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Abstract 

Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different 

Advanced Oxidation Process (AOPs), including ozone, peroxide, UV radiation, among others, are 

being investigated in the elimination of microcontaminants. Most of AOPs proved to be efficient 

on the degradation of antibiotics, but the mineralization is on the one hand not evaluated or on 

the other hand not high. At this work, the UV-based hybrid process, namely Photo-assisted 

electrochemical Oxidation (PEO), was applied aiming the mineralization of microcontaminants 

such as the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin (AZI). The influence 

of the individual contributions of Electrochemical Oxidation (EO) and the UV-base processes on 

the hybrid process (PEO) were analyzed. Results showed that AMX and NOR presented higher 

mineralization rate under Direct Photolysis than AZI due to the high absorption of UV radiation. 

For the EO processes, a low mineralization was found for all antibiotics, what was associated to a 

mass transport limitation related to the low contaminants concentration (200 µg/L). Besides that, 

an increase in mineralization was found, when HP and EO are compared, due to the influence of 

http://crossmark.crossref.org/dialog/?doi=10.1080/09593330.2018.1478453&domain=pdf
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UV radiation that overcome the mass transport limitations. Although the UV-based processes 

control the reaction pathway that leads to mineralization, the best results to mineralize the 

antibiotics were achieved by PEO hybrid process. This can be explained by the synergistic effect of 

the processes that constitute them. A higher mineralization was achieved, what is an important 

and useful finding to avoid the discharge of microcontaminants in the environment. 

Keywords: UV-based processes; electrochemical oxidation; hybrid process; photo-assisted 

electrochemical oxidation; antibiotics. 

 

1. INTRODUCTION 

Among the wide range of anthropogenic contaminants that reach the water bodies, the 

pharmaceutical active compounds (PhACs) are the microcontaminants most present in the 

environment. PhACs, including antibiotics, are present in municipal wastewater, largely as a result 

of human excretion [1], intentional disposal of unused medicinal products in wastewater [2] and 

veterinary use [3]. It is important to highlight that wastewater from the pharmaceutical industry 

may have an important impact on the pollution of water bodies. 

Some antibiotics groups have been widely found in surface waters, including macrolides 

(Azithromycin and Erythromycin), which have been added to the European Union watch list [4], 

fluoroquinolones (Norfloxacin, Enrofloxacin and Ciprofloxacin) [5] and β-lactam (Amoxicillin and its 

hydrolysis products) [6]. The presence of antibiotics in wastewater, even in low concentrations 

(ng/L or µg/L), has led to microbial resistance, representing a serious and growing threat to human 

health and wildlife in terrestrial and/or aquatic environments. In fact, the research by Barcelo and 

Bennett [7] confirms the idea that the overuse and misuse of antimicrobials led to the selection of 

resistant microorganisms to drugs. 

According to Larsen et al. [8], the conventional wastewater treatment plants (WWTPs) are 

not originally designed for the elimination of microcontaminants, and their capacity to degrade 

this type of compound is not manly associate to mineralization, but rather to the degradation or 

absorption on activated sludge. In fact, it is consensual that the effluents from WWTPs are one of 

the main pathways for the introduction of PhACs into the environment [9]. Considering this 

problem, Advanced Oxidation Technologies (AOT) have been proposed for the elimination of 

PhACs from wastewater. 
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Many studies were carried out to the degradation of antibiotics by photodegradation [10], 

photocatalysis [11], Fenton-like process [12], ozone and biological treatment system [13] and 

electrochemical [14] methods. However, these studies did not evaluate the microcontaminants 

mineralization. 

In this context, the mineralization of microcontaminants by UV-based and electrochemical 

processes has been studied at this work. Direct photolysis (DP), heterogeneous photocatalysis 

(HP), electrochemical oxidation (EO), and an hybrid process, namely Photo-assisted 

electrochemical oxidation (PEO), were evaluated to the mineralization of the antibiotics 

amoxicillin (AMX), norfloxacino (NOR) and azithromycin (AZI) present in aqueous solutions at µg/L. 

