and are characterized by their bias and variance [22]. Let 

{𝑥(𝑛)}𝑛. denote a zero mean stationary process; we assume that all relevant statistics exist and 

have finite values. The third order cumulant sample estimates is given by [21]:  

 

                            𝐶3(𝜏1, 𝜏2) =
1

𝑁
∑ 𝑥(𝑛) ∙ 𝑥(𝑛 + 𝜏1) ∙ 𝑥(𝑛 + 𝜏2)

𝑁2
𝑛=𝑁1

                                       (3) 
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where 𝑁1 y 𝑁2 are chosen such that the sums only involve x(n) for 𝑛 = 0, … , 𝑁 − 1, being 𝑁 the 

number of samples in the cumulant region.  Likewise, the bispectrum estimation is defined as the 

Fourier Transform of the third-order cumulant sequence [22]:  

𝐵𝑥
𝑁(𝑓1, 𝑓2) = ∑ ∑ 𝐶3(𝜏1, 𝜏2) ∙ 𝑒−2𝜋𝑓1𝜏1 ∙ 𝑒−2𝜋𝑓2𝜏2𝑁−1

𝜏2=−𝑁−1
𝑁−1
𝜏1=−𝑁−1 =

1

𝑁2 𝑋∗(𝑓1 + 𝑓2) ∙ 𝑋(𝑓1) ∙ 𝑋(𝑓2)       

(4) 

where 𝑓1  y 𝑓2 are the spectral frequencies vectors of the sequence  {𝑥(𝑛)}𝑛=0
𝑁−1, and 𝑋(𝑓𝑖), i=1,2, is 

its Fourier Transform. 

 

2.3 Bispectral Entropy Analysis                                            

Entropy provides a measure for quantifying the information content of a random variable in terms 

of the minimum number of bits per symbol required to encode the variable. It is an indicator of 

the amount of randomness or uncertainty of a discrete random process [23]. Consider a random 

variable 𝑍 with 𝑀 states 𝑧1, 𝑧2, … 𝑧𝑀 and state probabilities 𝑝1, 𝑝2, … 𝑝𝑀, that is 𝑃(𝑍 = 𝑧𝑖) = 𝑝𝑖, 

the entropy of 𝑍 is defined as: 

                                   

                                               𝐻(𝑍) = − ∑ 𝑝𝑖log2(𝑝𝑖)
𝑀
𝑖=1                                                   (5) 

 

The entropy of a discrete-valued random variable attains a maximum value for a uniformly 

distributed variable. In order to extend this notion from the spatial to the frequency domain, we 

introduce bispectral entropy as a way to measure the uniformity of the spectrum [21]. The 

bispectral entropy is defined as: 

 

                         𝐸𝑏𝑥
𝑁 (𝑓1, 𝑓2) = − ∑ ∑ 𝑃𝑥

𝑁(𝑓1, 𝑓2) ∙ log2𝑃𝑥
𝑁(𝑓1, 𝑓2)𝑁−1

𝜏2=−𝑁−1
𝑁−1
𝜏1=−𝑁−1                (6) 

 

where the energy probability is computed in terms of the bispectrum estimation 

 

                                                𝑃𝑥
𝑁(𝑓1, 𝑓2) =

𝐵𝑥
𝑁(𝑓1,𝑓2)

∑ ∑ 𝐵𝑥
𝑁(𝑓1,𝑓2)𝑁−1

𝜏2=−𝑁−1
𝑁−1
𝜏1=−𝑁−1

.                                          (7)           

 

3. Results  

The actigraphy signals that measured the movements of individuals while sleeping were 

analyzed. These movements have an intrinsically random nature, since they can occur with non-

specific probabilities and durations. This can be checked by analyzing the frequency spectrum of 

the activity signal and comparing it with a noise pattern. The probabilistic distribution function of 

the spectral pattern depends on the nature and uniformity of the movements, which may follow a 

normal distribution or another, such as a uniform distribution, depending on the random nature of 

the process. 

