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Highlights: 

-The ultrasonic time of flight (TOF) decreased progressively during salting. 

-Online monitoring of dry salting is reliable using ultrasound pulse-echo technique. 

-The TOF variation during salting was related to the salt gain. 

-Classification using ultrasound of loins and hams according to salt gain is viable. 
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ABSTRACT 20 

Online ultrasound measurements were taken using pulse-echo mode in loins 21 

(Longissimus dorsi) and hams at different salting times (up to 30 days). From the time-22 

domain ultrasonic wave, the time of flight (TOF) was computed as well as its variation 23 

between two signals (ΔTOF). A progressive decrease in TOF during dry salting was 24 

found, which was linked to the salt gain, water loss and the reduction in sample 25 

thickness. Predictive models based on the ultrasonic parameters (ΔTOF and initial time 26 

of flight, TOF0) correctly classified 85% of the loins and 90% of the hams into 3 groups 27 

of salt content (low/medium/high). The results obtained confirm that the use of the 28 

ultrasonic pulse-echo technique is of great potential in the non-destructive monitoring 29 

of the dry salting in pork loins and hams, as well as in the prediction of the salt gain for 30 

classification purposes. 31 

 32 

Keywords: Pork meat, Curing, Ultrasound, Non-destructive technology, Process 33 

control 34 

 35 

 36 

 37 
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1. INTRODUCTION 39 

Dry salting is the traditional technique used in meat products with anatomical integrity, 40 

such as hams or loins, in order to obtain dry-cured products. In the dry-cured loin and 41 

ham industries, an accurate control of the dry salting process is especially complex 42 

because of the high degree of heterogeneity in the meat pieces (pH, weight, fat content 43 

and moisture, size of the piece…), the effect of the pre-treatments on the product (skin-44 

trimming of the fresh ham or the freezing/thawing processes) and the influence of the 45 

different process variables (temperature, relative humidity, position in the salt pile, size 46 

of the coarse salt…) (Costa-Corredor, Muñoz, Arnau, & Gou, 2010; García-Gil, Muñoz, 47 

Santos-Garcés, Arnau, & Gou, 2014; Fulladosa, Muñoz, Serra, Arnau, & Gou, 2015). 48 

All of these factors lead to there being a highly variable salt content in the batches of 49 

dry cured hams and loins. This salt content variability is of great concern to the meat 50 

industry as an excessive amount of salt produces a too salty taste (Ruusunen & 51 

Puolanne, 2005), but an insufficient amount may cause sensory defects, such as 52 

pastiness and softness (Albarracín, Sánchez, Grau, & Barat, 2011) or microbiological 53 

problems (Desmond, 2006). Thus, the meat industry demands non-destructive quality 54 

control techniques that allow the salt content to be determined after the salting stage 55 

for quality control purposes. 56 

Nowadays, the feasibility of using several non-destructive technologies (X-Ray, NMR, 57 

ultrasound...) to determine the salt content in meat products has been tested. In this 58 

regard, Fulladosa, Muñoz, Serra, Arnau, and Gou (2015) predicted the salt content in 59 

bone-in hams after salting by using an X-Ray inspector. Similarly, Manzocco et al. 60 

(2013) proposed predictive models with which to estimate the salt content in ham 61 

muscles by using magnetic resonance imaging (MRI). In this study, image analysis was 62 

carried out in different stages of dry-cured ham processing (before salting, after salting 63 

and at different times during resting, maturing and ageing). Recently, ultrasound has 64 
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also been applied to predict the salt content in brine salted pork meat (De Prados, 65 

García-Pérez, & Benedito, 2015) and in dry-salted hams (De Prados, García-Pérez, & 66 

Benedito, 2016), by taking  ultrasonic measurements before and after salting. An 67 

accurate prediction of the salt content after the salting may allow the products to be 68 

classified according to the different levels of salt, which can be used for the purposes of 69 

optimizing the subsequent processing stages. However, the measurement after salting 70 

does not permit the correction of the variability in the batch salt content by reducing the 71 

number of over-salted or insufficiently salted pieces. Thereby, the use of non-72 

destructive quality control techniques to monitor the salt gain during the dry salting 73 

process is gaining importance in the meat industry as a means of meeting the target 74 

salt content in each piece. In this context, ultrasound has been used by De Prados, 75 

García-Pérez, and Benedito (2016) to monitor the dry salting process of Longissimus 76 

dorsi and Biceps Femoris pork muscles. In this study, the ultrasonic velocity was 77 

measured online during salting by the ultrasonic through-transmission mode. That 78 

mode is characterized by the use of two transducers in direct contact with two opposite 79 

and parallel sides of the sample, which makes its implementation in a ham or loin 80 

salting pile very complicated. Otherwise, the ultrasonic equipment could be greatly 81 

simplified by using the pulse-echo mode, where a single transducer can be placed on 82 

one side of the sample, simultaneously acting as emitter and receiver (Mulet, Benedito, 83 

