

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/146883

Wang, Y.; Li, X.; Ruiz García, R.; Sui, S. (2018). An Iterated Greedy Heuristic for Mixed No-
Wait Flowshop Problems. IEEE Transactions on Cybernetics. 48(5):1553-1566.
https://doi.org/10.1109/TCYB.2017.2707067

https://doi.org/10.1109/TCYB.2017.2707067

Institute of Electrical and Electronics Engineers

For Review Only

1

An Iterated Greedy Heuristic for Mixed No-wait
Flowshop Problems

Yamin Wang, Xiaoping Li, Senior Member, IEEE, Rubén Ruiz and Shaochun Sui

Abstract—The mixed no-wait flowshop problem with both wait
and no-wait constraints has many potential real-life applica-
tions. The problem can be regarded as a generalization of the
traditional permutation flowshop and the no-wait flowshop. In
this paper, we study, for the first time, this scheduling setting
with makespan minimization. We first propose a mathematical
model and then we design a speed-up makespan calculation
procedure. By introducing a varying number of destructed jobs, a
modified iterated greedy algorithm is proposed for the considered
problem which consists of four components: initialization solution
construction, destruction, reconstruction and local search. To
further improve the intensification and efficiency of the proposal,
insertion is performed on some neighbor jobs of the best position
in a sequence during the initialization, solution construction and
reconstruction phases. After calibrating parameters and com-
ponents, the proposal is compared with five existing algorithms
for similar problems on adapted Taillard benchmark instances.
Experimental results show that the proposal always obtains the
best performance among the compared methods.

Index Terms—Flowshop, No-wait, Heuristics, Iterated greedy.

I. INTRODUCTION

The permutation flowshop problem (PFSP) is one of the

most well studied scheduling problems. A set of n jobs have

to be processed on m machines. Each job passes through the

machines following the same route. Each machine processes

jobs in the same order, i.e., all machines have the same

permutation of jobs. The problem is to find a job sequence

optimizing one or more objectives. The no-wait flowshop

problem (NWFSP), a constrained PFSP variant, has also been

studied widely due to its applications in many industries, e.g.,

chemical processing, food processing, plastic molding and

steel rolling [1]. In the NWFSP, waiting is not permitted, i.e., a

job has to be processed continuously through the m machines

without interruption once it starts on the first machine. When

needed, the start of a job on the first machine is delayed in

order to meet the no-wait requirement. This no-wait constraint

models many real-life situations such as the need to process

steel products while they are hot or processing frozen goods

before they thaw being two examples.

Yamin Wang and Xiaoping Li are with the School of Computer Science and
Engineering, Southeast University, Nanjing 211189, China, and also with Key
Laboratory of Computer Network and Information Integration, Ministry of
Education, Nanjing, 211189, China (e-mail: {wangyamin,xpli}@seu.edu.cn).

Rubén Ruiz is with Grupo de Sistemas de Optimización Aplicada, Instituto
Tecnológico de Informática, Ciudad Politécnica de la Innovación, Edifico 8G,
Acc. B. Universitat Politècnica de València, Camino de Vera s/n, 46021,
València, Spain (e-mail: rruiz@eio.upv.es).

Shaochun Sui is with the Production Management, AVIC Chengdu Air-
craft Industrial (Group) CO., LTD., Chengdu 610091, China (e-mail: su-
ishaochun@vip.163.com).

Similarly to other scheduling problems [2]–[6], wait and

no-wait constraints might co-exist at the same time in many

real applications. For example, in the canned food processing

industry, no-wait is not needed for many operations such

as purchasing, classification, pruning, cleaning and removing

the peel and shell. On the contrary, no-wait is required for

the following operations: adding sugar liquid, gas exhausting,

sealing, sterilizing and refrigerating once the food is precooked

and while it is still hot. As a result the no-wait constraint is not

needed again for subsequent operations such as the labeling,

handling, palletizing, etc. because the food has been preserved

safely in cans. Another typical example is producing mannitol

from starch. Once size-mixing starts, no wait operations follow

immediately (the first jet liquifying, liquifying in a reaction

jar, the second jet liquifying, refrigerating, adjusting PH value

and saccharifying). Any wait in between two operations would

result in the starch becoming thick and then solid after it is

heated and size mixed. However, waiting is permitted in later

operations such as concentrating, separating and crystallizing.

There are many similar examples in real manufacturing in-

dustries. These kinds of mixed flowshop scheduling problems

(which are called MWFSPs in this paper) are different from

PFSPs and NWFSPs and share all of the difficulties and

some of the properties of both the regular wait PFSP and

the NWFSP. The MWFSP with makespan criterion is denoted

as Fm|mixed, no− wait|Cmax using the 3-tuple notation by

Graham et al. [7]. In fact, the MWFSP is a generalization

of the PFSP and NWFSP. MWFSPs are PFSPs if there is

no-wait constraint and they become NWFSPs if all jobs are

no-wait constrained on all machines. Because of the NP-hard

characteristic of both the PFSP [8] and NWFSP [9] when

m > 2, it follows that the MWFSP is NP-hard for more than

2-machines. To the best of our knowledge, this problem has

never been studied in the literature.

State-of-the-art methods for flowshop problems are highly

effective and efficient. The NWFSP with makespan minimiza-

tion can be reduced to the traveling salesman problem [10].

The distance between any adjacent jobs on the last machine

is a constant and is determined by the processing times of the

jobs, i.e., the distance remains unchanged no matter where the

pair of jobs are located [11]–[13]. According to this property,

the time complexity of makespan calculation can be reduced

from O(mn) to O(n) [1], [14], which leads to a substantial

increase in efficiency. For example, the time complexity of the

insertion neighborhood search is O(n2) for the NWFSP while

it is O(mn2) for the PFSP, i.e., the insertion neighborhood

search is more efficient for the NWFSP than for the PFSP.

However, obtaining the same efficiency for the MWFSP is a

Page 1 of 22 Transactions on Cybernetics

For Review Only

2

challenge because jobs are only no-wait constrained on some

machines.

The main contributions of this paper are summarized as

follows:

• The considered MWFSP is mathematically modelled us-

ing 0-1 integer programming.

• We construct an accelerated makespan calculation method

with time complexity O((ξ+q)n) where ξ is the number

of machines without the no-wait constraint and q is

the number of no-wait groups for the remaining m − ξ
machines.

• A modified iterated greedy algorithm where the number

of jobs to destroy is dynamically set is presented for the

MWFSP under study. New neighborhood structures are

constructed in terms of which VND-based local search

methods are developed.

The rest of the paper is organized as follows: Related

works are described in Section II. Section III details the

considered problem and presents a mathematical model. Ac-

celerated makespan calculation and speed-up neighborhood

search methods are given in Section IV. Section V contains

the details of the modified iterated greedy algorithm for the

MWFSP. Experimental results of parameter calibration and

algorithm comparison are shown in Section VI, followed by

conclusions and future research in Section VII.

II. RELATED WORK

Even though the MWFSP has not been studied yet, it is

a generalization of both the PFSP and the NWFSP. We pay

more attention to the NWFSP because the PFSP has been well

studied . The 2-machine NWFSP is identical to the 2-machine

PFSP [15] which implies that F2|no − wait|Cmax can be

optimally solved using the Johnson method [16]. Kalczynski et

al. [10] reduced the Fm|prmu, no−wait|Cmax to the traveling

salesman problem. Two commonly adopted methods for the

NWFSP are heuristics and metaheuristics.

Nawaz et al. proposed the NEH [17] algorithm which is

an effective constructive heuristic widely used for the PFSP.

Based on the NEH, many variants have been developed with d-

ifferent strategies and initial job orderings or seeds. Haupt and

Reinhard [18] and Ramasesh [19] generated seeds by sorting

jobs in the descending order of the sums of their processing

times, i.e., the LPT (the longest processing time) rule. Pan et

al. [14] found that the SPT (the shortest processing time) rule

which arranges jobs in the ascending order of the sums of their

processing times is effective for Fm|prmu, no − wait|Cmax.

Ding et al. [20] generated an initial sequence by arranging jobs

in non-increasing order of their standard deviations (STD).

Sapkal and Laha [21] presented an efficient heuristic method

for Fm|prmu, no − wait|TFT which generated the initial

sequence of jobs based on bottleneck machines. Edy Bertolissi

[22] proposed a heuristic for Fm|prmu, no − wait|TFT
constructed the seed by selecting the smallest pair of partial

flow-times (e.g. Fm(pq) and Fm(qp)) and marking the starting

job of the pair. The seed was created by ordering jobs in

decreasing order of the marks. For Fm|prmu, no−wait|∑Ti,

Liu et al. [23] proposed six heuristics: two dispatching rules

(SPT, EDD), three simple constructive heuristics (SLACK,

SLACKRW and MDD) and a modified NEH algorithm which

generates the initial job sequence by sorting jobs by the EDD

rule. Experimental results showed that the modified NEH was

the best.

Meta-heuristic algorithms are effective for the NWFSP

which is known to be NP-hard when the number of machines

is more than two. Pan et al. [24] proposed a hybrid discrete

particle swarm optimization algorithm (HDPSO) for the no-

wait flow shop scheduling problem with makespan criterion

which outperforms both the single discrete particle swarm

optimization algorithm (DPSO) and the hybrid particle swarm

optimization (HPSO) algorithm in searching quality, robust-

ness and efficiency. Pan et al. [1] presented a discrete particle

swarm optimization (DPSOV ND) algorithm for the NWFSP

considering both makespan and total flow time criteria. It

was hybridized with the variable neighborhood descent (VND)

algorithm to further improve the quality of solutions. Several

speed-up methods were developed for both swap and insert

neighborhood structures. Tseng and Lin [25] and Jarboui et

al. [26] presented hybrid genetic algorithms (GA) respectively.

