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27 Abstract

28 Barley malt production comprises three main steps: steeping, germination, and drying. 

29 Ultrasound technology has been widely studied to find ways to improve mass transfer in food 

30 processes and, consequently, to reduce process times. So, this study evaluated the effect of 

31 temperature and the intermittent application of ultrasound on the steps involved in barley 

32 hydration. The barley hydration was carried out at 10, 15, 20, and 25 °C with and without the 

33 application of 0.75 W/mL and 1.5 W/mL of nominal power density at 20 kHz. The ultrasonic 

34 energy delivered was measured in the same conditions as the steeping process using a 

35 calorimetric method, taking distinct differential volume measurements throughout the hydration 

36 medium. The ultrasonic energy delivered presented average values of 51.1 W at 750 W and 84.7 

37 W at 1500 W nominal power. Ultrasound application increased both water uptake rates and 

38 equilibrium moisture content as shown by the Peleg and Weibull-exponential model parameters, 

39 with the latter showing better adjustment ( >0.953 and NRMSE<5%). Applying ultrasound 2
adjR

40 also significantly reduced the time required to achieve the conventional moisture level required 

41 for barley germination: 29% and 44% at controlled temperatures of 20 oC and 25 oC, 

42 respectively.

43 Keywords: hydration; malt; high-intensity ultrasound; non-conventional technologies.
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52 1. Introduction

53 Barley is the most important grain for the malting industry, widely used for the production of 

54 beer, whiskey, barley wines, malt extracts, and other products (Yaldagard et al., 2008). This is 

55 mainly due to the technological properties and flavoring characteristics that barley malt can 

56 confer to foodstuffs. These attributes are a consequence of a series of reactions that occur during 

57 a careful and protracted malting process.

58 In general, the malting process comprises three main steps: steeping or hydration, germination, 

59 and drying. During conventional steeping, the grain is soaked in water for 24 to 36 hours in order 

60 to increase moisture levels to 40-46% (w.b.) (Brookes et al., 1976). After steeping, the grains 

61 take approximately 3 to 6 days to germinate. During hydration and especially during 

62 germination, water promotes the transport of gibberellic acid inside the grains which leads to the 

63 production of enzymes such as α- and β-amylase. This process causes changes in the structure of 

64 the grain, influencing the quality of the malt (Mayolle et al., 2012; Montanuci et al., 2015). 

65 Afterwards, the green malt is dried to reduce the water content to 4-5% (w.b.). This interrupts the 

66 biochemical reactions and develops the malt’s flavor (Samaras et al., 2005). The time-

67 temperature binomial of this last operation is highly dependent on the hydration process, since 

68 the sensitivity of the enzymes may change in accordance with the moisture content of the grain 

69 (Lewis and Young, 2001).

70 The hydration process is an essential unit operation for dried products like barley, as it defines 

71 the product’s properties and subsequent uses, such as cooking, extraction, fermenting, 

72 germinating, and eating (Patero and Augusto, 2015). Concerning the malt quality, controlling the 

73 amount of barley water absorbed is imperative to improving the malting process. However, water 

74 absorption by the grain may be influenced not only by factors such as barley composition and 

75 grain structure, but also by water temperature during steeping and the specific steeping methods 

76 employed (Montanuci et al., 2013).
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77 As a way of accelerating grain hydration, high-intensity ultrasound (US) provides a novel 

78 technological solution to improve mass transfer processes. This technology has many 

79 applications in the food industry (Cárcel et al., 2012; Garcia-Noguera et al., 2010; García-Pérez 

80 et al., 2007). Although high-intensity ultrasound already plays an important role in the hydration 

81 of seeds and cereals such as beans and sorghum (Ghafoor et al., 2014; Patero and Augusto, 2015) 

82 there are still few studies that specifically look at barley steeping (Miano et al., 2015; Yaldagard 

83 et al., 2008).