3.1. Application of the Bispectrum to the Actigraphy Signal 

A spectral analysis based on the one-dimensional Fourier transform is not recommended for the 

the detection of traits in a random signal, such as the actigraphy signal. For these, this analysis 
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only provides information relative to the magnitude-frequency or phase-frequency distribution. In 

other words, what is visualized in the spectrum is noise, which in our case, is in fact the useful 

information from which certain characteristics and features have to be extracted. The frequency 

spectrum of two actigraphy signals is shown in Figure 1 here it can be seen that the one-

dimensional Fourier Transform is not able to identify the discriminant features in this type of 

signal. 

 

 
(a) 

 
(b)  

Figure 1. Ilustration of: (a) and (b) Examples of the frequency spectrum of two 

actigraphy signals obtained from their respective one-dimensional Fourier t. 

 

Unlike the one-dimensional frequency spectrum, the bispectrum of an activity signal can provide 

information on the spatial distribution of the amplitude, and on the frequency components (see 

Equation (4)). This information can be represented in a matrix that can be used to obtain the 

particular identification features of each signal. The bispectrum of the actigraphy signal was 

simulated in MatLab, using the Higher Order Spectra Analysis toolbox. Figures 2 and 3 show the 

contours of the bispectrum surface of the actigraphy signal, where f1 and f2 are the normalized 

spectral frequency vectors generated from the calculation of the bidimensional Fourier 

Transform.  

We found that the bispectrum can indicate variables that measure specific characteristics of the 

movement during sleep, based on the uniformity of the activity data and the disorder of the 

sample. Here, a greater frequency disorder at a bispectral level may imply an excess of movement 

during the analyzed period, which can even be an identifying feature of sleep, and be linked to 

patients. For the sake of completeness, we can see in Figures 2-5 that the bispectrum is a unique 

variable for each actigraphy signal. 
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(a) 

 
(b) 

  

Figure 2. (a) Bispectrum of the activity record over seven days and (b) bispectrum of 

the activity record day 1 of the actigraphy data sample hchs-sol-sueno-00163225. 

 
(a) 

 
(b) 

Figure 3. (a) Bispectrum of the activity record day 2 and of (b) bispectrum of the 

activity record day 3 of the actigraphy data sample hchs-sol-sueno-00163225. 
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(a) 

 
(b) 

  

Figure 4. (a) Bispectrum of the activity record day 4 and (b) bispectrum of the activity 

record day 5 of the actigraphy data sample hchs-sol-sueno-00163225. 

 
(a) 

 
(b) 

Figure 5. Bispectrum of the activity record day 6 and (b) bispectrum of the activity 

record day 7 of the actigraphy data sample hchs-sol-sueno-00163225. 

It can also be seen that the daily bispectrum registrations are all different from each other, 

showing that all these registers form an identification pattern, which we have named the 

bispectral pattern of the activity signal. 

 

A bispectrum analysis was performed on 20 different activity signal records. We tried to identify 

each one with a specific spectral sleep pattern per day, and to find a possible relationship between 

an individual’s movement patterns during sleep. The results obtained are shown in Figure 6-8  

which give the bispectrum of the actigraphy signal for the first 10 of the 20 analyzed actigraphy 

signals from the HCHS/SOL database 
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(a) 

 
(b) 

Figure 6. Bispectrum obtained from the activity record during seven analyzed days of 

the samples (a) hchs-sol-sueno-00163225 and (b) hchs-sol-sueno-00238589. 

 
(a) 

 
(b) 

  

Figure 7. Bispectrum obtained from the activity record during seven analyzed days of 

the samples (a) hchs-sol-sueno-00258857, (b) hchs-sol-sueno-00306064. 



 

100 
 

Publications  Chapter 2 

 
(c) 

 
(d) 

Figure 7.cont. Bispectrum obtained from the activity record during seven analyzed days 

of the samples (c) hchs-sol-sueno-00311734, and (d) hchs-sol-sueno-00329320. 