Bon, & Sanjuan, 1999; Awad, Moharram, Shaltout, Asker, & Youssef, 2012). The use 84 

of one transducer located in the ham’s base during dry salting would facilitate the 85 

ultrasonic implementation, reducing the cost and the impact of the ultrasonic 86 

measurement on the mass transfers (salt and water). 87 

The pulse-echo mode is most commonly used to detect internal defects in metallic 88 

materials, but it has also been applied in food characterization. Thus, the pulse-echo 89 

mode has been used to determine the ripeness of avocados (Gaete-Garretón, Vargas, 90 

León, & Pettorino, 2005), to detect anomalies in the internal structure of Mahon cheese 91 
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(Benedito, Cárcel, Gisbert, & Mulet, 2001) or bone fragments in deboned chicken 92 

breasts (Correia, Mittal, & Basir, 2008) and to measure the sugar content and viscosity 93 

of reconstituted orange juice (Kuo, Sheng, & Ting, 2008). Another application of the 94 

pulse-echo mode consisted in the monitoring of the cooling and freezing processes in 95 

several food products (gelatin, chicken, salmon, beef and yoghurt) (Sigfusson, Ziegler, 96 

& Coupland, 2001 and 2004). However, no studies have been found so far in the 97 

literature regarding either the online ultrasonic monitoring of the salting process in meat 98 

products or the salt gain assessment by means of the pulse-echo mode. Moreover, the 99 

ultrasonic monitoring of salting in structural and compositional complex meat pieces, 100 

such as whole hams, has not been addressed elsewhere. 101 

The objective of this paper was to investigate the feasibility of applying ultrasound in 102 

the pulse-echo mode for both the online monitoring of dry salting in loins and hams and 103 

the prediction of the final salt gain.  104 

2. MATERIALS AND METHODS 105 

2.1 FRESH MEAT SAMPLING 106 

Ten fresh hams and twenty loins (Longissimus dorsi) from Large White breed pigs 107 

were obtained in a local market. Loin and ham pieces were selected with a pH range of 108 

between 5.3 and 5.8. In loins, the subcutaneous fat and external connective tissue 109 

were removed and samples of 20.0±0.5cm in length (l) and with an average weight of 110 

1.0±0.1kg (wg) were obtained, keeping the original width (z) and thickness (e) of the 111 

muscle.  112 

2.2 DRY SALTING PROCESS 113 

Dry salting experiments in loins and hams were carried out at 2±1ºC by covering the 114 

sample with 6kg or 15kg of coarse salt, respectively (NaCl moisturized at 10% w/w) 115 
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(Figure 1). The fresh samples and coarse salt were previously stored for 24h at 2ºC for 116 

tempering purposes. The thickness (e) was measured before and after dry salting in 117 

the loins and hams and the thickness reduction (Δe) was calculated. In the case of 118 

loins, four replicates were carried out for each salting time (6, 12, 24, 48 and 72h), 119 

while in that of hams, one was used for each salting time (4, 7, 10, 11, 12, 14, 15, 16, 120 

20 and 30 days). 121 

2.3 ULTRASOUND EXPERIMENTAL SET-UP 122 

Figure 1 shows the experimental set-up used for the ultrasonic measurements during 123 

the dry salting of loins and hams. The experimental set-up consisted of four narrow-124 

band piezoelectric transducers of 1MHz and 0.5" crystal diameter, two of them type TA 125 

(TA1 and TA2) (A303S model, Panametrics, Waltham, MA, USA) and the other two type 126 

TB (TB1 and TB2) (A103S-RM model, Panametrics, Waltham, MA, USA). The pulse 127 

generation and reception (5058PR, Panametrics, Waltham, MA, USA for loins and 128 

5077PR, Panametrics, Waltham, MA, USA for hams) was multiplexed to the 129 

transducers using a digital input/output device (NI 6501, National Instruments, Austin, 130 

TX, USA) and a high-speed digitizer (PXI/PCI-5112, National Instruments, Austin, TX, 131 

USA) installed in a PC (Figure 1). The multiplexation unit allowed the signal from the 132 

pulser to reach the first transducer every 1h. The ultrasonic signal generated in this 133 

transducer crossed the sample, was reflected in the meat/salt interface and returned to 134 

the same transducer, sent to the receiver through the multiplexation device and 135 

digitized by the oscilloscope (Figure 1). This operation was sequentially repeated in the 136 

rest of the transducers by the action of the multiplexation unit. 137 

The sample was placed on a layer of salt in direct contact with the four transducers 138 

(TA1, TA2, TB1 and TB2, which corresponds to the four ultrasonic measurement points) 139 

inside a plastic container (30x25x15cm for loins and 120x35x20cm for hams) (Figure 140 

1). Afterwards, two type-K thermocouples were located in the salt and the sample, 141 
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respectively; and the rest of the salt was added (total salt amount of 2kg for loins and 142 