By direct photolysis the organic compound could be degraded by the absorption of a 

photon, resulting in bond cleavage or rearrangement to form a new stable product. This technique 

is commonly used for PhACs degradation in wastewater due to the high effectiveness and no 

limitations on mass transport [15, 16]. However some studies have pointed out that the use of DP 

processes in the degradation of some PhACs leads to a high byproduct formation [17-19]. 

The combination of direct photolysis with a catalyst (TiO2, ZnO2, WO2, Bi2O5 among others) 

can reduce the byproduct formation, achieving the mineralization by the hydroxyl radical (   ). 

To the     generation, the catalyst need be photo excited, being an electron promoted from the 

valence band (VB), where a hole (h+) is generated, to the conduction band (CB). The hole-electron 

gap generates reducing and oxidizing sites, which are able to catalyze chemical reactions (    

formation) [20]. However, the heterogeneous photocatalytic process has two major limitations; 

the hole–electron recombination and mass transport limitations, thereby causing effects on the 

reaction rate and on the energetic efficiency [21]. 

Electrochemical technology can be also considered an option in the antibiotic degradation 

[22] without chemicals use, generating in situ     on the surface of special anode materials, such 

as boron doped diamond (BDD) [23, 24]. The main disadvantage of the electrochemical technology 

is the mass transport limitation, which can reduce the efficiency of PhACs removal. Although the 

use of BDD anode is very promising, problems related to diamond film stability, sp³/sp2 ratio and 

price may restrict its application [25]. On the other hand, Metal Mixed Oxides (MOx) may be an 

option due to their commercial availability, low cost and electrochemical stability [26, 27]. In 

addition, the mass transport limitation can be overcome if the MOx is irradiated with UV light  

[28-30]. 
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In this context, the Photo-assisted electrochemical oxidation can be seen as an alternative 

for this issue. This is an hybrid process and uses a MOx anode such as (70%-30%) TiO2RuO2-Ti that 

enables the electrochemical oxidation to be photo-assisted by heterogeneous photocatalysis, 

increasing the     generation and reducing the hole–electron recombination [29]. 

Therefore, in the present work, the PEO process using (70%-30%) TiO2RuO2-Ti was studied 

aiming the mineralization of the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin 

(AZI). The individual contributions of Direct Photolysis (DP), Electrochemical Oxidation (EO) and 

Heterogeneous Photocatalysis (HP) were also evaluated. Additionally, the main influencing factors, 

such as direct or mediated oxidation, fluence rate, reaction kinetics and energy consumption were 

also assessed. 

The main objective of this work is to develop a technical approach to obtain a high 

mineralization rate of antibiotics present at low concentrations in water. 

 

2. MATERIALS AND METHODS 

The general experimental flowsheet used in this work is presented on figure 1. 

FIGURE 1 

The stock solution used in the experiments was prepared with 100 mg/L of Amoxicillin 

trihydrate (AMX), Norfloxacin (NOR) or Azithromycin dihydrate (AZI) (>99%, purchased from local 

pharmacy) in distilled and deionized water at pH 4. The work solutions were prepared by diluting 

the stock solution to a final concentration of 200 µg/L. This concentration was chosen based on 

the literature [31-33], and represents the usual AMX, NOR and AZI concentration in the 

wastewater of the pharmaceutical industry. Due to the low electrical conductivity of the solution, 

2 g/L of Na2SO4 (>99%, Merck) was added as a support electrolyte in all work solutions. 

 

2.1 SOLUTION CHARACTERIZATION 

A chemical and an electrochemical characterization of the solution were carried out. 

 

2.1.1 Electrochemical characterization 
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Cyclic voltammetry (CV) experiments with the stock solutions were accomplish in order to 

evaluate the influence of the direct and/or indirect oxidation in the electrochemical and photo-

assisted electrochemical process. The electrochemical measurements were obtained with or 

without UV radiation by using a 250 W high-pressure commercial mercury vapor lamp (HPL-N). All 

experiments were carried out using a three-electrode cell, where the work electrode was a MOx 

one, (70-30%) TiO2RuO2-Ti with geometric area of 1.5 cm2, platinum (Pt) was used as counter 

electrode and Ag/AgCl (saturated) was applied as a reference electrode. The CV experiment was 

carried out between 0 and 1.5 V, starting and finishing at the 0 V at a scan rate of 50 mV/s. The 

potentiostat used was the Autolab PGSTAT302 potentiostat/galvanostat. A scheme of the three-

electrode cell is exhibited in figure S1 in the supplementary content. 