84 High-intensity ultrasound is able to enhance mass transfer through mechanisms related to both 

85 solid and liquid phases, concerning barley and water respectively, in the specific case of barley 

86 hydration. Solids under the effect of acoustic waves might behave like sponges due to a rapid 

87 series of alternating contractions and expansions (García-Pérez et al., 2007). The same effect can 

88 induce the formation of micro channels inside grain and reduce the resistance to water absorption 

89 (Ghafoor et al., 2014). Ultrasound can also promote micro-agitation in solid–fluid interfaces 

90 (Liang, 1999), which can reduce the external resistance and increase the water transport into the 

91 barley grain.

92 The operating temperature is also an important factor when dealing with grain hydration. Resio 

93 et al. (2006) reported faster hydration and a slightly higher moisture content saturation point in 

94 amaranth grains when soaked at higher temperatures at a studied range of 30–60 ºC, although at 

95 the highest temperature the grains are supposed to lose solids to the hydration medium. The 

96 temperature dependence of steeping is probably related to a higher agitation state of water 

97 molecules at higher temperatures, and this trend was also observed in conventional barley grain 

98 steeping at a range of 10–35 ºC  (Montanuci et al., 2013; Borges et al., 2017). However, the 

99 temperature should be controlled when the hydration process is assisted by high-intensity 

100 ultrasound in order to prevent the system over-heating and any other undesirable effects on either 

101 the malt or the operating conditions.
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102 The absorption of part of the acoustic energy into heat, which is proportional to the intensity and 

103 attenuation of the ultrasonic waves traveling through the medium, should be investigated to 

104 avoid undesirable effects (Raso et al., 1999). Generally, this determination has been made 

105 through the measurements of punctual temperature variations during the first periods of 

106 ultrasound application in different processes (Polachini et al., 2017; Margulis and Margulis, 

107 2003; Chivate and Pandit, 1995). However, the energy is dissipated throughout the liquid and 

108 may not reach all of the material of interest. The study by Fan et al. (2017) reinforced the need 

109 for information about a specific acoustic field as a function of different positions of the 

110 ultrasonic device. 

111 Therefore, the present work was intended to provide an alternative approach to obtaining average 

112 acoustic energy for whole volume elements using the calorimetric method. Additionally, this 

113 study evaluated the effects of high-intensity ultrasound at different controlled temperatures 

114 during the hydration process of whole barley kernels, by measuring the water uptake and 

115 modeling the rate of water uptake as a function of time, temperature, and ultrasound power 

116 intensity. The characterization of this process is essential for the correct design of hydration 

117 processes assisted by ultrasound.

118

119 2. Materials and methods

120 2.1. Raw materials

121 Barley (Hordeum vulgare, variety Shakira) kernels, kindly donated by the Agroindustrial 

122 Cooperative (Guarapuava, Paraná, Brazil), were used for the hydration experiments. Initial 

123 moisture levels were determined using AOAC methods (AOAC, 2005), oven-drying at 105 °C, 

124 in three replicates. The initial moisture level was 10.01 ± 0.65 g/100 g (d.b.). The grains were 

125 stored in a refrigerated low-humidity room.

126
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127 2.2. Ultrasound-assisted hydration experiments

128 The ultrasound-assisted hydration experiments were carried out in the system schematized in 

129 Figure 1. Approximately 100 g of barley kernels were placed in a perforated stainless-steel 

130 sample holder, inside a jacketed stainless-steel vessel containing 1000 mL of water. Constant-

131 temperature water circulated in the jacket side of the vessel, provided by an ultra-thermostatic 

132 circulated water bath (MA-184, Marconi, Piracicaba, Brazil), to control the hydration 

133 temperature.

134 A Vibra-Cell VCX-1500 ultrasound processor horn type (Sonics & Materials, Newton, USA), 

135 with a 25 mm diameter axial sonotrode operating at 20 kHz frequency and 1500 W maximum 

136 nominal power, was used to assist in the steeping treatments. The ultrasonic tip of the sonotrode 

137 was axially placed 1.5 cm above the sample in the center of the stainless-steel vessel (Fig. 1).