5kg for hams) until the sample was entirely covered. In the case of hams, a part of the 143 

skin in the cushion zone (177±14cm2) was removed, which coincides with the region 144 

where the transducers were placed (Figure 1) and 1mL of water was added on the 145 

transducers’ surfaces in order to guarantee the acoustic matching, thus, improving the 146 

signal intensity. The ultrasonic measurements were taken by the pulse-echo mode at 147 

intervals of 1h in the central part of the loins and in the cushion zone of the hams 148 

(Figure 1). 149 

The time of flight represents the time which elapses between the pulser sending the 150 

signal to the transducer acting as emitter, until the signal crosses the sample twice and 151 

is detected in the transducer acting as receiver. The time of flight variation (ΔTOF) 152 

between two ultrasonic signals was the ultrasonic parameter considered for the online 153 

monitoring of the loins and hams. For that purpose, the cross correlation method 154 

(Leemans & Destain, 2009) was employed to calculate the ΔTOF between ultrasonic 155 

signals one hour apart by using a specific software developed in LABVIEWTM 2015 156 

(National Instruments, Austin, TX, USA) and the final ΔTOF for the different salting 157 

times was computed. The initial time of flight (TOF0), which corresponds to the raw 158 

meat, was calculated through the energy threshold method (Avanesians & Momayez, 159 

2015), using the same software. 160 

2.4 CHEMICAL ANALYSIS 161 

The fat, salt and water contents were determined in the fresh muscles and hams. To 162 

this end, a piece (200±50g) was taken from each loin after obtaining the fresh muscle 163 

sample for the salting process. In the case of the hams, as the sample integrity cannot 164 

be altered before salting, the average values of the fat, salt and water contents were 165 

obtained from 30 hams of the same breed purchased from the same supplier. 166 
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Once the salting finalized, the excess salt was removed from the surface of the loins 167 

and hams and four cylindrical salted samples (64±13g for loins and 172±39g for hams) 168 

corresponding to the ultrasonic measurement points (Figure 1), were taken by using a 169 

cylindrical cutter (5cm in diameter). Each cylindrical salted sample was ground and 170 

homogenized before the analysis. The analyses of the fat and water contents were 171 

carried out according to AOAC procedures 991.36 and 950.46, respectively (AOAC, 172 

1997). The salt content was analyzed following the process described by De Prados, 173 

García-Pérez, and Benedito (2015 and 2016). All the analyses were performed in 174 

triplicate.  175 

The salt (XS), water (XW) and fat (XF) contents of the fresh samples and the salted loin 176 

and ham cylinders were expressed as percentages (%) in wet basis (w.b.). The final 177 

salt gain (ΔXS) and the water loss (ΔXW) were also calculated as an average of the four 178 

cylindrical samples from the loins and hams at each salting time. 179 

2.5 STATISTICAL ANALYSIS AND DEVELOPMENT OF PREDICTIVE MODELS  180 

The influence of the salting time on the ΔXS, ΔXW, Δe and ΔTOF in loins and hams was 181 

evaluated by means of an analysis of variance. Similarly, the analysis of variance was 182 

carried out in order to determine the significant influence of the type of transducer (TA 183 

and TB) on the final ΔTOF value during salting. Additionally, a multiple regression 184 

model was used to evaluate the influence of the salting time, ΔXS, ΔXW and Δe on the 185 

ΔTOF. In every case, the Statgraphics® Centurion XV (Statpoint Technologies Inc., 186 

Warrenton, VA, USA) software was used and a significance level of 95% was fixed. 187 

The ultrasonic (ΔTOF and TOF0) and sample parameters (weight, wg) and salting time 188 

(t) were used as independent variables so as to predict the salt gain (ΔXS) in loins and 189 

hams. For that purpose, both the loins and hams were split into two sets; a model set 190 

(M) and a validation set (V). The model set (M) included 15 loins and 7 hams, chosen 191 
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randomly. Their ultrasonic measurement points (nump=60 for loins and 28 for hams) 192 

were used to develop multiple regression models with the Statgraphics® Centurion XV 193 

(Statpoint Technologies Inc., Warrenton, VA, USA). The optimal number of 194 

independent variables and the interactions in the model were obtained using the 195 

Marquardt method. The p-value used to keep the independent variables in the model 196 

was 0.05. The validation set included 5 loins (nump=20) and 3 hams (nump=12). The 197 

overall classification capacity was tested using the optimal model for salt gain 198 

prediction. For this purpose, loins and hams and their corresponding ultrasonic 199 

measurement points from sets M and V were classified into three different categories. 200 

Loins with a salt content of <2.5% w.b. were considered to have a low level of salt, 201 

those with a salt content of >4.0% w.b. a high level of salt and the remaining ones to 202 

have a moderate level of salt. For hams, three categories were also considered (low 203 