 

2.1.2 Chemical characterization 

The spectra of the antibiotics AMX, NOR and AZI (100 mg/L) were obtained by using UV/Vis 

spectroscopy (T80+UV/Vis Spectrometer from PG Instruments Ltd). 

The pH was measured by potentiometric method using a DM-22 Digimed. 

Mineralization was followed by total organic carbon (TOC) decay, determined on a 

Shimadzu TOC-LCPH equipped with an automatic sample injector. The analyses were carried out 

using a high sensitivity analysis kit to measure trace amounts (commonly 0.5 mg/L or less) by 

thermal catalytic oxidation at 680°C with a continuous supplying of oxygen flow (6.0). The non-

purgeable organic carbon (NPOC) method was used and the NPOC values represent the average of 

five measurements. All procedures was done according Shimadzu standard manual. 

 

2.2 Solutions treatment assays 

2.2.1 UV radiation measurements 

To characterize the photo-based treatment assays, measurements of the spectral 

irradiance of UV-C and off the UV irradiation absorbed by the solution and arriving the catalyst 

surface were accomplished. 

A Spectrometer Princeton Acton Spectra Pro 2300, equipped with a photomultiplier, was 

used to analyze the spectral irradiance of the 250 W HPL-N lamp in UV-C spectra. 
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For the 250 W HPL-N lamp, in the UV-C spectra, the UV radiation (E, in W/m²) was 

measured on the anode/catalyst surface when ultrapure water or the initial solution containing 

AMX, NOR or AZI fulfill the reactor, by an Instrutherm MRUR-203 UV light meter. 

The exposure time (Et) of the solution to the PEO processes was determined according to 

equation: 

         ⁄                                                                                                                                                    (1) 

where ts is the final treatment time in seconds (21600), Vr is the reactor volume (2 L) and V is the 

reservoir volume (5 L). 

Using the equation 1, the Et was calculated resulting in 8640 s (144 min), i.e. of the total 

treatment time of 360 min, the solution remained under UV radiation only by 144 min. 

Thereafter, with the results of E measurement in the anode surface and Et calculated, it is 

possible to calculate the Fluence rate (kj/m²) using the equation (11): 

                                                                                                                                                                             (2) 

 

2.2.2 Treatment methods 

The setup of the reactor used in the PEO assays was already used in a previous work [30] 

and consisted of a jacket borosilicate glass reactor with a capacity of 2 L, operated in batch mode 

connected to a 5 L reservoir. An ultra-thermostatic bath was used to control the temperature. The 

anode was the metal mixed oxide (MOx) and composed of (70-30%) TiO2RuO2-Ti with geometric 

area of 475.2 cm2. The cathode was composed of TiO2-Ti with geometric area of 118 cm2. The 

electrodes were placed concentrically with a gap between electrodes of 0.5 cm around the  

250 W HPL-N lamp without the glass bulb and inside a quartz tube, remaining under UV radiation. 

A current of 10 mA/cm² was applied on the electrodes by a CEL P-6000. 5 L of the initial solution 

were placed in the reservoir that feeds the reactor at an average flow rate of 1 L/min with the aid 

of a peristaltic pump (Figure 2). The experiments were conducted in triplicates. 

FIGURE 2 

Aiming to elucidate the synergistic effect for all processes that compose PEO process, 

direct photolysis (DP), heterogeneous photocatalysis (HP) and electrochemical oxidation (EO) 

assays were performed under the same conditions of the PEO process in the same reactor. The 
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difference between the processes were: In DP process, it was removed both catalysts and the 

current source. For HP process, only the current source was not used. For EO process, the 250 W 

HPL-N was turned-off. 

Before starting the degradation experiment by DP, HP, EO and PEO processes, a control 

experiment was carried out. The solution were placed in the reservoir and the peristaltic pump fed 

the reactor at an average flow rate of 1 L/min for 360 min. The experimental was accomplished at 

room temperature, in dark and without the current source to elucidate whether the hydrolysis 

could significantly mineralize the antibiotics tested. 