138 After each specific steeping period (1, 2, 3, 4, 6, 8, 10, 14, and 24 hours), the sample holder was 

139 removed from the vessel, drained to remove excess superficial water, weighed, and placed back 

140 into the hydration vessel in order to determine the water uptake. Ultrasound acoustic waves were 

141 continuously applied for 30 minutes every time a sample was placed in the hydration unit, and 

142 then interrupted until it was removed for weighing. This resulted in a total of 4.5 hours of 

143 ultrasound application during the 24 hours. The water content (X) was calculated by mass 

144 balance, with the initial sample mass (m0), the initial moisture (X0), and the sample weight (m) as 

145 a function of hydration time (t). For this calculation, increases in the weight of the sample were 

146 considered to be exclusively due to the mass of water absorbed by the grain. Additionally, the 

147 dissolution of soluble solids towards the medium was negligible (Patero and Augusto, 2015).

148 The steeping experiments were carried out at four different temperatures (controlled at 10, 15, 

149 20, and 25 oC), in accordance with the upper temperature limits required for barley germination 

150 and malting industry practices (Brookes et al., 1976). The influence of high-intensity ultrasound 

151 nominal power on barley hydration was evaluated by applying three different levels (0, 750, and 
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152 1500 W). For each condition, the steeping experiment was carried out in duplicate according to 

153 an experimental factorial design.

154

155 2.3. Ultrasonic energy measurements

156 Prior to the experiments, the ultrasonic energy actually delivered (PUS) in the hydration 

157 experiments was determined using the calorimetric method adapted from Cárcel et al. (2012). 

158 The ultrasonic energy was obtained for the hydration unit presented in Fig. 2a, in which an 

159 energy balance was applied for the time interval of the application of ultrasound acoustic waves 

160 from time t0 to tUS and average water temperature from T0 to TUS. The temperatures were 

161 measured by means of thermocouples placed in the water and connected to the data acquisition 

162 module (NI 9213, National Instruments, Austin, USA). LabView software (National Instruments, 

163 Austin, USA) was used to record the temperature on a computer (Fig. 1). The temperature inside 

164 the medium was recorded (in triplicate) during the 90 seconds (tUS) of ultrasound application 

165 (Raso et al., 1999) in 57 positions (four radial positions, including r = 0; six angular positions, 

166 and three axial positions, as showed in Fig. 2b). Temperature recordings were carried out in the 

167 same conditions as the hydration experiments at 10, 15, 20, and 25 °C and high-intensity 

168 ultrasound at 750 and 1500 W nominal power. From the measured temperatures at each point, a 

169 mean volumetric temperature of the hydration water was calculated by Eq. (1) using the 

170 rectangular integration:

1
  i iT T dV

V
(1)

171 Considering that energy exchanges between the hydration water and the jacketed vessel were 

172 negligible for the short time of temperature recording, the accumulated energy accounted for the 

173 acoustic power (PUS) by Eq. (2).

174          (2)
dt
dTVcP pUS 
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175 As expected, the similar linear profile of temperature versus time was observed in the hydration 

176 medium, and the values of dT/dt were acquired by linear fitting. The thermophysical properties 

177 of the hydration water were obtained using the Eqs. (2) and (3) reported by Carvalho et al. 

178 (2015). These values were considered constant at the mean temperature during heating. 

3 2995.3 8.442 10 T    (2)

33.406 103.112pc T
  (3)

179 From the ultrasonic energy (PUS) values, the ultrasonic density was also calculated according to 

180 Eq. (4):

US
US

PD
V

 (4)

181

182 2.4. Mathematical modeling for ultrasound-assisted barley hydration

183 Two empirical models were used to describe the hydration of barley assisted by ultrasound. The 

184 Peleg model (Peleg, 1988) represented by Eq. (5) describes the kinetics of moisture sorption that 

185 asymptotically approaches the equilibrium:

0
1 2

tX X
k k t

 
 (5)

186 where k1 is the Peleg model’s constant rate, or the inverse of the hydration rate, and k2 is the 

187 constant of capacity of the Peleg model which is related to the equilibrium moisture content 

188 (Xeq=X0+1/k2).

189 The Weibull-type exponential model with three parameters describes hydration processes as 

190 probabilistic events, which may present some variability such as mass gains or losses 

191 (Cunningham et al., 2007; Cunha et al., 1998). It is represented by Eq. (6):

1 exp t





  
        

(6)
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192 where θ = (X-X0)/(Xeq-X0), α is the shape parameter, correlated to the process initial rate, and β is 

193 the scale parameter which corresponds to the time required for the sample to reach 63% of the 

194 equilibrium moisture content.