The insertion search (IS) was used for a small neighborhood

and the insert search with cut-and-repair (ISCR) searched a

large neighborhood in the algorithm presented in [25]. Jarboui,

Eddaly and Siarry [26] adopted the variable neighborhood

search for improvement in the last step. Wang and Li [12]

proposed an accelerated tabu search (TS) to minimize the

maximum lateness. AitZai et al. [27] investigated a branch-

and-bound algorithm and a particle swarm optimization (PSO)

algorithm. Pan and Wang [14] proposed an improved iterated

greedy algorithm (IIGA) for Fm|prmu, no−wait|Cmax. Com-

putational results showed that the IIGA was more effective

and efficient than TS, TS+M, TS+MP [28], and DPSO. Ding

et al. [20] proposed an improved iterated greedy algorith-

m with a Tabu-based reconstruction strategy (TMIIG) for

Fm|prmu, no−wait|Cmax. TMIIG performs better compared

to other effective algorithms, such as IIGA [14], DPSOV ND

[1], GAV NS [26] for the no-wait flowshop scheduling problem

with a makespan criterion. The above analysis indicates that

iterated greedy algorithms are always effective and efficient

for flowshop scheduling problems with the no-wait constraint.

This leads us to develop iterated greedy based algorithms for

the problem under study: a mixed no-wait flowshop problem.

III. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

The mixed no-wait flowshop problem (MNWFS for short) is

described as follows: a set of n jobs J = {Ji| i = 1, 2, · · · , n}
are available at time zero. They have to be processed on m
machines M = {Mj |j = 1, 2, · · · , m} sequentially. Each

machine processes all jobs in the same order. No machine

processes more than one job at a time, job preemption is

not allowed and setup times are included in job process-

ing times. The operation Oi,j of job Ji on machine Mj

(i = 1, 2, · · · , n, j = 1, 2, · · · , m) is processed without

interruption, of which the processing time is pi,j (pi,j ≥ 0).

Unlike the NWFSP problem, in which all operations of each

job are no-wait constrained, only some MNWFS operations

Page 2 of 22Transactions on Cybernetics

For Review Only

3

are no-wait constrained and the others are traditional PFSP

operations. That is to say, no-wait machines are grouped into

sub-sets by regular (non no-wait) machines. Let Mw be the

set of regular machines and ξ = |Mw|. ⋃q
i=1 M

i denotes

the set of no-wait machines where Mi is the ith group of

no-wait machines and q is the number of no-wait machine

groups. It is obvious that Mi
⋂

Mj = ∅ (i �= j). No waiting

time is permitted for processing any job between consecutive

operations on machines in Mi (i = 1, 2, · · · , q). Operations on

machines Mw have no such constraint. For example, assume

M3, M4, M5, M8 and M9 are no-wait machines in a 10-

machine MNWFS problem. There are two groups of no-

wait machines M1 = {M3,M4,M5} and M2 = {M8,M9}.
Mw = {M1,M2,M6,M7,M10}. The target is to find the

optimum schedule of the n jobs with the minimum maximum

completion time or makespan (Cmax). Notations used in this

paper are shown in Table I.

TABLE I
NOTATION EMPLOYED IN THIS PAPER

n Number of jobs
m Number of machines
J Set of n jobs to be processed

Ji the ith job in J, i = 0, 1, 2, · · · , n
Mj the jth machine, j = 0, 1, 2, · · · ,m
Oi,j Operation of job Ji on machine Mj

pi,j Processing time of Oi,j

M
w Set of regular machines

ξ Number of regular machines, i.e., ξ = |Mw|
M i the ith group of no-wait machines
q Number of no-wait machine groups
Cmax Minimum maximum completion time or makespan

Sk,j Start time of the job at the kth position of job
sequence π on machine Mj

Ck,j Completion time of the job at the kth position
of job sequence π on machine Mj

d1i,j,r The minimum delay between the completion times
of Ji and the start times of Jj on the first machine
of the group M

r (r = 1, 2, · · · , q) where Ji is
located before Jj in a sequence.

d2i,j,r The minimum difference between the completion
times of the pair of jobs on the last machine of
every M

r (r = 1, 2, · · · , q).

For simplicity, a dummy job J0 is introduced at the start

of a schedule and a dummy machine M0 is used at the start

of each job. Operation processing times of J0 are zero and

those of all jobs on M0 are zero as well, i.e., p0,j = 0 (j =
0, 1, 2, · · · , m) and pi,0 = 0 (i = 0, 1, 2, · · · , n). Decision

variables xi,k (i, k ∈ {1, 2, · · · , n}) are introduced. xi,k = 1
if Ji is located at the kth position of a sequence; otherwise,

xi,k = 0. We suppose there are li machines in the Mi no-wait

group (i.e.,
∑q

i=1 li = m − ξ). Mi is denoted as {Mi
[1], . . . ,

Mi
[li]
} (i = 1, . . . , q) and Ma = {M1

[1],M
2
[1], · · · ,Mq

[1]}. Let

π be a permutation of n jobs π = (π[0], π[1], π[2], · · · , π[n]).
Sk,j denotes the start time of the job at the kth position of π
on machine Mj . Ck,j represents the completion time of the

job at the kth position on machine Mj . Obviously, S0,j =
C0,j = 0 (j = 0, 1, 2, . . . ,m). The problem under study is

mathematically modeled as follows.

minCmax = Cn,m (1)

s.t.
∑n

k=1 xi,k = 1, i = 1, 2, · · · , n (2)∑n
i=1 xi,k = 1, k = 1, 2, · · · , n (3)

Ck,j ≥ Ck−1,j +
∑n

i=1 xi,kpi,j ,

j = 1, 2, · · · ,m; k = 1, 2, · · · , n (4)

Ck,j ≥ Ck,j−1 +

n∑
i=1

xi,kpi,j , ∀Mj ∈M
w
⋃

M
a (5)

Ck,j = Ck,j−1 +
n∑

i=1

xi,kpi,j , ∀Mj ∈M−M
w −M

a (6)

xi,k ∈ {0, 1} i = 1, 2, · · · , n, k = 1, 2, · · · , n (7)

Equation (2) ensures that each job occurs only once in

the permutation. Equation (3) guarantees that each position is

occupied by only one job. Constraint (4) implies that a job can

only start after the previous job on the same machine finishes.

Constraint (5) indicates that an operation of a job starts only

after its previous operation finishes. Equation (6) means that

there is no waiting time between any two consecutive no-wait

machines. Constraints (7) define the decision variables.

IV. SPEED-UP METHODS

A highly efficient makespan calculation is crucial for ef-

ficiency in flowshop problems. This is no different for the

MWFSP. We can calculate the makespan in a traditional

way, without using accelerations for the MWFSP as shown

in Algorithm 1. Completion times of jobs are calculated

one by one. Completion times of each job on machines are

firstly calculated as in the regular PFSP. Then completion

times on no-wait machines are adjusted using a backward

shift according to the no-wait constraint. The time complexity

the adjustment for each job is O(m). Therefore, the time

complexity of Algorithm 1 is O(mn).

ALGORITHM 1: General Makespan Calculation (GMC)

1 begin
2 for j = 0 to n do
3 C0,j = 0;

4 for k = 1 to n do
5 Ck,0 = 0;

6 for j = 1 to m do
7 Sk,j = max(Ck,j−1, Ck−1,j),

Ck,j = Sk,j + pπ[k],j ;

8 for u = q to 1 do
9 for j = Mu

[lu−1] to Mu
[1] do

10 Ck,j = Sk,j+1, Sk,j = Ck,j − pπ[k],j ;

11 return Cn,m.

Since there are some groups of no-wait machines, it is

possible to improve the efficiency of makespan calculation

as in Li et al. [13]. The distance of any pair of jobs on

Page 3 of 22 Transactions on Cybernetics

For Review Only

4

each machine in a no-wait machine group is constant for

any schedule [10] [13], i.e., the distance is independent of

the positions of adjacent pairs of jobs. In this paper, we

obtain the makespan values of the schedules by calculating

the completion times of each job on no-wait machines and

those on the other machines separately. Every no-wait machine

group is regarded separately and the size (number of machines)

of the original problem is reduced.

We compute the distances of all pairs of jobs on every no-

wait machine group in advance and keep them in matrix D.

For each pair of jobs Ji and Jj (i �= j), d1i,j,r and d2i,j,r are

computed. As shown in Figure 1, d1i,j,r is the minimum delay

between the completion times of Ji and the start times of Jj
on the first machine of the group Mr (r = 1, 2, · · · , q) where

Ji is located before Jj in a sequence. d2i,j,r is the minimum

difference between the completion times of the pair of jobs

on the last machine of every Mr (r = 1, 2, · · · , q). d1i,j,r and

d2i,j,r are calculated by Equations (8) and (9) respectively.

machine

time

Ji Jj

Ji

Ji

Jj

Jj

2
,, rjid

1
,, rjid

r
]1[M

r
]2[M

r
][rl

M

Fig. 1. d1i,j,r and d2i,j,r

d2i,j,r = max
h∈Mr

{M
r
[lr]∑

t=h

(pj,t − pi,t) + pi,h

}
(8)

d1i,j,r = d2i,j,r +

M
r
[lr]∑

h=M
r
[2]

pi,h −
M

r
[lr]∑

h=M
r
[1]

pj,h (9)

The time complexity of computing matrix D is O(n2(m−ξ)).
Even though it is greater than that of the GMC (which is

O(mn)), the obtained matrix only has to be calculated once

and is available for the whole search process which can reduce

the computation time greatly. Computation time comparisons

will be given in the experimental section.