After the solution treatment, pH and TOC were analyzed according to the methods 

presented on 2.1.1 Chemical characterization. 

The treatment efficiency was evaluated by calculating the TOC abatement (mineralization) 

and the energy consumption. 

The conversion of TOC (X, %) was calculated according to equation (3): 

                  ⁄                                                                                                                               (3) 

where TOC0 is the TOC at the initial time and TOC is the TOC measurement at the n time of 

treatment. 

Two-way ANOVA was used to evaluate the influence of treatment methods and time in the 

mineralization of the antibiotics AMX, NOR and AZI: factor A – time – with seven levels (a = 7) and 

factor B – treatment methods – with four levels (b = 4). 

The electric energy (EEO), in kilowatt hours (kWh), required to degrade a contaminant by 

one order of magnitude in a unit volume of 1 m3 of contaminated water, has been described in a 

technical report: figures-of merit for the technical development and application of advanced 

oxidation technologies for both electric- and solar-driven system. In this technical report [34] EEO  

can be calculated by equation (4): 

                          ⁄  ⁄                                                                                                             (4) 

where P is the nominal power of the cell (kW) and th is the treatment time in hours (h). 
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3. RESULTS AND DISCUSSION 

3.1 Solutions characterization 

3.1.1 Electrochemical characterization 

Cyclic voltammetry (CV) experiments were performed in order to analyze the influence of 

the electrochemical (Figure 3a) and photo-assisted electrochemical (Figure 3b) oxidation process, 

on the direct and/or the mediated oxidation of the antibiotics AMX, NOR or AZI. Figure 3 shows no 

anodic neither cathodic peaks for the support electrolyte Na2SO4 and the solutions containing 

AMX, NOR or AZI, indicating that these antibiotics are not electro-active in the potential window 

used for this electrode [35], probably due to a weak interaction between this compound and the 

MOx surface. 

When more positive potentials are achieved, the oxidation of water takes place on the 

surface of the mixed metal oxide (MOx) (eq. 5) with the hydroxyl radical       generation (eq. 6) 

and concomitant oxygen evolution reaction (eq. 7) [36]. 

                                                                                                                                                    (5) 

                                                                                                                                                           (6) 

           
 ⁄                                                                                                                                                   (7) 

Since no difference was detected between the support electrolyte and the antibiotics, 

difficulties can occur by the competition between the oxidation of organic compounds with the 

oxygen evolution reaction, leading to a decreased efficiency of the direct electrochemical 

degradation. In fact, with these results, only mediated electrochemical degradation reactions 

associated to the generation of radical species in the anode surface are expected. 

When the MOx was assisted by UV radiation, an increase in the current density was 

observed in figure 3b. This fact was associate to the irradiation of TiO2 using light in a specific 

wavelength 

(λ  400 nm), that can promote an electron      from the valence band (VB) to the conduction 
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band (CB) with the consequent generation of a hole      in the valence band. This phenomena 

was responsible to the observed current density increase. 

                                                                                                                                                                 (8) 

FIGURE 3a and b 

3.1.2 UV absorbance spectra in water matrix 

The UV/Vis was performed on the stock solution at wavelengths between 190-900 nm in 

order to verify if the select antibiotics AMX, NOR and AZI are directly excited by absorbing energy 

from UV radiation. If that were the case, these antibiotics would be susceptible to degradation by 

direct UV radiation. 

The results shows that the β-lactam AMX, fluoroquinolone NOR and macrolide AZI absorb 

UV radiation between 200 and 300 nm. The absorbance maxima (λmax) for AMX are 230 nm and 

from 260 to 280 nm, NOR has λmax at 272 and from 260 to 280 nm, while AZI do not exhibit 

distinct absorbance maxima under the experimental conditions. The absorption spectra for the 

selected antibiotics are shown in figure S2 (supplementary content). 

Benotti et al. [17] and Kim et al. [19] have considered the use of UV radiation on the 

degradation of few antibiotics, concluding that only UV radiation was not effective for the 

degradation of these contaminants. In the same line, the result obtained by analyzing the UV 

spectra shows that the macrolide AZI have no λmax, meaning that the influence of direct 

photolysis (DP) should be smaller than the one expected to the -lactam AMX and to the 

fluoroquinolone NOR. This observation suggests the prevalence of the reactions between AZI and 

hydroxyl radicals. On the other hand, AMX and NOR are sensitive to direct photolysis by UV-C 

radiation, which may have a strong influence on the degradation of these compounds. 