It can be seen that there are unique identifiable characteristic features that can be used to obtain 

patterns of movement during sleep. For instance, Figures 5-8 have similar contours. This means 

individuals can be divided into groups according to the similarity of their sleep patern. 

 

 
(a) 

 
(b) 

 

  

Figure 8.  Bispectrum obtained from the activity record during seven analyzed days of 

the samples (a) hchs-sol-sueno-00349159 (b) hchs-sol-sueno-00358110 . 
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(c) 

 
(d) 

Figure 8.cont  Bispectrum obtained from the activity record during seven analyzed days 

of the samples (c) hchs-sol-sueno-00496432 (d) hchs-sol-sueno-00504839. 

To further illustrate these results, we correlated the bispectrum of the seven days of signals by 

computing the Pearson correlation coefficients for every pair of samples to find similarities 

between the two signals. The results are given in the correlation matrix R in Table 1. For 

example,   𝑅1−2 is the Pearson correlation coefficient between the bispectrum of samples 1 and 2 

from hchs-sol-sueno-00163225 and hchs-sol-sueno-00238589. 
  

Table 1. Correlation matrix obtained from the analysis of the bispectrum comparison of the 7-day 

activity signal for the 20 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 

database 
 

0.898 0.944 0.934 0.965 0.957 0.899 0.899 0.947 0.825 0.966 0.976 0.971 0.950 0.979 0.911 0.972 0.970 0.973 0.945 

0.961 0.935 0.875 0.881 0.767 0.860 0.957 0.981 0.823 0.935 0.953 0.949 0.869 0.991 0.884 0.876 0.923 0.919    - 

0.965 0.944 0.914 0.837 0.911 0.961 0.909 0.892 0.970 0.976 0.970 0.917 0.970 0.937 0.925 0.959 0.933   -          - 

0.931 0.886 0.860 0.899 0.949 0.887 0.886 0.949 0.954 0.950 0.895 0.945 0.920 0.916 0.936 0.885   -         -          - 

0.938 0.914 0.926 0.927 0.809 0.962 0.969 0.951 0.945 0.949 0.890 0.973 0.965 0.967 0.913   -         -         -          - 

0.847 0.832 0.899 0.817 0.948 0.951 0.936 0.915 0.971 0.896 0.974 0.926 0.945 0.972   -         -         -         -          - 

0.849 0.844 0.688 0.889 0.892 0.854 0.864 0.870 0.773 0.889 0.888 0.863 0.799   -         -         -         -         -          - 

0.908 0.799 0.887 0.929 0.911 0.904 0.862 0.867 0.881 0.921 0.920 0.849   -         -         -         -         -         -          - 

0.913 0.891 0.957 0.976 0.956 0.913 0.965 0.912 0.921 0.955 0.926   -         -         -         -         -         -         -          - 

0.739 0.871 0.898 0.905 0.791 0.966 0.819 0.810 0.861 0.860   -         -         -         -         -         -         -         -          - 

0.946 0.924 0.892 0.964 0.841 0.960 0.960 0.941 0.922   -         -         -         -         -         -         -         -         -          - 

0.977 0.964 0.958 0.942 0.964 0.963 0.976 0.953   -         -         -         -         -         -         -         -         -         -          - 

0.975 0.953 0.966 0.957 0.954 0.981 0.949   -         -         -         -         -         -         -         -         -         -         -          - 

0.921 0.954 0.952 0.944 0.970 0.906   -         -         -         -         -         -         -         -         -         -         -         -          - 

0.888 0.970 0.961 0.960 0.957   -         -         -         -         -         -         -         -         -         -         -         -         -          - 

0.899 0.886 0.937 0.931   -         -         -         -         -         -         -         -         -         -         -         -         -         -          - 

0.962 0.971 0.937   -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          - 

0.967 0.912   -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          - 

         0.938   -         -          
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Figure 9. Visualization of pairs with Pearson correlation coefficients greater than 0.97 (black 

line) and lower than 0.8 (red dashed line). 