195

196 2.5. Statistical analysis

197 The models were fitted to the experimental data of water uptake versus hydration time by non-

198 linear regression using the Solver tool of Microsoft Excel® (Microsoft Corporation, Redmond, 

199 USA). The parameters were identified using the generalized reduced gradient method (GRC 

200 Non-linear) of the same software. The effectiveness of the fit was evaluated using the adjusted 

201 determination coefficient ( ), residual plot analysis, and the normalized root mean square 2
adjR

202 error (NRMSE) in order to determine the reliability of both models.

203 The influence of temperature and ultrasound nominal power on all ultrasound-assisted hydration 

204 treatments was evaluated by the analysis of variance (ANOVA) with a confidence interval of 

205 95%, by using the software Minitab v.16.1.1 (Minitab Inc., State College, USA).

206

207 3. Results and Discussion

208 3.1. Ultrasonic energy

209 It is known that some energy could be dissipated during electrical conversion into effective 

210 acoustic energy. Therefore, the delivered ultrasonic energy was measured using the calorimetric 

211 method concerning the entire medium of hydration to provide a better estimation of the acoustic 

212 fields in the entire reactor. This provides important data to make adequate conclusions about the 

213 cavitation, not only at a specific point, but for the whole liquid.

214 The linear increase of temperature with sonication time provided values of dT/dt to obtain PUS of 

215 51.12 W at 750 W and 84.68 W at 1500 W nominal power, as indicated in Fig. 3. The resulting 

216 average ultrasonic power density obtained by the relationship between the ultrasonic energy 



ACCEPTED MANUSCRIPT

10

217 delivered and the volume of water (1000 mL) varied from 0.0495 to 0.0522 W/mL and from 

218 0.0829 to 0.0864 W/mL at 750 W and 1500 W, respectively, at the range of temperatures 

219 studied. As this work took into account energy transfer throughout the liquid medium (not only 

220 at the point of maximum cavitation), relative lower delivered energy was obtained compared to 

221 other studies (Polachini et al., 2017; Ozuna et al., 2014). The increase in temperature was less 

222 intense as the temperature recordings were taken closer to the reactor wall and away from the 

223 sonotrode tip, bringing down the maximum conversion rates that are usually concentrated right 

224 below the sonotrode. At the position of maximum increase, temperature increases would result in 

225 average acoustic powers of 75.17 W at 750 W and 123.26 W at 1500 W if only this punctual 

226 increase is taken into account. However, the resulting actual ultrasonic density was similar or 

227 higher than other similar studies involving hydration assisted by bath type ultrasound (Patero and 

228 Augusto, 2015; Yildirim et al., 2011), even considering the integral method used to obtain real 

229 acoustic power. 

230 The results indicated that acoustic energy was significantly affected by the intensity of applied 

231 nominal power, but not affected by the temperature of the water. The average conversion ratio 

232 between the delivered ultrasonic energy and the nominal power (PUS/PN) was 6.82% for 750 W 

233 and 5.64% for 1500 W nominal power, showing a reduction in the conversion ratio with the 

234 increase in the nominal power. This low conversion ratio is due to high volumes treated with 

235 high-action and, consequently, to the presence of many regions of low-action ultrasound. As all 

236 these regions were considered in the calculation, the little punctual dT/dt near to the reactor wall 

237 caused a decrease in the resulting average dT/dt. The reduction in the yield of conversion can be 

238 explained by the higher energy losses to the medium due to attenuation and higher levels of 

239 cavitation at higher nominal ultrasonic power. Gogate et al. (2011) stated that, above a certain 

240 power limit, a number of cavitation bubbles might cluster near the tip of the sonotrode. This can 
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241 cause disturbances in this region of the medium, leading to difficulties for energy transfer 

242 processes.