 

3.2 System UV irradiation characterization 

In this section, the emission of the 250 W high-pressure commercial mercury vapor in UV-C 

spectra was evaluated. An intense peak in 254 nm and radiation emission in the same region of 

the absorption spectra of AMX and NOR (230 to 300 nm) were detected (supplementary content, 

Figure S3). Therefore it is possible to expect that these two compounds will absorb UV radiation 

emitted by the lamp and will be degraded by direct photolysis. 
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Table 1 show the Fluence rate incident in the ultrapure water and in the initial solution 

containing the antibiotics AMX, NOR and AZI. It is possible to see that the antibiotics AMX, NOR 

and AZI absorb 224 kJ/m² (27.4%), 66 kJ/m² (8%) and 14 kJ/m² (1.7%), respectively. 

These results demonstrate that in the Photo-assisted electrochemical process, the 

antibiotic AMX and NOR are degraded by direct photolysis and this phototransformation can be an 

important degradation pathway. Furthermore, the fluence that reaches the anode surface through 

the initial solution is higher than the one absorbed by the antibiotics, i.e. the photocatalytic 

process (HP) is favored in both cases. On the other hand, for the AZI, there was no significant 

difference between the fluence that reaches the ultrapure water and the initial solution containing 

AZI. 

TABLE 1 

 

3.3 Treatment efficiency evaluation 

The mineralization is an important parameter for the overall determination of organic 

pollution, since, through the TOC analysis, one can monitor the mineralization of the contaminants 

of emerging concern AMX, NOR and AZI, i.e. the degradation until    ,     and inorganic ions. 

By the control experiment it was observed that no significant mineralization was achieved 

in dark (supplementary content, Figure S4) and this found is in agreement with the literature [37]. 

Moreover, studies report that AMX (pKa = 3.2 and 11.7) and AZI (pKa = 8.74) could undergo 

hydrolysis in environmental conditions [6] due to interactions with photosensitizers, but it was not 

expected hydrolysis for NOR (pKa = 8.6 and 10.6). 

Figure 4a shows a mineralization of 62%, 60% and 40% for AMX, NOR and AZI respectively 

at the final treatment time of 360 minutes. The lowest mineralization of AZI, when compared to 

the AMX and NOR values, can be explained by the spectra obtained by UV/Vis (supplementary 

content, Figure S2) and by the Fluence rate (table 1) results. The UV/Vis showed that the 

macrolide antibiotic AZI absorbs a low UV radiation, probably due to the lack of chromophore 

groups in the saturated aliphatic ring system. The Fluence rate (kj/m²) results demonstrated no 

significant difference between ultrapure water and the solution containing AZI. Some studies have 

also concluded that UV radiation alone was not effective enough for the degradation of macrolide 

contaminants [17-19]. Although by these results it was not expected any mineralization of the AZI, 
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in this work, it is demonstrated that in fact AZI undergoes a small direct photolysis with 40% of 

mineralization. These results can be linked to the high Fluence rate emitted by the radiation 

source that can induce an excited electronic state at the dimethylamine group leading to 

photodegradation [38]. Likewise, Batchu et al. [31] did not observe any absorption peak for a 

macrolide solution but related photodegradation of erythromycin macrolide when using mercury 

vapor lamps (UV 254nm). 

On the other hand, the β-lactam AMX and the fluoroquinolone NOR showed UV-C higher 

absorption in the UV/Vis spectra (supplementary content, Figure S2), precisely in the emission 

spectrum of the UV radiation source used. According to Qiang and Adams [39], the DP processes 

for NOR firstly start by the piperazine chain that have two ionisable nitrogen atoms with a pKa 

values of 8.6 and 10.6. These are the ones that can be firstly photodegradated, being the 

piperazine substituted by an amino compound. On the other hand, by the AMX, the more easily 

ionisable atoms are the ones present at the β-lactam ring followed by the ring opening [40]. 