 

The correlation values given in Table 1 and figure 9 show that there may be a similarity in sleep 

movement patterns. In Table 1 the maximum distance value is 0.3122 and the minimum is 10-6 

the mean is 0.0538, and the statistical mode (the most frequent value in an array) is 0.001. Figure 

10 give a comparative measurement of the values in Table 1  by rearranging the columns of the 

matrix into a vector, and considering it as a time series, in which the x-coordinate is the position 

in the vector and the y-coordinate, the corresponding value of the coefficient. In this arrangement, 

and the y-coordinate, the corresponding value of the coefficient. In this arrangement, the groups 

indicate almost repetitive terms that represent signals with similar characteristics. 

 

 

Figure 10. Scatter plot for the correlation matrix shown in Table 1. 



 

103 
 

Publications  Chapter 2 

In order to better distinguish the differences and similarities between the sleep signals, we 

performed another analysis using the bispectral entropy as the method of characterizing the 

disorder/uniformity of the processed signals. 

 

3.2. Application of bispectral entropy as a measure of actigraphy disorder 

 

The experiment was based on a similarity analysis, analogous to that of the bispectrum. We 

calculated the bispectral entropy of each activity sample for the whole period of seven days, to 

obtain a measure of the degree of uniformity of the sleep movement pattern, taking the degree of 

randomness of the activity signal into account. We considered the maximum value of the 

Bispectral entropy as a way of describing the degree of uniformity of a random process.  The 

bispectral entropy of the signals was computed in a minimum window of eight samples, to 

represent the temporal displacement index of the signals. The results obtained are shown in 

Figure 11 together with the mean value of the bispectral entropy of each actigraphy signal. 

 

 

Figure 11. Mean bispectral entropy values of the 20 actigraphy signals considered 

It can be seen that signals 8 and 16 have the lowest bispectral entropy values, due to the non-

uniformity of the bispectrum frequency distribution. This can also be identified in some of the 

previous graphs; for instance, in Figure 8 he high-frequency components are characterized by the 

outer points (in blue), and the disconnected regions are the lowest frequency values. 

In Figure 11 there are also samples with similar values of bispectral entropy of between 0.98 and 

0.99, which indicates that they may be related to the hypothesis that activity samples with a 

similar correlation at the bispectral level may have the same level of uniformity of their value 

distributions. The opposite is also true with the minimum values of bispectral entropy, shown in 

Figure 11 as are those of samples 8, 10, 7, and 16, and other visible relationships, whose 

correlation values are under 0.8 in Table 2 and in Figure 11 are related to different uniformity 

patterns. 

 

Given the analogy of the activity signal with the random process, the maximum entropy value 

would mean a greater uniformity of movement in the subject in the time interval studied, i.e., a 
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high uniformity in the randomness of the movements. Conversely, occasional movements would 

be associated with impulsive noise, which has a non-uniform randomness, and thus, it would be 

associated with minimum entropy.  

 

To also visualize the frequency of the maximum uniformity of sleep movements, histograms 

were made of the 7-day bispectral entropy of each activity signal. The frequencies of the entropy 

values for each processed sample are shown in Figures 12 and 13. These histograms provide 

information on the number of repetitions of the entropy values in each sample, i.e., the number of 

times the value in the data vector is repeated. 
 

   

Figure 12. Illustration of: Histogram of the Bispectral Entropy of each activity signal 

(Signal 1 to Signal 8, processed samples) performed during seven records days. 

  
 

Figure 13. Illustration of: Histogram of the Bispectral Entropy of each activity signal 

(Signal 9 to Signal 16, processed samples) performed during seven records days. 
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Figure 13.cont Illustration of: Histogram of the Bispectral Entropy of each activity 

signal (Signal 17 to Signal 20, processed samples) performed during seven records days. 