With the obtained matrix, the original problem is reduced to

a pseudo-PFSP problem with ξ+q machines, i.e., all q groups

of no-wait machines are regarded as q artificial machines.

Therefore, as jobs do not wait in between all these q machine

groups we can consider all their tasks together in a single ar-

tificial machine. Computation times of jobs are calculated one

by one. Assume job Jj is appended to a job sequence whose

last job is Ji. When Jj is appended to the no-wait machine

group Mr = {Mr
[1],M

r
[2], . . . ,M

r
[lr]
} (in which Mr

[1] = Mk), a

shift a = max{0, Ck,j−1−Ck−1,j−d1π[k−1],x,i
} is performed

to meet the Sj,k ≥ Cj,k−1 requirement, which is different

from the makespan computation process for traditional PFSP

problems. Jj on the no-wait machine group Mr needs to be

shifted right if a > 0. Figure 2 shows the a = 0 case and

Figure 3 depicts the a > 0 case. In this paper, the makespan

computation process is called Speed-up Makespan Calculation

(SMC for short) which is formally described in Algorithm 2.

Since the time complexity of appending a new job to a partial

sequence is O(ξ+q), it is obvious that the time complexity of

SMC is O((ξ+ q)n) which is much more efficient than GMC

if both ξ and q are small.

ALGORITHM 2: Speed-up Makespan Calculation (SMC)

1 begin
2 for j = 0 to m do
3 C0,j = 0;

4 for k = 1 to n do
5 Ck,0 = 0, v = 1, j = 1;

6 while j ≤ m do
7 if Mj ∈Mw then
8 Sk,j = max(Ck,j−1, Ck−1,j),

Ck,j = Sk,j + pπ[k],j , j = j + 1;

9 if Mj = Mv
[1] then

10 if (Ck,j−1 − Ck−1,j ≤ d1π[k−1],π[k],v
) then

11 a = 0;

12 else
13 a = Ck,j−1 − Ck−1,j − d1π[k−1],π[k],v

;

14 Ck,j = Ck−1,j +d1π[k−1],π[k],v
+pπ[k],j +a;

15 Ck,j+lv−1 =
Ck−1,j+lv−1 + d2π[k−1],π[k],v

+ a;

// lv is the number of
machines in Mv

16 j = j + lv , v = v + 1;

17 return Cn,m.

machine

JiMk-1 time
Jj

Ji Jj

Ji

Ji
Jj

Jj

kiC kjC

1
,, rjid

2
,, rjid

1, rlki
C 1, rlkj

C

rM]1[

r
lr

M][

Fig. 2. The a = 0 case

To illustrate the SMC calculation process, we give an

example with three jobs J = {J1, J2, J3} and four machines

M = {M1,M2,M3,M4}. Assume M2, M3 and M4 are

no-wait machines which form one no-wait machine group

M1 = {M2,M3,M4}. Operation processing times of the jobs

are the following:

[pi,j]4×3 =

⎡
⎢⎢⎣
3 5 6
6 3 2
1 3 3
4 2 4

⎤
⎥⎥⎦

Page 4 of 22Transactions on Cybernetics

For Review Only

5

Jj

machine

Mk-1

time

Jj

Ji

Ji

Ji

Jj

Jj

Jj

Ji

kiC kjC

1
,, rjid

2
,, rjid

1, rlki
C

machine

time

Jj

Ji

Ji

Ji

Ji

kiC kjC

a

a

Jj

Jj

rM]1[

r
l r

M][

Mk-1

rM]1[

r
l r

M][

1, rlki
C 1, rlkj

C

1
,, rjid

2
,, rjid

Fig. 3. The a > 0 case

The makespan of π = (J0, J1, J2, J3) is calculated in the

following way: (i) Matrix D is calculated in advance by

Equations (8) and (9) in which d10,1,1 = 0, d20,1,1 = 11,

d11,2,1 = 0, d21,2,1 = 3, d12,3,1 = 1, d22,3,1 = 5. (ii) SMC is

called to calculate the makespan of π which is also illustrated

in Figure 4.

• When π contains only job J0, completion times C0,j (j =
0, 1, · · · , 4) are assigned to 0.

• J1 is appended to π, i.e., π = (J0, J1). C1,0 = 0. Because

S1,1 = max(C1,0, C0,1) = max(0, 0) = 0 and C1,1 =
S1,1 + p1,1 = 0 + 3 = 3. M2 is the first machine in

the no wait machine group M1. C1,1 − C0,2 = 3 − 0 >
d10,1,1 = 0, a = C1,1−C0,2−d10,1,1 = 3−0−0 = 3 > 0.

C1,2 = C0,2 + d10,1,1 + p1,2 + a = 0+ 0+ 6+ 3 = 9 and

C1,4 = C0,4 + d20,1,1 + a = 0 + 11 + 3 = 14.

• J2 is appended to π and π becomes (J0, J1, J2). C2,1 =
C1,1 + p2,1 = 3 + 5 = 8. a = max{0, 8 − 9 − 0} = 0
which implies that no right shift is needed for J2 on

the no-wait machine group M1. The completion time of

J2 on M1
[1] (or M2) is C2,2 = C1,2 + d11,2,1 + p2,2 +

a = 9 + 0 + 3 + 0 = 12 and that on M1
[3] (or M4) is

C2,4 = C1,4 + d21,2,1 + a = 14 + 3 + 0 = 17.

• After appending J3 to π, C3,1 = C2,1 + p3,1 = 8 +
6 = 14. C3,1 − C2,2 = 14 − 12 = 2 > d12,3,1 = 1
and a = C3,1 − C2,2 − d12,3,1 = 2 − 1 = 1. C3,2 =
C2,2 + d12,3,1 + p3,2 + a = 12 + 1 + 2 + 1 = 16 and

C3,4 = C2,4 + d22,3,1 + a = 17 + 5 + 1 = 23. Therefore,

the makespan of the final sequence is Cmax(π) = 23.

In addition, insertion and swap are two commonly used

operators in many algorithm components such as initialization,

reconstruction and local search. Similarly to the speed-up

makespan calculation method for PFSP problems by Li et al.

[11], we accelerate the makespan calculation for the pseudo-

PFSP problem. Basically, there are two parts in each neighbor

of a given solution: the unchanged part (the job subsequence

is identical to the given solution) and changed part. We only

need to calculate job completion times of changed parts to

get makespans of neighbour solutions. Insertion and swap

operators with this speed-up calculating method are called

speed-up insertion and speed-up swap respectively. Though

the worst case computational time complexities of the two

operators cannot be improved by the speed-up calculating

method, computation times of search processes with such

operators can be greatly improved. For example, we carry

out a single iteration of MIG (the proposed algorithm in

this paper, to be detailed in the next section) with different

speed-up operators on a random instance with 500 jobs to be

scheduled on 20 machines. Without speed-up insertion and

swap, computation times of MIG are 387.447 seconds and

267.331 seconds when we use GMC and SMC (excluding

the computation time of matrix D) respectively. However,

computation times of MIG with speed-up insertion and swap

are 353.343 seconds and 211.905 seconds respectively. About

175 seconds are saved if all of the above speed-up methods

are adopted and they are used in the proposed MIG algorithm.

In relative terms, we are saving more than 88% of CPU time.

machine

M1

time

M2

5

6

1

4M4

3

3

2

3

C C

d

C

M3

6

2

3

4

C

C

C C

C

C

Cd

a

d a

3 8 109 12 14 16 19 2317 22

d

Fig. 4. Example of makespan calculation by SMC

V. MODIFIED ITERATED GREEDY METHOD FOR MWFSP

The iterated greedy (IG) algorithm is now commonly adopt-

ed in flowshop scheduling problems [14], [20], [28]–[33] after

it was first proposed by Ruiz and Stützle [29]. Basically, IG

contains two operators: destruction and reconstruction. They

are iteratively performed with a local search being applied

optionally after reconstruction. Only a few parameters are

needed which makes the method simple. Effectiveness and

simplicity are the motivation to use the IG framework for

the problem under study in this paper which contains the

following components: Initialization, Destruction and Recon-

struction, Local search and Acceptance criterion. Details of

the components are described below.

A. Initialization

NEH [17] seems to be the best heuristic for flowshops,

even better than some modern heuristics [30], [34]–[38]. Laha

and Sarin [39] proposed a NEH-based constructive heuristic

Page 5 of 22 Transactions on Cybernetics

For Review Only

6

for permutation flowshops. The main idea is simple: A job

from the seed is inserted into the best position x of the

current partial sequence by NEH and a new subsequence π
is obtained. All jobs in π are adjusted by reinserting each

job into all possible backward slots. FRB4k [40] is a trade-

off method between NEH and the Dipak heuristic (proposed

by Laha and Sarin [39]), in which the idea is that jobs far

away from x are less likely to be affected. After a job from

the seed has been inserted into the best position x by NEH,

both the k jobs in the front of x and the same number in the

back of x (i.e., 2k jobs in total) are adjusted by reinserting

each job into all possible backward slots. For effectiveness

and efficiency consideration, we adopt FRB4k in this paper

with the above speed-up calculation methods as initialization.