Consequently, the initial solution containing these contaminants absorbed an important radiation 

value, demonstrating that theses antibiotics undergo higher phototransformation. 

Figure 4b shows that the AMX (49%), NOR (51%) and AZI (35%) mineralization decreased 

with the addition of the two catalysts (70-30%) TiO2RuO2-Ti and TiO2-Ti, when compared to DP 

process. This results was observed in all experimental replications carried out as observed by the 

error bars on figures 4a, b, c and d. Once the catalysts were added in the reaction system, they 

absorbed high amount of light (table 1), and less photons are available to be absorbed by the 

antibiotic molecules, decreasing the photolytic degradation. On the other side, the photons, 

absorbed by the catalyst in HP process, promote the       separation, generating reducing and 

oxidizing sites (Eq. 8), which are able to catalyze the     generation. In this sense, it is expected 

an increase in the mineralization due to     formation. This fact was already observed in a study 

involving the degradation and mineralization of surfactant nonylphenol [30]. However, studies 

were conducted using a high pollutant concentrations (10 to 200 mg/L) [11, 21, 30]. 

In the present work, the antibiotics, present in µg/L, should adsorb on a fixed number of 

active sites to react with    , leading to mineralization. However, Langmuir–Hinshelwood model 

for heterogeneous photocatalysis (equation 19), postulates that the reaction of the species 

adsorbed on the surface is the rate-limiting step (Kumar et al. 2008). In this context, a low amount 

of antibiotics contaminant will be mineralized with the    . As a consequence, the recombination 

of       is favored, leading to a decrease in the TOC abatement (mineralization) and in the 
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reaction rate (Eq. 9) [41, 42], when compared to DP processes, which is not limited by mass 

transport. 

                                                                                                                                                      (9) 

Electrochemical Oxidation (EO) assays were performed under the same conditions of the 

PEO process in the same reactor without UV radiation by using a 250 W HPL-N lamp. Figure 4c 

shows small mineralization for AMX (24%), NOR (24%) and AZI (19%). Although studies indicated 

that AZI undergo electronic interactions with transition metals [43], the voltammetry study 

showed no interaction between the work electrode (70-30%) TiO2RuO2-Ti and the macrolide AZI, 

leading to believe that the TOC abatement of AZI, AMX and NOR occur manly by the oxidizing 

radicals generated by the MOx electrode, being this results in accordance with the literature [44]. 

The low mineralization can be explained by the low antibiotic concentration in the solution (200 

µg/L), and, in these conditions, the systems are kinetically limited by mass transport [45]. On the 

other hand, when the EO system is under UV radiation (PEO process), the mass transfer limitations 

of the species are overcome, then a superior TOC removal value was obtained in figure 4d. 

The increase in the mineralization for PEO process could be also explained by a decrease in 

the recombination of the       pair on the TiO2 phase of the MOx electrode (Eq. 9). When there 

is an application of a current or potential the      recombination can be avoid. Then these 

carriers can react with adsorbed     (Eq. 10) and    (Eq. 11 and 12) to generate hydroxyl radical 

(Eq. 13) [46]: 

                                                                                                                                                            (10) 

        
                                                                                                                                                                 (11) 

        
 ⁄                                                                                                                                               (12) 

                                                                                                                                                                 (13) 

According to Chong et al. [47], the O2 adsorbed onto MOx have an electron scavenger 

nature, allowing the formation of superoxides radical    
     (Eq. 14). Consequently, the 

recombination of the       pair also decrease. 

             
                                                                                                                                                      (14) 
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Still,   
  can be protonated to form      (Eq. 15-17), that can act with organic pollutants 

[40] or UV irradiation can mediate the hydroxyl radical formation by      degradation (Eq. 18) 

[48]. 

  
                                                                                                                                                                (15) 

             
                                                                                                                                                      (16) 

                                                                                                                                                                (17) 

                                                                                                                                                                 (18) 

In fact, AMX and NOR presented a higher mineralization then AZI and no significant 

difference among each other in TOC abatement was observed, meaning that, for AMX and NOR, 

the radicals generated by the combination of photocatalyst, current applied and direct photolysis 

are responsible for the antibiotics degradation and TOC abatement. 