 

Although none of the histograms is repeated in Figures 12 and 13 some of them show certain 

similarities that could indicate similar sleep patterns. To verify this, the histograms were 

correlated to each other, with the criteria for the entropy values as well as for the data repetition 

frequency. The results are shown below in Table 2. 

  

Table 2. Correlation matrix obtained from the analysis of the bispectral 

entropy histograms of the 20 analyzed samples from the HCHS/SOL database. 
 

0.966 0.906 0.908 0.681 0.702 0.791 0.889 0.934 0.957 1.000 0.828 0.928 0.938 0.972 0.931 0.927 0.931 0.957 0.720 

0.976 0.973 0.699 0.714 0.880 0.944 0.967 0.948 0.966 0.725 0.842 0.893 0.906 0.865 0.841 0.889 0.985 0.650    - 

0.979 0.593 0.623 0.937 0.930 0.943 0.906 0.906 0.583 0.731 0.783 0.840 0.763 0.748 0.827 0.964 0.504   -          - 

0.715 0.732 0.913 0.979 0.985 0.945 0.908 0.677 0.780 0.845 0.824 0.818 0.740 0.894 0.983 0.621   -         -          - 

0.981 0.514 0.802 0.774 0.711 0.681 0.816 0.706 0.853 0.558 0.730 0.511 0.762 0.703 0.934   -         -         -          - 

0.553 0.805 0.790 0.715 0.702 0.793 0.697 0.848 0.575 0.708 0.490 0.773 0.713 0.926   -         -         -         -          - 

0.886 0.845 0.788 0.791 0.429 0.559 0.665 0.709 0.615 0.589 0.729 0.863 0.430   -         -         -         -         -          - 

0.975 0.929 0.889 0.731 0.786 0.874 0.798 0.834 0.717 0.913 0.958 0.720   -         -         -         -         -         -          - 

0.976 0.934 0.779 0.859 0.908 0.855 0.887 0.789 0.947 0.989 0.714   -         -         -         -         -         -         -          - 

0.957 0.840 0.927 0.925 0.912 0.947 0.878 0.975 0.980 0.708   -         -         -         -         -         -         -         -          - 

0.828 0.928 0.938 0.972 0.931 0.927 0.931 0.957 0.720   -         -         -         -         -         -         -         -         -          - 

0.937 0.932 0.796 0.928 0.825 0.898 0.756 0.910   -         -         -         -         -         -         -         -         -         -          - 

0.955 0.934 0.992 0.931 0.937 0.865 0.800   -         -         -         -         -         -         -         -         -         -         -          - 

0.889 0.962 0.863 0.939 0.897 0.899   -         -         -         -         -         -         -         -         -         -         -         -          - 

0.929 0.950 0.887 0.892 0.646   -         -         -         -         -         -         -         -         -         -         -         -         -          - 

0.924 0.954 0.892 0.802   -         -         -         -         -         -         -         -         -         -         -         -         -         -          - 

0.846 0.845 0.618   -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          - 

0.932 0.801   -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          - 

0.657   -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          - 
 

 

Table 2 contains the results based on the histogram of the bispectral entropy of the activity 

signals to provide a criterion for the similarity of the data, based on the uniformity of the 
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bispectrum. This table can be interpreted similarly to Table 1 which was based on the algorithm 

that describes the matrix correlation in Figure  9. 

 

According to the previous analysis, the upper threshold was 0.97, and the lower threshold was a 

little lower than previously found. We considered 0.8 to distinguish between the similarities and 

clear differences among the signals (see Figure 14). 

 

 
Figure 14. Visualization of pairs with Pearson correlation coefficients greater than 0.97 (black 

line) and lower than 0.8 (red dashed line). 