Details are shown in Algorithm 3. The time complexity of

steps 2-5 is O(mn), and that of step 6 is O(nlogn). With the

speed-up calculation methods, the time complexity of steps

8-11 is O(kn3(ξ + q)). Therefore, the time complexity of

Algorithm 3 is O(kn3(ξ + q)).

ALGORITHM 3: MNEH(k) /*Initialization*/

1 begin
2 for j = 1 to n do
3 Pj = 0;

4 for i = 1 to m do
5 Pj = Pj + pi,j ;

6 An initial sequence λ = {λ[1], λ[2], . . . , λ[n]} is

obtained by sorting jobs in decreasing order of Pj ;

7 π = (J0, λ[1]);
8 for i = 2 to n do
9 π ← Insert job λ[i] into position x of π resulting

in the minimum makespan;

10 for x
′
= max(1, x− k) to min(x+ k, i) do

11 π ← Insert job π[x′] into the position of π

with the minimum makespan;

12 return π.

B. Modified Destruction and Reconstruction

In this paper, we propose a modified destruction and

reconstruction (MDR for short) component to improve the

diversification and intensification of the whole search pro-

cess. The process is detailed in Algorithm 4. Both DR (the

traditional destruction and reconstruction) and MDR adopt

the same random destruction operation but utilize different

reconstruction operations. Similarly to the above initialization

component, the reconstruction of MDR reinserts the removed

jobs using the FRB4k insertion [40]. In other words, MDR

explores search spaces with wider ranges.

C. Local Search Methods

To enhance the intensification of the proposed MIG algorith-

m, local search methods are applied. Insertion neighborhood

ALGORITHM 4: MDR(π, r, k) /*Modified Destruction

and Reconstruction*/

1 begin
// Destruction

2 B = ∅;

3 for i = 0 to r − 1 do
4 Randomly remove job Bi from π ;

5 B ← B ∪ {Bi};
// Reconstruction

6 for i = 0 to r − 1 do
7 π ← Reinsert job B[i] into position x of π

resulting in best Cmax;

8 for x
′
= max(1, x− k) to min(x+ k, i) do

9 π ← Insert job B[x′] into the position of π

with the minimum makespan;

10 return π.

[29], [30], [41], [42], swap neighborhood and variable neigh-

borhood searches (VNS) are commonly used as local search

methods for scheduling problems, particularly flowshops. In

addition, variable neighborhood descent (VND) [43] is a

variant of the variable neighborhood search (VNS) [44]. In this

paper, VND is adopted as the local search method containing

kmax neighborhood structures as depicted in Algorithm 5. All

neighborhood structures are explored sequentially and the ith

(i = 1, . . . , kmax) neighborhood structure induces neighbor-

hood Ni VND starts from an initial solution π∗. A local

minimum πt is obtained after exploring the first neighborhood

structure. If πt is better than π∗, π∗ is updated with πt and the

first neighborhood search is conducted again on π∗. Otherwise,

the next neighborhood structure is examined on π∗. If a

better solution is found after exploring a neighborhood, π∗ is

replaced and the search continues with the first neighborhood

structure. VND stops only when no better solution can be

found after all neighborhood structures are explored. VND can

enhance the intensification of the search process for no-wait

flowshop scheduling problems [1], [20].

Let π be the current solution, π∗ be the current best solution,

πs be the seed and πt be the newly constructed solution. The

VND adopts the following first four existing neighborhood

structures and the other two proposed ones.

1) CINS (Complete Insert Neighborhood Structure) initial-

izes π∗ and πs to π. For each job πs
[i] (i = 1, . . . , n), the

following process is conducted: (i) π is assigned to πt. (ii)

πs
[i] is removed from πt and tried to be inserted into all

possible positions of the remaining sub-sequence π
′
. (iii)

πt is updated with the best of the n newly constructed

solutions. (iv) If πt is better than π∗, π∗ is replaced by

πt. The process is repeated until all n jobs in πs are tried

and π∗ is the best found solution.

2) GINS (Greedy Insert Neighborhood Structure) was pro-

posed by Ruiz et.al [14], [29]. π∗ is initialized as π. πs

is randomly generated. For each job πs
[i] (i = 1, . . . , n),

the following process is conducted: (i) π is set as π∗. (ii)

Page 6 of 22Transactions on Cybernetics

For Review Only

7

ALGORITHM 5: VND(π)

1 begin
2 π∗ = π; Flag = true;

3 while (Flag = true) do
4 Flag = false;

5 i = 1;

6 while i ≤ kmax do
7 Find the best solution πt in neighborhood

Nk(π
∗);

8 if Cmax(π
t) < Cmax(π

∗) then
9 π∗ = πt;

10 i = 1;

11 else
12 i = i+ 1;

13 if Cmax(π
t) < Cmax(π

∗) then
14 Flag = false;

15 return π∗.

πs
[i] is removed from π and tried to be inserted into all

possible positions of the remaining sub-sequence π
′
. (iii)

πt is updated with the best of the n newly constructed

solutions. (iv) If πt is better than π∗, π∗ is replaced by

πt. The process is repeated until all n jobs in πs are

tried and π∗ is the best found solution. The differences

between GINS and CINS lie in two aspects: (a) πs is

randomly generated in GINS while it is assigned as π in

CINS. (b) π is updated with a better solution found in an

iteration in GINS while π remains unchanged in CINS.

3) CPINS (Complete Pair Insert Neighborhood Structure)

is similar to CINS. The only difference is that CPINS

removes and reinserts a pair of adjacent jobs rather than

a single job each time. This neighborhood structure was

adopted by Ding et.al [20].

4) CSNS (Complete Swap Neighborhood Structure) swaps

each pair of jobs in π and returns the best found solution.

5) GPINS (Greedy Pair Insert Neighborhood Structure) is

inspired from CPINS and GINS. For each job πs
[i]

(i = 1, . . . , n), the adjacent job pair starting from πs
[i] is

removed from π and tried to be inserted into all possible

positions of the remaining sub-sequence π
′
. The other

operations are identical to those of GINS.

6) CPSNS (Complete Pair Swap Neighborhood Structure)

swaps each pair of two adjacent jobs in π and returns the

best solution.

Time complexities of the six neighborhood structures are

O(n2). According to the VND framework and the above

neighborhood structures, seven VND algorithms are combined

as shown in Table II.

D. Acceptance Criterion

After performing the above operators on an initial solution

π, a new solution π′′ is obtained. If π′′ is better than the

incumbent π and best solution π∗, both π∗ and π are replaced

TABLE II
LOCAL SEARCH METHODS BASED ON DIFFERENT NEIGHBORHOOD

STRUCTURES

Local Search
Neighborhood Structures

N1 N2 N3 N4

VND0 CINS – – –
VND1 GINS – – –
VND2 CSNS CINS – –
VND3 CINS CSNS – –
VND4 CSNS CINS CPINS –
VND5 CSNS GINS GPINS CPSNS
VND6 CSNS GINS CPSNS GPINS

by π′′. If π′′ is not better than π∗ but better than π, π is

replaced by π′′. Otherwise π is replaced by π′′ with a certain

probability. In this paper, we adopt the RPD-based probability

determination using formula e−
Cmax(π′′)−Cmax(π)

Cmax(π)
×100

recently

proposed by Hatami et al. [45] which is different from that

introduced in the original IG of [29]. In other words, π is

replaced by π′′ with probability e−
Cmax(π′′)−Cmax(π)

Cmax(π)
×100

if π′′

is not better than π. This acceptance criterion does not need

the typical temperature parameter of IG methods, is simpler,

and as shown in better performing.

E. Modified Iterated Greedy Algorithm

The proposed MIG (Modified Iterated Greedy) algorithm

for MWFSPs is illustrated in Algorithm 6. An initial solution

is constructed by MNEH. MDR and a selected local search are

performed iteratively. Unlike the traditional DR, the number of

removed jobs in MDR changes in each iteration of MIG. MDR

starts from an initial size r0, i.e., r0 jobs are randomly removed

from the current sequence π and they are reinserted into the

remaining sub-sequence using the NEH insertion. If the new

obtained solution π
′′

after the local search is better than π, r
is reset to r0. Otherwise, r is unchanged. If no better solution

is generated after 10 consecutive iterations (it was observed in

preliminary experiments that there was no improvement after

10 iterations), r is increased by 1. The increase of r is limited

to Δr, i.e., the number of removed jobs in the MDR is in the

range [r0, r0 +Δr].

F. Example

Let us consider an application from canned fruit processing

industry. There are ten main phases in this manufacturing

process: (1) Classification and pruning of fruits on an auto-

matic sorter machine M1. (2) Washing on Fruit on a washing

machine M2. (3) Removing peel and shell on Automatic

nuclear removing machine (also called shelling machine) M3.

(4) Precooking on precooking machine M4. (5) Packing into

jars and adding sugar on canning equipment M5. (6) Gas

exhausting on exhaust equipment M6. (7) Sealing on sealing

machine M7. (8) Sterilizing and refrigerating on machine M8.

(9) Labeling on machine M9. (10) Packing on machine M10.