243 According to Sala et al. (1995), reaction rates in ultrasound-assisted processes may be reduced as 

244 the medium temperature increases due to the exponential increase in vapor pressure and the 

245 reducing number of microbubbles formed, resulting in fewer collapses due to cavitation and less 

246 energy transmitted. However, Raso et al. (1999) found that the amount of energy delivered by 

247 the ultrasound waves can be reduced drastically above 70 ºC. This was found to be true in the 

248 current study, which observed no influence of temperature on the transmitted energy at a range 

249 of temperatures from 10–25 ºC.  Although temperature might not affect energy conversion into 

250 acoustic power, it had a significant positive effect on mass transfer as reported by the grain 

251 hydration. This means that the yield of power conversion is not affected if hydration is enhanced 

252 by increasing temperature. 

253

254 3.2. Ultrasound-assisted barley hydration

255 The experimental steeping curves of barley are shown in Figure 4, together with the fitted 

256 mathematical models. The increase in temperature and ultrasonic power applied for the total of 

257 4.5 hours reduced the time required to reach the necessary moisture levels for the germination of 

258 barley seeds by conventional processes (approximately 75 g/100 g d.b.) (Mayolle et al., 2012). 

259 After 24 hours, the steeping performed at 10 °C did not reach 75 g/100 g (d.b.) of moisture, even 

260 with the application of intermittent high-intensity ultrasound. At 15 °C, the hydration performed 

261 without the application of high-intensity ultrasound also failed to reach the necessary moisture 

262 level for germination, even after 24 hours (Fig. 4). However, by applying high-intensity 

263 ultrasound at 0.0511 W/mL actual volumetric power at a temperature of 15 oC, 24 hours of 

264 hydration was enough for the barley seeds to reach the required moisture for germination, while 

265 only 20 hours was needed at 0.0847 W/mL actual volumetric power. The steeping conducted at 
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266 20 °C assisted by 0.0511 W/mL and 0.0847 W/mL of acoustic density showed reductions of 

267 29.2% and 37.5% respectively in the amount of time required to reach the right moisture levels 

268 without sonication. At 25 °C, the time reduction was even higher: 33.3% and 44.5% quicker with 

269 the application of ultrasound at 0.0511 W/mL and 0.0847 W/mL respectively. 

270 The results of this study have shown a significant reduction in the amount of time required for 

271 barley steeping by applying high-intensity ultrasound. Montanuci et al. (2013) showed that 

272 hydrated barley reached 75 g/100 g (d.b.) moisture only at 20 oC or above, when investigating  

273 hydration in five cultivars of barley during a period of 32 hours using a mechanically stirred 

274 medium (sample and water) at temperatures between 10 and 35 °C. Based on this data, 

275 ultrasound can be used as an efficient tool to enhance the mass transfer and reduce the 

276 conventional steeping time instead of using energy to heat and/or to maintain the average 

277 temperature. At industrial plants which are already supplied with warm water, the time 

278 previously required for the hydration phase can be reduced by almost half by using power 

279 ultrasound. It is also worth reiterating the statement of Miano et al. (2005) that the ultrasonic 

280 treatment is not only capable of reducing the required time for steeping without affecting the 

281 germination and vigor of the seeds, but it can also improve the germination rate of the seeds.

282 Regarding the fitting procedure, the residual plots for the Peleg model and the Weibull-

283 exponential model are presented in Figure 5. In general, both models were well-fitted to the 

284 experimental values. The fitting performance can also be verified through the statistical 

285 parameters  and NRMSE presented in Table 1. The Weibull-exponential model, in particular, 2
adjR

286 was better fitted as it resulted in lower NRMSE and higher adjusted determination coefficients, 

287 even presenting more parameters than the Peleg model. The Peleg model showed higher negative 

288 values for shorter times and a tendency to increase until reaching a maximum positive value and 

289 then decreasing for longer times of hydration. The Weibull-exponential model showed similar 

290 behavior, but with residual values lower than the Peleg model. Although these models presented 
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291 different degrees of accuracy, the interpretation of the respective parameters provides important 

292 information.

