
Departamento de Informática de Sistemas y
Computadores

Flight coordination solutions for multirotor
unmanned aerial vehicles

Thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

By

Francisco José Fabra Collado

Advisor:

Dr. Carlos Tavares Calafate

Valencia, Spain

September, 2019

To my wife, mother, and father.

With them my life makes sense.

iii

Do not just teach your children
to read, teach them to question
what they read, teach them to
question everything.

George Carlin

v

Acknowledgements

First of all, I would like to thank my tutor Carlos Tavares Calafate for his
continuous support, providing useful and necessary guidance to reach this

goal. In the same way, I want to thank all the professors from the Computer
Networks Research Group (GRC), as they have also contributed with both their
knowledge and experience.

I also want to thank my coworkers, a great group of Ph.D. students that made
me enjoy the whole process, providing hours of fun, inside and outside of the
laboratory.

Finally, I want to thank my family and my wife for their support, and for their
patience towards me during these years.

Francisco José Fabra Collado
Valencia, October 14, 2019

vii

Abstract

As the popularity and the number of Unmanned Aerial Vehicles (UAVs) in-
creases, new protocols are needed to coordinate them when flying without

direct human control, and to avoid that these UAVs collide with each other. Test-
ing such novel protocols on real UAVs is a complex procedure that requires in-
vesting much time, money and research efforts. Hence, it becomes necessary to
first test the developed solutions using simulation. Unfortunately, existing tools
present significant limitations: some of them only simulate accurately the flight
behavior of a single UAV, while some other simulators can manage several UAVs
simultaneously, but not in real time, thus losing accuracy regarding the mobil-
ity pattern of the UAV. In this work we address such problem by introducing
Arducopter Simulator (ArduSim), a novel simulation platform that allows con-
trolling in soft real-time the flight and communications of multiple UAVs, being
the developed protocols directly portable to real devices. Moreover, ArduSim in-
cludes a realistic model for the WiFi communications link between UAVs, which
was proposed based on real experiments.

The chances that two UAVs get close to each other during their flights is in-
creasing as more and more of them populate our skies, causing concerns regarding
potential collisions. Therefore, this thesis also proposes the Mission Based Col-
lision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol
applicable to all types of multicopters flying autonomously. It relies on wireless
communications in order to detect nearby UAVs, and to negotiate the procedure
to avoid any potential collision. Experimental and simulation results demonstrate
the validity and effectiveness of the proposed solution, which typically introduces a
small overhead in the range of 15 to 42 seconds for each risky situation successfully
handled.

The previous solution aims at UAVs performing independent flights, but they
can also form a swarm, where more constraints have to be met to avoid collisions
among them, and to allow them to complete their task efficiently. Deploying an

ix

UAV swarm instead of a single UAV can provide additional benefits when, for
example, cargo carrying requirements exceed the lifting power of a single UAV, or
when the deployment of several UAVs simultaneously can accelerate the accom-
plishment of the mission, and broaden the covered area. To this aim, in this work
we present the Mission-based UAV Swarm Coordination Protocol (MUSCOP), a
solution that allows multiple UAVs to perfectly coordinate their flight when per-
forming planned missions. Experimental results show that the proposed protocol
is able to achieve a high degree of swarm cohesion independently of the flight
formation adopted, and even in the presence of very lossy channels, achieving
minimal synchronization delays and very low position offsets with regard to the
ideal case.

Currently, there are some other scenarios, such as search and rescue operations,
where the deployment of manually guided swarms of UAVs can be necessary. In
such cases, the pilot’s commands are unknown a priori (unpredictable), meaning
that the UAVs must respond in near real-time to the movements of the leader UAV
in order to maintain swarm consistency. Hence, in this thesis we also propose the
FollowMe protocol for the coordination of UAVs in a swarm where the swarm
leader is controlled by a real pilot, and the other UAVs must follow it in real-time
to maintain swarm cohesion. Simulation results show the validity of the proposed
swarm coordination protocol, detailing the responsiveness limits of our solution,
and finding the minimum distances between UAVs to avoid collisions.

x

Resumen

A medida que la popularidad de los Vehículos Aéreos No Tripulados (VANTs) se
incrementa, también se hacen necesarios nuevos protocolos para coordinarlos

en vuelos sin control humano directo, y para evitar que colisionen entre sí. Probar
estos nuevos protocolos en VANTs reales es un proceso complejo que requiere inver-
tir mucho tiempo, dinero y esfuerzo investigador. Por lo tanto, es necesario probar
en simulación las soluciones previamente implementadas. Lamentablemente, las
herramientas actuales tienen importantes limitaciones: algunas simulan con preci-
sión el vuelo de un único VANT, mientras que otros simuladores pueden gestionar
varios VANTs simultáneamente aunque no en tiempo real, perdiendo por lo tanto
precisión en el patrón de movilidad del VANT. En este trabajo abordamos este
problema introduciendo Arducopter Simulator (ArduSim), una nueva plataforma
de simulación que permite controlar en tiempo real el vuelo y la comunicación en-
tre múltiples VANTs, permitiendo llevar los protocolos desarrollados a dispositivos
reales con facilidad. Además, ArduSim incluye un modelo realista de un enlace de
comunicaciones WiFi entre VANTs, el cual está basado en el resultado obtenido
de experimentos con VANTs reales.

La posibilidad de que dos VANTs se aproximen entre sí durante el vuelo se
incrementa a medida que hay más aeronaves de este tipo surcando los cielos, in-
troduciendo peligro por posibles colisiones. Por ello, esta tesis propone Mission
Based Collision Avoidance Protocol (MBCAP), un nuevo protocolo de evitación
de colisiones para VANTs aplicable a todo tipo de multicópteros mientras vue-
lan autónomamente. MBCAP utiliza comunicaciones inalámbricas para detectar
VANTs cercanos y para negociar el proceso de evitación de la colisión. Los resul-
tados de simulaciones y experimentos reales demuestran la validez y efectividad
de la solución propuesta, que introduce un pequeño aumento del tiempo de vuelo
de entre 15 y 42 segundos por cada situación de riesgo correctamente resuelta.

La solución anterior está orientada a VANTs que realizan vuelos independien-
tes, pero también pueden formar un enjambre, donde hay que cumplir más res-

xi

tricciones para evitar que colisionen entre sí, y para que completen la tarea de
forma eficiente. Desplegar un enjambre de VANTs en vez de uno solo propor-
ciona beneficios adicionales cuando, por ejemplo, la necesidad de carga excede la
capacidad de elevación de un único VANT, o cuando al desplegar varios VANTs si-
multáneamente se acelera la misión y se cubre un área mayor. Con esta finalidad,
en este trabajo presentamos el protocolo Mission-based UAV Swarm Coordina-
tion Protocol (MUSCOP), una solución que permite a varios VANTs coordinar
perfectamente el vuelo mientras realizan misiones planificadas. Los resultados ex-
perimentales muestran que el protocolo propuesto permite al enjambre alcanzar
un grado de cohesión elevado independientemente de la formación de vuelo adop-
tada, e incluso en presencia de un canal de comunicación con muchas pérdidas,
consiguiendo retardos en la sincronización insignificantes y desfases mínimos en la
posición con respecto al caso ideal.

Actualmente hay otros escenarios, como las operaciones de búsqueda y resca-
te, donde el despliegue de enjambres de VANTs guiados manualmente puede ser
necesario. En estos casos, las órdenes del piloto son desconocidas a priori (im-
predecibles), lo que significa que los VANTs deben responder prácticamente en
tiempo real a los movimientos del VANT líder para mantener la consistencia del
enjambre. Por ello, en esta tesis proponemos el protocolo FollowMe para la coor-
dinación de VANTs en un enjambre donde el líder es controlado por un piloto, y el
resto de VANTs lo siguen en tiempo real para mantener la cohesión del enjambre.
Las simulaciones muestran la validez del protocolo de coordinación de enjambres
propuesto, detallando los límites de la solución, y definiendo la distancia mínima
entre VANTs para evitar colisiones.

xii

Resum

A mesura que la popularitat dels Vehicles Aeris No Tripulats (VANTs) s’incre-
menta, també es fan necessaris nous protocols per a coordinar-los en vols

sense control humà directe, i per a evitar que col.lisionen entre si. Provar aquests
nous protocols en VANTs reals és un procés complex que requereix invertir molt
de temps, diners i esforç investigador. Per tant, és necessari provar en simulació
les solucions prèviament implementades. Lamentablement, les eines actuals te-
nen importants limitacions: algunes simulen amb precisió el vol d’un únic VANT,
mentre que altres simuladors poden gestionar diversos VANTs simultàniament en-
cara que no en temps real, perdent per tant precisió en el patró de mobilitat del
VANT. En aquest treball abordem aquest problema introduint Arducopter Simu-
lator (ArduSim), una nova plataforma de simulació que permet controlar en temps
real el vol i la comunicació entre múltiples VANTs, permetent portar els protocols
desenvolupats a dispositius reals amb facilitat. A més, ArduSim inclou un model
realista d’un enllaç de comunicacions WiFi entre VANTs, que està basat en el
resultat obtingut d’experiments amb VANTs reals.

La possibilitat que dues VANTs s’aproximen entre si durant el vol s’incremen-
ta a mesura que hi ha més aeronaus d’aquest tipus solcant els cels, introduint
perill per possibles col.lisions. Per això, aquesta tesi proposa Mission Based Colli-
sion Avoidance Protocol (MBCAP), un nou protocol d’evitació de col.lisions per
a VANTs aplicable a tota mena de multicòpters mentre volen autònomament.
MBCAP utilitza comunicacions sense fils per a detectar VANTs pròxims i per
a negociar el procés d’evitació de la col·lisió. Els resultats de simulacions i ex-
periments reals demostren la validesa i efectivitat de la solució proposada, que
introdueix un xicotet augment del temps de vol de entre 15 i 42 segons per cada
situació de risc correctament resolta.

La solució anterior està orientada a VANTs que realitzen vols independents,
però també poden formar un eixam, on cal complir més restriccions per a evitar
que col.lisionen entre si, i perquè completen la tasca de forma eficient. Desplegar un

xiii

eixam de VANTs en comptes d’un només proporciona beneficis addicionals quan,
per exemple, la necessitat de càrrega excedeix la capacitat d’elevació d’un únic
VANT, o quan en desplegar diversos VANTs simultàniament s’accelera la missió
i es cobreix una àrea major. Amb aquesta finalitat, en aquest treball presentem
el protocol Mission-based UAV Swarm Coordination Protocol (MUSCOP), una
solució que permet a diversos VANTs coordinar perfectament el vol mentre rea-
litzen missions planificades. Els resultats experimentals mostren que el protocol
proposat permet a l’eixam aconseguir un grau de cohesió elevat independentment
de la formació de vol adoptada, i fins i tot en presència d’un canal de comunica-
ció amb moltes pèrdues, aconseguint retards en la sincronització insignificants i
desfasaments mínims en la posició respecte al cas ideal.

Actualment hi ha altres escenaris, com les operacions de cerca i rescat, on
el desplegament d’eixams de VANTs guiats manualment pot ser necessari. En
aquests casos, les ordres del pilot són desconegudes a priori (impredictibles), el
que significa que els VANTs han de respondre pràcticament en temps real als
moviments del VANT líder per a mantindre la consistència de l’eixam. Per això,
en aquesta tesi proposem el protocol FollowMe per a la coordinació de VANTs en
un eixam on el líder és controlat per un pilot, i la resta de VANTs ho segueixen
en temps real per a mantindre la cohesió de l’eixam. Les simulacions mostren la
validesa del protocol de coordinació d’eixams proposat, detallant els límits de la
solució, i definint la distància mínima entre VANTs per a evitar col.lisions.

xiv

Contents

Acknowledgements vii

Abstract ix

List of Figures xvii

List of Tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 4
1.3 Structure of the Thesis . 5

2 UAVs and UAV-based systems: An overview 7
2.1 Flight simulation alternatives . 11
2.2 Current solutions for UAV coordination 13

3 UAVs built for real experiments 19

4 ArduSim simulation platform 21
4.1 ArduSim design and implementation 22
4.2 ArduSim validation . 47
4.3 Summary . 58

5 Mission Based Collision Avoidance Protocol (MBCAP) 61
5.1 Protocol overview . 62
5.2 Protocol validation . 72
5.3 MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol 73

xv

Contents

5.4 Summary . 94

6 Mission-based UAV Swarm Coordination Protocol (MUSCOP) 95
6.1 Protocol overview . 95
6.2 Data sources and error assessment 100
6.3 Protocol validation . 103
6.4 Summary . 112

7 FollowMe protocol 113
7.1 Protocol overview . 114
7.2 Data sources and error assessment 118
7.3 Protocol validation . 121
7.4 Summary . 129

8 Conclusions, Publications and Future Work 131

Bibliography 139

xvi

List of Figures

1.1 Gartner hype cycle for Emerging Technologies, 2017. 2

2.1 Types of UAVs given range and size. 7
2.2 Example of a MAV. 8
2.3 Open source multicopter wiring. 9
2.4 Multicopter layouts. 10
2.5 AEOTURNOS pilot interface, UAV, and communications network sim-

ulation tools coupling architecture. 12

3.1 Multicopters used in real testbed. 19
3.2 Raspberry-Pixhawk serial link setup. 20

4.1 ArduSim internal architecture. 24
4.2 MAVLink communications finite state machine. 26
4.3 Dronning controller graphical user interface. 29
4.4 Diagram of the different elements involved in performance tests. . . . 29
4.5 Packet loss vs. distance. 32
4.6 Packet loss vs. engine power. Effect of vibration due to engine lift power. 33
4.7 Packet loss vs. remote control distance. Effect of remote control inter-

ference. 33
4.8 Packet loss vs. datagram size. Effect of datagram size with the UAVs

on the ground and the remote controls off. 34
4.9 Packet loss vs. elevation. Multi-path fading effect at different altitudes. 34
4.10 Packet loss vs. antenna orientation. 35
4.11 Packet loss vs. distance (IEEE 802.11a, 5 dBi antenna). 36
4.12 Simulated broadcast model. 37
4.13 ArduSim architecture on real UAVs. 42
4.14 ArduSim main window: experiment in progress. 43

xvii

List of Figures

4.15 Initial configuration dialog. 44
4.16 Results dialog. 45
4.17 Swarm layouts: i) matrix with 9 UAVs, ii) linear with 5 UAVs, and iii)

circular with 9 UAVs. 46
4.18 Rendering quality overhead (i7 PC). 49
4.19 CPU utilization when varying the rendering quality overhead (i7PC). 50
4.20 Rendering quality overhead (i5PC). 50
4.21 UAV-to-UAV communications overhead (i7PC). 51
4.22 Time lag values for all the experiments (i7PC). 53
4.23 Time lag throughout the experiment (i7 PC). 53
4.24 Worst case analysis with 200 UAVs (i7PC). 54
4.25 Time lag values of all the experiments (i5PC). 55
4.26 Time lag over experiment progress (i5PC). 55
4.27 Worst case analysis with 150 UAVs (i5 PC). 56
4.28 Time lag values of all the experiments at a sending ratio of 5 pps (i7

PC). 57
4.29 Time lag over experiment progress (i7 PC, 5 pps). 57

5.1 MBCAP finite state machine. 63
5.2 Periodic beacon content. 65
5.3 Curve error in MBCAP alt. 1. 67
5.4 MBCAP alt. 1 vs. alt. 2: Predicted location error vs. flight time. . . . 68
5.5 MBCAP alt. 3: Filter effect. 68
5.6 MBCAP alt. 2 vs. alt. 3: Maximum predicted location error. 69
5.7 MBCAP alt. 3: Impact of predicted locations updating at full rate. . 70
5.8 Average predicted location error for each of the predicted locations. . . 70
5.9 Safe location analysis. 71
5.10 Collision avoided on a crop field (scenario 6). 73
5.11 Periodic beacon content. 75
5.12 Measured brake distance vs. current flight speed. 76
5.13 Distance between UAVs after stopping, in a face-to-face meeting. . . . 77
5.14 Distance between UAVs after stopping in a standard takeover, both

flying at different speeds. 78
5.15 MBCAP vs. MBCAP-e: Predicted location error vs. flight time. . . . 78
5.16 MBCAP vs. MBCAP-e: Average predicted location error for each of

the predicted positions on the beacon. 79
5.17 MBCAP-e finite state machine. 80
5.18 Safe location on curve analysis. 82
5.19 Multicopters used in real testbed. 84
5.20 Simulation vs. reality in a perpendicular crossing (scenario 1). 85
5.21 Experiment setup in an area of 5× 5 km. 87
5.22 Gauss-Markov mobility model calculations. 88
5.23 MBCAP vs. MBCAP-e: Average risks detected during an experiment. 90

xviii

List of Figures

5.24 MBCAP vs. MBCAP-e: Distribution of UAVs given the risks detected
by each one. 91

5.25 MBCAP vs. MBCAP-e: Global time overhead given the risks detected
by each UAV. 93

5.26 MBCAP vs. MBCAP-e: Time overhead by risk detected vs. number
of UAVs. 93

6.1 MUSCOP protocol finite state machine. 97
6.2 MUSCOP protocol message types. 99
6.3 Samples of test missions with 2, 6, and 30 waypoints. 101
6.4 Distance offset error for the matrix formation. 102
6.5 Evaluation using the linear formation with 9 UAVs (ideal channel). . . 104
6.6 UAVs offset on a swarm of 9 UAVs (ideal channel). 105
6.7 Flight time overhead using the linear formation with 9 UAVs (ideal

channel). 106
6.8 Time offset on a swarm of 9 UAVs (lossy channel). 107
6.9 Distance offset on a swarm of 9 UAVs (lossy channel). 108
6.10 Performance comparison between ideal and lossy channel conditions

for different formations. 109
6.11 Time offset for the linear formation when varying the inter-UAV distance.110
6.12 Packet loss ratio values at different distances. 110
6.13 Scalability analysis when varying the mission size and the number of