 

It can thus be seen that several histograms are highly correlated, which indicates that this activity 

signal presents a high level of data uniformity, i.e., bispectral entropies with similar values, and 

also a high correlation value in terms of the bispectrum comparison. The dispersion graph of the 

correlation values obtained from Table 2 is shown in Figure 15. The data with similar values are 

seen to be grouped. The maximum value of the distance matrix is 0.6715, and the minimum is 

10-5 . The mean value of the distance matrix was 0.1407 and the statistical mode was10−5, which 

indicates, as in the previous analysis, that there are data groups with similar characteristics 

associated with the same characteristic of movement, as can be seen in Figure 15. 
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Figure 15. Scatter plot for the correlation matrix shown in Table 2 

4. Discussion 

In order to associate the results with clinical diagnoses, several variables were  taken 

from  the HCHS/SOL database as the clinical characteristics of the 20 actigraphy 

samples. First, we considered the following variables: 

 

 CDCR_SUENO:  self-report of cerebrovascular disease  & carotid 

revascularization. CHD_SELF_SUENO:  combination of self-reports of coronary 

revascularization or heart attack. DIABETES_SELF_SUENO: indicates a self-

report of diabetes. 

 DIABETES _SUENO: indicates diabetes. DM_AWARE_SUENO: describes the 

awareness of diabetes. Hypertension_SUENO: indicates hypertension status. 

STROKE_SUENO: checks for a self-report of stroke  history. 

 STROKE_TIA_SUENO: checks  for  medical history of stroke, mini-stroke or  

TIA  (transient ischemic attack). 

 

These variables are of the 0/1 type,  i.e., ‘0’ for a negative response and  ‘1’ for a positive. 

Their values  for the 20 individuals whose  actigraphy signals  were processed can be 

found in Table 3. 
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Table 3. Clinical characteristics of each individual analyzed for each actigraphy sample. 

 
 

To relate the clinical characteristics of the patients with the obtained results, the correlation was 

first used, which is a measure of the similarity of data. We show these results, although the 

obtainedcorrelations are weak, in part, for the limited number of signals used, and for the 

limitations of the information content embedded in the used signals database. We opted to 

consider the HYPERTENSION_SUENO variable to study relationships within the actigraphy 

signals, since its value varies in several samples. First, we saw that 47.62% of the pairs whose 

bispectrum correlates with a value greater than 0.97 share the same clinical diagnosis. However, 

in Figure 9 it can be seen that the pairs with the same positive or negative diagnosis tend to 

cluster, which indicates a stronger hidden relationship that cannot be obtained by simply 

correlating the bispectrum of the signals (see Figure 16). 

 

 
Figure 16. Pairs of bispectrum signals correlated with a coefficient that is greater than 0.97 

(black lines) or lower than 0.7 (red dashed line). The thick black line indicates pairs that share a 

hypertension diagnosis, while the dashed black line indicates pairs in which neither has 

hypertension. 
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A similar effect was found in the comparison of the bispectral entropy histograms. Only 41.17% 

of the pairs correlated with a coefficient of 0.97 or higher present the same hypertension 

diagnoses. However, in the pairs with the same diagnosis in Figure 14 those sharing the 

hypertension diagnosis are seen to be connected (see Figure 17). 
 

 
 

Figure 17. Pairs of bispectral entropy histograms correlated with a coefficient greater than 0.97 

(black lines), and lower than 0.7 (red dashed line). The thick black line indicates pairs with a 

shared hypertension diagnosis, while the dashed black line indicates pairs in which neither has 

hypertension. 

 

Although, the results shown in Figures 16 and 17 are not conclusive, they do suggest a further in-

depth study of the characteristics of bispectrum signals that can contribute most to these 

similarities.  It is also worth mentioning that the limited number of cases considered in this study 

advise a more systematic study of larger database samples. 

 

5. Conclusions 

 
This paper has shown that the application of higher-order statistical analysis to actigraphy  can 

contribute to determining the traits and patterns of movement during sleep. These criteria can be 

based on part of the spatial information provided by the bispectrum and the bispectral entropy, 

both of which can help us to determine effective criteria for measuring the uniformity of data 

randomness signals can contribute to determining the traits and patterns of movement during 

sleep.  

These criteria can be based on part of the spatial information provided by the bispectrum and the 

Bispectral entropy, both of which can help us to determine effective criteria for measuring the 

uniformity of data randomness.  