FIGURE 4a, b, c and d 

The initial pH of the solution containing AMX, NOR and AZI without any adjust was 4.5 ± 

0.2. After the treatment time of 360 min for all processes, a significant difference in pH values was 

not observed. However a small decrease in pH from 4.5 ± 0.2 to 3.5 ± 0.3 was observed 

(supplementary content, Figure S5). This decrease in pH may be related to the fact that there was 

no 100% mineralization and that the degradation of many organic products leads to organic acids 

generation [30]. 

Two-way ANOVA was used to evaluate the influence of each method in the mineralization 

of antibiotics AMX, NOR and AZI. In Two-way ANOVA, for each hypothesis test it was computed 

the F tabulated (Ftab) of the Fisher distribution (F-distribution) and this was compared to the  

F calculated (Fcalc). If Fcalc > Ftab, then the null hypothesis is rejected and therefore the change in 

levels of the analyzed factors has a significant effect on the mean response. It means that, if  

Fcalc > Ftab, or p-value < 0.05 (α = 5 %), the effect studied is significant for a confidence level of 95 

percent [49, 50]. The results showed that for the parameter methods (PEO, HP, DP and EO) the 

Fisher distribution resulted in Fcalc > Ftab for all methods, indicating that the method type is 

significant for antibiotic mineralization (data presented on supplementary content, Tables S4, S5 

and S6). 

Insert graphics in figures 5a, b, c and d show that for all processes, the natural logarithm of 

(TOC/TOC0) as function of the treatment time is linear. Therefore, the reaction kinetics follows a 
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first order kinetics. Accordingly, the model of Langmuir-Hinshelwood [51] can simulate the 

reaction kinetics for photolytic and catalytic [52] processes by the following equation: 

                  ⁄                                                                                                                                      (19) 

were   is the kinetic reaction rate (1/min) and tmin is the treatment time in minutes (min). 

The slope of the straight line for an insert plot in figures 5a, b, c and d determines the   

value, which are summarized in table 2. As can be seen in data of the table 2, the experimental 

data fits reasonably well (R2 = 0.9) for all processes with the proposed Langmuir–Hinshelwood 

model. 

Evaluating the data in table 2 and the results achieved so far it is noted that photolytic 

process occurred in the solution bulk and it was responsible for the high removal rates when 

compared to photocatalytic and electrochemical process, as that reaction is not limited by mass-

transport. Besides that, highest reaction rates were attained when the electrochemical process 

was assisted by UV radiation (PEO process), due to the direct phototransformation of AMX, NOR 

and AZI that seemed to suppress the mass transport limitations in electrochemical process. 

Scaling-up the process for an industrial use, it will be necessary the calculation of the 

electric energy consumption which is an important parameter for the overall cost of the process. 

Considering that all processes exhibited a first order kinetics, the EEO from equation 4 can be 

rewritten by: 

             ⁄                                                                                                                                                 (20) 

where 38.4 is the factor that corresponds to 1000   ln(10)/(60) [34]. 

Table 2 also shows the EEO values for the different processes studied. The values found are 

not low because of the low reaction rate (low contaminant concentration) and of the 

incorporation of UV lamp (250W HPL-N) which may considerably increase the energy consumption 

of water treatment [34, 53]. Nevertheless, this calculation does not consider the system’s 

efficiency in the antibiotics mineralization. Although Electrochemical Oxidation (EO) shows a low 

TOC abatement for AMX, NOR and AZI and has shown the lowest EEO value, it was not possible to 

achieve TOC removal above 50% in this system. 

The photo-assisted electrochemical oxidation (PEO) was good to remove antibiotics 

compounds and other organic contaminants [30, 54-56]. In this work, PEO process was the most 

energy efficient process, showing the highest mineralization rate, when compared to the other 
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processes tested. This finding can be explained by a synergistic effect of combining the DP, HP and 

EO processes that leads to a powerful oxidation mechanism of the antibiotics AMX, NOR and AZI. 

Besides that, the EEO values found for the PEO process were lower than the EEO found by other 

authors [57, 58]. 