UAVs. 111

7.1 FollowMe protocol operation using a matrix formation. 114
7.2 FollowMe protocol finite state machine. 116
7.3 FollowMe message types. 117
7.4 FollowMe protocol: target location calculation. 117
7.5 Real-time data source. 119
7.6 Data source variables . 120
7.7 FollowMe protocol: Formation stability error (left), and global error

(right). 121
7.8 Error on a swarm of 9 UAVs using a linear formation, and with a

separation between neighbors of 75m. 122
7.9 Box and whisker plot of the formation error (σ) of the 9 UAVs of the

swarm. 123
7.10 Mean error for all the UAVs in a swarm of n drones using a linear

formation, and a neighbor separation of 75m. 124
7.11 Error on a swarm of 9 UAVs using a matrix formation, and for an

inter-UAV separation of 75 m. 124
7.12 Error on a swarm of 9 drones using a matrix formation, varying the

distance of separation between drones. 125

xix

List of Figures

7.13 Mean error for all the UAVs in a swarm of n drones using a matrix
formation and an inter-UAV distance of 75 m. 126

7.14 Mean error for all the UAVs in a swarm of 9 drones using a matrix
formation, varying the network refresh period. 127

7.15 Mean error for all the UAVs in a swarm of 9 drones at a separation
distance of 50 m, varying the formation type. 128

xx

List of Tables

4.1 Control commands as shown in Figure 4.2. 25
4.2 Hardware used for experiments. 47
4.3 Percentage of packets that waited (carrier sense) and collided (collision

detection). 58

5.1 MBCAP flight time overhead (min:sec). 74
5.2 Time overhead (min:sec) vs. wind. 74
5.3 MBCAP flight time overhead (min:sec). 83
5.4 MBCAP flight time overhead (min:sec) vs. wind. 84
5.5 MBCAP-e flight time overhead (min:sec). Simulation vs. real testbed. 86
5.6 MBCAP vs. MBCAP-e: Collision avoidance performance (mean value

by experiment). 89
5.7 MBCAP vs. MBCAP-e: Performance comparison (mean value by ex-

periment). 92

6.1 Overall simulation statistics (ideal channel). 105
6.2 Flight time overhead. 106
6.3 Overall simulation statistics (lossy channel). 109

7.1 Errors values using different refresh periods. 127
7.2 Errors values for the three formations. 129

xxi

Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs), colloquially known as drones, are flying devices
able to perform programmed flights or being remotely controlled. During the
past few years they have gained high relevance thanks to their capabilities when
performing a wide range of tasks. For instance, planned missions can be defined to
supervise farmlands, deliver packages to remote locations, or contribute to create
Delay-Tolerant Networks (DTNs) in the scope of Smart Cities [25]. Moreover, by
adopting adequate algorithms, it is possible to develop new routing protocols [24],
control the flight of a group of UAVs acting as a swarm [59], or dynamically create
an aerial network infrastructure in a dynamic, on-demand fashion [55].

These new applications demand for the establishment of communication pro-
tocols between UAVs to avoid collisions when they are in close proximity, and
to coordinate them when performing complex tasks, such as those undertaken
by UAV swarms. The development of these protocols is part of the current re-
search effort in the commercial UAVs field, which nowadays represents a hot topic
according to Gartner (see Figure 1.1).

Experimenting with UAV-based networking in order to develop and validate
new protocols presents several restrictions including: (i) pilots should meet the reg-
ulation requirements of each country, (ii) weather conditions should be favorable,
(iii) battery lifetime is quite limited, and (iv) certain applications require testing
with a high number of UAVs simultaneously. For instance, Lee et al. [39] analyze
a new routing protocol between UAVs and a Ground Control System (GCS) using
up to six UAVs simultaneously, while Y. Chai et al. [9] test a UAV formation

1

1. Introduction

Figure 1.1: Gartner hype cycle for Emerging Technologies, 2017.

protocol with up to six virtual UAVs.
In general, the approach adopted by most researchers relies on simulation.

However, simulations should be as realistic as possible, that is, they should ac-
count for the physical properties and flight behavior of the aerial vehicle, and
they should also integrate a model for wireless communications between UAVs
that resembles real-life behavior. In addition, it is important that the simula-
tion environment is able to manage several UAVs simultaneously, and that the
code developed is compatible with existing flight controllers, thereby simplifying
the process of porting the developed protocols to real UAVs to complete the de-
velopment cycle. Current flight simulators lack of some of these features, which
supposes a handicap for protocol development.

Regarding emerging UAV applications, privacy, security and flight safety [50]
remain a concern, especially in urban environments where the consequences of
any flight disruption are typically much more severe due to the risks of injuries for
citizens. To address this issue, several efforts are taking place worldwide to make
UAV flights safer. For instance, in Europe, U-space [48] is an initiative that aims
at making UAV traffic management safer and more secure. In particular, U-space
attempts to provide an appropriate interface with manned aviation and air traffic
control so as to facilitate any kind of routine mission, in all classes of airspace, and
even in congested environments like urban areas, so as to achieve the ambitious

2

1.1. Motivation

Single European Sky (SES) goal. The SESAR Joint Undertaking [60] was set
up in order to manage this large scale effort, coordinating and concentrating all
European Union (EU) research and development activities focused on Air Traffic
Management. This way, a wide range of drone missions that are currently being
restricted will be possible thanks to a sustainable and robust European ecosystem
that is globally interoperable.

Among the different areas where UAV flight safety is being considered, there
is a particular area that has not yet been fully addressed: the development of
Sense & Avoid mechanisms to enable a UAV to become aware of its environment,
allowing it to take evasive action if necessary [51]. There are protocols to avoid
collisions between large fixed-wing UAVs, but currently there are no such protocols
for multicopter UAVs following independent planned missions.

Collision avoidance is not the only field where coordination protocols have to
be developed. There are applications where employing a swarm of UAVs can help
to optimize some tasks through cooperation, or to parallelize tasks by supporting
the redundancy of different sensors, or with the simultaneous usage of different
types of sensors, among other scenarios.

Although there are already some solutions for the automation of UAV swarm
flights, in certain situations automatic guidance can be required. Examples of
such situations may include applications for large-scale agriculture in search of
pests or weeds [19, 2], wild life recordings [5], or border surveillance [13], among
others. In these specific cases, the different UAVs that make up the swarm must
be coordinated when carrying out the mission. Such mission must be planned
beforehand. Then, the communications between UAVs should enable near-real-
time responsiveness to maintain the consistency of the swarm.

The reliability of communications is a major problem in the creation of swarms,
as UAV synchronization directly depends on the reliability of such communica-
tions. Also, the distance separating the different UAVs that integrate the swarm
must remain consistent to avoid possible collision problems. Another problem
that may be experienced by swarms is associated with the transient or long-term
interruption of communication, which hinders synchronization, causing delays to
the entire process, or even a reduction of the number of elements in the swarm.

Finally, we focus on applications where UAV guidance must be manual. In this
particular case, the different UAVs that make up the swarm have to dynamically
adjust their routes in order to follow the master UAV acting as the leader of the
swarm. Such a solution may be required in scenarios such as search & rescue [66,
3], fire tracking [65], or the monitoring of disaster areas. In these cases, the pilot
must respond to visual stimuli in real time, and adapt the UAV course accordingly.
Our focus on UAV swarms also addresses situations where, in addition to manual
guidance, there is a need to carry multiple items or sensors that go beyond the
lifting capacity of a single UAV. An example would be a rescue scenario where
different UAVs carry food, water, medicine, or shelter. Thus, we need solutions
that would be very useful in these situations, by allowing the pilot to control

3

1. Introduction

the leader UAV following the usual manual procedures, while seamlessly dragging
along the rest of the UAVs conforming the swarm.

1.2 Objectives

The main objective of this thesis is to propose and implement ArduSim, a flight
simulation platform for UAVs, designed to provide the research community a tool
to develop new coordination protocols that are needed for the new emerging appli-
cations in this field. Using ArduSim as a development platform, we then propose
three novel protocols: MBCAP, a collision avoidance solution for UAVs following
independent missions; MUSCOP, a coordination protocol for swarms following a
predefined mission; and FollowMe, a coordination protocol for swarms with man-
ual guidance.

To achieve these global objectives, it becomes necessary to accomplish several
specific objectives.

ArduSim:

• Provide a communications link between UAVs, and an embedded system
that connects to the flight controller for inter-UAV coordination purposes.

• Develop a tool to measure the wireless communications link quality between
UAVs.

• Measure the link quality between UAVs under different circumstances in
order to model that link and integrate it in the ArduSim platform.

• Design and implement the simulation platform, providing all the necessary
features.

• Perform a thorough study of scalability and performance of the proposed
tool.

MBCAP:

• Design the protocol behavior so as to meet the desired collision avoidance
goals.

• Implement the proposed protocol in ArduSim.

• Perform basic simulation tests to validate the correctness and performance
of the protocol.

• Perform tests with real UAVs to check the similarity between simulation and
real experiments.

4

1.3. Structure of the Thesis

• Perform large-scale simulation tests for a thorough validation of the correct-
ness of MBCAP.

MUSCOP and FollowMe protocols:

• Design and implement the protocols.

• Perform a formation stability analysis.

• Test the proposed protocols under different formations.

• Evaluate the performance of the protocols in terms of time shift for the
different UAVs with respect to the master UAV.

1.3 Structure of the Thesis

The thesis dissertation is organized in 8 chapters. Below, we briefly describe the
contents of each part:

• Chapter 2. UAVs and UAV-based systems: An overview: we pro-
vide a review of general aspects related to UAVs architecture and current
UAV flight simulators. We finish by detailing current solutions for UAV
coordination.

• Chapter 3. UAVs built for real experiments: we briefly introduce the
custom UAV models built and used on real experiments.

• Chapter 4. ArduSim simulation platform: we design, develop and
validate our novel simulation platform. Among others, we analyze scalability,
and to what extent ArduSim meets real-time requirements.

• Chapter 5. Mission Based Collision Avoidance Protocol (MBCAP):
we propose a distributed collision avoidance protocol, finding weaknesses and
improving the initial solution with MBCAP-e, an enhanced version that op-
timizes the flight time required to avoid collisions, and that solves some of
the flaws detected on the first version of the protocol.

• Chapter 6. Mission-based UAV Swarm Coordination Protocol
(MUSCOP): we present a protocol that is able to maintain a stable flight
formation for a UAV swarm that is following a global planned mission.

• Chapter 7. FollowMe protocol: we develop a protocol aimed to tasks
that require using a UAV swarm with manual guidance, where a leader UAV
is guided by a pilot, and the remaining UAVs in the swarm follow the leader,
adapting to its unexpected movements dynamically.

5

1. Introduction

• Chapter 8. Conclusions, Publications and FutureWork: we conclude
this thesis, and we present the related publications, as well as a list of future
research lines.

6

Chapter 2

UAVs and UAV-based systems: An
overview

Before introducing the current efforts from the research community, in this section
we include an overview of the nature and functioning of the UAV types addressed
in this thesis.

Currently there are several types of UAVs with different sizes, flight time, load
capacity, and price. Figure 2.1 shows a classification of UAVs depending on these
factors [21, 14, 68].

MAV

MUAV

LASE

LALE

MALE

HALE

endurance

al
ti
tu
d
e

Figure 2.1: Types of UAVs given range and size.

7

2. UAVs and UAV-based systems: An overview

In detail, these are the characteristics of UAVs belonging to each of these
categories:

• Micro Aerial Vehicle (MAV). They are the smallest UAVs available, and
are mainly used for entertainment and research. With a weight lower than
2 kg and a price typically less than 1,000 euros, they are limited to a flight
time below 30 minutes, and a flight altitude lower than 200 meters. The
pilot is required to maintain Line Of Sight (LOS) with the device during the
flight in many countries.

• Mini Unmanned Aerial Vehicle (MUAV). The weight is increased up
to 20 kg, and they are used for surveillance, and data gathering.

• Low Altitude, Short Endurance (LASE). With a limited payload of
20 kg, they can fly for less than 2 hours.

• Low Altitude, Large Endurance (LALE). They are able to carry pay-
loads of several kilograms at an altitude of a few thousand meters for ex-
tended periods. They are used for forest inventory, monitoring, etc.

• Medium Altitude, Large Endurance (MALE). They are much larger
than low-altitude UAVs, and they can fly for many hours, for hundreds of
km, and up to an altitude of 9,000 meters. MALE UAVs cost a hundred
thousand euros or even more.

• High Altitude, Large Endurance (HALE). Large-sized UAVs that can
fly for more than 30 hours at an altitude up to 20,000 meters, being mainly
used for military purposes.

Figure 2.2: Example of a MAV.

Many UAVs that fly at a low altitude belong to the Vertical Take Off and
Landing (VTOL) family whenever they do not require a take off or landing
strip, which makes them specially suitable for many applications. Between VTOL

8

Figure 2.3: Open source multicopter wiring.

UAVs, this work focuses in multirotor UAVs (see Figure 2.2), a type of MAV that is
rapidly spreading due to the reduced cost and the capability of flying in a complex
area, e.g. urban environment or inside buildings.

We can find many multicopter flight controllers in the market based on propri-
etary hardware and software [16], but we are specially interested in open source
solutions to easily implement and deploy protocols on real multicopters. Most of
the open source solutions available in the market are based on the Pixhawk flight
controller [46], containing an implementation of the Ardupilot firmware [64]. The
wiring scheme of a typical quadcopter with this configuration is shown in Figure
2.3:

• Pixhawk. Flight controller.

• Electronic Speed Controller (ESC). Provides power to the motors and con-
trols their speed individually. The flight controller provides the signal needed
to vary the speed.

• Motors. Engines used to move the propellers.

• Power module. It transmits power to the flight controller, and to the ESCs.

• GPS & compass. External unit usually mounted over all other UAV ele-
ments.

9

2. UAVs and UAV-based systems: An overview

• Li-Po battery. Lithium-ion Polymer battery used to feed all the UAV sys-
tems.

• Remote control kit. The transmitter allows the user to operate the UAV
remotely with 8 or more channels mapped to the controls included in it.
The signal usually operates in the 2.4 GHz frequency band. The receiver
transmits low latency messages to the Pulse Position Modulation (PPM) en-
coder, that translates the commands from Pulse Width Modulation (PWM)
to PPM signals that the Pixhawk can understand. The transmission is bidi-
rectional, so the user is able to read status information in the transmitter
screen.

• Radio telemetry kit. It provides the pilot with feedback of the flight in a
smartphone, tablet or GCS. Moreover, a GCS allows to control the mul-
ticopter through this link. The transmission uses the 433 MHz band in
Europe, and the 915 MHz band in USA. The receiver is connected to the
first telemetry port of the flight controller with a serial link. This communi-
cation link is achieved with the Micro Air Vehicle Link (MAVLink) protocol
[47], a de facto standard to communicate with open source flight controllers.
We found it really important to develop solutions compatible with this pro-
tocol, to guarantee a straightforward deployment of any developed solution
on currently available UAVs.

• Safety switch. It prevents takeoff from taking place unless it is pressed to
ensure the pilot is ready to start the flight.

• Buzzer. Optional element that provides feedback about the current state of
the controller.

Figure 2.4: Multicopter layouts.

Several layouts are available to configure a multicopter depending on the num-
ber of motors and their distribution (see Figure 2.4), typically varying from three

10

2.1. Flight simulation alternatives

to eight motors, being the tricopter a very unusual model. Quadcopters are very
popular due to their low price, but hexacopters and octocopters are more conve-
nient, as they can keep flying even if one motor fails. Propellers alternate spinning
directions to achieve torque compensation.

2.1 Flight simulation alternatives

Protocol testing with real multicopters presents several restrictions:

• Pilots should meet the regulation requirements of each country.

• Weather conditions should be favourable.

• Battery lifetime is limited.

• Some applications require a high number of UAVs flying simultaneously.

These restrictions make protocol testing an expensive and time consuming
task, reason why researchers rely on simulation to test their developments. There
are many flight simulators available, but none of them allows developing new
protocols where the UAVs may need to modify their flight depending on the in-
formation gathered from other devices (typically other UAVs). Moreover, they
have to adequately emulate communications, and also the physic properties of the
multicopter.

In [18] we can find a list of existing flight simulators. Several of them mimic
with considerable accuracy the characteristics and physical properties of the UAV,
although (i) their code is proprietary, (ii) they are only compatible with a few plat-
forms, and (iii) they only allow controlling a single UAV at a time, thereby failing
to offer inter-UAV communications support. On the other hand, generic network
simulators like The Network Simulator (ns-2), ns-3, and Objective Modular Net-
work Testbed in C++ (OMNeT++) [34, 32] allow simulating with great accuracy
the communications link, but they are unable to accurately simulate the physi-
cal properties of a UAV, or the UAV flight behavior, in a realistic manner. On
the other hand, Ben-Asher et al. [8] created IFAS, a network simulator aimed at
Ad-hoc networks; their solution is only oriented at developing routing protocols,
failing to provide real-time network simulation.