 

The actigraphy signal experiments suggest the possible application of these criteria for the 

extraction and comparison of patterns of sleep movements. This would have a potential use in 

medicine, since similar pathologies may have similar associated movement patterns. 
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In future work we propose to use high-order statistical techniques, as for instance in [23]. We 

also want to experiment with data from chest actigraphy or other actigraphy signal measures, to 

corroborate the potential use of sleep actigraphy signals for purposes of diagnosis. Our next step 

will be to increase the number of cases analyzed to cover the entire HCHS/SOL database, and 

also to experiment with other clinical characteristics in patients and pathologies associated with 

specific sleep disorders or brain-associated diseases. 
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General Discussion of the Results 
 

Firstly, with regards to the electric machines fault diagnosis area (and, more especifically, 

regarding the detection of adjacent and non-adjacent bars breakages), two methods were 

provided, the first method based on the use of the power spectrum and a spectral subtraction 

process, based on the spectrum ordering. The second based on the analysis of the bispectrum of 

the flux signal. 

In turn, two types of indicators, one based on the quadratic value of the median of the auto-

covariance fuction and the other based on the sum of the mean value of the bispectrum of the flux 

matrix were proposed, as a discrimination mode between the healthy and damaged state of the 

motor. Both indicators were experimentally tested and validated, giving positive results in each 

case. 

As a way to generalize what has been obtained, future studies will be carried out with different 

levels of load and during motor start-up, since the analyses were carried out at stedy-state. 

Regarding the theoretical application of the algorithms to biomedical signals, it was proposed to 

perform an analysis of the Results of the Hispanic Community Health Study / Study of Latinos 

database, to detect patterns that may be common during sleep activity in the different patients 

which collects the database.  

For this, it was proposed to use the bispectrum of the actigraphy signal for each weekly patient 

record to correlate all the analyzed samples to form a matrix with the degree of similarity existing 

in each movement pattern during sleep. 

These results were then associated to specific groups where the movement characteristics were 

similar, obtaining reliable results that linked the patterns obtained with the same pathology 

associated with a patient in this case, hypertension was analyzed. 

From the theoretical-practical proposal made in this thesis, general algorithms have been obtained 

that can be applied in different branches for the patterns recognition in time series, with the only 

limitation for the work, in principle, of the periodic nature of the signal to be study. 
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This chapter analyzes the level of compliance with the research objectives set out in the 

introduction. The main conclusions reached are also collected, the most relevant contributions of 

the work are presented and several future lines of work are proposed. 

 

Regarding the first objective “Review of the state of the art of the field to be treated”, in the 

general introduction, the reference to high-order statistical analysis and the detection of failures 

in electrical machines by means of stray flux signals has been initially addressed, as well as the 

analysis of actigraphy signals. 

 

Regarding the second objective "Theoretical development of the algorithms to evaluate", in this 

research, several theoretical algorithms have been proposed that link the second-order classical 

and higher-order statistical analysis, with processes of espectral analysis and entropy, each of 

them theoretically explained and supported. 

 

Regarding the third objective “Preparation and description of the data”, several experiments have 

been carried out for the verification of the developed algorithms, which have been described in 

each article published and mentioned in Chapter 2, describing each data or sample used in 

particular . 

 

Regarding the fourth objective “Application of the algorithms that allow analyzing the available 

data through different methods”, each available data has been verified with every algorithm 

developed. It should be noted that, as the algorithms described are general, they can be applied to 

any type of signal since they only depend on the periodic nature of the sample to be analyzed. 

 

As for the fifth objective "Validation and other possible uses of the methods described", each 

algorithm was validated with simulated and real samples experimentally obtained as well as 

databases available in each case. 
 