M4 ∼ M8 are no-wait machines. The rest machines are

regular machines. Let us assume that 15 fruit canning jobs

(lots) J1, J2, · · · J15 are sequentially processed on these 10

Page 7 of 22 Transactions on Cybernetics

For Review Only

8

ALGORITHM 6: Modified Iterated Greedy (MIG)

Input: Parameters r0, Δr, k;

1 begin
2 r = r0, x = 0; // x is an iteration

counter
3 π is constructed by MNEH(k) and improved by a

local search method LS; // one of the
seven local search methods
VND0 ∼ VND6.

4 π∗ = π ;

5 while (Termination criterion not satisfied) do
6 π

′ ← MDR (π, r, k);

7 π′′ ← Improved π
′

by LS;

8 if Cmax(π
′′) < Cmax(π) then

9 π = π
′′

; x = 0; r = r0;

10 if Cmax(π
′′) < Cmax(π

∗) then
11 π∗ = π

′′
;

12 else
13 Randomly generate a number α in [0, 1];

14 if α ≤ e−((Cmax(π
′′
)−Cmax(π))/Cmax(π))×100

then
15 π = π

′′
;

16 x = x+ 1;

17 if x > 10 then
18 r = min{r + 1, r0 +
r};

19 return Cmax(π
∗).

machines. The corresponding processing times are shown in

Table III. Figure 5 depicts the main process of the proposed

MIG for the example. Firstly, the initial solution π is generated

by MNEH and the makespan of π is 6120. Secondly, π is

improved by VND5 with makespan being 6087. The best

found solution π∗ is set as π. Thirdly, four jobs (J13, J12,

J1 and J6) are removed from π and reinserted into positions

of the remaining sub-sequence. The best sequence π
′

with

makespan 6176 is obtained. By performing VND5 on π
′
,

π
′′

is not improved, with a makespan of 6176. Because π
′′

is not better than π, π is replaced by π
′′

with a certain

probability. Let us assume that the random number α is

0.21. Therefore, e−((Cmax(π
′′
)−Cmax(π))/Cmax(π))×100 is 0.232

which is greater than α. As a result, π is replaced by π
′′

.

The destruction, reconstruction and local search operations are

performed again and a better solution with makespan 6075

is found. The process (destruction, reconstruction and local

search) is iteratively performed until the termination criterion

(n×m/2×t = 15×10/2×30 = 2250ms) is met. The final best

solution π∗ = (J0, J2, J4, J11, J15, J3, J13, J14, J7, J8, J12,
J1, J6, J9, J10, J5) is obtained with a makespan of 6034.

VI. EXPERIMENTAL RESULTS

Since this work constitutes the first attempt at solving

the MWFSP, there are no specific existing algorithms for it

proposed in the literature. The presented MIG algorithm is

TABLE III
PROCESSING TIMES OF CANNED FRUIT ON TEN MACHINES

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 63 540 420 216 963 144 143 30 196 38
J2 28 80 360 112 428 52 55 50 784 31
J3 84 420 480 133 294 112 205 55 785 130
J4 60 20 0 3 60 12 10 23 83 11
J5 60 90 180 78 105 27 15 59 57 29
J6 240 80 420 40 96 88 26 24 97 84
J7 60 80 180 100 132 68 44 27 136 136
J8 30 90 120 87 57 66 200 34 123 31
J9 105 420 480 49 98 119 110 46 80 42
J10 32 120 300 48 244 32 96 14 84 37
J11 120 120 60 14 98 52 13 19 130 21
J12 200 300 480 60 220 90 144 27 427 323
J13 90 270 660 180 954 90 363 54 850 38
J14 105 420 480 91 434 84 128 23 62 95
J15 60 120 540 48 600 120 315 24 424 20

C

C

C

C

C

C

C

Fig. 5. Process of MIG for the fruit canning instance

evaluated on a large set of instances by comparing them with

some existing algorithms for similar problems. We calibrate

the parameters of the proposed algorithm first. The effec-

tiveness of all algorithms is measured by the RPD (relative

percentage deviation). Let S be the solution obtained by a

given algorithm on a given instance and sbest be the best

solution obtained in any experiment on the same instance. RPD

is defined as

RPD =
s− sbest
sbest

× 100% (10)

All algorithms are coded in Visual C++ 2013 and run on

computers with Windows XP professional, 1 GBytes RAM and

Intel(R) Core(TM) i7-3770 processors running at 3.10 GHz.

Experimental results are analyzed using the ANOVA (multi-

factor analysis of variance) technique [46]. RPD is used as

the response variable. The three main hypotheses (normali-

Page 8 of 22Transactions on Cybernetics

For Review Only

9

ty, homoscedasticity, and independence of the residuals) are

checked. Since all the three hypotheses are close to zero, they

are acceptable in this analysis.

A. Parameter Calibration

Besides the four mentioned parameters: r0, Δr, k and the

type of local search method VNDi (i = 0, 1, . . . , 6), the

makespan calculation (denoted as Cm) has an influence on

the response variable. The tested values of the five parameters

to be calibrated are shown in Table IV. In total, there are

2 × 7 × 3 × 3 × 6 = 756 combinations.Each combination is

tested over a set of randomly generated MWFSP instances.

Processing times are uniformly distributed in [1, 20]. The

number of no-wait machines is uniformly distributed in [1,

m] where m is the number of machines. Five instances

are generated for a pair of job and machine sizes: 50 × 5,

50 × 10, 50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 5,

200×10 and 200×20. Each combination is run five times on

each instance. The termination criterion is n × (m/2) × t,
where t ∈ {30, 60, 90} milliseconds. Therefore, there are

9× 5× 5× 3× 756 = 510300 experimental results.

TABLE IV
PARAMETERS TESTED IN THE CALIBRATION

Paramter value

Cm GMC, SMC
LS VND0, VND1, VND2, VND3, VND4, VND5, VND6

r0 2, 4, 6
Δr 0, 2, 4
k 0, 2, 4, 6, 8, 10

After carrying out the statistical analyses, we show the

means plot and 95.0% confidence level Tukey Honest Signifi-

cant Difference (HSD) intervals in Figures 6∼10. Overlapping

confidence intervals imply statistical insignificance in the

corresponding averages, i.e., the observed differences in the

overlapped means is not statistically significant at the indicated

confidence level. From Figure 6, it can be observed that the

proposed MIG with the SMC calculation is significantly better

than that with the GMC computation even though matrix D
is calculated in advance in SMC. It has to be noted that

the same CPU time is allowed for all treatments with the

same t value, therefore, the better results obtained by MIG

with SMC calculation are due to the fact that SMC being

faster, more iterations of MIG are possible and better solutions

are obtained. Therefore, SMC is adopted in the following

experiments.

Figure 7 shows the means plot and 95.0% confidence level

Tukey HSD intervals for various local search methods on

random instances. From Figure 7, we can observe that the

differences are statistically significant for the different local

search methods. RPD of the proposed algorithm is the least

when local search methods are VND5 and VND6. The reason

lies in that intensification of the proposal can be enhanced by

the VNDs with CSNS, GINS, CPSNS, GPINS neighborhood

structures. VND2, VND3, VND4 perform better than VND0

and VND1 which indicates that a VND with more than one

neighborhood structure usually performs better than one with

single neighborhood structure. In addition, RPD of VND1 is

less than that of VND0. Since VND5 and VND6 have similar

performance, we adopt VND5 as the local search method of

the proposed MIG algorithm in the following experiments.

It is observed in Figure 8 and Figure 9 that similarly for

r0 and Δr, the best RPD values occur when r0 = 4 and

Δr = 2. Therefore, we use r0 = 4 and Δr = 2 in the

following experiments. Figure 10 indicates that the differences

are statistically significant for different k values. There is a

clear tendency that the difference becomes smaller with the

increase of k. But when k ≥ 6 RPD has no further substantial

improvement. Therefore, we set k to 8 for the proposed MIG

algorithm in this paper.

1

1.04

1.08

1.12

1.16

1.2

R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n
(%

)

GMC SMC Cm

Fig. 6. Means plot and 95.0% confidence level Tukey HSD intervals for
different makespan calculation methods on random instances

LS

.5

.8

1.1

1.4

1.7

2

VN
D

0

VN
D

1

VN
D

2

VN
D

3

VN
D

4

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n(

%
)

VN
D

5

VN
D

6

Fig. 7. Means plot and 95.0% confidence level Tukey HSD intervals for
various local search methods on random instances

B. Algorithm Comparisons

According to the calibrated parameters and components,

the proposed calibrated MIG algorithm is compared with

some algorithms for similar problems. As stated, there are no

existing methods for the MWFSP, so we modify five classical

state-of-the-art algorithms for permutation flowshops and no-

wait flowshop problems from the literature. Note that these are

the closest possible competitors: TMIIG (improved iterated

greedy algorithm with a Tabu-based reconstruction strategy)

by Ding et al. [20], the original IG (iterated greedy) by Ruiz

Page 9 of 22 Transactions on Cybernetics

For Review Only

10

2 4 6
1.09

1.11

1.13

1.15

1.17

R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n
(%

)

r0
Fig. 8. Means plot and 95.0% confidence level Tukey HSD intervals for
parameter r0 on random instances

0 2 4
1.09

1.11

1.13

1.15

1.17

R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n
(%

)

r
Fig. 9. Means plot and 95.0% confidence level Tukey HSD intervals for
parameter Δr on random instances

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
tio

n
(%

)

k

Fig. 10. Means plot and 95.0% confidence level Tukey HSD intervals for
parameter k on random instances

et al. [29], IIGA (improved iterated greedy algorithm) by

Pan and Wang [14], HDPSO (hybrid discrete particle swarm

optimization) by Pan and Wang [24] and DPSOVND (discrete

particle swarm optimization algorithm with VND local search)

by Pan et al. [1]. All the algorithms have been adapted for the

MWFSP.