Other authors have addressed the simulation of multiple UAVs. An example is
the work of Richard Garcia et al. [22], where they introduce a simulator based on
X-Plane that is able to emulate up to 10 planes or helicopters; however, differently
from ours, their solution is not oriented to multicopters. Moreover, their solution
requires a PC for each simulated UAV. In [27], J. Holt et al. develop a symbiotic
simulation architecture, although it is exclusively focused on the development and
analysis of collision avoidance protocols.

11

2. UAVs and UAV-based systems: An overview

Figure 2.5: AEOTURNOS pilot interface, UAV, and communications network
simulation tools coupling architecture.

UAVSim [29] is a simulator focused on securing the communications, and runs
over OMNeT++. UAVSim works by extending OMNeT++, introducing a mobil-
ity model based on the properties defined for a specific UAV model which allows
updating the route of each UAV based on the interactions with other neighboring
UAVs.

Simbeeotic [33] is able to simulate with great accuracy an UAV swarm using
JBullet, but it relies on its own language to control these virtual UAVs, which
difficults bringing the developed protocols to real-world devices. UB-ANC [49]
also simulates a set of UAVs, but it fails to model the communications channel,
and it does not include a graphical interface to allow analyzing UAV mobility,
meaning that all the information analysis depends on interpreting log files and
using third-party applications.

We can also find approaches like AETOURNOS [12], based on MATLAB, that
attempt to combine, on the long term, the simulation of a custom multicopter
model in real-time, or even using a real UAV (see Figure 2.5), with simulated
communications using OMNeT++. Its initial development is limited to the use of
the Transport Control Protocol (TCP), and authors fail to evaluate the temporal
mismatch between real-time UAV simulation and simulation-time communications
between UAVs.

In this work we present the Arducopter Simulator (ArduSim) (see chapter 4), a
multi-UAV simulation platform where mobility and the communications between
many UAVs are simulated in real time, and protocols are directly portable to real
devices, thereby avoiding the problems detected in the simulators described above.

12

2.2. Current solutions for UAV coordination

2.2 Current solutions for UAV coordination

UAV swarms have been studied for many years, and some coordination protocols
have been proposed in the literature. Most works focus on fixed wing UAVs,
as commercial devices were released many years ago, but only few studies exist
related to multicopter UAVs. In this section we introduce some relevant protocols
in this field, with an emphasis on solutions for multicopter UAVs.

2.2.1 Collision avoidance protocols

Regarding collision avoidance protocols, Mahjri et al. [44] did a theoretical study of
the characteristics that such a protocol should have, describing its elements. In this
work, the authors differentiate between two techniques for collision risk detection:
non-cooperative sensors, such as a proximity sensor [61] or a camera [35], and
cooperative sensors, such as the dissemination of flight information to nearby
UAVs, as occurs with ADS-B [1] technology in the solution proposed by Liu and
Foina [42]. In general, non-cooperative sensors can help at avoiding collisions with
static objects, but they do not allow to react fast enough to avoid collisions with
moving objects, like other UAVs performing independent tasks. In these scenarios,
cooperative sensors are more effective, as the collision risk can be detected well in
advance.

Jinwu et al. [30] defined a collision risk detection strategy based on space
discretization. They assign a degree of danger to each location in the space fol-
lowing a probabilistic model that predicts the place a UAV will be in the future.
This work focuses on UAVs moving very fast at a constant speed, and defines a
vast protected area around the UAV, forcing other aircrafts to scatter over a wide
area to avoid collisions. Furthermore, the authors did not explain the collision
avoidance strategy used to change the direction of the UAVs during flight.

Lin et al. [41] presented a UAV collision avoidance solution which can achieve
cluster situational awareness, autonomous formation control, and intelligent col-
laborative decision making. The main idea of their algorithm is to consider all
swarm members as a whole, and control the internal and external parameters of
the UAV swarm separately. Among the UAVs, a communication topology is set
up. They use a consensus algorithm to maintain the formation and avoid colli-
sions between UAVs. Moreover, they use the weight coefficient to set the priority
for every UAV. Beyond single UAV control, an improved artificial potential field
method is adopted to control swarm mobility. They improved the safety distance
and the traditional artificial potential approach to make them more suitable for
the UAV collision avoidance task. This way, even though UAVs approach obsta-
cles at a high speed and with a small angle, they will still have enough time and
space to change their flight direction. Authors validated the effectiveness of their
cooperative obstacle avoidance algorithm using MATLAB alone.

13

2. UAVs and UAV-based systems: An overview

Zhou et al. [70] presented a trajectory planning strategy for UAV collision
avoidance. They propose a varying cells strategy to integrate aerodynamic con-
straints into trajectory planning. They also adapt basic avoidance actions in the
varying cells strategy to go through different cells, enabling more flexible avoid-
ance maneuvers. Authors used Monte Carlo simulations to demonstrate that the
proposed method satisfies aerodynamic constraints, while both the convergence
and collision avoidance rates improve.

Kim and Ben-Othman [37] introduced a surveillance model for multi-domain
IoT environments, which is supported by reinforced barriers with collision-avoidance
using heterogeneous smart UAVs. Formally, they define a problem whose goal is
minimizing the movement of smart UAVs having as a condition that the collision-
avoidance among UAVs is assured when flying between their initial positions and
specific spots in a limited area.

Wang et al. [67] proposed an approach based on a 2D Laser Imaging Detec-
tion and Ranging (LIDAR) that offers a method to represent the objects in the
environment in a compact manner, which is significantly more efficient in terms
of both memory and computation in comparison with similar previous proposals.
Their approach is also capable of classifying objects into categories such as static
and dynamic, and tracking dynamic objects, as well as estimating their velocities
with reasonable accuracy. The main problem of this proposal is that it was not
designed for UAVs.

In [43], Ma improved a previous work by introducing collision and obstacle
avoidance capabilities to target tracking. In particular, the author increases the
control input with a repulsion term that resolves collisions with other team mem-
bers and nearby obstacles. Assuming that each UAV travels at a constant speed,
a control component is added that adjusts the UAV’s heading angle to the op-
posite direction in relation to the UAV’s closest neighbors, and to obstacles that
could provoke collisions. This repulsion term can also be expressed as a function
of the relative bearing angles alone, making it possible to be estimated/measured
by on board vision sensors in the presence of communication losses. Regarding
the communication topology tested, an all-to-all communication, a ring topology,
and a cyclic pursuit topology are studied. The effectiveness of the proposal is
demonstrated using only numerical simulation examples.

Chen and Lee [11] focused on proposing a novel and memory efficient deep
network architecture named UAVNet for small UAVs to achieve obstacle detection
in urban environments. The proposal shows that UAVNet can detect obstacles at
a rate of 15 fps, meeting real-time application requirements.

Most protocols analyze how to avoid collisions between UAVs, but to the best
of our knowledge, no protocol has specifically addressed the issue of collision avoid-
ance between multirotor UAVs from independent owners that are following planned
missions, like our Mission Based Collision Avoidance Protocol (MBCAP) does (see
chapter 5).

14

2.2. Current solutions for UAV coordination

2.2.2 Swarm protocols

UAV swarms require safety, avoiding possible collisions among them and with
obstacles, and also require efficiency, maintaining the formation and finishing the
programmed task as soon as possible. Some applications, like the search for pests
or weeds in large-scale agriculture, can be achieved with a single UAV traveling
over a wide area until it is fully covered. In this context, the use of a stable swarm
can highly speedup the task, searching with several UAVs at the same time. Below
we introduce several works that try to maintain the swarm formation based on
different approaches.

In [31] the authors proposed an automatic control system for UAV swarms.
Specifically, for their analysis, they use two fixed-wing aerial vehicles to maintain
the cohesion of the formation. The general idea is to provide a mechanism based
on radio-frequency pulses through which each UAV can detect its relative rank
and orientation compared to its neighbors. To achieve this, the authors use a
variant of the Frenet-Serret equations of motion for the trajectories of each UAV.
Unlike our proposals, this solution does not focus on scalable UAV swarms.

In [40] the authors presented a communications protocol for autonomous UAV
swarms focusing on a search mission. This proposal combines inter-UAV commu-
nication with geographic routing to improve the search efficiency. The authors
evaluate their novel protocol by simulation in only two dimensions. In [63] the
authors presented a swarm coordination proposal using the traditional 3G/4G
communications infrastructure. For communication and coordination among the
UAVs, they use the Scalable Data Delivery Layer (SDDL). In [62] the authors
proposed the use of a swarm of UAVs with the aim of establishing a wireless back-
bone over a specified disaster-struck area. For this purpose, they use autonomous
agents on each UAV to control them cooperatively. The proposed system achieves
the goal of establishing communication between multiple Ground Stations (GSs),
maintains a decentralized cooperative control based on behavior to search for un-
known GSs, and to retransmit packets from one GS to another.

Later, in [69], the authors presented a topology that adopts Ad-hoc networks as
mechanism that could be applied to control the mobility of UAV swarms. Its main
features are focused on connectivity and coverage area. Then, in [7], extensive
studies on the use of Flying Ad-hoc Networks (FANETs) were made, describing
the main problems of deploying Ad-hoc networks based on UAVs. The authors
describe features such as topology changes, radio propagation model, adaptability,
scalability, latency, UAV platform constraints, and bandwidth.

In [38] the authors proposed the use of microdrones equipped with Zigbee
modules for communication purposes. The solution supports complex mobility
patterns, although it does not cover the needs of an autonomous swarm in the
open field since the synchronization of the different aircrafts is achieved via a sensor
network installed in a test laboratory. It also presents details about the algorithm
and the hardware used for implementation; they validated their solutions through

15

2. UAVs and UAV-based systems: An overview

real experiments using 20 UAVs. Similarly, in [6], the authors used a virtual
structure based formation controller for UAV swarm systems moving in the three-
dimensional space. This proposal was extensively evaluated using simulation.

In [58] the authors used a controller based on a virtual leader structure to
provide a rigid training. They use an approach where the controller cooperates
in a decentralized way with the UAVs, allowing them to have a synchronization
signal so that it achieves a predefined formation in the presence of a time-varying
formation topology. Later, the authors of [17] used a similar approach, but instead
they adopt a system having a switching interaction topology to achieve time-
varying formations. The switching interaction topology consists of two parts. The
first one uses a formation control solution based on two-loops, where the internal
loop controller stabilizes the altitude, and the external loop controller drives the
UAVs to the desired positions. The second one uses a formation control protocol
using the adjacent information of each UAV, and where the formation can be
time-varying. Also, they validated their approach in real scenarios using four
quadrotors. Both proposals use algorithms based on Lyapunov to analyze the
stability of their controllers.

In this work, we propose the Mission-based UAV Swarm Coordination Protocol
(MUSCOP) (see chapter 6), that differs from all the previous ones since it defines
and maintains the formation of UAVs in a swarm following a planned mission. The
swarm leader will use the different waypoints defined for the mission as checkpoints
to make sure all UAVs remain available and maintain their relative positions in
the swarm.

On the other hand, some tasks like the search for missing persons in wide areas
require the swarm to be manually guided as the target location is unknown and,
at the same time, the swarm formation must be kept stable. Hence, below we refer
to several works that instead try to dynamically control a swarm.

In [56, 45] the authors proposed to control swarms using the Dynamic Data-
Driven Application System (DDDAS) [15]. These techniques are used in [56]
for testing with real data, which are then injected into a simulation environment
having multiple UAVs. The solution described uses the MASON library to simulate
swarms. DDDAS allows the different nodes in a swarm simulation to receive
location and other types of information from either real-world UAVs or simulated
UAVs, and in return the swarm simulation environment is able to steer these
UAVs. In [45], the authors use these frameworks to test different scenarios, and
determine if a region can be cleaned or not using swarms.

Palat et al. [54] propose an algorithm to create swarms of robots. The control
algorithm is based on the indirect pheromone communication typical of social
insects, such as ants. The authors implement two mobile software agents: i) ant
agents, and ii) pheromone agents. The first one generates and maintains the local
information about the formation that serves to guide the others and determine the
target location. The second pheromone agents clone themselves and move to other
robots to find the target ant. When ant agents receive pheromone agents, which

16

2.2. Current solutions for UAV coordination

have information to guide the ant agents, the ant agents move to the locations
that the pheromone agents point to.

In [4], authors proposed using swarm clouds as multiple GCSs. The idea of this
work is to reduce the efficiency problem in several missions, being controlled by
a GCS. The communication and accessibility of the different UAVs are improved
since each UAV has a single connection to an individual cloud. The problem with
this solution is that it needs a Ground Station that is in charge of synchronizing
the aircrafts.

Our FollowMe protocol (see chapter 7) fills-in a gap by focusing on applications
where multicopters must be manually guided. This is applicable to situations
where the pilot must respond to visual stimuli in real time, and in such a way that
the other UAVs in the swarm that follow the leading multicopter have to adapt to
these unexpected movements dynamically.

17

Chapter 3

UAVs built for real experiments

The main objective of this work is to develop ArduSim, and then several flight co-
ordination protocols using this simulation platform. Afterwards, we plan to deploy
these protocols in real multicopters, which requires adapting the UAVs to enable
UAV-to-UAV communications among them, and between the flight controller and
the hardware needed to run ArduSim. In this chapter we introduce prototypes
that were built to achieve this purpose.

The Pixhawk controller (see chapter 2) is an advanced flight controller, and it
includes several ports to connect different devices, but it is not possible to connect
a WiFi adapter, or even to run a UAV coordination protocol due to its reduced
computational power. To this end, we built three prototypes where a Raspberry
Pi model 3B+ is attached to the multicopter (see Figure 3.1).

Nowadays, there is no standard available for UAV-to-UAV communications,
but some efforts have been made with ADS-B [1] to provide them the current
location of other UAVs. Some other efforts try to communicate using LTE [28],

(a) GRCQuad (b) GRCHexa (c) GRCHexa2

Figure 3.1: Multicopters used in real testbed.

19

3. UAVs built for real experiments

Figure 3.2: Raspberry-Pixhawk serial link setup.

as there is a large infrastructure already deployed in many countries, but this
second option requires UAV-to-UAV communication to be relayed through an LTE
node, therefore introducing unnecessary delay. Most authors propose to establish
and Ad-hoc network for UAV-to-UAV and UAV-to-GCS communication. This
approach provides a direct link between UAVs, but also introduces some challenges
related to the fast evolution of the network topology with the relative movement
of the UAVs. Current routing protocols are not able to adapt fast enough to these
changes, so new routing protocols are being developed by the research community
[36]. Considering the reduced amount of alternatives to establish a link, we decided
to build an Ad-hoc network based on the 802.11a protocol, where messages are
broadcasted to make all the UAVs receive the same data. This solution fits most
of the possible situations, as the UAVs forming a swarm usually maintain direct
LOS among them, and therefore there is no need to introduce routing. At initial
stages, we used external dual-band WiFi adapters connected to a Raspberry Pi 3
B. Later, when the Raspberry Pi 3 B+ model was released, we used its internal
WiFi adapter instead, as it is already compatible with the 5 GHz frequency band.

ArduSim runs in the Raspberry Pi single-board computer, and requires a com-
munication link with the flight controller to modify the behavior of the multi-
copter. To this aim, we connected the Raspberry Pi through a serial port to the
second telemetry port of the Pixhawk, as shown in Figure 3.2. ArduSim runs
the deployed protocols in the Raspberry, using the MAVLink protocol. Once a
protocol is thoroughly tested, it can be ported to commercial multicopters, writ-
ing a new implementation for the microcontroller already included in the specific
multicopter. This solution provides researchers a way to build cheap multicopters
to develop and test their own protocols.

20

Chapter 4

ArduSim simulation platform

As the popularity of UAVs increases, new applications appear that require the
coordination of a group of multicopters to speed up a task, or even perform tasks
impossible to complete without this kind of devices. Nowadays, the implementa-
tion of a new UAV coordination protocol is a slow process, as it must be validated
in a simulator, and then it must be implemented again for real multicopters.
Moreover, the debugging process with real multicopters is expensive and time
consuming, and it can lead to crashes until the protocol is fine-tuned for the real
world.

Several UAV simulators are able to emulate the behavior of a real multicopter
with great accuracy, but they can only run a single UAV at a time, and they
also lack the ability to establish a communication link among several UAVs, an
essential functionality for many protocols where the UAVs react to the information
received from other UAVs. On the other hand, several network simulators, like
OMNeT++, can establish the required communication link among UAVs, but
they cannot simulate the required realistic and dynamic mobility pattern for the
UAVs. In this chapter we introduce ArduSim, a simulation platform designed to
fill this gap, simulating many UAVs at the same time and with great accuracy, and
establishing a simulated wireless communications link among them. Moreover, any
protocol implemented in ArduSim is directly portable to real multicopters, making
the deployment somewhat trivial.

21

4. ArduSim simulation platform

4.1 ArduSim design and implementation

ArduSim was developed in Java, and it has a modular structure, that is, the graph-
ical interface, the communication with the virtual UAVs and between them, and
the usability of the simulator itself, are all implemented on independent packages.
This eases the implementation of new inter-UAV communication protocols, while
avoiding having to learn all the details associated to communication with virtual
UAVs using the MAVLink protocol [47].