4.1 Main Contributions 

 

From the use of the developed algorithms for the detection and diagnosis of failures in electrical 

machines, based on the statistical and spectral signal processing, progress has been achieved in 

relation to the models currently existing, in the identification of faults through the use of stray 

flux signals 

Moreover, through the use of higher order statistics for the extraction of anomalies in actigraphy 

signals, alternative parameters have been found identifying processes that can be related to a 

specific pathology, specifically the case of hypertension has been shown. 
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4.2 Future Research Lines 

 

On the other hand and as results derived from the doctoral research, several works have been 

carried out, some already published, others accepted and others in the process of revision or 

elaboration, which are the result of the research lines that have been taken and will be carried out 

in a future. These works are summarized below: 

 

1. S. Sahu, C. E. López Fortín, M. E. Iglesias Martínez, S. Nagataki and P. Fernández de 

Córdoba, “The VHE SED modelling of Markarian” 501 in 2009, MNRAS 492, 2261–

2267 (2020), doi:10.1093/mnras/staa023. Impact Factor: 5.231 Q1 

 

2. Iglesias-Martínez, M.E.; Castro-Palacio, J.C.; Scholkmann, F.; Milián-Sánchez, V.; 

Fernández de Córdoba, P.; Mocholí-Salcedo, A.; Mocholí Belenguer, F.; Kolombet, V.A.; 

Panchelyuga, V.A.; Verdú, G. Correlations between Background Radiation Inside a 

Multilayer Interleaving Structure, Geomagnetic Activity, and Cosmic Radiation: A 

Fourth-Order Cumulant-Based Correlation Analysis. Mathematics 2020, 8, 344. Impact 

Factor: 1.105 Q1  
 

3. V. Milián-Sánchez, F. Scholkmann, P. Fernández de Córdoba, A. Mocholí-Salcedo, F. 

Mocholí, M.E. Iglesias-Martínez, J. C. Castro-Palacio, V. A. Kolombet,  V. Panchelyuga, 

and G. Verdú, “Fluctuations in measured radioactive decay rates inside a modified 

Faraday cage: Correlations with space weather”. Accepted in Scientific Reports-

Nature, Impact Factor: 4.525 Q1 
 

4. Miguel Enrique Iglesias Martínez, Pedro Fernández de Córdoba, Jose Alfonso Antonino-

Daviu and J. Alberto Conejero, “Detection of adjacent and non-adjacent bar breakages in 

induction motors via convolutional analysis of sound signals”, (Sent to Applied Science 

MDPI, under Revision). 

 

5. Miguel Enrique Iglesias Martínez, Pedro Fernández de Córdoba, Jose Alfonso Antonino-

Daviu and J. Alberto Conejero, “Bispectrum Analysis of Stray Flux Signals for the Robust 

Detection of Winding Asymmetries in Wound Rotor Induction Motors” (Accepted in 

ECCE 2020 IEEE Energy Conversion Congress and Exposition Conference, Detroit, 

Michigan , October 11-15, 2020). 
 

6. M. E. Iglesias Martínez et al.:“Flux Sensor Position Influence for Faults Detection. A 

Power Spectral Entropy Analysis: Case Study using the Asymmetries of Wound Rotor 

Induction Motor.” (In the drafting phase to send to Energies, MDPI)  

 

7. M. E. Iglesia Martínez, J. C. Castro-Palacio, P. Fernández de Córdoba, J. M. Isidro y E. 

Navarro Pardo “Reaction time dynamics on the milisecond scale over consecutive visual 

stimuli”. (In the drafting phase to send to Journal of the International 

Neuropsychological Society) 
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8. M. E. Iglesias Martínez et al.:“Probable anomalies in radioactive decay rates and 

electronic filters time constant measurements inside a modified faraday cage” (In the 

drafting phase) 

9. M. E. Iglesias Martínez et al.:“Correlations between the 226Ra decay rates inside a 

Multilayer Interleaving Structure, the Geomagnetic Activity and the Cosmic Radiation”. 

(In the drafting phase) 

 

 

The obtained results in this research are intended to extend the analysis to experimental 

psychology and biomedical signals in addition to actigraphy. 
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