<2.0% w.b., medium 2.0-3.0% w.b. and high >3.0% w.b. salt content level). The levels 204 

of salt in loins were higher than in hams due to the fact that the loins are not as thick as 205 

hams, so actually, they tend to be saltier. 206 

3. RESULTS AND DISCUSSION 207 

3.1 FRESH SAMPLE CHARACTERIZATION  208 

As shown in Table 1, a similar initial salt content (XS) was observed in loins and hams. 209 

However, significant differences (p<0.05) were found between the fat (XF) and water 210 

(XW) contents in fresh loins and hams, the fat content being greater in hams than in 211 

loins. The ranges of XF, XS, and XW found in the present study (Table 1) coincide with 212 

the ones reported for Large White breed loins (Longissimus dorsi) and hams in the 213 

literature (Cierach & Modzelewska-Kapituła, 2011; Moreiras, Carbajal, Cabrera, & 214 

Cuadrado, 2013). Additionally, a high degree of variability was found in the XF (0.3-215 

6.1% w.b. for loins and 7.5-26.4% w.b. for hams) and XW (67.9-75.6% w.b. for loin and 216 

56.3-70.2% w.b. for ham) compared to the that observed in the XS (0.10-0.26% w.b. for 217 
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loins and 0.16-0.33% for hams), which is especially evident in the case of hams (Table 218 

1). This compositional variability, especially the fat content and its distribution, should 219 

be considered when designing the salting process due to the fact that it may affect the 220 

mass transfer (salt gain and water lost) during salting (Cierach & Modzelewska-221 

Kapituła, 2011; De Prados, García-Pérez, & Benedito, 2015). 222 

3.2 COMPOSITIONAL CHANGES DURING DRY-SALTING 223 

Figure 2 illustrates the kinetics of salt gain and water loss in loins and hams during dry 224 

salting. The ΔXS values in the present work were slightly lower than the ones reported 225 

by other studies. For example, De Prados, García-Pérez, and Benedito (2016) reported 226 

a salt gain of between 2.1 and 6.7% w.b. in loins salted from 6 to 48h. When studying 227 

hams that had been dry salted for between 2 and 16 days, Fulladosa, Muñoz, Serra, 228 

Arnau, and Gou (2015) and Håseth, Sørheim, Høy, and Egelandsdal (2012) found a 229 

salt content ranging from 0.8 to 4.8% w.b. and from 1.2 to 4.5% w.b., respectively. This 230 

lower salt gain could be explained by considering that other authors reported the salt 231 

content as an average of the whole piece. However, in the present study, the salt gain 232 

shown represents the average value between the four cylindrical samples 233 

corresponding to the four ultrasonic measurement points of the cushion zone of the 234 

ham (Figure 1), which is its thickest part and where the salt diffusion takes longer 235 

(Toldrá & Wai-Kit, 2008; Håseth, Sørheim, Høy, & Egelandsdal, 2012). On the other 236 

hand, the ∆XS and ∆XW in loins and hams showed a marked experimental variability, 237 

especially the ∆XW (Figure 2). As previously mentioned, salting is a complex process 238 

affected by the different process variables (temperature, size of coarse salt, quantity of 239 

salt, position in the salt pile, salting time...) and the high degree of compositional 240 

heterogeneity of the meat pieces. In this study, the process variables were accurately 241 

controlled and the pieces (loins and hams) were individually salted (not pile salted). 242 

Thus, this great variability in the ∆XS and ∆XW could be mainly ascribed to the highly 243 

heterogeneous nature of the fresh meat pieces in terms of the content and distribution 244 
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of the water, fat and connective tissue, among other things. This fact is more relevant 245 

in hams due to the presence of both the skin and bone and also to that of different 246 

muscles with a greater degree of heterogeneity than in single muscles. 247 

3.3 ULTRASONIC MONITORING OF THE DRY SALTING PROCESS 248 

A gradual decrease of the TOF during salting was found. As an example, Figure 3 249 

shows the displacement in the time domain of the ultrasonic signal from the position at 250 

time 0 to the one captured after 30 days of salting. As observed, the ultrasonic signal 251 

after 30 days is displaced to the left (Figure 3), which illustrates a shortening of the 252 

TOF. This could be explained by the fact that ultrasound travels faster in solids, with a 253 

high elastic modulus (Benedito, Cárcel, Clemente, & Mulet, 2000), than in liquids 254 

(water). Thus, the increase in the solid content during salting, as a result of the salt 255 

gain and water loss, leads to an increase in the sample’s ultrasonic velocity, and 256 

thereby, a decrease in the TOF. When analyzing different kinds of samples (water, fish, 257 

juice and meat), several studies have reported an increase in the ultrasonic velocity in 258 

line with an increase in the solid content (Kinsler, Frey, Coppens, & Sanders, 1982; 259 