Some of the features of ArduSim include:

• Effortless protocol deployment on real UAVs. Current open-source
flight controllers use the MAVLink communications protocol to communicate
the UAV with an optional Ground Control Station (GCS). ArduSim uses
this protocol to fully control the behavior of the UAV while it is flying.
The only requirements to deploy a protocol in a real multicopter are to
attach a Raspberry Pi with a WiFi adapter (or a similar device capable of
running Java), and to connect it to the telemetry port of the flight controller,
following the instructions detailed on the ArduSim repository1. ArduSim
was designed to abstract the UAV control and communication layers to the
developer, so that the same developed code works equally in simulation and
in real UAVs, making the deployment straightforward.

• Soft real-time simulation. Simulations in ArduSim are performed in
near real-time, which speeds up the debugging process while the protocol is
implemented.

• High scalability. On a high-end computer (Intel Core i7-7700, 32 GB
RAM, SSD hard drive), ArduSim is able to run up to 100 UAVs in near
real-time, and up to 500 UAVs in soft real-time.

• UAV-to-UAV communication simulation. The communication among
virtual UAVs is performed through virtual links based on 802.11a technol-
ogy, using a model based on the results gathered from experiments with
real multicopters. When the protocol is deployed in real multicopters, Ar-
duSim automatically broadcasts UDP datagrams, requiring a WiFi adapter
connected to an Ad-hoc network.

• Complete Application Programming Interface (API). ArduSim pro-
vides a complete set of functions to perform the most common maneuvers
during a flight: take-off, start a mission, pause a mission, land, and so on.

• Deployment through a PC Companion. ArduSim can be run in three
different roles: (i) protocol testing on simulation, (ii) protocol deployment in

1https://bitbucket.org/frafabco/ardusim

22

4.1. ArduSim design and implementation

a real multicopter, and also (iii) as a PC Companion that helps to start and
control the execution of the distributed protocol when deploying a real UAV
swarm. Moreover, the PC Companion tool allows to recover control over the
UAVs in case the protocol does not behave as expected, thus avoiding any
crash during the first tests with real UAVs.

• Automatic collision detection. Safety is a critical aim for any protocol.
ArduSim informs the user if any collision happens during a simulation to
help the researcher to detect failures in the protocol design.

• Comprehensive experiment data logging. When the experiment ends,
either in simulation or in a real multicopter, ArduSim stores, among others,
the path followed by the UAV including coordinates, heading, speed, accel-
eration, distance to origin for each data recorded, as well as the same path
in Google Earth [26], ns-2 [52], and OMNeT++ [53] formats.

4.1.1 Simulation Architecture

To simulate a great number of UAVs simultaneously, we have used the Software
In The Loop (SITL) application as a basic development module. SITL contains
control code resembling a real UAV, simulating its physical and flying properties
with great accuracy. A SITL instance is executed for each virtual UAV, and it
runs together with its physical engine on a single process. The main limitation
of SITL is that it only simulates a single UAV, being thus inadequate to develop
communication protocols between UAVs.

Figure 4.1 shows the proposed simulation platform, which relies on a multi-
agent simulation architecture that implements a high-level control logic above
SITL itself. ArduSim allows configuring UAVs and starting experiments directly
from its graphical interface (GUIControl). In addition, it includes the simulation
of packet broadcasting between UAVs (Simulated broadcast), and the detection of
possible physical collisions (UAV Collision detector). The latter has been solved
using a thread that periodically checks if the simulated UAVs are close enough to
assert that a collision has happened, based on the information provided by the
flight controller of the virtual UAVs.

Each virtual UAV is composed of an agent in charge of controlling the UAV
behaviour, and the different threads required for the protocol being tested. The
communication between UAVs requires two threads, one for sending data packets
(Listener), and another one for their reception (Talker). Moreover, the developed
protocol can use an additional thread (Protocol logic) to command the UAV tak-
ing into account the logic of the protocol, and the messages received by other
surrounding UAVs.

An ArduSim agent includes a SITL instance, and a thread (Controller) in
charge of sending commands to the multicopter, and of receiving the information
that it generates. Such communications rely on the MAVLink protocol (see section

23

4. ArduSim simulation platform

Figure 4.1: ArduSim internal architecture.

4.1.2). When running ArduSim on a real UAV it becomes a controller agent, as
explained in detail in section 4.1.5.

4.1.2 Controlling multicopters

The Controller thread transmits control messages in the MAVLink format via
TCP to a SITL instance. Simultaneously, it receives and processes the answers to
the given instructions, and the information messages provided by the virtual flight
controller. This information (e.g. current position, speed, etc.) can be used by
the protocol being developed in order to achieve the desired functionality. In real
UAVs, such communications rely on a serial port connection towards the flight
controller (see section 4.1.5).

4.1.2.1 ArduSim-to-UAV communications API

In table 4.1 we show a small sample of the extensive API of more than 100 functions
provided for the developer to control multicopters. They allow to implement new
protocols easily, without needing to know how the MAVLink protocol works.

The commands are grouped into different categories according to the type of
message that is being transmitted between the simulator and the virtual flight
controller, as detailed in section 4.1.2.2.

Regarding the implemented set of commands, several clarifications are due.
First, the flight mode used by the flight controller is implementation-dependant,
meaning that the different flight modes used should be tested when porting any

24

4.1. ArduSim design and implementation

Table 4.1: Control commands as shown in Figure 4.2.

Simple CMD commands
setParameter Modifies a UAV parameter.
getParameter Retrieves a UAV parameter value.
setFlightMode Switches to another UAV flight mode.
armEngines Allows arming the engines before takeoff.

takeOffGuided Takes off until reaching a specific height (m).
setPlannedSpeed Changes the flight speed (m/s).
setCurrentWP Indicates the waypoint where to move to.

moveTo Moves the UAV to specific GPS coordinates.
removeMission Eliminates the current mission.
Throttle on command

stabilize Stabilizes the UAV height before stopping it.
Send wp list command

setMission Loads the specified mission on the UAV.
Get wp list command

getMission Retrieves details about the current mission.

protocol to a real UAV. Second, if more than 15 seconds pass between the engine
arming and the takeoff processes, the flight controller will disarm the UAV for
security reasons. Third and last, to move a UAV to a specific set of coordinates,
it must previously be in the guided flight mode, as required by the MAVLink
protocol.

The set of commands defined make the communications with the UAV trans-
parent to the developer, and they return a boolean value to indicate whether
execution was successful or not, thereby simplifying the handling of communica-
tion errors at a high level. At a low level, they are in charge of complying with
the communication protocols defined in the MAVLink standard.

4.1.2.2 MAVLink communications implementation

The finite state machine depicted in Figure 4.2 shows part of the communications
taking place between the Controller thread and the virtual flight controller. It is
in fact a simplified version of the actual state machine, which has a total of 42
states, and that takes into account all the commands implemented.

Each time a data packet is received from the flight controller, the simulator
checks its current state, and analyzes whether it should take any action. If the
state is OK, then no command has to be executed. Otherwise, it means that a
command was issued, or that some message sent from the flight controller requires
a reply. In addition to the answers to the different commands, the simulator

25

4. ArduSim simulation platform

Figure 4.2: MAVLink communications finite state machine.

constantly receives a great amount of MAVLink messages with information about
the actual situation of the UAV. Among others, it receives data regarding the
position, speed, attitude, and flight mode.

Concerning the implemented functions (see table 4.1), there are four types of
interaction between the simulator and the flight controller of a virtual UAV, as
shown in Figure 4.2:

• Simple CMD. Adopted by the overwhelming majority of commands. A com-
mand is issued, and the flight controller must return an acknowledgment
(ACK). When this ACK is received, the interaction ends.

• Throttle on. Used to take control of the flight altitude during a flight. The
interaction ends just after the command is issued, and no ACK is required.
This command simulates the presence of a remote control when none is
controlling the UAV, i.e., when the protocol under development does not
require the intervention of a pilot. This command must be used when the
UAV leaves the auto flight mode, or when it starts a flight in guided flight
mode, as the flight controller considers that the communication with the

26

4.1. ArduSim design and implementation

remote control has been lost, causing the UAV to perform an emergency
landing.

• Send wp list. Required to send a planned mission to the UAV. First we
submit the total number of waypoints associated to the mission, and the
controller reacts by requesting, one by one, the different waypoints; the
thread will then submit them sequentially until the flight controller returns
an ACK to confirm that all waypoints have been successfully received.

• Get wp list. Employed to recover a mission stored in the UAV. It starts
by requesting the mission. The controller returns a message to indicate
the number of waypoints conforming the mission. If the UAV has a mission
stored, that is, if the number of waypoints is not null, the thread will request
them sequentially until all are received; at that time, an ACK is sent back
to the controller.

4.1.3 UAV-to-UAV communications

Currently, the most straightforward way to provide communications between real
UAVs is to rely on broadcasting using UDP. Since a wireless link is created, the
simulator should take into account the signal range in order to determine whether
a packet arrives or not to the neighboring UAVs. This means that a realistic
communications model should be adopted. Some existing simulators rely on a
simple model, where a distance threshold is used to discriminate between received
and discarded packets, while others rely on the Friis equation, or a theoretical
model such as Okumura or Nakagami [10], all having significant computational
costs when running a large amount of UAVs at the same time.

ArduSim includes three different channel models depending on the desired
degree of accuracy:

• Unrestricted. It uses an ideal medium where data packets always arrive to
all possible destinations (basic model).

• Fixed range. Data packets arrive to another UAV only if the distance be-
tween them is lower than the defined threshold (simple model).

• Realistic 802.11a with 5dBi antenna. The probability that a data packet is
received by another UAV depends on the distance between UAVs accord-
ing to a model obtained from real experiments (realistic model), where the
packet loss rate between two multicopters was measured using a WiFi Ad-hoc
network link in the 5 GHz band (channel 36, 23 dBm transmission power).

Overall, the simulator determines whether a data packet transmitted by a UAV
is received by each of the neighboring UAVs according to the model used, and the
inter-UAV distance.

27

4. ArduSim simulation platform

The third wireless model was obtained by studying the communication link
properties between two real multicopters during flight, and provides a model with
a reduced computational cost that enables to simulate communications among a
large number of UAVs in a single computer. Below we provide a detailed expla-
nation on the process followed to obtain this model.

4.1.3.1 Dronning tool

In order to model the communications link between two multicopters, the first step
followed consisted on preparing two quadcopters (see Figure 2.2) with a Raspberry
Pi and a dual-band wireless adapter, and developing the Dronning tool to measure
the packet loss ratio when a UAV sends data packets to another UAV. This way
we can define the experiment conditions, manually controlling the relative location
of both multicopters, and changing the transmission rate, the datagram size, the
experiment duration, and whether the messages are sent via broadcast or unicast.

The Dronning tool is able to run with three different roles: client, server or
controller. The client and server instances of the tool run on the Raspberry Pi
connected to the flight controllers of the multicopters, and the controller instance
runs on a laptop. The three different application instances are connected to each
other via sockets, over an IEEE 802.11-based Ad-hoc network. The controller
instance is in charge of setting the experiment parameters on client and server,
and it coordinates the start of the test. An additional link is established between
server and client, and it allows to send data packets from the former to the latter
to measure the packet loss ratio under several circumstances.

If running at the controller, it provides a simple and yet complete graphical
interface, as shown in Figure 4.3. When the application starts, UAVs having
client and server roles attempt to discover and connect to an existing controller,
which should be locally accessible at a predefined IP address and port. Once
connections take place, the progress bar on top turns to green when this initial
step is completed, and the two compass elements below show yaw angles for both
UAVs; additionally, altitude is computed, along with relative distance and relative
height information.

The operator of the controller application starts by defining experiment pa-
rameters, including trace file name, test duration, transmission rate, packet size,
and the type of transmission (broadcast or unicast). Once this information is
introduced, it sends the configuration to both UAVs by pressing the appropriate
button. Once that step is highlighted in green, tests can start by pressing the test
button. After tests are completed, the bottom right of the interface shows a test
summary including the throughput achieved, and packet loss information.

Figure 4.4 shows the anatomy of a test using the Dronning tool. The con-
troller uses the control link to define the tests conditions and parameters, and to
synchronize the beginning of experiments, while the server sends data to the client
through a different link. Notice that a single Ad-hoc network is created for com-

28

4.1. ArduSim design and implementation

Figure 4.3: Dronning controller graphical user interface.

Figure 4.4: Diagram of the different elements involved in performance tests.

munications between UAVs, and from UAVs to Controller. For this reason, the
control link becomes idle when tests are ongoing to avoid interfering with results.

In addition to the controller terminal and operator, two additional people are
involved in real tests; these are the two Pilots in Command (PICs), responsible for
positioning the UAVs at the desired locations according to the instructions of the

29

4. ArduSim simulation platform

controller. The purpose is to achieve the target parameters for the test in terms
of distance between UAVs, relative and absolute height, etc. Notice that, between
the PICs and the UAVs, additional channels are created for Radio Control tasks
and telemetry data.

The Raspberry Pi of each multicopter is connected to a telemetry port of the
flight controller, which enables to read flight data during the experiment by means
of the MAVLink protocol. We specifically gather location, speed, and attitude
data. The server instance sends the current value of these parameters to the client
on each message sent, so it can store the received and its own data on a file for
further analysis. Only 86 Bytes are enough to transfer the needed information, so
padding is added to the message to achieve the size defined by the user.

The stored file is processed later on a computer using macros that calculate
the following parameters: number of packets sent/received/lost, and minimum and
maximum sizes of loss bursts. In addition, they also calculate the mean, standard
deviation and 95% confidence interval for the following variables: mean loss burst
size, temperature, roll, pitch, yaw (and their respective angular speeds), latitude,
longitude, altitude, elevation, Universal Transverse Mercator (UTM) coordinates,
3D speed components and total speed, bearing, distance between UAVs, height
difference between UAVs, and relative angle between UAVs (with and without
accounting for elevation differences).

In addition to calculating the aforementioned statistics, the following charts are
also calculated automatically: histogram and time sequence for packet loss bursts,
histograms for UAV positions in the 3 axis, zenith chart of UAV position variations,
time sequence of the total UAV speed, and time sequence for the relative angle
between UAVs (with and without accounting for elevation differences). Based
on all the aforementioned data, it is possible to easily assess channel conditions,
and relate them to the actual mobility and environmental conditions (e.g. wind,
obstacles,...).

4.1.3.2 Results for the 2.4 GHz band

We firstly tested the 2.4 GHz frequency band, as it is available in all the WiFi
adapters currently available. We also knew that most remote controllers use the
same band to guide the multicopter, which could be a serious issue when attempt-
ing to achieve a stable communications link. Moreover, they use a frequency-
hopping strategy that occupies the entire 2.4 GHz band, meaning that all WiFi
channels are affected to a same extent.

The Ad-hoc network was established with TP-Link TLWN722N wireless adapters
operating in channel 1 using the IEEE 802.11g annex. Both cards were endowed
with a 5 dBi external antenna, and the transmission power was of 100 mW. Each
experiment had a duration of 60 seconds, and a packet transmission ratio of 50
packets per second. If not stated otherwise, the packet size was 1500 Bytes (maxi-

30

4.1. ArduSim design and implementation

mum Ethernet MTU). Since packets were broadcasted, the transmission data rate
was of 6 Mbit/s.

The analyzed factors and experiment parameters were the following:

• Separation between UAVs (signal attenuation) and remote control ac-
tivation (electromagnetic interference). The transmitted signal decreases
with the distance. In addition, significant interferences are expected as the
remote control link uses the same frequency band as the UAVs communi-
cation link, as discussed above. The packet loss ratio was measured for
different distances between UAVs, with the remote controls off and on.

• Engine power on (electromagnetic interferences). The running engines of
the UAV produce electromagnetic interferences that may affect the wireless
signal. For this experiment the UAVs were located on the floor. Then, the
packet loss ratio at different distances between UAVs was measured in two
situations: with the engines off, and with the engines on but at a very low
power. The remote controls were turned on during both test series.

• Engine speed (structural vibrations). If the engine power increases, the
UAV starts to vibrate. Furthermore, the engines emit more electromagnetic
radiation, which could increase the effect already studied in the previous
experiment. Both UAVs where anchored to the ground at a distance of 20
meters between them. The engine power was increased from 0 to 100% in
intervals of 25%.

• Separation between UAV and remote control (electromagnetic inter-
ference). Since the control signal can produce interference, the distance
between the remote control and the UAV could significantly influence the
communications link quality. As in previous experiments, the UAVs where
positioned on the ground at a distance of 20 meters between them. The link
quality was measured when separating the remote control from the UAV at
short-range distances.

• Data packet size (media noise). The longer the packet being sent, the
longer time the wireless media is busy, and the probability of noise trans-
mission errors increases. Both UAVs were 20 m apart, and measurements
were made with packet sizes of 300, 1000 and 1500 bytes.

• Ground elevation (multi-path fading and Fresnel zone occupancy). The
transmitted signal reflects on the ground, which could produce multi-path
fading. Furthermore, the Fresnel zone around the LoS could be affected by
the ground, lowering the strength of the received signal. During the tests,
both UAVs were 20 meters apart, and measurements were made for different
elevation values.

31

4. ArduSim simulation platform

0 20 40 60 80 100 120

Distance (m)

0

0.2

0.4

0.6

0.8

1

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Remote off

Remote on

(a) Effect of remote control
interference and distance.

0 20 40 60 80 100 120

Distance (m)

0

0.2

0.4

0.6

0.8

1

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Engine off

Engine on

(b) Effect of turning on the drones
engines (25% power).

Figure 4.5: Packet loss vs. distance.

• Relative antenna orientation. Real antennas are not isotropic, and so
the relative orientation between transmitting and receiving antennas affects
the link strength. The Dronning tool provides charts with the evolution
of relative antenna orientation and bursts of packets lost throughout the
test time. The comparison of these charts allows to detect the correlation
between the relative antenna orientation and the link quality.