Since there are no MWFSP benchmark instances, we built a

new benchmark following the benchmark proposed by Pan and

Ruiz [30]. Note that this benchmark is different from the cal-

ibration instances so that to avoid overfitting in the calibrated

proposed MIG. Based on Taillard benchmark [47], we generate

12 subsets of instances with n ∈ {20, 50, 100, 200, 500} and

m ∈ {5, 10, 20}. Each subset consists of ten instances. There

are 120 instances in total. Similarly to Pan and Ruiz [30],

seven different families of mixed no-wait flowshop problems

are generated, i.e., there are 840 instances in total for the

following algorithm comparisons.

• Family 1: The first 50% of the machines have the no-wait

constraint. The remaining 50% machines can wait.

• Family 2: The second 50% of the machines have the no-

wait constraint.

• Family 3: The machines alternate, in order, between

regular and no-wait constraints.

• Family 4: A random 25% of the machines have the no-

wait constraint.

• Family 5: A random 50% of the machines are no-wait.

• Family 6: 75% random no-wait machines.

• Family 7: All machines are no-wait.

Note that instances in the last family are pure no-

wait problems, over which the proposed MIG algorithm

is compared against existing methods which were also

specifically proposed for full no-wait problems. The

generated instances and results are available on the website

http://webplus.seu.edu.cn/lxp/2016/1216/c12114a180375/page.psp.

All algorithms adopt the speed-up makespan calculation

(SMC) and the speed-up neighborhood search presented in

this paper for a fair and accurate comparison. The termination

criterion is set as n × (m/2) × t milliseconds where

t ∈ {30, 60, 90}. Every algorithm is run for five replications

on each instance. Therefore, 840 × 3 × 6 × 5 = 75600 tests

are conducted. This is very large set of results for which

no additional replicates are needed and powerful statistical

analyses can be conducted.

Figure 11 shows the interactions between the tested algo-

rithms and the termination criterion t ∈ {30, 60, 90} with

95.0% confidence level Tukey HSD intervals. Figure 11 illus-

trates that the proposed MIG algorithm is statistically better

than TMIIG, DPSOVND, HDPSO, IG and IIG for all the three

t cases. In addition, in most cases results are not statistically

better with higher t values, meaning that t = 30 is, on

average, already enough time for most algorithms to converge.

Therefore, we only show results of the compared algorithms

with t = 30 in the following.

Table V shows the ARPDs (Average Relative Percentage

Deviation) of the six algorithms grouped by n×m and family.

The ARPD of each algorithm in every n, m and family

combination is the average RPD on 10 × 5=50 instances. Table

V shows that the average ARPD of MIG in all instances is

0.38, which is less than those of TMIIG, DPSOVND, HDPSO,

IG and IIG with 0.68, 0.66, 1.03, 1.25 and 1.12 respectively,

i.e., MIG is the best algorithm among the tested algorithms

for the MWFSPs. In addition, MIG obtains the 79 best results

out of 12 × 7 = 84 cases when t = 30. ARPD differences

between MIG and the other algorithms increase with the value

of n. For example, the ARPD of MIG in group 20 × 5 and

family 5 is 0.00 while those of the other algorithms are 0.01,

0.01, 0.13, 0.02 and 0.11 respectively. However, the ARPD

Page 10 of 22Transactions on Cybernetics

For Review Only

11

of MIG in group 500 × 20 of family 5 is 0.50 and those

of the other algorithms are 3.08, 1.31, 2.06, 1.57 and 1.74

respectively. Figure 12 and Figure 13 show the interactions

between the compared algorithms and m (n) with t = 30 with

95.0% confidence level Tukey HSD intervals. From Figure

12 and Figure 13, we can observe that MIG is much more

robust than the other compared algorithms, i.e., the problem

size has little influence on the performance of MIG whereas

it exerts great influence on the the performance of the other

five. In addition, MIG always gets the smallest RPD among

the compared algorithms for any problem size. Bigger problem

size demonstrates better performance of MIG. Figure 14 shows

the interactions between the compared algorithms and Families
with t = 30 with 95.0% confidence level Tukey HSD intervals.

From Figure 14, we can observe that problem structures

exert little influence on the performance of MIG. However,

parameter Family has different impacts on performance of the

other five algorithms. MIG always obtains the smallest RPD

and statistically outperforms the other algorithms, even for

pure no-wait problems (Family 7).

t

.3

.6

.9

1.2

1.5

1.8

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n(

%
)

30 60 90

Algorithm

TMIIG
MIG

DPSOVND

HDPSO
IG
IIG

Fig. 11. Interactions between the tested algorithms and the termination
criterion t ∈ {30, 60, 90} with 95.0% confidence level Tukey HSD intervals.

m

.3

.6

.9

1.2

1.5

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n(

%
)

5 10 20

DPSOVND

Algorithm

TMIIG
MIG

HDPSO
IG
IIG

Fig. 12. Interactions between the compared algorithms and m with t = 30
and 95.0% confidence level Tukey HSD intervals.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied mixed no-wait flowshop

problems (MWFSP), to the best of our knowledge, for the first

n

-.1

.4

.9

1.4

1.9

2.4

2.9

20 50 100 200 500

DPSOVND

Algorithm

TMIIG
MIG

HDPSO
IG
IIG

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n(

%
)

Fig. 13. Interactions between the compared algorithms and n with t = 30
and 95.0% confidence level Tukey HSD intervals.

Family

.3

.6

.9

1.2

1.5

1.8

Re
la

tiv
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n(

%
)

71 2 3 4 5 6

Algorithm

TMIIG
MIG

DPSOVND

HDPSO
IG
IIG

Fig. 14. Interactions between the compared algorithms and Families with
t = 30 and 95.0% confidence level Tukey HSD intervals.

time. This kind of problem is more realistic in practice and it

is a generalization of both the traditional permutation flowshop

and the no-wait flowshop problems. Based on the established

mathematical model and characteristics of the MWFSP, we

designed two makespan calculation methods, GMC and SMC.

Generally, SMC is faster than GMC though their worst compu-

tational time complexities are the same. A modified iterated

greedy (MIG) algorithm is proposed for MWFSPs. Starting

with an initial solution generated by MNEH, three phases are

run iteratively: destruction, reconstruction and local search. To

enhance the diversification of MIG (i.e., to avoid trapping into

local optimum), the number of removed jobs in the destruction

phase changes dynamically during the search process of MIG.

To improve the intensification and efficiency of MIG, the idea

of FRB4k was adopted in MNEH and MDR phases. Two

effective VND local searches were developed which were

based on four neighborhood structures CSNS, GINS, GPINS,

CPSNS. MIGs with the two VNDs show better performance

than existing algorithms. All parameters with different levels

and components with various candidates were calibrated by

ANOVA. After comparing the proposed MIG algorithm with

five existing state-of-the-art algorithms for similar problems in

a large set of instances, experimental results showed that MIG

outperforms TMIIG, HDPOS, IG, IIG, and DPSOVND.

Page 11 of 22 Transactions on Cybernetics

For Review Only

12

TABLE V
AVERAGE RELATIVE PERCENTAGE DEVIATION FOR ALL COMPARED ALGORITHMS WITH t=30.

n × m Family TMIIG DPSOVND HDPSO IG IIG MIG n × m Family TMIIG DPSOVND HDPSO IG IIG MIG

20×5 1 0.03 0.01 0.22 0.05 0.21 0.02 100×5 1 0.53 0.91 2.09 2.78 1.80 0.31
20×5 2 0.02 0.01 0.08 0.06 0.14 0.00 100×5 2 0.41 0.91 1.80 2.64 1.66 0.33
20×5 3 0.10 0.15 0.18 0.14 0.39 0.02 100×5 3 0.21 0.29 0.74 0.80 0.65 0.12
20×5 4 0.02 0.02 0.22 0.04 0.23 0.03 100×5 4 0.54 0.90 2.10 2.79 1.94 0.36
20×5 5 0.01 0.01 0.13 0.02 0.11 0.00 100×5 5 0.46 1.16 1.92 3.02 1.84 0.53
20×5 6 0.02 0.01 0.12 0.01 0.09 0.00 100×5 6 0.57 1.16 1.97 3.02 1.95 0.51
20×5 7 0.01 0.02 0.11 0.03 0.18 0.00 100×5 7 0.48 0.98 1.42 2.50 1.45 0.45