McClements, 1995; Ghaedian, Coupland, Decker, & McClements, 1998; Kuo, Sheng, & 260 

Ting, 2008; De Prados, García-Pérez, & Benedito, 2015 and 2016). 261 

Figure 4 illustrates the evolution of the ∆TOF in loins and hams during different salting 262 

experiments (24, 72h for loins and 11, 20 days for hams). The same behavior (data not 263 

shown) was observed in the remaining experiments (6, 12 and 48h dry salting of loins 264 

and 4, 7, 10, 12, 14, 15, 16 and 30 days’ dry salting of hams). As can be appreciated, 265 

the ∆TOF decreased gradually due to the above mentioned increase in the solid 266 

content of the sample. This result is consistent with the increase in the salt content and 267 

the decrease in the water content in loins and hams during dry salting, as observed in 268 

Figure 2. The ∆TOF evolution was different for each ultrasonic measurement point 269 

corresponding to the different transducers (TA1, TA2, TB1 and TB2) (Figure 4). This fact 270 
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could be linked to the heterogeneity of the compositional changes (∆XS and ∆XW) at 271 

each ultrasonic measurement point during salting, which was especially evident in the 272 

ham salting experiments (Figure 2). Non-significant (p>0.05) differences were 273 

observed in the ∆TOF evolution between type TA and TB transducers (Figure 4). 274 

Therefore, both types of transducers could be considered equivalent for the purposes 275 

of monitoring the salting process. 276 

An unexpected, fast decrease in the ∆TOF was observed during the first few hours of 277 

dry salting (Figure 4) for both loins and hams, which was not coherent with the kinetics 278 

for salt and water diffusion (Figure 2). Similar behavior was observed in the evolution of 279 

the ultrasonic velocity in Longissimus dorsi and Biceps femoris during dry salting (De 280 

Prados, García-Pérez, & Benedito, 2016). De Prados, García-Pérez, and Benedito 281 

(2016) associated this behavior with the formation of a salt solution between the 282 

transducers and the meat, due to the initial extraction of water from the external meat 283 

layers, which could partly explain the important decrease in the ∆TOF during the first 284 

3h, as may be observed in Figure 4. Additionally, the fast initial ∆TOF could also be 285 

associated with the textural changes that take place on the meat surface due to the 286 

effect of the salt in contact with the sample. Thus, a test was conducted in order to 287 

prove this hypothesis. Two loins (1kg) were salted for 1 and 3h, respectively and the 288 

hardness, characterized as the maximum penetration force (N), was evaluated in each 289 

loin before and after salting. Penetration test was conducted with a 6mm flat cylinder 290 

probe, a crosshead speed of 1mm/s and strain of 20% (penetration distance of 10mm). 291 

The results showed that, after 1 and 3h, the salted loins were significantly (p<0.05) 292 

harder (14.7±1.8N at 1h and 21.4±3.4N at 3h) than the fresh ones (8.6±4.0N). Ruiz-293 

Ramírez, Arnau, Serra, and Gou (2005) related the increase in hardness with the 294 

increase in the salt content in the dry cured pork muscles (Biceps femoris and 295 

Semimembranosus). This increase in hardness was linked to the compaction of the 296 

myofibrillar structure due to the salt content and an inhibitory effect of salt on the 297 
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calpains activity (Ruiz-Ramírez, Arnau, Serra, & Gou, 2005; Lorenzo, Fonseca, 298 

Gómez, & Domínguez, 2015). Thus, the salt gain and water loss that takes place in the 299 

external meat layers during the first few hours gives rise to a great increase in the salt 300 

concentration in these layers, leading to a rapid surface textural increase which would 301 

explain the fast decrease in the ∆TOF.  302 

The TOF and velocity measurements have been used to monitor other food processes. 303 

Thus, Sigfusson, Ziegler, and Coupland (2001 and 2004) monitored the cooling and 304 

freezing process in different food products by measuring the TOF by means of the 305 

pulse-echo mode. Recently, De Prados, García-Pérez, and Benedito (2016) monitored 306 

the meat dry salting process online. In that work, the ultrasonic velocity was measured 307 

online in Longissimus dorsi and Biceps femoris by using the through-transmission 308 

mode, where the sample’s thickness had to be measured and two transducers were in 309 

direct contact with two opposite and parallel sides of the sample (De Prados, García-310 

Pérez, & Benedito, 2016). This fact complicates the implementation of ultrasonic 311 

technology in the meat industry where pile salting is used. On the contrary, in the 312 

present study, the ultrasonic measurements were taken in loins and hams by using the 313 

pulse-echo mode, which is characterized by the use of a single transducer and the 314 

sample’s thickness does not have to be measured. The use of a single transducer on 315 

the loin or ham’s base during pile salting would simplify the industrial implementation, 316 

reduce the cost of the device and minimize the impact of the ultrasonic measurement 317 

on the mass transfers (salt and water).  318 

Therefore, the results reported in this section confirm that the ΔTOF measured by 319 

using the pulse-echo mode could be a useful ultrasonic parameter for the purposes of 320 

performing the online monitoring of the salting process in individual loins (average 321 

thickness 5.0cm), as well as in more complex and thicker meat pieces, such as hams 322 