Figure 4.5a shows the results for the first experiment, where we measure the
packet loss ratio with the UAVs static near the ground at different distances,
and with the remote controls off and on. We can observe that, when the remote
controllers are turned off, the packet loss ratio is relatively low and increases with
the distance. When the remote controllers are turned on, the packet loss ratio
shifts to high values even at close distances. The presence of the remote control
makes the communication link nearly unusable, which encourages us to switch
to the 5 GHz frequency band, as it is also free and supported by many wireless
adapters.

The second experiment (see Figure 4.5b) studies if the electromagnetic inter-
ference generated by the engines has an influence on the communications link
quality. We find that the packet loss ratio is very high, and confirmed that it
increases with the distance between UAVs. Nevertheless, there is no significant
difference in terms of loss magnitude, as both series overlap, which means that
merely turning on the engines does not significantly affect the communications
link quality.

The third experiment (see figure 4.6) shows that the packet loss ratio increases
with the engine power from about 70% to about 84.5%. This is mostly due to
the vibration of the structure of the quadcopter, causing antennas to tilt, thereby
affecting the signals sent and received.

32

4.1. ArduSim design and implementation

0 20 40 60 80 100

Engine power (%)

0

0.2

0.4

0.6

0.8

1

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Figure 4.6: Packet loss vs. engine power. Effect of vibration due to engine lift
power.

0 10 20 30 40

Remote control distance (m)

0

0.2

0.4

0.6

0.8

1

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Figure 4.7: Packet loss vs. remote control distance. Effect of remote control
interference.

Accounting for the aforementioned issues, and considering that remote controls
are also a source of interference in the 2.4 GHz band, we proceed to study how the
distance between the remote controllers and the UAVs affects the packet loss ratio.
Figure 4.7 shows that, indeed, the proximity between the remote control and the
UAV has a clear influence on link quality. However, the effect is only significant
when the remote control is very close to the UAV (<1m). Since such distances
never take place during normal UAV operation, we can discard this effect.

In general, sending larger data packets increase the probability of transmission
errors, as the physical media is busy for a longer period. Thus, the effect of
the packet size has also been analyzed (see Figure 4.8) by testing with packet
sizes of 300, 1000, and 1500 bytes. The initial hypothesis was verified, as the
packet loss increases with the packet size. However, the overall packet loss ratio is
quite low (<4%). This means that, compared to other factors affecting inter-UAV
communications performance in the 2.4 GHz band, packet size is a parameter with
little overall relevance.

33

4. ArduSim simulation platform

400 600 800 1000 1200 1400

Packet size (Bytes)

0

0.01

0.02

0.03

0.04

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Figure 4.8: Packet loss vs. datagram size. Effect of datagram size with the UAVs
on the ground and the remote controls off.

0 20 40 60 80 100

Ground elevation (m)

0

0.2

0.4

0.6

0.8

1

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Figure 4.9: Packet loss vs. elevation. Multi-path fading effect at different
altitudes.

Regarding the effects related to signal propagation, the WiFi signal is reflected
by the ground and other surfaces like any wireless signal. Moreover, the ground
can represent a significant part of the Fresnel zone when assuming free-space
communications, thereby reducing the link quality. However, this experiment (see
Figure 4.9) failed to clearly confirm these effects, as the interference produced by
the remotes mask the results.

Finally, we attempted to find a correlation between the relative antenna orien-
tation and the packet loss. To achieve it we flew UAVs at a 15 m distance between
them, and at a ground elevation of 30 m, in GPS hold mode, and under windy
conditions (∼20 km/h), which caused UAVs to continuously adjust their position,
thereby causing antennas to tilt. Simultaneously, we captured packet losses along
with flight attitude parameters and GPS information, using this information to
obtain the relative angle between UAVs.

Figure 4.10a shows the evolution of the relative orientation of the UAV an-
tennas along one test, while Figure 4.10b shows the burst sizes associated to lost

34

4.1. ArduSim design and implementation

0 20 40 60 80 100

Test progress (%)

0

5

10

15

20
A

n
g

le
 b

e
tw

e
e

n
 a

n
te

n
n

a
s
 (

º)

(a) Angle between antennas vs. test
progress.

0 20 40 60 80 100

Test progress (%)

0

1

2

3

4

5

B
u

rs
ts

 s
iz

e
 (

p
a

c
k
e

ts
)

(b) Size of packet loss bursts vs. test
progress.

Figure 4.10: Packet loss vs. antenna orientation.

packets. We find that, despite some peak angular values have a match in terms of
packet loss bursts, no correlation can be found between both charts in the strict
sense. Again, we consider that the interference from remote controllers contributes
to masking this effect, preventing us from having a clear view of the results.

Along these experiments we found that a resilient WiFi transmission in the
2.4 GHz band is incompatible with the UAV remote controls widely available in
the market. In fact, we found that the packet loss ratio is unacceptable for nearly
all applications. Thus, it would be convenient to use remote controls that work
in other frequency bands, or shift the communications link to another frequency
band.

Overall, it has been found that several factors influence the communications
link quality, such as the distance between UAVs, or between UAV and remote
control, in addition to the data packet size and the structural vibration caused by
UAV engines. In particular, the greater the distance between UAVs or the data
packet size, the higher becomes the packet loss ratio, which means that there will
be a lower quality for the communications link. On the other hand, the remote
control proximity only affects communications performance at very short distances
that are unfeasible during normal UAV operation. Based on telemetry parameters
and GPS information, we have also measured the influence of ground reflection
and relative antenna orientation on link quality; however, the high interference
levels caused by the remote control prevented reaching statistically representative
differences.

4.1.3.3 Results for the 5 GHz band

As argued before, the 2.4 GHz frequency band is not suitable for UAVs to com-
municate between them as we usually keep the remote controls turned on in case
it becomes necessary to recover control over the device if the protocol under test

35

4. ArduSim simulation platform

0 200 400 600 800 1000 1200 1400

Distance (m)

0

0.2

0.4

0.6

0.8

1

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Measured

Best fit

Figure 4.11: Packet loss vs. distance (IEEE 802.11a, 5 dBi antenna).

fails. Thus, we repeated the first experiment of the previous list to analyze the
effect of the distance between UAVs on the link quality in the 5 GHz band. We
used an Alfa AWUS051NH wireless adapter with a 5 dBi antenna, and with a
transmission power of 200 mW.

Figure 4.11 shows the packet loss rate obtained when varying the distance
between UAVs. Now, the remote controllers do not affect the link quality, and so
we could use these results to define a realistic wireless channel model for ArduSim.
Beyond 1350 meters we consider that packet losses reach 100%, while for lower
distances the following polynomial applies:

y = 5.335 · 10−7 · x2 + 3.395 · 10−5 · x (4.1)

4.1.4 Virtual link implementation

IEEE 802.11-based networks rely on Carrier Sense Multiple Access with Colli-
sion Avoidance (CSMA/CA), an algorithm for medium access arbitration. Thus,
to make communications more realistic in the scope of our simulator, we have
implemented the carrier sensing functionality. Regarding the collision avoidance
mechanism used in 802.11, it involves very short waiting times (DIFS) before
transmitting a data packet, which is not possible to implement in real-time sim-
ulation without performing active waiting. This occurs because the time slice
that the system grants to each Java thread is larger than this value, and so there
are no guarantees that the packet will be transmitted after that time if a passive
wait is made. On the other hand, the solution is not scalable if active waiting is
performed, because each thread tries to use a CPU core completely, preventing
the simulation of more than 2 or 3 simultaneous UAVs on standard PCs. Such
limitations forced us to implement a mechanism to detect collisions on the wireless
channel, while discarding some of the collision avoidance features of CSMA/CA.
We consider that our solution offers an adequate trade-off between channel be-

36

4.1. ArduSim design and implementation

CD buffer rec buffer 1 receiver
receiveMessage(i,timeout)

n-1 senders
sendBroadcastMessage(i,message)

Figure 4.12: Simulated broadcast model.

haviour accuracy and performance, meeting real-time constraints despite CPU
limitations.

The carrier sensing, collision detection (physical level), and reception buffers,
have been simulated together by means of two functions, the first one for the
packet transmission, and the second one for the packet reception process; the data
structures shared between both these functions act as reception buffers. This way,
carrier sensing is simulated when a message is sent, while collision detection is
done when it is received.

Figure 4.12 shows the model used to simulate packet transmission via broad-
cast. The reception buffers (rec buffer) are First In First Out (FIFO), and they can
block the thread until a data packet is received, having a configurable size (163840
bytes by default). In addition, each reception buffer is preceded by another buffer
(CD buffer) used to detect collisions on the channel.

When simulating n UAVs, each of them can simultaneously receive messages
from a maximum of n-1 UAVs (thread Talker, see Figure 4.1, using the send
Broadcast Message function), which are then inserted in the CD buffer and ordered
according to the instant when transmission starts. If carrier sensing is activated,
the transmission does not start until the medium is available.

When a protocol being developed requests a message (thread Listener, using
the receiveMessage function), it first checks if there is any message in the reception
buffer. Otherwise, collision detection is applied to the messages available in the
CD buffer, eliminating those messages that have collided, and moving the rest to
the reception buffer for its own use. This solution allows us to detect collisions only
when there is no data in the reception buffer, and not whenever a new message is
requested, thereby reducing the computational cost considerably.

The intermediate buffer, in charge of simulating the wireless medium, allows us
to detect collisions, and it could grow indefinitely if the receiver does not request
any message. Although this approach would be the ideal solution from the collision
detection mechanism perspective, it is not viable since RAM memory is a limited
resource. For this reason, the size of the CD buffer is limited to twice the size of
the reception buffer (rec buffer). It is worth mentioning that, if collision detection
is not required, the intermediate buffer is deemed unnecessary. In this case, the
threads insert the messages directly into the rec buffer.

In order to determine if the medium is busy (carrier sensing), and whether two
received messages have collided (collision detection), it is necessary to determine
the start and end times of a message transmission taking into account the trans-
mission speed and the length of the frame. Regarding the transmission speed, the
communications model uses the 5 GHz band, and the transmission is made via

37

4. ArduSim simulation platform

broadcasting, meaning that the transmission rate is 6 Mbps. The end of the trans-
mission is determined by also taking into account the size of the frame, including
the preamble, according to the specifications of the 802.11 protocol. In addition
to the start and end times for message transmission, it is also necessary to store
the value of two variables (isChecked, isOverlapped) for each message in order to
detect collisions, as explained below.

Algorithm 1 details the message transmission process. If the communications
protocol is deployed in real UAVs, the transmission is done directly over UDP;
otherwise, broadcast transmission is simulated. Once the transmission of the
last message has been completed, it checks if no other UAV within range of the
transmitting UAV has began a new transmission (carrier sensing). We determine
whether a UAV is within the range of the transmitter (function isInRange) by
relying on any of the communication models described at the beginning of this
section, which can be selected by the user. The transmission consists of storing
a copy of the message on the CD buffer of each UAV within range. If collision
detection is not activated, the message is directly stored in the reception buffer
(rec buffer). If any of the two buffers is full, the message is discarded, meaning
that it is not received at that particular destination.

Every time a UAV sends a message, it stores a copy (prevSentMessage). The
instant of completion of a transmission is saved along with the message (pre-
vSentMessage.end), thus allowing to determine if the transmission has finished,
and if the medium is available (carrier sensing).

Algorithm 2 details the process of receiving a message. If there are no messages
in the reception buffer, algorithm 3 is executed to discard the messages that have
collided, moving to the rec buffer the remaining messages.

If the protocol is deployed on real UAVs, message reception is done via UDP;
otherwise, the transmission medium is simulated.

If collision detection is not enabled, it waits until there is some message avail-
able in the reception buffer whose transmission has been completed, and it is
delivered. Otherwise, if there are no messages available, the buffer that simulates
the medium is analyzed. If this buffer does not contain messages either, it is nec-
essary to wait for a message to arrive; otherwise, if it contains some message(s),
the collision detection algorithm is executed.

The collision detection process has a computational cost O(2n) on the number
of received messages, O(2n2) on the number of UAVs, and it consists of two steps.
In the first one, the messages, already sorted according to the transmission start
time (start), are marked as analyzed (isChecked), and among them, those that
have collided with other messages are also identified (isOverlapped). A second
step is used to eliminate overlapping messages, and to transfer the remaining
marked ones to the reception buffer, discarding the message in case this buffer is
already full.

The first step of the analysis process is stopped when the last message is ana-
lyzed, or when a message is found whose transmission has not yet been completed.

38

4.1. ArduSim design and implementation

Algorithm 1 sendBroadcastMessage(message)

Require: message 6= ∅
1: if is a real UAV then
2: send message through UDP broadcast
3: else
4: if landed then
5: block communications
6: end if
7: if prevSentMessage 6= ∅ then
8: while prevSentMessage.end > now do
9: sleep 1ms

10: end while
11: end if
12: if carrier sensing is enabled then
13: while ∃i 6= currentUAV ∧ i .prevSentMessage 6= ∅

∧ i .prevSentMessage.end > now ∧ i .isInRange do
14: sleep 1ms
15: end while
16: end if
17: i = 0
18: while i < number of UAVs do
19: if i 6= currentUAV ∧ i .isInRange ∧ (i .prevSentMessage = ∅

∨ i .prevSentMessage.end < now) then
20: if collision detection is enabled then
21: if ¬i .virtualQueue.isFull then
22: add message to i.virtualQueue
23: end if
24: if i .virtualQueue.size ≥ threshold then
25: process algorithm 3
26: end if
27: else
28: if ¬i .queue.isFull then
29: add message to i.queue
30: end if
31: end if
32: end if
33: i++
34: end while
35: prevSentMessage ← message
36: end if

39

4. ArduSim simulation platform

Algorithm 2 receiveMessage(timeout)

Require: timeout ∈ N
Ensure: message 6= ∅
1: if is a real UAV then
2: if timeout > 0 then
3: setSoTimeout(timeout)
4: end if
5: message ← receive through UDP
6: else
7: if landed then
8: block communications
9: end if

10: elapsedTime = 0
11: start = now
12: if collision detection is enabled then
13: while (message = ∅ ∧ timeout = 0)

∨ (message = ∅ ∧ elapsedTime < timeout) do
14: if queue.isEmpty then
15: if virtualQueue.isEmpty then
16: sleep 1ms
17: elapsedTime = now − start
18: else
19: process algorithm 3
20: end if
21: else
22: message ← queue.poll()
23: while mesage.end > now do
24: sleep 1ms
25: end while
26: end if
27: end while
28: else
29: while (queue.isEmpty ∧ timeout = 0)

∨ (queue.isEmpty ∧ elapsedTime < timeout) do
30: sleep 1ms
31: elapsedTime = now − start
32: end while
33: if ¬queue.isEmpty then
34: message ← queue.poll
35: end if
36: end if
37: end if
38: return message

40

4.1. ArduSim design and implementation

Algorithm 3 packetCollisionDetection(isReceiver)

Require: isReceiver ∈ [true, false]
1: if isReceiver ∨ virtualQueue.size ≥ threshold then
2: iterator ← virtualQueue
3: previous ← iterator .next
4: previous.isChecked ← true
5: while previous.end > now do
6: sleep 1ms
7: end while
8: if previous.end > endMax then
9: endMax ← previous.end

10: end if
11: while iterator.hasNext do
12: following ← iterator .next
13: following .isChecked ← true
14: if following .start < endMax then
15: previous.isOverlapped
16: following.isOverlapped
17: end if
18: if following .end > now then
19: following .isChecked ← false
20: if following.isOverlapped then
21: previous.isChecked ← false
22: end if
23: break
24: else
25: if following .end > endMax then
26: endMax ← following .end
27: end if
28: previous ← following
29: end if
30: end while
31: iterator ← virtualQueue
32: while iterator.hasNext do
33: message ← iterator .next
34: if ¬message.isChecked then
35: break
36: else
37: iterator.removeMessage
38: if ¬message.isOverlapped ∧ ¬queue.isFull then
39: add message to queue
40: end if
41: end if
42: end while
43: end if

41

4. ArduSim simulation platform

Figure 4.13: ArduSim architecture on real UAVs.

The second run stops after the last message, or when an unchecked message is
found (isChecked = false), that is, a message not found during the first run. This
solution takes into account the possibility of inserting a message among existing
ones that have already been analyzed during the first run, since insertions are
made concurrently. If the last message analyzed has collided with the second-last
one, both are preserved for the next analysis to account for those cases when a
message that collides with one of them arrives later on.

4.1.5 Protocol deployment on real UAVs

The ArduSim simulator has been designed to facilitate the deployment of the pro-
tocols implemented in real UAVs. The application was developed using Java, and
it communicates with virtual UAVs via TCP, simulating the communication among
UAVs through buffers that are shared by different threads (Figure 4.1). However,
when the application is executed in a real UAV (Figure 4.13), the graphical inter-
face is not shown, the communication with the virtual UAV is replaced by a serial
port connection, and the wireless communication between UAVs relies on broad-
casting of UDP datagrams. All the simulation-dependent software elements are
disabled merely by changing an execution parameter, which makes the deployment
of a newly developed protocol somewhat trivial.

