

Prácticas en sistemas de generación, transporte y distribución de energía eléctrica

César S. Cañas Peñuelas | Carlos Vargas Salgado Carlos Roldán Blay | Manuel Alcázar Ortega Vicente Fuster Roig | Vicente Benlloch Ramos Guillermo Escrivá Escrivá

César S. Cañas Peñuelas Carlos Roldán Blay Vicente Fuster Roig Carlos Vargas Salgado Manuel Alcázar Ortega Vicente Benlloch Ramos

Guillermo Escrivá Escrivá

Prácticas en sistemas de generación, transporte y distribución de energía eléctrica

Colección Académica

Para referenciar esta publicación utilice la siguiente cita: Cañas Peñuelas, C. S.; Vargas Salgado, C.; Roldán Blay, C.; Alcázar Ortega, M.; Fuster Roig, V.; Benlloch Ramos, V.; Escrivá Escrivá, G. (2020). *Prácticas en sistemas de generación, transporte y distribución de energía eléctrica*. Valencia: Editorial Universitat Politècnica de València

© César S. Cañas Peñuelas Carlos Vargas Salgado Carlos Roldán Blay Manuel Alcázar Ortega Vicente Fuster Roig Vicente Benlloch Ramos Guillermo Escrivá Escrivá

© 2020, Editorial Universitat Politècnica de València Venta: www.lalibreria.upv.es / Ref.: 0274_11_01_01

Imprime: Byprint Percom, S. L.

ISBN: 978-84-9048-860-7 Impreso bajo demanda

Si el lector detecta algún error en el libro o bien quiere contactar con los autores, puede enviar un correo a <u>edicion@editorial.upv.es</u>

La Editorial UPV autoriza la reproducción, traducción y difusión parcial de la presente publicación con fines científicos, educativos y de investigación que no sean comerciales ni de lucro, siempre que se identifique y se reconozca debidamente a la Editorial UPV, la publicación y los autores. La autorización para reproducir, difundir o traducir el presente estudio, o compilar o crear obras derivadas del mismo en cualquier forma, con fines comerciales/lucrativos o sin ánimo de lucro, deberá solicitarse por escrito al correo edicion@editorial.upv.es

Impreso en España

Presentación

Este libro presenta cuatro casos de aplicación a través de los cuales el lector podrá poner en práctica conceptos relacionados con la generación, el transporte, la distribución y la operación de sistemas eléctricos. Dichos casos incluyen tanto prácticas de laboratorio con máquinas eléctricas como con programas informáticos de simulación.

En el caso de las prácticas de laboratorio, el libro describe el material necesario para realizar las pruebas propuestas, así como un procedimiento detallado con los pasos a seguir. Para las prácticas con programas informáticos, el libro describe los simuladores utilizados y detalla igualmente el procedimiento a seguir para llevar a cabo con éxito los casos propuestos. Todas las prácticas terminan con unas fichas donde, de forma sistemática, se pueden anotar las medidas tomadas durante la sesión práctica, que son necesarias para contestar las cuestiones de que ésta es objeto.

Los dos primeros casos propuestos están basados en el ensayo de máquinas eléctricas, los cuales deben llevarse a cabo en laboratorios adecuadamente equipados. En ellos, se proponen ensayos de generadores síncronos en diferentes regímenes de funcionamiento (vacío, cortocircuito y carga), trabajando tanto de forma aislada como acoplados a la red.

En la primera práctica se realizan los ensayos de vacío y de cortocircuito de un generador síncrono para obtener sus parámetros característicos de funcionamiento (en particular, la impedancia síncrona y la curva de magnetización). Una vez completado el modelo del generador, se procede a realizar un ensayo en modo aislado con diferentes cargas (resistivas, inductivas y capacitivas) de cara a comprobar el comportamiento que presentan la tensión y la frecuencia del generador ante la conexión y desconexión de dichas cargas.

En la segunda práctica se procede al acoplamiento y posterior desacoplamiento de un generador síncrono a la red eléctrica en condiciones de seguridad. Durante el período de tiempo en que el generador está vertiendo energía a la red, se ensaya el comportamiento de la máquina ante variaciones del par mecánico entregado al eje del generador y de la corriente de excitación.