293 The constant rate parameter values of the Peleg model are in close agreement with the ones 

294 published by Montanuci et al. (2013) for five different varieties of barley seeds, which varied 

295 from 0.0273 to 0.0670 h∙100 g/g (d.b.) at a range of temperatures between 10 and 35 ºC without 

296 ultrasound. This parameter (k1), related to the initial rate of hydration, was not significantly 

297 influenced by the temperature of the process (p=0.075). The application of high-intensity 

298 ultrasound reduced k1 (p<0.001), or in other words the application of ultrasound increased the 

299 initial rate of hydration. The constant of capacity parameter (k2) behaved as reported by these 

300 same authors. It was affected by temperature and the intensity of the ultrasound applied, in such 

301 a way that the higher the temperature combined with the application of ultrasound, the lower the 

302 value of k2 (p < 0.001). Moreover, the hydration of other grains such as sorghum assisted by 

303 acoustic ultrasonic density of 0.026 W/mL was able to reduce the constant rate (k1) of the Peleg 

304 model from 0.029 to 0.025 h∙100 g/g (d.b.) and reduce the capacity constant (k2) from 0.0286 to 

305 0.02574 100 g/g (d.b.) at 25 °C (Patero and Augusto, 2015). The fitting parameters are also in 

306 accordance with Ghafoor et al. (2014), who applied ultrasound to the hydration of navy beans at 

307 16 °C, describing a reduction in the Peleg model’s k1 from 0.029 to 0.016 h∙100 g/g (d.b.) for the 

308 control and sonicated processes respectively.

309 Regarding the Weibull-exponential model, the shape parameter (α), related to the initial rate of 

310 water absorption, was affected (p<0.001) by temperature and the application of high-intensity 

311 ultrasound. The parameter increased with rising temperatures and decreased with the increasing 

312 ultrasonic power. Similarly, as shown by the Peleg model, applying ultrasound increases the 

313 initial rate of water absorption. The scale parameter (β), which represents the time needed to 

314 absorb 63% of the total water absorbed at the equilibrium (Cunningham et al., 2007), was not 

315 significantly affected by the application of high-intensity ultrasound (p>0.781), but decreased as 
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316 the temperature was increased (p<0.001). As the treatments assisted by ultrasound caused an 

317 increase in the grain’s equilibrium moisture content, the required time to absorb 63% of Xeq is 

318 supposed to be the same. However, temperature seemed to have a positive effect on the water 

319 absorption rate. The resulting parameters are in accordance with the ones reported by Montanuci 

320 et al. (2015), who also fitted the experimental data of barley hydration to the Weibull-

321 exponential model. They obtained values from 0.41 to 0.59 for the shape parameter (α) and 

322 values of 5.83 to 8.87 h for the scale parameter (β) at the same range of hydration temperatures. 

323 The values of equilibrium moisture (Xeq) estimated by the Weibull-exponential model were 

324 higher than the values estimated by the Peleg model for all experimental conditions. The 

325 effectiveness of fit (  and NRMSE) indicated that the values of Xeq estimated by the Weibull-2
adjR

326 exponential model are more reliable than their Peleg counterparts. Both the increase in process 

327 temperature and in the intensity of the applied ultrasound resulted in higher (p<0.05) equilibrium 

328 moisture. The observed increase ranged from 5.50% to 14.93%, with greater differences at lower 

329 temperatures studied. The main complex mechanism involved in conventional non-stirred barley 

330 steeping is water diffusion, which controls grain hydration. However, ultrasound has shown itself 

331 to be a promising technology for enhancing water transport and Xeq. The alternative compression 

332 and expansion cycles act similarly to a sponge, which contracts and expands repeatedly as 

333 ultrasonic waves travel through the tissue. This phenomenon can keep the micro-channels free, 

334 facilitating mass transfer (Garcia-Noguera et al., 2010; Gafhoor et al., 2014; Patero and Augusto, 

335 2015). In addition, the wave propagation can generate micro-channels in the tissue due to the 

336 mechanical stress and this can improve the hydration. Nevertheless, further investigation is 

337 encouraged concerning the possible effects of high-intensity ultrasonic waves on enzyme 

338 formation and germination rates in barley malt production.