Average 0.03 0.03 0.15 0.05 0.19 0.01 Average 0.46 0.90 1.72 2.51 1.61 0.37

20×10 1 0.00 0.02 0.08 0.00 0.05 0.00 100×10 1 0.71 1.05 1.18 2.33 1.38 0.64
20×10 2 0.00 0.01 0.30 0.03 0.14 0.00 100×10 2 0.62 1.16 1.54 2.63 1.49 0.56
20×10 3 0.01 0.02 0.09 0.02 0.19 0.00 100×10 3 0.48 0.64 1.18 0.88 1.24 0.26
20×10 4 0.03 0.07 0.15 0.04 0.26 0.01 100×10 4 0.76 0.87 1.56 1.55 1.54 0.48
20×10 5 0.00 0.02 0.08 0.01 0.05 0.00 100×10 5 0.53 0.98 1.21 2.28 1.30 0.56
20×10 6 0.00 0.03 0.05 0.00 0.07 0.00 100×10 6 0.48 0.90 0.76 1.90 1.06 0.55
20×10 7 0.01 0.01 0.15 0.07 0.11 0.00 100×10 7 0.41 0.77 0.66 1.60 0.92 0.47

Average 0.01 0.03 0.13 0.02 0.13 0.00 Average 0.57 0.91 1.16 1.88 1.27 0.50

20×20 1 0.01 0.02 0.21 0.04 0.15 0.00 100×20 1 0.45 0.82 0.80 1.77 1.03 0.58
20×20 2 0.01 0.01 0.04 0.01 0.03 0.00 100×20 2 0.51 0.79 0.66 1.75 0.95 0.56
20×20 3 0.02 0.06 0.10 0.01 0.11 0.02 100×20 3 0.76 0.83 1.57 0.81 1.69 0.55
20×20 4 0.01 0.04 0.07 0.01 0.10 0.01 100×20 4 0.83 0.99 1.65 1.10 1.61 0.49
20×20 5 0.00 0.00 0.09 0.00 0.07 0.00 100×20 5 0.63 0.95 0.81 1.51 0.99 0.57
20×20 6 0.02 0.01 0.14 0.02 0.07 0.02 100×20 6 0.51 0.82 0.73 1.35 0.90 0.49
20×20 7 0.01 0.00 0.05 0.08 0.02 0.00 100×20 7 0.38 0.56 0.47 1.18 0.71 0.46

Average 0.01 0.02 0.10 0.02 0.08 0.01 Average 0.58 0.82 0.96 1.35 1.13 0.53

50×5 1 0.23 0.45 0.88 1.37 1.06 0.22 200×10 1 0.86 1.01 2.15 2.80 1.76 0.50
50×5 2 0.23 0.38 0.73 1.26 1.03 0.25 200×10 2 1.00 1.30 2.76 3.15 2.17 0.61
50×5 3 0.09 0.10 0.23 0.30 0.26 0.05 200×10 3 0.76 0.91 2.23 1.15 1.78 0.30
50×5 4 0.18 0.41 0.88 1.40 1.05 0.26 200×10 4 0.85 0.81 2.38 2.13 1.88 0.40
50×5 5 0.43 0.65 0.94 1.76 1.18 0.39 200×10 5 0.95 1.11 2.18 2.77 1.78 0.45
50×5 6 0.40 0.63 0.97 1.63 1.20 0.38 200×10 6 0.92 1.12 1.79 2.61 1.63 0.46
50×5 7 0.39 0.55 0.70 1.34 0.94 0.39 200×10 7 0.54 0.99 1.11 2.15 1.47 0.46

Average 0.28 0.45 0.76 1.29 0.96 0.28 Average 0.84 1.04 2.08 2.39 1.78 0.46

50×10 1 0.40 0.56 0.56 1.02 0.82 0.37 200×20 1 0.72 1.12 1.57 2.39 1.47 0.66
50×10 2 0.32 0.48 0.69 1.33 0.79 0.42 200×20 2 0.97 1.20 1.61 2.49 1.68 0.64
50×10 3 0.62 0.81 1.25 0.90 1.75 0.55 200×20 3 1.22 1.12 2.34 1.05 1.90 0.55
50×10 4 0.50 0.59 1.01 0.87 1.46 0.57 200×20 4 1.28 1.08 2.52 2.27 1.72 0.46
50×10 5 0.40 0.48 0.64 1.13 0.92 0.34 200×20 5 0.91 1.11 1.64 2.11 1.52 0.48
50×10 6 0.30 0.40 0.42 0.92 0.60 0.34 200×20 6 0.68 1.04 1.01 1.86 1.20 0.52
50×10 7 0.29 0.33 0.42 0.81 0.56 0.28 200×20 7 0.37 1.01 0.61 1.80 1.13 0.54

Average 0.40 0.52 0.71 1.00 0.99 0.41 Average 0.88 1.10 1.61 2.00 1.52 0.55

50×20 1 0.35 0.46 0.50 0.76 0.58 0.29 500×20 1 2.87 1.27 1.82 1.65 1.76 0.31
50×20 2 0.48 0.49 0.56 0.90 0.72 0.32 500×20 2 3.04 1.44 2.09 1.96 1.95 0.36
50×20 3 0.51 0.71 1.03 0.71 1.53 0.55 500×20 3 2.84 1.07 2.17 0.91 3.07 1.05
50×20 4 0.60 0.78 1.07 0.88 1.29 0.51 500×20 4 4.39 0.86 3.35 2.88 5.51 1.94
50×20 5 0.43 0.48 0.58 0.87 0.72 0.34 500×20 5 3.08 1.31 2.06 1.57 1.74 0.50
50×20 6 0.31 0.38 0.57 0.93 0.62 0.23 500×20 6 2.05 1.19 1.64 1.60 1.58 0.38
50×20 7 0.27 0.31 0.40 0.69 0.53 0.19 500×20 7 1.34 1.05 1.44 1.65 1.57 0.24

Average 0.42 0.52 0.67 0.82 0.86 0.35 Average 2.80 1.17 2.08 1.75 2.46 0.68

Global average 0.68 0.66 1.03 1.25 1.12 0.38

MWFSPs with other objectives (e.g., total flowtime) are

common in practical industries and are promising topics to

investigate in the future. Further refinements of the algorithm

procedures are also interesting future avenues of research.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (Grants 61572127, 61272377) and the

Key Research & Development program in Jiangsu Province

(No. BE2015728). Rubén Ruiz is supported by the Spanish

Ministry of Economy and Competitiveness, under the project

“SCHEYARD-Optimization of scheduling problems in con-

tainer yards” (No. DPI2015-65895-R) partly financed with

FEDER funds.

REFERENCES

[1] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, “A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem,”
Computers & Operations Research, vol. 35, no. 9, pp. 2807–2839, 2008.

[2] J.-q. Li, Q.-k. Pan, and P.-y. Duan, “An improved artificial bee colony
algorithm for solving hybrid flexible flowshop with dynamic operation
skipping,” IEEE transactions on cybernetics, vol. 46, no. 6, pp. 1311–
1324, 2016.

[3] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic pro-
gramming via iterated local search for dynamic job shop scheduling.”
IEEE Transactions on Cybernetics, vol. 45, no. 1, pp. 1 – 14, 2015.

[4] J.-Q. Li, Q.-K. Pan, and K. Mao, “A hybrid fruit fly optimization
algorithm for the realistic hybrid flowshop rescheduling problem in
steelmaking systems,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp. 932–949, 2016.

[5] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “Ttsa: An effective
scheduling approach for delay bounded tasks in hybrid clouds.” IEEE
Transactions on Cybernetics, 2016.

Page 12 of 22Transactions on Cybernetics

For Review Only

13

[6] L. Gao, G. Zhang, L. Zhang, and X. Li, “An efficient memetic algorithm
for solving the job shop scheduling problem,” Computers & Industrial
Engineering, vol. 60, no. 4, pp. 699–705, 2011.

[7] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: a
survey,” Annals of Discrete Mathematics, vol. 5, pp. 287–326, 1979.

[8] A. H. G. RinnooyKan, “Machine scheduling problem: Classification,”
Complexity and Computation, Nijhoff, The Hague, 1976.

[9] C. H. Papadimitriou and P. C. Kanellakis, “Flowshop scheduling with
limited temporary storage,” Journal of the ACM (JACM), vol. 27, no. 3,
pp. 533–549, 1980.

[10] P. J. Kalczynski and J. Kamburowski, “On no-wait and no-idle flow
shops with makespan criterion,” European Journal of Operational Re-
search, vol. 178, no. 3, pp. 677–685, 2007.

[11] X. Li, Q. Wang, and C. Wu, “Efficient composite heuristics for total
flowtime minimization in permutation flow shops,” Omega, vol. 37,
no. 1, pp. 155–164, 2009.

[12] C. Wang, X. Li, and Q. Wang, “Accelerated tabu search for no-
wait flowshop scheduling problem with maximum lateness criterion,”
European Journal of Operational Research, vol. 206, no. 1, pp. 64–72,
2010.

[13] X. Li, Q. Wang, and C. Wu, “Heuristic for no-wait flow shops with
makespan minimization,” International Journal of Production Research,
vol. 46, no. 9, pp. 2519–2530, 2008.

[14] Q.-K. Pan, L. Wang, and B.-H. Zhao, “An improved iterated greedy
algorithm for the no-wait flow shop scheduling problem with makespan
criterion,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 38, no. 7-8, pp. 778–786, 2008.

[15] I. Adiri and D. Pohoryles, “Flowshop/no-idle or no-wait scheduling
to minimize the sum of completion times,” Naval Research Logistics
Quarterly, vol. 29, no. 3, pp. 495–504, 1982.

[16] S. M. Johnson, “Optimal two-and three-stage production schedules with
setup times included,” Naval Research Logistics Quarterly, vol. 1, no. 1,
pp. 61–68, 1954.