El tercer caso está basado en la utilización de las herramientas informáticas PowerWorld® Simulator y Microsoft® EXCEL, las cuales se utilizan para resolver flujos de carga aplicando el método iterativo de Gauss-Seidel. Esta práctica pretende que el lector pueda analizar en simulador el comportamiento de sistemas eléctricos complejos en régimen permanente. Asimismo, proporciona las bases para desarrollar la capacidad de realizar cálculos iterativos y de números complejos a través de una hoja de cálculo.

Por último, el cuarto caso se centra en el cálculo detallado de la factura eléctrica de un consumidor industrial conectado a la red de alta tensión. Para ello, se propone un caso real de un consumidor con un contrato de acceso de 6 períodos, el cual se analizará en detalle para verificar la conformidad de su factura eléctrica mensual. Por otro lado, se proporcionan las pautas para optimizar los términos de su contrato con el objetivo de reducir sus costes energéticos.

El libro está orientado hacia estudiantes de ingeniería que ya han recibido formación específica en el campo de la ingeniería eléctrica. Para ellos, estos casos de aplicación supondrán un complemento esencial para comprender cómo se produce la electricidad y cómo se operan y gestionan los sistemas eléctricos.

Índice

1	1. Ensayos de la máquina síncrona y operación en modo aislado			
	1.1. Objetivos	1		
	1.2. Fundamento teórico	1		
	1.2.1. Operación en vacío y ensayo en vacío de la máquina síncrona	1		
	1.2.1.1. Ensayo de vacío	4		
	1.2.2. Operación en carga	4		
	1.2.3. Ensayo de cortocircuito	<i>7</i>		
	1.2.4. Funcionamiento de la máquina síncrona en modo aislado	8		
	1.3. Desarrollo de la práctica	9		
	1.3.1. Material a utilizar en la práctica	9		
	1.3.2. Montaje 1. Ensayo de cortocircuito de la máquina síncrona	9		
	1.3.3. Montaje 2. Ensayo de vacío de la máquina síncrona	10		
	1.3.4. Montaje 3. Ensayo en carga del generador síncrono	11		
	Bibliografía complementaria	12		
	1.4. Cuestiones	13		

2.	Acc	plami	ento de la máquina síncrona a una red de potencia infinita	17
	2.1.	Objetivos		17
	2.2.	Fund	damento teórico	17
	2.2	.1.	Introducción	17
2.2.2.		.2.	Consideraciones previas	18
2.2.3.		.3.	Proceso de acoplamiento	19
2.2.4.		.4.	Sincronización del generador con la red	20
	2	2.2.4.1.	Sincronización manual. Sincronoscopio de lámparas	20
	2	2.2.4.2.	Sincronización automática. Sincronoscopio electrónico	22
	2.3.	Desa	rrollo de la práctica	23
	2.3	.1.	Material a utilizar en la práctica	23
	2.3	.2.	Procedimiento para la sincronización manual	24
	2	2.3.2.1.	Control de la frecuencia de la red generada	24
	2	2.3.2.2.	Control de la tensión de salida de la máquina	25
	2	2.3.2.3.	Control del ángulo de desfase.	25
	2	2.3.2.4.	Control de la secuencia de fases	25
	2	2.3.2.5.	Proceso de acoplamiento	26
	2	2.3.2.6.	Operaciones a realizar con la máquina acoplada a la red	28
	2	2.3.2.7.	Proceso de desacoplamiento y parada	28
	2.3	.3.	Procedimiento para la sincronización automática	
	2	2.3.3.1.	Proceso de acoplamiento	
		2.3.3.2.	Proceso de desacoplamiento y parada	
	Biblio	grafía	complementaria	30
	2.4.	Cues	tiones	31
3.	Hei	rramie	nta del flujo de carga en sistemas eléctricos: método de Gauss-Seide	ıl 33
	3.1.	Obje	rtivos	33
	3.2.	Fund	damento teórico	33
	2 2	1	Pesalución del fluia de caraa mediante el métado de Gauss-Seidel	21