To be able to deploy new protocols, it becomes necessary to port the Java ap-
plication to a Linux or Windows®-based device, with Java 7 pre-installed, along
with a physical serial port connection with one of the telemetry ports of the flight
controller, in addition to following the instructions provided with ArduSim. Sev-
eral tests have been performed with a Raspberry Pi having its ttyAMA0 serial

42

4.1. ArduSim design and implementation

Figure 4.14: ArduSim main window: experiment in progress.

port connected to the Telem2 telemetry port of the Pixhawk controller embedded
in our custom multicopters, allowing us to check the proper deployment of the
implemented flight coordination protocols.

4.1.6 ArduSim graphical user interface

ArduSim is oriented to the development of protocols applicable to UAVs perform-
ing planned missions, or conforming a UAV swarm. As an example, Figure 4.14
shows ten UAVs performing a mission, represented as letters ’GRC-TFM-NPSU’.

On the upper left corner of the window (1) we can find the application log. It
details the functioning of the simulator, as well as the results of the commands
sent to the UAVs.

On the right (2) we have the controls that allow the user to manage the applica-
tion, to start the test, or to close ArduSim. While running a swarm experiment, it
also shows an additional button to perform the setup step. In addition, it provides
general information about the simulator itself.

Most of the window space (3) is used to visualize UAV flights during tests. On
the upper right corner we show the wind direction (if defined for the test). The

43

4. ArduSim simulation platform

Figure 4.15: Initial configuration dialog.

discontinuous lines represent the mission assigned to each UAV. On each UAV, we
indicate its identifier and its altitude. Before starting, each UAV loads the mission
to be completed, and simulated wind is also applied. A thick stroke represents the
real path followed by each UAV. If the UAVs collision detection feature is enabled,
a red circle centered on each UAV is drawn. When a UAV invades that circle, we
consider that a collision between UAVs has occurred.

In addition to the main window, an additional dialog window is also opened to
show the position, the speed, and the flight mode according to the MAVLink pro-
tocol, as well as state information relative to the protocol during the experiment,
if needed.

The dialog box of Figure 4.15 is shown when ArduSim is started. It allows the
user to specify several simulation parameters, including the flight speed, starting
altitude, some performance parameters, the synchronization protocol to be tested,
the wireless model to be used and some of its properties, whether or not to detect
when collisions happen, in addition to simulated wind speed and orientation.

When an experiment ends, the user decides whether to save the results obtained
or not. A dialog is shown (see Figure 4.16) with the configuration and general

44

4.1. ArduSim design and implementation

Figure 4.16: Results dialog.

results of the experiment, which includes detailed statistics of the communications
among the virtual UAVs, such as the total number of data packets sent, how many
had to wait for the media to become available (carrier sensing), or were discarded
due to collisions, among others. Several independent files per UAV are also saved
with additional information, such as the actual path followed by each UAV during
the experiment.

4.1.6.1 Swarm formations

ArduSim integrates tools that allow us to easily define and use different swarm
flight formations, optimized for a master-slave communications pattern:

• Linear. The UAVs are arranged according to a straight line, which is per-
pendicular to the heading of the UAV located in the center of the swarm.
The distance among contiguous multicopters remains constant.

• Matrix. The UAVs are ordered according to a square matrix. Again, a
multicopter is located in the center of the swarm, and the distance between
contiguous multicopters is the same.

• Compact matrix. Similarly to the previous formation, the UAVs are ar-
ranged forming a matrix with a constant distance between contiguous UAVs,
but instead of building the matrix from a corner, it is built starting from
the UAV at the center, and adding multicopters so that the distance to it is
minimal, according to the matrix pattern. This way, the mean distance of
the UAVs to the center multicopter is minimized, which improves communi-
cations, as the packet loss ratio is affected by the distance between sender
and receiver.

• Compact mesh. The UAVs are ordered around the center multicopter, and
forming equilateral triangles among them. This is the most compact planar

45

4. ArduSim simulation platform

UAV 1
UAV 2

UAV 3

UAV 4 UAV 0 UAV 5

UAV 6

UAV 7

UAV 8

UAV 1 UAV 2 UAV 3

UAV 4 UAV 0 UAV 5

UAV 6 UAV 7 UAV 8

UAV 1UAV 2 UAV 3UAV 4 UAV 0

Figure 4.17: Swarm layouts: i) matrix with 9 UAVs, ii) linear with 5 UAVs, and
iii) circular with 9 UAVs.

formation that can be built, which means that the mean distance between
UAVs and the center multicopter is even less than in the previous formation.

• Circular. A multicopter is located in the center of the circle, and the
remaining UAVs surround it. The distances between the central UAV and
the rest of the multicopters, and between the latter ones, can be defined by
the user.

Notice that the main parameter used on each formation is the distance between
multicopters, as it is directly related to the probability of collisions during flight.

Figure 4.17 illustrates three of the different formations available. The multi-
copter located in the central position of the swarm formation can be the master,
if the master-slave communication pattern is used, in order to optimize communi-
cations performance.

Notice that the chosen patterns provide different trade-offs between commu-
nication link reliability and area coverage. The linear scenario can provide the
greatest coverage area, but with a greater distance between the master UAV and
the slaves (worst-case approach in terms of reliability), given a same number of
UAVs, and for a same distance between contiguous UAVs. In particular, the mul-
ticopters located on edge positions will be quite far away from the master, so the
messages transmitted between slave and master are prone to be lost more often,
thereby having a negative effect in terms of swarm coordination times. On the con-
trary, the matrix and mesh formations are more compact (worse area coverage),
but the distance between master and slaves is lower, thus minimizing distance-
related losses. Finally, the circular formation is in-between the previous two cases

46

4.2. ArduSim validation

Table 4.2: Hardware used for experiments.

i7 PC i5 PC
Processor Intel Core i7-7700 Intel Core i5-2500K

Speed (GHz) 3.6 (max 4.2) 3.3 (max 3.7)
Cores 4 4

Hyper-Threading yes no
Cache L1-2-3 4x64KB-256KB-8MB 4x64KB-256KB-6MB

RAM 32GB DDR4 2133MHz 8GB DDR3 1333 MHz
HHDD 480GB SSD 2TB 7200 rpm
GPU NVIDIA GeForce 8400 HD Intel 3000

Monitor 1920x1080 & 1280x1024 1280x1024
OS Ubuntu 16.10 Ubuntu 16.10

Java RE SE 8 SE 8

regarding distance from the master to the rest of the UAVs. Furthermore, this dis-
tance is the same for all the slaves, meaning that they are expected to experience
similar message loss levels.

4.2 ArduSim validation

Once the ArduSim platform has been introduced, we now proceed to validate its
correctness and scalability. To this end, we performed a wide set of experiments
by having a variable number of UAVs (i.e., from 1 to 256 UAVs) following a
straight path from origin to destination during 5 minutes, being that all UAVs
are overlapped, and collision detection is disabled. The flight altitude was set
to 5 meters, the speed was of 10 m/s, and the default values of the simulator
parameters were used. Experiments were made on two different computers (see
table 4.2) to evaluate the influence of the hardware used on the performance of
ArduSim.

The target metrics were RAM, hard disk, and CPU usage, as well as the time
lag between the UAVs of each experiment with respect to a reference UAV in
a single-UAV experiment. This last measurement allows us to evaluate how an
increase in the resource consumption levels affects the real-time performance of
our tests, and therefore the degree of scalability that can be supported. Notice
that, when resource consumption is very high, execution is delayed with respect
to the situation when there are sufficient resources, and threads do not have to
wait for the scheduler to let them access CPU resources.

Regarding functionality, the application has shown to be fully stable after 4000
executions. The only problems detected occurred when more than 150 simulta-

47

4. ArduSim simulation platform

neous UAVs where tested in the i5 PC, which is an issue related to the excessive
resource usage, as detailed below.

Hard disk I/O operations slightly affect CPU usage when simulating a high
number of UAVs (more than 100); this is due to log maintenance tasks performed
by the simulation environment managed by SITL. ArduSim has been designed
with this issue in mind, and thus provides two non-exclusive options. First, you
can deactivate the SITL log, so disk usage loses relevance, or it can be kept ac-
tive while running the simulator in root/administrator mode. In the latter case,
I/O operations are performed on a virtual disk instead, which is faster than in
the i7 PC ’s SSD hard drive, and certainly much faster than in the i5 PC ’s me-
chanical hard drive. In order to compare the results obtained with both PCs, all
experiments were performed with the log turned off, and in root mode.

The SITL executable requires a very small amount of RAM, since it is a com-
pilation of a controller firmware, and so it is designed to be executed with very
few resources. For this reason, the RAM usage of the simulator is very small,
even when simulating 256 UAVs simultaneously. The only circumstance where the
simulator consumes a significant amount of RAM is when it is run as root, and
a RAM drive is used to store the SITL logs. In this case, a maximum of 50 MiB
per UAV is used in the RAM drive, which represents a global memory usage of
12800 MiB, and a minimum amount of recommended system memory of 16 GiB
to simulate up to 256 UAVs simultaneously. However, with the SITL log disabled,
and even when using the RAM drive, the overall memory size requirement is re-
duced to 1280 MiB, and so the recommended amount of memory to run ArduSim
is reduced to only 6 GiB. If the execution is not performed as root, and therefore a
RAM drive is not used, the memory consumption is further reduced to 1400 MiB
both for the SITL instances and the simulator itself, and so a minimum of 4 GiB
of RAM suffices.

4.2.1 CPU utilization

The CPU load is a critical factor affecting the scalability of ArduSim since the
execution of each virtual UAV will be slowed down if the CPU cannot manage,
in real time, all the necessary calculations. We carried out experiments for dif-
ferent numbers of UAVs while varying the CPU usage associated to the graphical
environment and the computer used, and introducing as a synthetic load the trans-
mission of coordination information between the UAVs. Each experiment, lasting
5 minutes, was repeated three times measuring CPU usage once a second, and
then we took the average value.

4.2.1.1 Rendering quality overhead

Figure 4.18 shows the CPU usage with different numbers of UAVs, and when using
four different rendering qualities in the i7 PC used for testing:

48

4.2. ArduSim validation

50 100 150 200 250

Number of UAVs

0

100

200

300

400

500

600

C
P

U
 u

s
a

g
e

 e
q

u
iv

a
le

n
t

to
 o

n
e

 c
o

re
 (

%
)

RQ 2
RQ 1

RQ 3 and RQ 4

RQ 1

RQ 2

RQ 3

RQ 4

Figure 4.18: Rendering quality overhead (i7 PC).

• RQ 1. Lowest level with maximum performance.

• RQ 2. Fonts smoothed. Font antialiasing enabled.

• RQ 3. Lines smoothed. Font antialiasing enabled, and lines with sub-pixel
accuracy rendering.

• RQ 4. Same as RQ 3, and alpha blending optimized for quality.

We can see that only the use of line rendering with sub-pixel accuracy (i.e.,
RQ 3 and RQ 4) is significant in terms of performance. In addition, in the RQ
1 and RQ 2 levels, we find that the processor’s energy saving features apparently
increase the CPU usage when the load is low, that is, with less than 200 UAVs,
moving away from the theoretical line that would connect CPU usage with a
single UAV and with 256 UAVs. This effect takes place since the processor goes
into inactivity for short periods of time, and the execution of different threads
overlaps in time. This effect is also observed in Figure 4.21, when additional CPU
load is added by enabling inter-UAV communications. The maximum load with
256 UAVs is approximately 500%, when the maximum possible value is 800% (4
cores with Hyper-Threading can run 8 threads simultaneously).

Figure 4.19 shows the evolution of CPU usage during the experiment with 25
and 200 UAVs. In Figure 4.19a, the values oscillate significantly and randomly,
since the processor is far from being saturated, and there are even time intervals
during which the CPU is inactive. However, with 200 UAVs (see Figure 4.19b),
we observe that, when line drawing with sub-pixel accuracy is activated, the CPU
load increases and causes threads to start having to wait for execution, a situation
that causes CPU usage to become more uniform.

Figure 4.20 shows the CPU usage with the 4 rendering quality levels, in this
case for the i5 PC. It confirms that only two sets of rendering quality combinations
are significant, differentiated by the use of line drawing with subpixel accuracy (RQ

49

4. ArduSim simulation platform

50 100 150 200 250

Experiment progress (s)

120

125

130

135

140

145

150

C
P

U
 u

s
a

g
e

 e
q

u
iv

a
le

n
t

to
 o

n
e

 c
o

re
 (

%
)

RQ 1

RQ 2

RQ 3

RQ 4

(a) Results running 25 UAVs.

50 100 150 200 250

Experiment progress (s)

250

300

350

400

450

C
P

U
 u

s
a

g
e

 e
q

u
iv

a
le

n
t

to
 o

n
e

 c
o

re
 (

%
)

RQ 1

RQ 2

RQ 3

RQ 4

(b) Results running 200 UAVs.

Figure 4.19: CPU utilization when varying the rendering quality overhead
(i7PC).

20 40 60 80 100 120 140 160

Number of UAVs

0

50

100

150

200

250

300

350

400

C
P

U
 u

s
a

g
e

 e
q

u
iv

a
le

n
t

to
 o

n
e

 c
o

re
 (

%
)

RQ 3 and RQ 4

 RQ 1 and RQ 2

RQ 1

RQ 2

RQ 3

RQ 4

Figure 4.20: Rendering quality overhead (i5PC).

1/RQ 2 and RQ 3/RQ 4), although the difference between both levels is very
small. In this case, the system is not capable of simulating more than 175 UAVs
without destabilizing, since the CPU usage reaches 400 %, the maximum possible
one supported (4 cores can run 4 threads simultaneously). In addition, the time
lag introduced when simulating 175 UAVs is excessive, which is why, in Figure
4.25, its magnitude is analyzed only with up to 150 UAVs. Notice that, since
the CPU is less powerful, it shows a linear resource consumption increase with
the number of UAVs, and it does not show the same effects detected in the i7
platform, associated to energy saving mechanisms.

50

4.2. ArduSim validation

50 100 150 200 250

Number of UAVs

0

100

200

300

400

500

600

700

800

C
P

U
 u

s
a

g
e

 e
q

u
iv

a
le

n
t

to
 o

n
e

 c
o

re
 (

%
)

network off

5 packets per second

10 packets per second

Figure 4.21: UAV-to-UAV communications overhead (i7PC).

4.2.1.2 Communications overhead

ArduSim has been designed to develop and validate communication protocols be-
tween UAVs. Thus, the CPU usage analysis must also take into account the load
that communications between UAVs introduces. For this purpose, two experi-
ments have been designed on the i7 PC by varying the network load. In both
cases, all the simulated UAVs transmit data packets at a constant rate, and follow
an overlapping trajectory, meaning that nearly all the packets reach all the UAVs,
a situation that we consider the most unfavorable for our analysis, since it is asso-
ciated with a higher CPU load. The first experiment was done with a sending rate
of 5 packets per second, while the second one was done with a rate of 10 packets
per second. In both cases, the transmitted packet size is 705 bytes. Figure 4.21
shows that CPU usage grows faster with up to 40 UAVs. With more UAVs, the
load causes the energy saving mechanisms of the i7 PC to lose significance, and
the curves adjust better to the theoretical line connecting the results for 1 and 256
UAVs. However, the load introduced by the communications prevents the graph
from being straight, which is consistent with the computational cost of sending and
receiving data packets for the synthetic load used (O(2n2), being n the number
of UAVs).

4.2.2 Real-time constraints evaluation

Merely checking that the simulator is stable, and that the processor does not
become saturated, is not enough to state that ArduSim correctly emulates the
UAV flight in real-time. In fact, a very high or irregular CPU usage could introduce
a global delay in the execution of the emulated UAVs, or even a differential delay
between them, thereby affecting the scalability of the simulator. Therefore, the
maximum number of UAVs that can run simultaneously on a given computer will
depend on these factors.

51

4. ArduSim simulation platform

To analyze the scalability of ArduSim, experiments were carried out on both
the i7 PC and the i5 PC, with the rendering quality set to RQ 1, with a differ-
ent number of UAVs, and measuring the time lag for each of the simulated UAVs
regarding the simulation of a single UAV used as reference. In other words, con-
sidering the real-time performance of a single-UAV simulation, we analyze if the
UAVs suffer any kind of lag among them, and also in regard to that single-UAV
simulation. Each experiment was repeated 7 times, measuring the lag error every
5 meters throughout the followed path. We assessed the individual results of each
repetition, or the overall set of results as a single group, depending on the anal-
ysis carried out. All the experiments were performed with the UAVs following a
straight path trajectory from origin to destination for 5 minutes. All trajectories
are overlapped, and UAV collision detection is deactivated. The flight altitude was
set to 5 meters, and their speed was of 10 m/s; the default values of the simulator
were used for the remaining parameters.

Regarding the single-UAV experiment used as reference, it was selected among
the 7 repetitions as the one located nearest to the median value.

4.2.2.1 Scalability analysis under the i7 PC

Figure 4.22 shows a box-whisker plot with the time lag of the UAVs in regard to
the reference UAV path, obtained when varying the number of UAVs. In addition
to the median lag and the distribution of the lag values for all the simulated UAVs
obtained along 7 experiments, it includes the mean lag value. When simulating
100 or less UAVs, the measurements shown are really close to the mean value;
however, for a higher number of UAVs, data is more scattered, and the time lag
increases. Similarly to previous results (see Figure 4.18), the processor’s energy-
saving mechanisms introduce a significant time lag for a number of UAVs between
150 and 225. The worst case is detected with 200 UAVs, with an average lag
value of 0.45 seconds, and a maximum lag of 1.4 seconds. On the other hand,
the dispersion of values with up to 100 UAVs is significantly lower than the one
obtained with a higher number of UAVs.