TABLE 2 

 

 

 

 

4. CONCLUSIONS 

This work demonstrated that the aqueous solution containing the three antibiotics group 

one β-lactam AMX, one fluoroquinolone NOR and another macrolide AZI, can be treated by the 

UV-based hybrid process PEO, showing a mineralization rate of 75%, 76% and 52%, respectively. 

Similar results were found after the final treatment time between AMX and NOR for the 

mineralization, kinetics and energetic consumption. These results can be explained by the similar 

molecular structure between the β-lactam and fluoroquinolone. Both have a chromophore groups 

with max in the UV-C spectra emitted by the UV radiation source (250 W HPL-N). These results 

show that direct phototransformation (DP) is an important mineralization mechanism in the AMX 

and NOR, leading a different abatement pathway than the one associated to AZI. 

Besides that, a limitation in the mass transport due to the low contaminants concentration 

(200 µg/L) was found for electrochemical oxidation (EO) and for heterogeneous photocatalysis 

(HP) processes and this limitation is overcome when these processes were combined (originating 

the hybrid process PEO) leading to a synergetic effect on mineralization. The PEO can be seen as 

an alternative method to the mineralization of antibiotics. 
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FIGURE 1. Experimental flowsheet used in this work. 
 

 

FIGURE 2. Reactor operated in batch mode with recirculation, where 1 is a jacket borosilicate 
glass reactor with capacity of 3 L, 2 is a 5 L reservoir and 3 is a peristaltic pump [30]. 
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FIGURE 3. Cyclic voltammogram response of MOx composed by (70-30%) TiO2RuO2-Ti for the 
electrolyte solution containing 2 g/L of Na2SO4 and stock solutions containing 100 mg/L of the 
antibiotics AMX, NOR or AZI in electrolyte solution containing 2 g/L of Na2SO4. (a) not assisted by 
UV radiation and (b) assisted by UV radiation. 
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Figure 4 a 

 

 

Figure 4 b 
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Figure 4 c 

 

 

Figure 4 d 

 

FIGURE 4. Mineralization of solutions containing AMX, NOR and AZI untreated and treated by 

Direct Photolysis (DP) (a), Heterogeneous Photocatalysis (HP) (b), Electrochemical oxidation (EO) 

(c) and Photo-assisted electrochemical oxidation (PEO) (d). Insert graphic is the Langmuir–

Hinshelwood model plot of reaction rate. The initial conditions of the performed experiments 

were 200 µg/L of AMX, NOR and AZI and 2 g/L of Na2SO4; pH 4.5 ± 0.2.
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Table 1. Fluence rate incident on the electrodes surface by ultrapure water or by the work solution containing AMX, NOR and AZI. The initial 
conditions of the performed experiments were 200 µg/L of AMX, NOR and AZI and 2 g/L of Na2SO4; pH 4.5 ± 0.2. 

 Fluence rate incident on the electrodes surface 
(kj/m²) 

Absorbed by work solution 
(kj/m²) 

Ultrapure water 818 0 

Work solution containing AMX 594 224 

Work solution containing NOR 752 66 

Work solution containing AZI 804 14 

 

 

Table 2. First-order kinetic rate constants for all processes using the Langmuir-Hinshelwood model, nominal power of the cell, conversion and the 
electric energy per order for the mineralization of the antibiotics AMX, NOR and AZI. 

Process name Antibiotic k (1/min) R² Nominal power of the cell (kW) X (%) EEO (kWh/m³/order-1) 

Direct Photolysis 
(DP) 

AMX 0.0027 0.95 0,25 62 711 

NOR 0.0026 0.98 0,25 60 738 

AZI 0.0014 0.99 0,25 40 1371 

Heterogeneous Photocatalysis 
(HP) 

AMX 0.0018 0.98 0,25 49 1067 

NOR 0.0019 0,98 0,25 51 1011 

AZI 0.0012 0.99 0,25 35 1600 

Electrochemical oxidation 
(EO) 

AMX 0.00067 0.91 0,075 24 860 

NOR 0.00068 0.91 0,075 26 847 

AZI 0.00059 0.94 0,075 20 976 

Photo-assisted electrochemical oxidation 
(PEO) 

AMX 0.0040 0.97 0,325 75 624 

NOR 0.0038 0.97 0,325 76 657 

AZI 0.0020 0.98 0,325 52 1248 
 

 