	3.2.2.	Modelado del sistema eléctrico con powerworld Simulator	35
	3.2.2.1	. Modos de funcionamiento	36
	3.2.2.2	. Modelado de nudos	36
	3.2.2.3	. Modelado de líneas	38
	3.2.2.4	. Modelado de generadores	41
	3.2.2.5	. Modelado de cargas	44
	3.2.2.6	. Modelado de transformadores de potencia	46
	3.2.3.	Procedimiento de cálculo en Microsoft EXCEL con números complejos	48
	3.3. Des	arrollo de la práctica	49
	3.3.1. método d	Método 1. Resolución del flujo de carga con Microsoft EXCEL. Aplicació de Gauss-Seidel	
	3.3.2.	Método 2. Resolución del flujo de carga con powerworld Simulator	50
	Bibliografía	complementaria	50
	3.4. Cue	stiones	51
4.	. Análisis (de la facturación de la energía eléctrica en españa	55
		etivos	
	-	damento teórico	
	4.2.1.		55
	4.2.1.	Onciones de contratación	55
	1211	Opciones de contratación	
	4.2.1.1	. Mercado liberalizado	55
	4.2.1.2	Mercado liberalizado Precio Voluntario para el Pequeño Consumidor (PVPC)	55 56
	4.2.1.2 4.2.2.	. Mercado liberalizado	55 56 56
	4.2.1.2	Mercado liberalizado	55 56 56 56
	4.2.1.2 4.2.2. 4.2.2.1	Mercado liberalizado Precio Voluntario para el Pequeño Consumidor (PVPC) Tarifa de acceso Periodos de tarificación Precios de las tarifas de acceso	55 56 56 58
	4.2.1.2 4.2.2. 4.2.2.1 4.2.2.2 4.2.3.	Mercado liberalizado Precio Voluntario para el Pequeño Consumidor (PVPC) Tarifa de acceso Periodos de tarificación Precios de las tarifas de acceso Conceptos de la factura	55 56 56 58 59
	4.2.1.2 4.2.2. 4.2.2.1 4.2.2.2 4.2.3. 4.3. Des	Mercado liberalizado Precio Voluntario para el Pequeño Consumidor (PVPC) Tarifa de acceso Periodos de tarificación Precios de las tarifas de acceso Conceptos de la factura arrollo de la práctica	55 56 56 58 59
	4.2.1.2 4.2.2. 4.2.2.1 4.2.2.2 4.2.3. 4.3. Des	Mercado liberalizado	55 56 56 58 59 59
	4.2.1.2 4.2.2.1 4.2.2.2 4.2.3. 4.3. Des 4.3.1. 4.3.2.	Mercado liberalizado Precio Voluntario para el Pequeño Consumidor (PVPC) Tarifa de acceso Periodos de tarificación Precios de las tarifas de acceso Conceptos de la factura arrollo de la práctica. Información disponible. Realización de la práctica.	55 56 56 58 59 59 59
	4.2.1.2 4.2.2.1 4.2.2.2 4.2.3. 4.3. Des 4.3.1. 4.3.2. Bibliografía	Mercado liberalizado	55 56 56 58 59 59 59 60

Prácticas en sistemas de generación, transporte y distribución de energía eléctrica

4.5.	Ane	xo I. Consumos cuarto-horarios de energía	68
4.6.	Ane	xo II. Formulario	98
4.6.	.1.	Coste de la energía facturada	98
4.6.	.2.	Término de energía de la tarifa de acceso	98
4.6.	.3.	Término de potencia	98
4.6.	.4.	Término de energía reactiva	99
4.6.	.5.	Término de excesos de potencia	100
4.6.	.6.	Habilitación de la herramienta Solver	100

Práctica 1 Ensayos de la máquina síncrona y operación en modo aislado

1.1. Objetivos

El objeto de esta práctica es la realización de ensayos de la máquina síncrona y operación en modo aislado, con el objetivo de identificar los parámetros característicos de funcionamiento de la máquina síncrona.