(average thickness 15.7cm). Additionally, the ultrasonic pulse-echo technique 323 

represents a significant improvement for the industrial application of the system 324 



14 
 

compared to the ultrasonic through-transmission technique due to the fact that it avoids 325 

the need to measure the sample thickness and the number of transducers required is 326 

reduced. 327 

3.4 INFLUENCE OF THE DRY SALTING ON THE TIME OF FLIGHT 328 

Table 2 shows the thickness reduction (Δe), salt gain (ΔXS), water loss (ΔXW) and time 329 

of flight variation (ΔTOF) in loins and hams during dry salting at 2ºC. As appreciated in 330 

Table 2, the longer the salting time, the higher the ΔTOF. Thus, the ΔTOF increased in 331 

loins from -2.7μs (6h) to -7.0μs (72h) and in hams from -5.5μs (4 days) to -17.6μs (30 332 

days) (Table 2). As previously mentioned, and as observed in Table 2, the ΔTOF 333 

during salting was related to the ΔXS and ΔXW in the samples (loins and hams). 334 

Overall, the higher the ΔXS and ΔXW, the higher the ΔTOF. In addition, water loss 335 

during salting leads to meat shrinkage (García-Gil, Muñoz, Santos-Garcés, Arnau, & 336 

Gou, 2014), and thus, to thickness reduction (Δe) (Table 2), which could also contribute 337 

to shortening the time of flight. Despite the fact that the ΔXW and Δe factors affect 338 

ΔTOF, the multiple regression model used showed that both factors were statistically 339 

non-significant (p>0.05) on the ΔTOF prediction, which can be attributed to the fact that 340 

the magnitude of the individual effect of these factors can be masked by their highly 341 

variable nature in the salting process. Thus, according to the statistical analysis, the 342 

ΔTOF is mainly related to the salt gain in the sample during salting. 343 

Previous results have shown a similar relationship between the ΔXS and the change of 344 

the ultrasonic velocity regardless of the sample nature (formulated samples from 345 

ground pork meat, pork muscles or water solution) (De Prados et al., 2015). 346 

Consequently, as velocity of ultrasound in a sample is the ratio between the sample 347 

thickness (e) and the TOF, the ΔXS must be related not only to the ΔTOF, but also to 348 

the initial sample thickness and the thickness change (Δe). As far as in the present 349 

work the effect of Δe on ΔXS has been found to be negligible, the models for predicting 350 
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ΔXS should consider both ΔTOF and the initial e. As an example of the need of 351 

considering the initial sample thickness, it can be observed that the ΔTOF was -3.3μs 352 

in loins (eavg= 5.0cm) for a ∆XS of 2.5% w.b. after 12h of salting, while the ΔTOF was -353 

11.2μs in hams (eavg=15.7cm) for a similar ∆XS (2.2% w.b.) after 14 days of salting. 354 

However, when the ΔTOF/e was computed for these two cases, a similar value was 355 

found for loins (-0.7μs/cm) and hams (-0.8μs/cm). Since measuring the thickness 356 

before salting could be complex on an industrial scale, the initial time of flight (TOF0), 357 

related to the sample thickness and velocity of sound in the raw meat, could be used.  358 

3.5 PREDICTIVE MODELS FOR SALT GAIN AND CLASSIFICATION OF LOINS 359 

AND HAMS 360 

Since the ΔTOF is related to the salt content and the TOF0 is related to the initial 361 

thickness, both ultrasonic parameters (ΔTOF and TOF0) were used as factors with 362 

which to develop predictive models for the salt gain. The ultrasonic measurement 363 

points of the M set were used to develop the predictive models as mentioned in section 364 

2.5. Eq.1 and Eq.2 show the best models obtained for the salt gain estimation in loins 365 

and hams by combining the two ultrasonic variables (ΔTOF and TOF0) from the pulse-366 

echo measurements. The R2 and RMSE were 0.787 and 0.73% for loins (Eq.1) and 367 

0.774 and 0.57% for hams (Eq.2). Additionally, other predictive models were 368 

established, including two variables which can be easily measured at industrial level: 369 

one regarding the sample (the initial weight, wg) and the other one related to the salting 370 

process (the salting time, t) (Eq.3 for loin and Eq.4 for ham). The inclusion of t and wg 371 

provided additional information that improved the predictive models, obtaining a 372 

reduced model error (RMSE=0.45% for loins using Eq.3 and 0.43% for hams using Eq. 373 

4) and an increase in the determination coefficient (R2= 0.923 for loins and 0.891 for 374 

hams). Similar results were obtained by Fulladosa, Muñoz, Serra, Arnau, and Gou 375 