[17] M. Nawaz, E. E. Enscore, and I. Ham, “A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,” Omega, vol. 11, no. 1,
pp. 91–95, 1983.

[18] R. Haupt, “A survey of priority rule-based scheduling,” Operations-
Research-Spektrum, vol. 11, no. 1, pp. 3–16, 1989.

[19] R. Ramasesh, “Dynamic job shop scheduling: a survey of simulation
research,” Omega, vol. 18, no. 1, pp. 43–57, 1990.

[20] J.-Y. Ding, S. Song, J. N. Gupta, R. Zhang, R. Chiong, and C. Wu, “An
improved iterated greedy algorithm with a tabu-based reconstruction
strategy for the no-wait flowshop scheduling problem,” Applied Soft
Computing, vol. 30, pp. 604–613, 2015.

[21] S. U. Sapkal and D. Laha, “A heuristic for no-wait flow shop schedul-
ing,” The International Journal of Advanced Manufacturing Technology,
vol. 68, no. 5-8, pp. 1327–1338, 2013.

[22] E. Bertolissi, “Heuristic algorithm for scheduling in the no-wait flow-
shop,” Journal of Materials Processing Technology, vol. 107, no. 1, pp.
459–465, 2000.

[23] G. Liu, S. Song, and C. Wu, “Some heuristics for no-wait flowshops with
total tardiness criterion,” Computers & Operations Research, vol. 40,
no. 2, pp. 521–525, 2013.

[24] Q.-K. Pan, L. Wang, M. F. Tasgetiren, and B.-H. Zhao, “A hybrid
discrete particle swarm optimization algorithm for the no-wait flow shop
scheduling problem with makespan criterion,” The International Journal
of Advanced Manufacturing Technology, vol. 38, no. 3-4, pp. 337–347,
2008.

[25] L.-Y. Tseng and Y.-T. Lin, “A hybrid genetic algorithm for no-wait
flowshop scheduling problem,” International Journal of Production
Economics, vol. 128, no. 1, pp. 144–152, 2010.

[26] B. Jarboui, M. Eddaly, and P. Siarry, “A hybrid genetic algorithm
for solving no-wait flowshop scheduling problems,” The International
Journal of Advanced Manufacturing Technology, vol. 54, no. 9-12, pp.
1129–1143, 2011.

[27] A. AitZai, B. Benmedjdoub, and M. Boudhar, “Branch-and-bound and
PSO algorithms for no-wait job shop scheduling,” Journal of Intelligent
Manufacturing, vol. 27, pp. 679–688, 2016.

[28] J. Grabowski and J. Pempera, “Some local search algorithms for no-wait
flow-shop problem with makespan criterion,” Computers & Operations
Research, vol. 32, no. 8, pp. 2197–2212, 2005.

[29] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem,” European Journal of
Operational Research, vol. 177, no. 3, pp. 2033–2049, 2007.

[30] Q.-K. Pan and R. Ruiz, “An effective iterated greedy algorithm for
the mixed no-idle permutation flowshop scheduling problem,” Omega,
vol. 44, pp. 41–50, 2014.

[31] S. W. Lin, K. C. Ying, W. J. Wu, and Y. I. Chiang, “Multi-objective
unrelated parallel machine scheduling: a tabu-enhanced iterated pareto
greedy algorithm,” International Journal of Production Research, pp.
1–12, 2016.

[32] S. Lin, K. Ying, and C. Huang, “Minimising makespan in distributed
permutation flowshops using a modified iterated greedy algorithm,”
International Journal of Production Research, vol. 51, no. 16, pp. 5029–
5038, 2013.

[33] K. C. Ying, S. W. Lin, and S. Y. Wan, “Bi-objective reentrant hybrid
flowshop scheduling: an iterated pareto greedy algorithm,” International
Journal of Production Research, vol. 52, no. 19, pp. 5735–5747, 2014.

[34] R. Ruiz and C. Maroto, “A comprehensive review and evaluation of
permutation flowshop heuristics,” European Journal of Operational
Research, vol. 165, no. 2, pp. 479–494, 2005.

[35] Q.-K. Pan and R. Ruiz, “A comprehensive review and evaluation of
permutation flowshop heuristics to minimize flowtime,” Computers &
Operations Research, vol. 40, no. 1, pp. 117–128, 2013.

[36] S. Song, “Accelerated methods for total tardiness minimisation in no-
wait flowshops,” International Journal of Production Research, vol. 53,
no. 4, pp. 1002–1018, 2015.

[37] C. Wang, X. Li, and Q. Wang, “Accelerated tabu search for no-
wait flowshop scheduling problem with maximum lateness criterion,”
European Journal of Operational Research, vol. 206, no. 1, pp. 64–72,
2010.

[38] J. Ding, S. Song, R. Zhang, J. N. Gupta, and C. Wu, “Accelerated meth-
ods for total tardiness minimisation in no-wait flowshops,” International
Journal of Production Research, vol. 53, no. 4, pp. 1002–1018, 2015.

[39] D. Laha and S. C. Sarin, “A heuristic to minimize total flow time in
permutation flow shop,” Omega, vol. 37, no. 3, pp. 734–739, 2009.

[40] S. F. Rad, R. Ruiz, and N. Boroojerdian, “New high performing
heuristics for minimizing makespan in permutation flowshops,” Omega,
vol. 37, no. 2, pp. 331–345, 2009.

[41] Q.-K. Pan and R. Ruiz, “An estimation of distribution algorithm for lot-
streaming flow shop problems with setup times,” Omega, vol. 40, no. 2,
pp. 166–180, 2012.

[42] E. Vallada and R. Ruiz, “Cooperative metaheuristics for the permuta-
tion flowshop scheduling problem,” European Journal of Operational
Research, vol. 193, no. 2, pp. 365–376, 2009.

[43] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Computing Surveys (C-
SUR), vol. 35, no. 3, pp. 268–308, 2003.

[44] N. Mladenović and P. Hansen, “Variable neighborhood search,” Com-
puters & Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[45] S. Hatami, R. Ruiz, and C. Andrés-Romano, “Heuristics and meta-
heuristics for the distributed assembly permutation flowshop scheduling
problem with sequence dependent setup times,” International Journal of
Production Economics, vol. 169, pp. 76–88, 2015.

[46] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and Preuss, Eds., Exper-
imental methods for the analysis of optimization algorithms, Springer.

[47] E. Taillard, “Benchmarks for basic scheduling problems,” european
journal of operational research, vol. 64, no. 2, pp. 278–285, 1993.

Yamin Wang received her B.Sc. degree in Computer
Science and Education from Liaocheng University,
Shandong, China, in 2001. She obtained her M.Sc.
degree in Computer Science and Technology from
Beijing University of Technology, Beijing, China,
in 2009. She is currently a Ph.D Candidate at
the School of Computer Science and Engineering,
Southeast University. She is the author or co-author
of some academic papers, such as IEEE Transaction
on Systems, Man, and Cybernetics: Systems, IEEE
International Conference on Systems, Man, and Cy-

bernetics, Computers & Operations Research. Her research interest focuses
on algorithm design and scheduling optimization.

Page 13 of 22 Transactions on Cybernetics

For Review Only

14

Xiaoping Li (M09-SM12) received his B.Sc. and
M.Sc. degrees in Applied Computer Science from
the Harbin University of Science and Technology,
Harbin, China, in 1993 and 1999 respectively. He
obtained his Ph.D. degree in Applied Computer
Science from the Harbin Institute of Technology,
Harbin, China, in 2002. He joined Southeast Uni-
versity, Nanjing, China, in 2005, and is currently a
full professor at the School of Computer Science
and Engineering. He is the author or co-author over
more than 100 academic papers, some of which

have been published in international journals such as IEEE Transactions
on Automation Science and Engineering, IEEE Transactions on Services
Computing, IEEE Transaction on Systems, Man, and Cybernetics: Systems,
Omega, European Journal of Operational Research, Information Sciences. His
research interests focus on Scheduling in Cloud Computing, Scheduling in
Cloud Manufacturing, Machine Scheduling, Project Scheduling and Terminal
Container Scheduling.

Rubén Ruiz is a full professor of Statistics and
Operations Research at the Polytechnic University
of Valencia, Spain. He is co-author of more than 50
papers in International Journals and has participated
in presentations of more than a hundred papers at
national and international conferences. He is ed-
itor of the Elseviers journal Operations Research
Perspectives (ORP) and co-editor of the JCR-listed
journal European Journal of Industrial Engineering
(EJIE). He is also associate editor of other impor-
tant journals like TOP or Applied Mathematics and

Computation as well as member of the editorial boards of several journals
most notably European Journal of Operational Research and Computers and
Operations Research. He is the director of the Applied Optimization Systems
Group (SOA, http://soa.iti.es) at the Instituto Tecnolgico de Informtica (ITI,
http://www.iti.es) where he has been principal investigator in several public re-
search projects as well as privately funded projects with industrial companies.
His research interests include scheduling and routing in real life scenarios.

Shaochun Sui received his B.Sc., M.Sc. and Ph.D.
degrees in Mechanical Engineering from the Ts-
inghua University, Beijing, China, in 2007, 2009
and 2016 respectively. He joined Chengdu Aircraft
Company, Chengdu, China, in 2009. Currently he
is the Director of the Production Management of
CAC. He is the author or co-author over more than
20 academic papers. His research interests focus on
topics in advanced manufacturing systems.

Page 14 of 22Transactions on Cybernetics