339
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340 4. Conclusions

341 This study investigated the effect of temperature and high-intensity ultrasound on barley 

342 hydration. The ultrasonic energy delivered was determined using the calorimetric method taking 

343 into account different points of the reactor. The average acoustic power was not significantly 

344 affected by temperature in the range investigated, however reductions (6.82% to 5.64% on 

345 average) in the conversion ratio were observed as the nominal power increased from 750 to 1500 

346 W, possibly due to higher attenuation of the ultrasonic waves at higher intensities. Ultrasound-

347 assisted barley hydration showed higher water uptake rates at the beginning of the process and 

348 then asymptotic behavior towards maximum moisture levels for longer hydration times, 

349 corresponding to the equilibrium moisture. The water uptake rate and the equilibrium moisture 

350 content increased with the ultrasound power, as showed by the Peleg and Weibull-exponential 

351 models. The Weibull-exponential model presented a better adjustment ( >0.953 and 2
adjR

352 NRMSE<5%) to the data for barley hydration assisted by ultrasound, although the Peleg model 

353 also represents an alternative as it is so easy to use. Ultrasound application reduced the time 

354 required to achieve the necessary moisture level for barley germination from 29 to 44% at 

355 relatively low temperatures (20 and 25 oC respectively), compared to the treatment without 

356 ultrasound, indicative of an alternative technology for improving barley hydration.

357

358 Nomenclature

cp Water heat capacity J/kg K
DUS Acoustic density W/mL
k1 Constant rate parameter of the Peleg model h∙100 g/g d.b.
k2 Constant capacity parameter of the Peleg model 100 g/g d.b.
m Mass of sample g
m0 Initial mass of sample g
NRMSE Normalized root-mean-square error %
p p-value -
PN Nominal power of the ultrasound generator W
PUS Ultrasonic energy delivered W

2
adjR Adjusted determination coefficient -

T Average temperature of water ºC
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t Time s, h
T0 Initial temperature of the water ºC
t0 Time at the beginning of the first interval S
TUS Water temperature at the end of the first interval ºC
tus Time at the end of first interval S
V Volume of the hydration unit m3

X Moisture content g/100 g d.b.
X0 Initial moisture content g/100 g d.b.
Xeq Equilibrium moisture g/100 g d.b.
α Shape parameter of the Weibull-exponential model
 Water density kg/m3

β Scale parameter of the Weibull-exponential model h
359
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454 Table 1 – Parameters of the Peleg model and the Weibull exponential model adjusted to the 
455 experimental data of high-intensity ultrasound-assisted barley hydration.

Peleg’s model
T DUS k1 k2 Xeq 2

adjR NRMSE

(°C) (W/mL) (h∙100 g/g d.b.) (100 g/g d.b.) (g/100 g d.b.) (-) (%)
0 0.0462 ± 0.0037Aa 0.0165 ± 0.0000Aa 70.72 ± 0.05Db 0.895 8.29

0.0511 0.0411 ± 0.0016Ab 0.0152 ± 0.0004Ab 75.81 ± 1.79Da 0.954 5.6610
0.0847 0.0336 ± 0.0008Ac 0.0152 ± 0.0002Ab 75.80 ± 0.91Da 0.958 5.49

0 0.0488 ± 0.0017Aa 0.0152 ± 0.0002Ba 75.62 ± 0.68Cb 0.935 6.61
0.0511 0.0379 ± 0.0026Ab 0.0141 ± 0.0003Bb 80.91 ± 1.71Ca 0.955 5.4115
0.0847 0.0363 ± 0.0014Ac 0.0138 ± 0.0001Bb 82.54 ± 0.64Ca 0.957 5.47

0 0.0407 ± 0.0012Aa 0.0141 ± 0.0001Ca 80.98 ± 0.50Bb 0.933 6.33
0.0511 0.0398 ± 0.0002Ab 0.0126 ± 0.0002Cb 89.29 ± 1.37Ba 0.953 5.7220
0.0847 0.0362 ± 0.0013Ac 0.0122 ± 0.0004Cb 91.95 ± 2.70Ba 0.958 5.47