(2015) and Håseth et al. (2008) using X-Rays. In these studies, the salt prediction was 376 
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more accurate than in the present analysis, the RMSE being 0.30% for hams of 377 

different breeds (Fulladosa, Muñoz, Serra, Arnau, & Gou, 2015) and 0.20-0.40% for 378 

ground pork Semimembranosus muscles (Håseth et al., 2008). 379 

LOIN
 

TOFTOF0255.0TOF0039.0524.3X 0
2
0S ΔΔ   Eq.1 

HAM
 

TOFTOF0066.0TOF0125.0TOF0003.0253.0X 00
2
0S ΔΔΔ   Eq.2 

LOIN 
TOFt0107.0TOFt0034.0

wgt0431.0TOF0414.0t0010.0t143.0568.1X

0

22
S

Δ

ΔΔ



  Eq.3 

HAM 
TOFt00004.0TOFt0001.0

wgt0120.0TOF00004.0wg550.3t00003.0t140.0051.39X

0

2
0

2
S

Δ

Δ





 

Eq.4 

where ΔXS is the salt gain (% w.b.), t the salting time (h), wg the initial sample weight 380 

(kg), TOF0 the initial time of flight (μs) and ΔTOF the time of flight variation (μs).  381 

The usefulness of ultrasound as a reliable method of classifying loins and hams 382 

according to the different levels of salt gain was tested by using the best predictive 383 

models (Eq.1, Eq.2, Eq.3 and Eq.4). For that purpose, the validation (V) and model (M) 384 

sets of the whole loins and hams and each ultrasonic measurement point were 385 

classified into three different categories of salt gain (ΔXS), as mentioned in section 2.5. 386 

Similar percentages of correctly classified samples (CC) at the ultrasonic measurement 387 

points (79% in loins and 75% in hams) and in the whole pieces (85% in loins and 90% 388 

in hams) were computed (Table 3) by using only the ultrasonic parameters (Eq.1 and 389 

2). On the other hand, the classification improved by using Eqs.3 and 4, especially in 390 

the case of loins (Table 3). In this regard, the percentage of CC ultrasonic 391 

measurement points increased from 79% to 86% for loins and from 75% to 78% for 392 

hams. In the case of whole loins, the percentage of CC samples increased from 85% to 393 

95% whereas no improvement was found for whole hams. 394 

 395 
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4. CONCLUSIONS 396 

The gradual shortening of the time of flight during the dry salting of loins and hams was 397 

mainly related to the salt gain. 85% of the loins and 90% of the hams were correctly 398 

classified by using predictive models based on the ultrasonic parameters. A slight 399 

improvement in the percentage of correctly classified samples was achieved in loins 400 

(95%) with the inclusion of the sample’s weight and salting time in the predictive model. 401 

Therefore, the ultrasound pulse-echo mode could be a useful technique for continuous 402 

dry salting monitoring, as well as for the salt gain prediction for classification purposes. 403 

In addition, the pulse-echo technique is characterized by the use of a single transducer 404 

on one side of the sample, which facilitates the industrial implementation of this non-405 

destructive technique compared to the through-transmission mode. 406 
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Figure 1. Experimental set-up for online ultrasonic measurements in loins and hams 

during dry salting. 

Figure 2. Experimental kinetics of salt gain (ΔXS) and water loss (ΔXW) in loins and 

hams during dry salting at 2ºC. 

Figure 3. Variation of the time of flight (ΔTOF) between the first and last ultrasonic 

signals captured in a ham dry salted for 30 days at 2ºC. 

Figure 4. Time of flight variation (ΔTOF) in loins (A and B) and hams (C and D) during 

dry salting (24-72h for loins and 11-20 days for hams) at 2ºC. Each series corresponds 

to a different ultrasonic measurement point (TA1, TA2, TB1 and TB2). 
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Table 1. Fat (XF), water (XW) and salt content (XS), thickness (e), width (z), length (l) 
and weight (wg) of the fresh loins and hams*. 
 

 LOINS HAMS 

XF (% w.b.) 2.4±1.9a 14.0±3.7b* 

XW (% w.b.) 72.7±2.1c 65.5±2.9d* 

XS (% w.b.) 0.18±0.05e 0.23±0.05e* 

e (cm) 5.0±0.8f 15.7±0.6g 

z (cm) 11.0±0.8j 27.8±2.8i 

l (cm) 20.0±2.0j 49.4±6.0k 

wg (kg) 1.0±0.1l 10.3±0.9m 
 

Mean values and standard deviations. 
Different letters in the same row indicate significant (p <0.05) differences between loins and hams. 
* Average values and standard deviations of 30 fresh Large White breed hams . 
 

Table 1



 

Table 2. Salt gain (∆XS), water loss (∆XW), thickness reduction (∆e) and time of flight 

variation (ΔTOF) in loins and hams during dry salting at 2ºC. 
 