Figure 4.23 shows the evolution of the mean value for the time lag correspond-
ing to the 7 experiments performed with each number of UAVs. The time lag
remains significantly constant throughout time for up to 100 UAVs (a mere in-
crease of 0.5 seconds per simulated hour), and it increases linearly with more
UAVs. As shown in Figure 4.22, the processor’s energy-saving mechanisms intro-
duce a significant time lag for a number of UAVs between 150 and 225, which
makes the slope for 200 UAVs to be actually higher than the slope for 256 UAVs.
We can conclude that the i7 PC allows us to simulate up to 100 UAVs while
meeting soft real-time constraints.

Now, a detailed analysis of the experiment that produces the greatest time lag
with regard to the reference UAV (i.e., with 200 UAVs) is presented. Figure 4.24a
shows the set of time lag values obtained in the 7 experiments performed. From

52

4.2. ArduSim validation

1 25 50 75 100 125 150 175 200 225 256

Number of UAVs

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
A

V
s
 t

im
e

 l
a

g
 (

s
)

mean lag

Figure 4.22: Time lag values for all the experiments (i7PC).

0 500 1000 1500 2000 2500

Experiment distance progress (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
A

V
s
 t
im

e
 l
a
g
 (

s
)

25

50

75

100

125

150

175

200

225

256

Number of UAVs

Figure 4.23: Time lag throughout the experiment (i7 PC).

that figure we find that the worst case is test number 3, with a maximum time
lag of 1.4 seconds, and a mean lag value of 0.62 seconds. Also, Figure 4.24b shows
the evolution of the time lag of each UAV in that test. We can see that, after an
initial warm-up period (first 700 meters), the time lag between UAVs stabilizes.
In addition, this lag is always greater than zero and it increases throughout time,
evidencing that UAVs suffer a delay with respect to the reference UAV. Figure
4.24c shows the average, minimum, and maximum lag for each UAV in that same
test. Notice that UAV number 103 is the one with the highest time lag. In
addition, the average lag for each UAV varies in a very small range of 0.6 seconds.
Thus, we can state that, although the simulation does not meet strict real-time
constraints, it can be considered to be correct as long as the absolute simulation
time is not relevant for the protocol under development, since the simulation delay
offset associated to the different UAVs remains similar.

53

4. ArduSim simulation platform

1 2 3 4 5 6 7

Experiment

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
A

V
s
 t
im

e
 l
a
g
 (

s
)

mean lag

(a) Time lag values of each experiment. (b) Experiment 3 (worst case). Time
lag of all the UAVs.

0 50 100 150 200

UAV identifier

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
A

V
s
 t

im
e

 l
a

g
 (

s
)

max lag

mean lag

min lag

(c) Experiment 3 (worst case).
Minimum, mean, and maximum time

lag for each UAV.

Figure 4.24: Worst case analysis with 200 UAVs (i7PC).

4.2.2.2 Scalability analysis under the i5 PC

The previous tests have been performed on a high-end desktop computer with very
high performance. Thus, we consider adequate to complement our analysis by also
checking the time lag associated to PCs with lower performance. In particular,
this section details the results obtained with the i5 PC used for testing.

The results in Figure 4.25 are limited to 150 UAVs, since with more than 175
UAVs the simulation becomes unstable, and with 175 the time lag (14 seconds)
is too high, something consistent with the results in Figure 4.20, where the CPU
became saturated with 175 UAVs.

In the i5 PC, the time lag remains stable over time for up to 100 UAVs (see
Figure 4.26). There is also a temporary reduction in CPU usage towards the end
of the experiment, when the UAVs approach the last waypoint of the mission,
just before landing. The initial lag has a bias deviation between 0 and 0.2 seconds

54

4.2. ArduSim validation

1 25 50 75 100 125 150

Number of UAVs

-0.2

0

0.2

0.4

0.6

0.8

U
A

V
s
 t
im

e
 l
a
g
 (

s
)

mean lag

Figure 4.25: Time lag values of all the experiments (i5PC).

0 500 1000 1500 2000 2500

Experiment distance progress (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

U
A

V
s
 t
im

e
 l
a
g
 (

s
)

25

50

75

100

125

150

Number of UAVs

Figure 4.26: Time lag over experiment progress (i5PC).

because the UAVs start their flight at different instants on each experiment. Notice
that this issue does not affect the real-time execution, and is due to control loops
included in the implementation.

Similarly to the experiments made with the i7 PC, we include a study of the
maximum temporal lag achieved (see Figure 4.27). First, in Figure 4.25, we can
observe that the maximum time lag is of 0.85 seconds, and it corresponds to
experiments with 150 UAVs. More specifically, it corresponds to the maximum
lag of the second experiment (see Figure 4.27a). Figure 4.27b shows that the time
lag between UAVs remains uniform throughout the test, similarly to Figure 4.24b.
Finally, in this case, the maximum time lag detected is associated to UAV 36 in
the experiment (see Figure 4.27c). There is greater variability in the average lag
of each UAV due to a greater dispersion in the time lag of each UAV. This occurs
because the processor is closer to saturation compared to the situation where the
i7 PC is used.

55

4. ArduSim simulation platform

1 2 3 4 5 6 7

Experiment

0

0.2

0.4

0.6

0.8

U
A

V
s
 t
im

e
 l
a
g
 (

s
)

mean lag

(a) Time lag values of each experiment. (b) Experiment 2 (worst case). Time
lag of all the UAVs.

0 50 100 150

UAV identifier

0

0.2

0.4

0.6

0.8

1

U
A

V
s
 t

im
e

 l
a

g
 (

s
)

max lag

mean lag

min lag

(c) Experiment 2 (worst case).
Minimum, mean, and maximum time

lag for each UAV.

Figure 4.27: Worst case analysis with 150 UAVs (i5 PC).

4.2.2.3 Communications overhead analysis

This set of experiments was carried out with a load of 5 packets per second per
UAV. This means that, with 200 UAVs, 1000 packets per second are sent, and
so potentially 199,000 messages reception events per second can take place when
broadcasting these packets. In such case, the associated CPU usage becomes high,
as shown in Figure 4.21, which can negatively affect the scalability of the simulator,
as the temporal offset of each UAV with respect to the reference may increase.

Figure 4.28 shows that the measured time lag with a number of UAVs between
150 and 225 is lower than the one depicted in Figure 4.22. This occurs because the
processor is working at full capacity, without activating the energy saving features
referred to earlier. However, with 256 UAVs, the lag is greater; in this case CPUs
operate close to their saturation point (see Figure 4.21).

Similarly to previous cases, the evolution of the time lag throughout the ex-

56

4.2. ArduSim validation

1 25 50 75 100 125 150 175 200 225 256

Number of UAVs

0

0.5

1

1.5

U
A

V
s
 t
im

e
 l
a
g
 (

s
)

mean lag

Figure 4.28: Time lag values of all the experiments at a sending ratio of 5 pps (i7
PC).

0 500 1000 1500 2000 2500

Experiment distance progress (m)

0

0.2

0.4

0.6

0.8

1

U
A

V
s
 t
im

e
 l
a
g
 (

s
)

25

50

75

100

125

150

175

200

225

256

Number of UAVs

Figure 4.29: Time lag over experiment progress (i7 PC, 5 pps).

periments has been studied. Figure 4.29 shows a peak of CPU usage towards the
end of the test, when the UAVs reach the last waypoint and reduce their speed. It
is also observed that the time lag remains stable over time with up to 175 UAVs,
increasing linearly for higher number of UAVs. These results are better than those
obtained before activating communications between UAVs, and occur because the
CPUs are already working at their full capacity when reaching 90 UAVs (see Figure
4.21).

Another issue to be discussed is the accuracy with which the simulation of
communications is able to detect the usage of the wireless medium (carrier sense),
as well as the collision between data packets. Table 4.3 shows the results obtained
when varying the number of UAVs while setting the transmission load to the value
defined above (5 packets per second per UAV). It is observed that the results
are somehow optimistic since, with 200 UAVs, 1000 packets sized 705 bytes are
being transmitted at a speed of 6 Mbps (transmission time of ≈ 1 ms), which
should saturate the medium. Although nearly all packets have to wait for the

57

4. ArduSim simulation platform

Table 4.3: Percentage of packets that waited (carrier sense) and collided (collision
detection).

25 50 75 100 125 150 175 200 225 256
CS 0.84 3.40 4.02 4.25 21.30 60.01 79.29 92.07 94.92 94.82
CD 0.08 0.06 0.10 0.13 0.56 3.20 8.69 15.09 17.52 20.29

medium to become available, the collision rate remains lower than expected. To
explain this phenomenon, we must take into account that the CPU of the i7PC
can only run 8 threads at a time, while with 200 UAVs there are 800 threads /
processes (one SITL process and three threads, Listener, Talker, and Controller,
per UAV) that are competing for CPU time, which implies that there are 100
threads/processes that compete for being executed on a same core. On the other
hand, the time slices provided to each thread by the Linux/Ubuntu operating
system varies between 0.75 ms (sysctl_sched_min_granularity) and 6 ms (sysctl_-
sched_latency), meaning that each thread can run about 13.3 times per second
during 0.75 ms, or, what is the same, each Talker thread can send a packet once
every 75 ms. Considering that, in the experiment performed, the transmission
time of each packet is approximately 1 ms. We find that, in a worst-case scenario,
it can only collide with packets sent by other Talker threads that are running when
these have just left the processor, or will run in the next round. This behavior
avoids that data packets collide with each other as often as expected, producing a
packet collision rate lower than what would actually occur. Thus, this problem is
inherent to the system itself, and can only be improved by using dedicated servers
with a very high number of cores.

4.3 Summary

In this work we introduced ArduSim, a realistic simulation platform that allows
operating with multiple UAVs simultaneously when performing planned missions,
or when flying as a swarm. To date, no similar solution has been developed
that offers similar characteristics, including the possibility to model inter-UAV
communications using different channel models, as well as the way UAVs use the
exchanged information to interact between them, paving the way for introducing a
wide range of novel protocols. Through simulation, it becomes possible to analyze
packet dissemination in DTNs, to develop new routing algorithms, or to propose
new flight coordination mechanisms. Among its many benefits, our simulator
allows validating the proposed solution beforehand, while porting that solution to
real devices becomes straightforward, as the set of commands used is the same.

In addition to the simulation platform itself, we also modeled the WiFi com-

58

4.3. Summary

munications link between UAVs based on real experiments performed in the 5 GHz
frequency band. In particular, we focused on the relationship between packet losses
and distance when broadcasting data. The derived model was then integrated into
the simulator as one of the wireless channel models available. To further improve
the degree of realism of our experiments, we also modelled the wireless channel
occupancy through a carrier sensing mechanism, and included the possibility of
detecting collisions of data packets.

The stability of ArduSim has been correctly validated, with up to 4000 different
successful executions, being stable with 256 UAVs in the i7 PC, and up to 175
UAVs in the i5 PC. We found that any mid-range or high-end computer is capable
of simultaneously simulating a high number of UAVs (approximately 100) in near
real-time, even when considering the overload introduced by the communications
between UAVs.

Regarding scalability, we have verified that the simulation can be performed
with up to 100 UAVs while meeting soft real-time constraints, and that the delay
offset between them is uniform. In addition, ArduSim is able to run at least 150
UAVs when hard real-time is not required in a computer similar to the i5 PC,
or even 225 with a high-end desktop computer (i7 PC). We have also analyzed
the influence of the rendering quality on the system load. We found that only
the tracing of lines with sub-pixel quality has a significant effect on performance.
Communications have a quadratic computational cost, so they also affect the sys-
tem performance significantly. When configuring each UAV to transmit at a rate
of 5 packets per second, the load affects real-time performance when having more
than 225 UAVs in the i7PC. Also notice that, depending on the complexity of the
UAV coordination protocol being developed, its impact on performance can also
become non-negligible.

59

Chapter 5

Mission Based Collision Avoidance
Protocol (MBCAP)

The adoption of UAVs to perform a multitude of tasks is raising concerns about
privacy, security and flight safety [50], especially in urban environments where the
consequences of any flight disruption are typically much more severe due to the
risks of injuries for citizens. To address this issue, several efforts are taking place
worldwide to make UAV flights safer. For instance, in Europe, U-space [48] is an
initiative that aims at making UAV traffic management safer and more secure.
In particular, U-space attempts to provide an appropriate interface with manned
aviation and air traffic control so as to facilitate any kind of routine mission, in all
classes of airspace, and even in congested environments like urban areas, so as to
achieve the ambitious Single European Sky (SES) goal. The SESAR Joint Under-
taking [60] was set up in order to manage this large scale effort, coordinating and
concentrating all EU research and development activities focused on Air Traffic
Management. This way, a wide range of drone missions that are currently being
restricted will be possible thanks to a sustainable and robust European ecosystem
that is globally interoperable.

Among the different areas where UAV flight safety is being considered, there
is a particular area that has not yet been fully addressed: the development of
sense & avoidance mechanisms to enable an UAV to become aware of its environ-
ment, allowing it to take evasive action if necessary [51]. In this chapter we focus
on this problem by proposing the Mission Based Collision Avoidance Protocol
(MBCAP), a collision avoidance solution that relies on wireless communications
between nearby UAVs performing planned missions.

61

5. Mission Based Collision Avoidance Protocol (MBCAP)

Experimental results using real UAVs, along with large-scale simulation exper-
iments, validate the effectiveness of our proposed protocol, and evidence the low
overhead introduced both in terms of channel occupation and mission delays.

5.1 Protocol overview

5.1.1 Introduction

MBCAP is a collision avoidance protocol applicable to UAVs following a planned
mission in an autonomous manner, and issue not adequately addressed by the
research community. To this aim, it relies on a cooperative sensing approach
whereby multicopters broadcast their own location and predicted future locations.
Upon receiving these data, receivers rely on them to decide if there is a collision risk
(collision detection), and to avoid the collision if necessary (collision avoidance).
The strategy is based on priorities, where a UAV has always a lower or higher
priority than any other UAV it could meet during a flight. The high-priority UAV
will be the first to resume its mission, and the low-priority UAV will wait the
needed time to avoid the collision, only resuming its mission afterward.

Several technologies could be used to establish a communication link among
the UAVs. ADS-B [1] could be a good solution, but it requires infrastructure, and
uses proprietary technology and restricted frequencies. Our solution assumes the
use of IEEE 802.11a wireless adapters operating in Ad-hoc mode, an open and
cheap solution already available in the market.

Regarding the architecture of the protocol, it comprises three threads for each
UAV, i.e. Beaconing, Listener, and CollisionDetector. The Beaconing thread
periodically sends UDP broadcast datagrams with the current location of the
multicopter, followed by a list of future predicted locations, including spatial and
temporal coordinates. Such data is enough to detect collision risks with other
UAVs. The Listener thread receives and stores the most up-to-date informa-
tion received from other UAVs. Finally, the CollisionDetector thread periodically
checks the gathered data, and compares the future predicted locations with the
ones advertised in its own beacon to decide if there is a collision risk with another
UAV. In that case, it stops the multicopter and relies on the protocol to address
the risky situation. The high-priority UAV resumes the mission when the other
multicopter is ready to be overtaken. The low-priority UAV resumes the mission
once the other one is in a safe location. Furthermore, if the low-priority UAV
stands still in the path of the high-priority UAV, before giving way it moves aside
to let the UAV pass through its current location. This protocol has been mainly
designed to avoid collisions between two UAVs, as the probability of more than
two UAVs performing planned missions to meet each other all at once is very low.
In case a third UAV detects a collision risk with any of the contending UAVs, it
will stop and wait for the previous collision risk to be solved before executing the
protocol.

62

5.1. Protocol overview

Normal
flight

Stand
still

Passing by

Moving asideGo on
please

Stop

Move
asideResume

mission

Resume
mission

Risk detected

(4)

(3) & lower id &
in unsafe place

(3) & upper id &
has given way

safe place
reached

(5)

Emergency Land

(5)

(5)
(1) or has

been overtaken

(3) &
lower id &

in safe place

(1)

(2)

(1)

(1) t > Gtimeout & not avoiding

(4) t > Ptimeout & other UAV has been overtaken, or t > Gtimeout

(2) t < SStimeout, or t > SStimeout & other UAV is avoiding
(3) t > SStimeout & avoiding

(5) t > Gtimeout & avoiding

a

j

c

h bi

d

e

f

g

k

Figure 5.1: MBCAP finite state machine.

The collision avoidance strategy is based on priorities at the time of deciding
which UAV can go on with the mission. For this purpose, all the multicopters must
have a unique identifier (ID) which enables us to establish an ordered relation
among them. We use the unique ID value provided by ArduSim, defining the
high-priority UAV as the one with the higher ID value. This value is an unique
random ID for each UAV when you run ArduSim as a simulation environment,
and an unique ID based on the MAC address of the wireless adapter when you
run ArduSim on a real multicopter.

5.1.2 Finite state machine

In this section we detail the finite state machine that regulates the behavior of
MBCAP, which is implemented in the Collision Detector thread (see Figure 5.1).
In the figure, the circles represent the machine states, the rectangles represent the
commands sent to the flight controller to change the behavior of the UAV, and the
arrows represent the transitions between states. The blue thick arrows are related
to the most common scenario where only two UAVs are involved.