Se realizarán los ensayos de cortocircuito y de vacío que permiten obtener el modelo de la máquina síncrona, en concreto la impedancia síncrona del generador ensayado.

Posteriormente se realizará un ensayo en modo aislado con diferentes cargas. Esto permitirá al lector comprobar los diferentes comportamientos que se presentan en la tensión de salida del generador síncrono al conectar los diferentes tipos de cargas (resistivas, inductivas y capacitivas).

1.2. Fundamento teórico

1.2.1. Operación en vacío y ensayo en vacío de la máquina síncrona

Se supone que la máquina síncrona se encuentra girando a la velocidad de sincronismo (arrastrada por la máquina motriz), pero aislada de la red eléctrica.

Si en estas condiciones, se hace circular por los devanados del inductor una corriente continua de excitación, (I_{ex}) , aparece en el entrehierro de la

máquina una onda de tensión magnética (F_e) que gira respecto al estator (inducido) de la máquina con una velocidad (Ω_s) idéntica a la del rotor. Debido a esta F_e , existe en el entrehierro una onda giratoria de inducción y los conductores del estator están sometidos a un flujo magnético variable en el tiempo.

Por tanto, se inducen en los conductores del inducido unas fuerzas electromotrices cuyo valor eficaz depende del valor de la corriente con que se alimenta el inductor de la máquina.

En la Figura 1.1, se muestra la sección circular y el esquema desarrollado de un alternador trifásico de polos salientes, así como la distribución de las f.e.m. inducidas de acuerdo con el sentido de giro indicado.

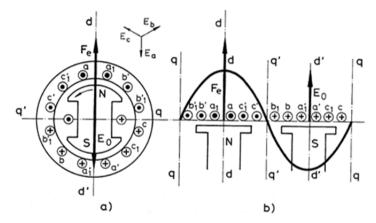
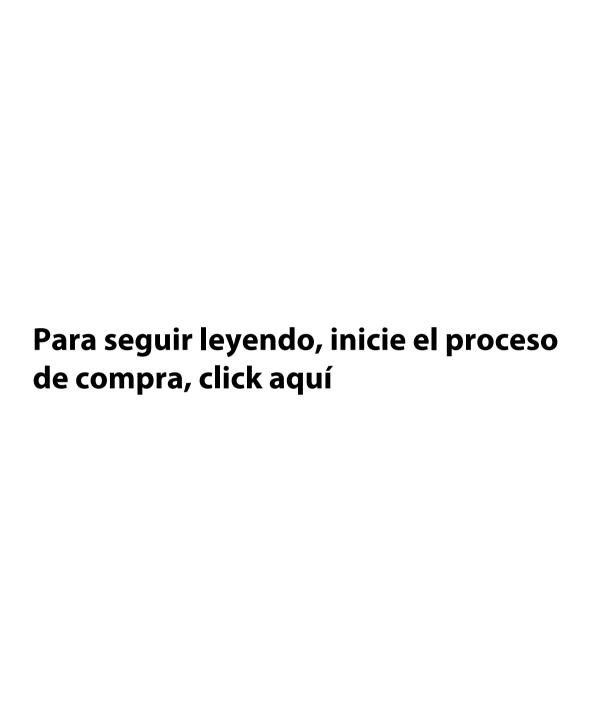



Figura 1.1. a) Sección circular. b) Esquema desarrollado de un generador síncrono

Conceptualmente, la característica de vacío es la representación gráfica del valor eficaz de la f.e.m. inducida en vacío E_0 , (que coincide con la tensión en bornes en vacío U_0), en función de la corriente de excitación I_{ex} , para una velocidad de giro (o frecuencia) constante, igual a la nominal:

$$E_0 = f(I_e)$$
 (eq. 1.1)

La Figura 1.2 representa la forma típica de la característica o curva de vacío. Para valores bajos de I_{ex} la característica es lineal. Al aumentar la corriente de excitación el circuito magnético de la máquina alcanza la saturación y se pierde la proporcionalidad entre E_0 y I_{ex} . En las máquinas industriales, normalmente el codo de saturación se alcanza con valores de I_{ex} menores que I_{exN} (corriente de excitación nominal).