0 0.0459 ± 0.0011Aa 0.0122 ± 0.0003Da 91.89 ± 1.91Ab 0.948 5.98
0.0511 0.0357 ± 0.0009Ab 0.0119 ± 0.0002Db 94.28 ± 1.41Aa 0.963 5.1625
0.0847 0.0338 ± 0.006Ac 0.0116 ± 0.0002Db 96.05 ± 1.32Aa 0.969 4.75

Temperature 
effects Ap-value = 0.075

ABCDp-value < 
0.001 ABCDp-value < 0.001

Power 
effects

abcp-value < 0.001 abp-value < 0.001 abp-value < 0.001

Weibull exponential model
T DUS α β Xeq 2

adjR NRMSE

(°C) (W/mL) (-) (h) (g/100 g d.b.) (-) (%)
0 0.480 ± 0.044Ca 8.36 ± 0.02ABa 80.34 ± 1.31Dc 0.953 5.00

0.0511 0.448 ± 0.018Cb 10.18 ± 0.29ABa 89.12 ± 1.44Db 0.992 2.0710
0.0847 0.377 ± 0.008Cb 9.84 ± 0.13ABa 91.90 ± 1.12Da 0.997 1.09

0 0.524 ± 0.020Ba 9.75 ± 0.19BCa 85.98 ± 1.01Cc 0.976 3.74
0.0511 0.465 ± 0.021Bb 8.69 ± 0.06BCa 92.50 ± 2.96Cb 0.988 1.9115
0.0847 0.454 ± 0.005Bb 8.38 ± 0.07BCa 94.38 ± 0.71Ca 0.994 1.84

0 0.477 ± 0.007Ba 8.36 ± 0.05Ca 91.91 ± 0.98Bc 0.972 3.42
0.0511 0.516 ± 0.012Bb 8.32 ± 0.04Ca 98.70 ± 0.41Bb 0.989 2.7920
0.0847 0.490 ± 0.040Bb 8.80 ± 1.01Ca 104.00 ± 0.57Ba 0.992 2.18

0 0.612 ± 0.002Aa 8.29 ± 0.03Da 97.24 ± 1.70Ac 0.976 4.03
0.0511 0.524 ± 0.007Ab 7.73 ± 0.03Da 102.45 ± 1.03Ab 0.992 2.1225
0.0847 0.513 ± 0.010Ab 7.46 ± 0.05Da 104.23 ± 0.58Aa 0.996 1.57

Temperature 
effects

ABCp-value < 
0.001

ABCDp-value < 
0.001 ABCDp-value < 0.001

Power 
effects abp-value < 0.001 ap-value = 0.781 abcp-value < 0.001

456 *Capital and small letters represent significant (different letter) or non-significant (same letter) 
457 differences between the model parameters with relation to temperature (capital) and actual 
458 acoustic density (small), respectively, with a confidence interval of 95%.
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459
460
461 Figure Captions
462
463 Figure 1 – Experimental set-up for barley hydration and for measuring the ultrasonic energy 
464 delivered.
465 Figure 2 – (a) Schematic of energy balance to determine the ultrasonic energy; (b) 
466 Thermocouples positions inside the hydration vessel.
467 Figure 3 – Ultrasonic energy delivered (mean ± SD of the experiments in triplicate) as function 
468 of nominal power and temperature.
469 Figure 4 – Experimental data (mean ± SD of the experiments in duplicate) of barley hydration 
470 without ultrasound (■), with ultrasound at 0.0511 W/mL (□) and 0.0847 W/mL (○) actual power 
471 density; and fitted models: Peleg (grey line) and Weibull exponential (dashed line) and moisture 
472 content of 75 g/100 g d.b. necessary for barley germination after conventional hydration 
473 (horizontal line).
474 Figure 5 – Residual plot of the Peleg model and the Weibull exponential model for barley 
475 hydration without ultrasound (■), at 0.0511 W/mL (□) and 0.0847 W/mL (○) actual power 
476 density.
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Highlights

> The effect of temperature and input power on barley hydration was studied.

> A new approach to determine the acoustic fields was reported.

> Hydration processes were well-fitted to both the Weibull and Peleg models.

> Ultrasound enhanced both water uptake and equilibrium moisture content.

> Ultrasound reduced the hydration time required for barley germination by up to 44%.