SAMPLE TIME ∆e(cm) ∆XS (% w.b.) ∆XW (% w.b.) ∆TOF (µs) 

LOIN 

6h -0.23±0.58a 1.8±0.2ª -1.5±1.5ª -2.7±0.8ª 

12h -0.47±0.99a 2.5±0.5b -2.6±1.9b -3.3±0.6b 

24h -0.24±0.45a 3.5±0.7c -3.5±1.2b -4.6±1.0c 

48h -1.15±0.59a 5.1±0.6d -6.2±1.8c -6.0±0.7d 

72h -0.45±0.48a 5.3±0.9d -6.6±1.6c -7.0±0.9e 

HAM 

4 days -1.71±0.49abc 0.8±0.1a 0.5±0.3a -5.5±0.5a 

7 days -1.36±0.27bc 1.3±0.3ab -1.0±0.6b -8.8±0.8bc 

10 days -1.28±1.88bc 1.4±0.1b -3.0±1.5de -8.0±1.0b 

11 days -1.17±0.63bc 2.4±0.4de -2.1±1.1bcd -10.3±1.3cd 

12 days -0.40±0.50c 1.8±0.5bc -1.6±0.3bc -11.0±1.5d 

14 days -0.93±0.49bc 2.2±0.5cd -3.3±0.4de -11.2±1.0d 

15 days -2.88±1.31a 2.9±0.5ef -2.8±0.8cd -13.1±1.5e 

16 days -2.18±0.89ab 4.1±0.4g -4.6±0.7f -14.2±0.4e 

20 days -5.15±1.24d 3.0±0.3f -4.4±1.9ef -14.3±1.4e 

30 days -4.75±1.27d 3.2±0.5f -4.4±1.6ef -17.6±0.5f 
Average values and standard deviations. 

Table 2



Table 3. Classification of loins and hams according to different levels of salt gain (ΔXS) by using the best predictive models (Eqs.1 and 3 for loins 
and Eqs.2 and 4 for hams).  
 

   Ultrasonic measurement points Whole loins 

   CC for different levels of ΔXS (% w.b.) CC for different levels of ΔXS (% w.b.) 

   nUMP <2.5 2.5-4.0 >4.0 TOTAL nS <2.5 2.5-4.0 >4.0 TOTAL 

LOINS 

Eq.1 

M 60 
11/19 
(58%) 

15/17 
(88%) 

23/24 
(96%) 

 15 
3/4 

(75%) 
4/5 

(80%) 
6/6 

(100%) 
 

     
63/80 
(79%) 

    
17/20 
(85%) 

V 20 
4/5 

(80%) 
4/6 

(67%) 
6/9 

(67%) 
 5 

1/1 
(100%) 

1/1 
(100%) 

2/3 
(67%) 

 

            

Eq.3 

M 60 
16/19 
(84%) 

14/17 
(82%) 

24/24 
(100%) 

 15 
4/4 

(100%) 
5/5 

(100%) 
6/6 

(100%) 
 

     
69/80 
(86%) 

    
19/20 
(95%) 

V 20 
5/5 

(100%) 
4/6 

(67%) 
6/9 

(67%) 
 5 

1/1 
(100%) 

1/1 
(100%) 

2/3 
(67%) 

 

 

   Ultrasonic measurement points Whole hams 

   CC for different levels of ΔXS (% w.b.) CC for different levels of ΔXS (% w.b.) 

   nUMP <2.0 2.0-3.0 >3.0 TOTAL nS <2.0 2.0-3.0 >3.0 TOTAL 

HAMS 

Eq.2 

M 28 
9/12 

(75%) 
6/9 

(67%) 
6/7 

(86%) 
 7 

2/3 
(67%) 

2/2 
(100%) 

2/2 
(100%) 

9/10 
 (90%) 

     
30/40 
(75%) 

    

V 12 
4/6 

(67%) 
3/4 

(75%) 
2/2 

(100%) 
3 

1/1 
(100%) 

1/1 
(100%) 

1/1 
(100%) 

            

Eq.4 

M 28 
10/12 
(83%) 

5/9 
(56%) 

7/7 
(100%) 

31/40 
(78%) 

7 
2/3 

(67%) 
2/2 

(100%) 
2/2 

(100%) 
9/10  

(90%) 
         

V 12 
5/6 

(83%) 
2/4 

(50%) 
2/2 

(100%) 
3 

1/1 
(100%) 

1/1 
(100%) 

1/1 
(100%) 

M and V refer to the model and validation set, respectively. 
nUMP and nS are the number of ultrasonic measurement points (UMP) and samples (S) in each set. 
CC represents the correctly classified samples and is expressed as the percentaje of correctly classified nUMP or nS (in parenthesis/brackets) and as the ratio between the correctly classified and total nUMP 
or nS for each level of salt gain. 

Table 3



 