We will proceed to describe the most common situation addressed by MBCAP,
where two UAVs meet and a collision risk is detected. Depending on the ID value,
the UAVs can be in any of the following cases:

1. Lower priority UAV. It starts in the Normal flight state. When a collision
risk is detected, it needs a few seconds to stop in the air and enter in the

63

5. Mission Based Collision Avoidance Protocol (MBCAP)

Stand still state (transition a). Then, it will wait for a short time SStimeout
(transition b) to ensure that the high-priority UAV has also reached the
same state. When the other UAV informs that it is in the same state, it
analyzes if it finds itself in the route the high-priority UAV was following.
If not, it is safe to continue, and the UAV changes to the Go on please
state (transition c), allowing the other UAV to continue. On the contrary,
it calculates where to move aside, and switches to the corresponding state
(transition d), moving until it reaches the target location, and changing to
the Go on please state (transition e), as in the previous case. When the
high-priority UAV moves beyond the area of conflict, the UAV resumes the
mission (transition f) to exit the protocol, as the collision has been avoided.

2. Higher priority UAV. It also starts in the Normal flight state, and changes to
the Stand still state (transition a) when a collision risk is detected. Then,
it waits (transition b) for the same timeout and until the lower priority
UAV gives it way, resuming the mission (transition h), and changing to
the Passing by state. Afterward, during the overtaking process, the high-
priority UAV approaches the low-priority UAV; the overtaking ends when the
former detects that the distance between them is increasing. Immediately,
it informs the low-priority UAV that it can continue with the mission, and
it simultaneously switches to the Normal flight state (transition i).

We have implemented MBCAP so as to be resilient to unexpected situations,
adding additional transitions and the Emergency state. Thus, if a UAV is in a
state different from Normal flight, and a global timeout elapses, we can find two
cases: (i) if the UAV is not receiving messages from the UAV it is contending with,
which means that there is no risk of collision, the mission is resumed (transitions
f, i, j, k); otherwise, (ii) the UAV lands (emergency state) if the other UAV is
close enough and the protocol has failed. The Passing by state is a special case
where the UAV resumes the mission instead of landing, because the low-priority
UAV has moved aside, if necessary, and there is no collision risk.

When a third UAV detects a risk of collision with one of the UAVs that are in
the process of solving a collision situation, the protocol causes it to stop (transition
a), and to wait in the Stand still state (transition b) until the previous risky
situation is solved. Afterward, the protocol is applied between the two UAVs in
risk of collision.

5.1.3 Beacon content

MBCAP is a protocol where the decisions are taken considering the state infor-
mation sent by the different UAVs using beacons; these beacons are periodically
broadcasted using UDP datagrams.

The beacon transmitted in MBCAP (see Figure 5.2) includes the following
fields:

64

5.1. Protocol overview

id event mode idAv speed Δt n x1,y1,z1, ... xn,yn,zn
8 2 2 8 4 8 2 12 x n Bytes

Figure 5.2: Periodic beacon content.

• id. Unique identifier of the sender UAV.

• event. Number of risky situations previously solved. The low-priority UAV
resumes the mission when the high-priority UAV finishes the overtaking
process and increases the value of this field.

• mode. Flight mode, equivalent to the current state in the finite state machine
(see circles in Figure 5.1).

• idAv. Identifier of the neighbor UAV with which the UAV is avoiding a
collision, if applicable.

• speed. Current ground speed (m/s).

• ∆t. Time elapsed from the time the beacon information was generated until
it has been transmitted; predicted future UAV locations are not recalculated
for each beacon to avoid consuming excessive resources.

• n. Number of predicted future locations included in the beacon.

• Predicted locations array. 3D Universal Transverse Mercator (UTM) coor-
dinates for predicted future locations.

The array containing the future locations sent by each UAV in a beacon in-
cludes different information depending on its state. In particular, it will include
the following information:

• Moving at low speeds (< 1m/s). Only the current location is broadcasted.

• Go on please state. The current location and the location where the risk of
collision was detected.

• Moving aside state. The current and the future locations towards the safe
position the UAV is moving to.

• Stand still state. The current location and the set of waypoints not yet
visited, conforming the information used to determine if the UAV should
move aside to give way for a higher priority UAV, as detailed in section
5.1.5.

• Normal flight state. The current location and future locations, used to detect
a risk of collision with other UAVs, typically 50 locations, which corresponds
to a beacon of 634 Bytes.

65

5. Mission Based Collision Avoidance Protocol (MBCAP)

5.1.4 Collision risk detection strategy

A significant difference between a UAV manually controlled and a UAV following
a mission is the fact that we can predict where the latter will be in the future, as
it tries to follow a predefined path.

The strategy adopted to detect a collision risk between two UAVs consists of
predicting the future locations of the UAV given its current location, the way-
points it is moving towards (the remaining mission), and the current speed. UAVs
broadcast their future locations and periodically compare the received locations
with their own predicted locations. If they match in both space and time, a col-
lision risk is detected, and the UAVs stop. A match in space happens when the
horizontal distance between the two UAV predicted locations is lower than 20
meters, and the vertical distance is lower than 50 meters. On the other hand, a
match on time happens when the two predictions are within the same half second.
Furthermore, the UAVs do not stop until the distance between that risky location
and the UAV itself is less than a predefined threshold distance (90 m by default).
Such optimization attempts to avoid that UAVs stop when they are still far away,
a situation that would unnecessarily extend the time required to solve the collision
scenario.

MBCAP bases its collision avoidance effectiveness in predicting with enough
accuracy the position that each UAV will have in the near future.

To check the accuracy of the mechanism used to predict future positions, sev-
eral experiments were performed using a single virtual multicopter, and measuring
the distance between predicted points (advertised in beacons) and the actual UAV
location at the predicted time. Each experiment was repeated three times, and
the most unfavorable results were considered. Notice that the global experiment
time between runs varies by less than one second. The UAV had a programmed
speed of 15 m/s, and followed a route composed by two perpendicular segments,
thereby representing very unfavorable conditions since it is the maximum speed
supported in mission-driven flights on common multicopters, and also because it
is a very pronounced turn.

We developed three MBCAP alternatives depending on the strategy used to
predict the future locations of the multicopter, each one improving upon the pre-
vious:

• MBCAP alternative 1. The future UAV positions are calculated using the
route to be followed, and the current flight speed in m/s, according to the
information provided by the flight controller.

• MBCAP alternative 2. Additionally, the current and predicted UAV posi-
tions are projected over the theoretical path that it should be following.

• MBCAP alternative 3. The current UAV acceleration ai (m/s2), based on

66

5.1. Protocol overview

Figure 5.3: Curve error in MBCAP alt. 1.

the speed advertised by the flight controller, is also included in the calcula-
tion.

It must be taken into account that the controller determines that the UAV
should move towards the next waypoint not at the time it actually reaches that
waypoint, picking instead an earlier time instant, as shown in Figure 5.3 (left),
which corresponds to MBCAP alternative 1, thereby allowing to achieve a smooth
change of course. This is the standard behavior of any flight controller, and it
introduces an error in the calculation of future positions that can be significant
when the turn is too abrupt. MBCAP alternative 2 corrects this error by projecting
future positions on the theoretical path to be followed by the UAV based on its
current position, as shown in the second image.

Figure 5.4a shows the maximum error on MBCAP alternatives 1 and 2, for the
predicted positions embedded in beacons during the course of an experiment, while
Figure 5.4b shows the mean value of the error. In both cases, only those positions
that are at a distance that is less than or equal to the threshold below which the
collision risk detection is applied (default 90 m) are considered. Both figures show
a similar behavior, with a uniform maximum error between 3 and 4 meters when
the UAV traverses each segment of the mission at a constant speed, and a much
greater error when (i) starting to move, (ii) stopping, and (iii) taking the curve
between two segments. As already mentioned, alternative 2 of MBCAP corrects
the deviation corresponding to the curved path introduced by default by the flight
controller. However, high error values still take place when the UAV experiences
speed changes (in this case, the beginning and the end of the mission).

As already stated, MBCAP alternative 3 calculates the future positions of the
UAV taking into account the current acceleration ai. Such acceleration is esti-
mated constant throughout the flight time included in the prediction. In addition,
since we observed that the calculated acceleration varies significantly, we decided
to apply a filter to the obtained value (see equation 5.1). Figure 5.5 allows us
to compare the effect of the filter (α = 0.2) against the results obtained when it
does not apply (α = 1.0). We observed that the filter significantly improves the
quality of the prediction. Figure 5.5a shows the average error corresponding to all

67

5. Mission Based Collision Avoidance Protocol (MBCAP)

0 50 100 150 200 250 300

Flight time (s)

0

50

100

150

200

250

M
a

x
im

u
m

 p
re

d
ic

te
d

 p
o

s
it
io

n
 e

rr
o

r
(m

)

MBCAP alt. 1

MBCAP alt. 2

(a) Maximum predicted location error.

0 50 100 150 200 250 300

Flight time (s)

0

10

20

30

40

50

60

70

80

M
e

a
n

 p
re

d
ic

te
d

 p
o

s
it
io

n
 e

rr
o

r
(m

) MBCAP alt. 1

MBCAP alt. 2

(b) Average predicted location error.

Figure 5.4: MBCAP alt. 1 vs. alt. 2: Predicted location error vs. flight time.

0 5 10 15 20 25

Predicted time (s)

0

5

10

15

20

25

30

M
e

a
n

 p
re

d
ic

te
d

 p
o

s
it
io

n
 e

rr
o

r
(m

) MBCAP alt. 3 =1.00

MBCAP alt. 3 =0.20

(a) Filter effect on each of the
predicted locations.

0 50 100 150 200 250 300

Flight time (s)

0

20

40

60

80

100

M
a

x
im

u
m

 p
re

d
ic

te
d

 p
o

s
it
io

n
 e

rr
o

r
(m

)

MBCAP alt. 3 =1.00

MBCAP alt. 3 =0.20

(b) Filter effect: Maximum predicted
location error.

Figure 5.5: MBCAP alt. 3: Filter effect.

beacons in each of the predicted instants, while Figure 5.5b shows the maximum
error associated to each beacon. Hereafter, those figures showing mean values are
not included since their behavior is very similar to the maximum value behaviour
in all cases.

a =


5 if a > 5,
−5 if a < −5,
0 if |a| < 0.1,
α · ai − (1− α) · ai−1 , α ∈]0, 1] otherwise.

(5.1)

Figure 5.6 compares the maximum error associated to each beacon on alterna-
tive 2 of the protocol with the maximum error on alternative 3 taking place when

68

5.1. Protocol overview

0 50 100 150 200 250 300

Flight time (s)

0

50

100

150

200

250

M
a

x
im

u
m

 p
re

d
ic

te
d

 p
o

s
it
io

n
 e

rr
o

r
(m

)

MBCAP alt. 2

MBCAP alt. 3 =0.20

Figure 5.6: MBCAP alt. 2 vs. alt. 3: Maximum predicted location error.

α = 0.2. The latter shows a drastic reduction in the estimation error associated to
the three transitory situations, while the UAV adjusts its speed. In addition, the
maximum error peaks now span a much shorter time interval, being of 2 seconds
at startup, followed by two peaks of 6 and 5 seconds when making the turn, and
of 13 seconds when landing, being these values clearly lower when compared to
the ones achieved with alternative 2: 18, 26 and 15 seconds, respectively.

By default, beacons are sent 5 times per second, but the estimation of future
UAV positions is made once every second. The only field updated on a later beacon
based on the same information is the time elapsed since the beacon was generated
(field ∆t, see section 5.1.3). Taking into account that 25 seconds of flight time
are included in each estimate, we could assume that the prediction error would be
reduced when increasing the estimation frequency. However, we find that this does
not occur. In Figure 5.7 we compare the maximum error associated to each beacon
when updating the estimates once per second (default option), or when doing it
each time a beacon is sent. As shown, having more frequent estimations does not
cause the error to become lower, being that it even becomes worse in some cases, as
occurs in the interval ranging from 95 to 130 seconds. The same effect is observed
in all the implemented alternatives of the protocol, indicating that a calculation
frequency of 1 Hz is sufficient, and it also implies a lower resource usage, being
more convenient when considering that the protocol could be deployed in devices
with reduced computation power.

The results obtained allow us to conclude that alternative 3 of the MBCAP
protocol is the most accurate one, with a maximum error of 4 meters when esti-
mating UAV positions under constant flight speeds, 31 meters for 2 seconds at the
start of the mission, 28 meters for 2 seconds when turning 90 degrees, and between
27 and 46 meters for 3 seconds when braking, which occurs when reaching the last
waypoint of the mission. On the other hand, the average error obtained is less
than 2 meters at constant speed, up to 12 meters at the start of the mission, up
to 13 meters at the turn, and up to 21 meters at the end of the mission. We con-

69

5. Mission Based Collision Avoidance Protocol (MBCAP)

0 50 100 150 200 250 300

Flight time (s)

0

10

20

30

40

50

M
a

x
im

u
m

 p
re

d
ic

te
d

 p
o

s
it
io

n
 e

rr
o

r
(m

)

MBCAP alt. 3 =0.20 full rate

MBCAP alt. 3 =0.20 default rate

Figure 5.7: MBCAP alt. 3: Impact of predicted locations updating at full rate.

0 5 10 15 20 25

Predicted time (s)

0

5

10

15

20

25

M
e

a
n

 p
re

d
ic

te
d

 p
o

s
it
io

n
 e

rr
o

r
(m

) MBCAP alt. 1

MBCAP alt. 2

MBCAP alt. 3 =0.20

Figure 5.8: Average predicted location error for each of the predicted locations.

sider that the estimation error obtained is acceptable considering that: (i) most of
the time the UAV will fly at a constant speed, thereby having a maximum error
of 4 meters; (ii) the transient situation considered for the study is particularly
unfavorable; and (iii) the duration of maximum error peaks is very small.

Figure 5.8 shows the average error of all beacons, for each of the predicted
locations. It should be noted that, by default, the maximum distance at which
collision chances are considered is 90 meters. Since the flight speed was of 15
m/s during most of the experiment, the predicted useful flight time under these
conditions is 6 seconds. In Figure 5.8 we observed that, for up to 6 seconds of
flight, alternative 3 is the one that offers the best results, and so we adopt and
validate it as the final version of the protocol.

5.1.5 Collision avoidance strategy

The global idea behind the collision avoidance strategy is to define a right of way
based on priorities among the UAVs. For this purpose, we use an unique number

70

5.1. Protocol overview

Figure 5.9: Safe location analysis.

(ID) based on the MAC address of the wireless adapter used on multicopters to
communicate with each other. On the other hand, we use a random number
provided by ArduSim when performing simulations. The UAV with a higher ID
has right of way over the UAV with a lower ID.

Once a collision risk has been detected, both UAVs stop in the air and start
the collision avoidance procedure. While they are in the Stand still state, they
send their current location, and a list with the next waypoints of the mission they
have to follow. Figure 5.9 shows how the low-priority UAV determines, based on
such beacon information, whether it should move aside to allow the other UAV
to pass by, which happens when it stands on the path the high-priority UAV
must follow. This is achieved by determining if the distance between its current
location P (x0, y0) and each of the mission segments r (delimited by P1(x1, y1)
and P2(x2, y2)), defined based on the locations advertised by the high-priority
UAV, is higher than the threshold ds. Notice that ∆x and ∆y refer to the relative
increments on each axis according to the UTM coordinate system. Once the
collision risk is detected, and to determine whether it is necessary for the lower-
priority UAV to move to some specific location, it will follow these steps:

1) Determining the intersection Pi(xi, yi) of line r (that contains the mission
segment) with the perpendicular line s passing on point P :

Pi = (xi, yi) = (
y0 − y1 + ∆x

∆yx0 + ∆y
∆xx1

∆y
∆x + ∆x

∆y

, y1 +
∆y

∆x
(xi − x1)) (5.2)

2) If Pi is within the mission segment, calculate the distance d between P and
Pi.

71

5. Mission Based Collision Avoidance Protocol (MBCAP)

3) It is only necessary to move aside from this mission segment if the intersection
Pi is within the mission segment, and d < ds. If d12 refers to the distance
between P1 and P2, in other words, it is the length of the segment, then it is
possible to calculate the coordinates for a safe location where to move (Ps)
as follows:

Ps =

{
(xs1 , ys1) = (xi − ds

d12
|∆y|, y0 − ∆x

∆y (xs − x0)) if x0 ≤ xi,
(xs2 , ys2) = (xi + ds

d12
|∆y|, y0 − ∆x

∆y (xs − x0)) otherwise.
(5.3)

If the low-priority UAV needs to move aside, it changes its location and gives
way to the other UAV. Otherwise, it directly gives way. Then, the high-priority
UAV starts the overtaking process, which finishes when (i) it goes beyond the
collision risk region, and (ii) the distance to the low-priority UAV is increasing.

5.2 Protocol validation

Having introduced the MBCAP protocol, in this section we validate its correctness,
taking as final version the proposed alternative 3. To this end, we performed a
wide set of experiments using different scenarios to evaluate our solution. In
these scenarios, UAVs approach each other in intersecting trajectories, considering
different angles.

For our tests, we will refer to the low-priority UAV with the number 1, and to
the high-priority UAV with number 2, meaning that the UAV 1 is the one moving
aside whenever necessary.

The main metric used to validate MBCAP is the success ratio at avoiding
collisions between UAVs, and the second metric is the flight time overhead intro-
duced by the protocol while it is being applied; in other words, it is the difference
between the time needed by the UAV to finish the mission when it has solved one
or more collision risks, and the time needed to accomplish the mission when no
other UAVs are present.

Each of the following experiments was repeated three times, considering the
worst result in all cases:

• Perpendicular crossing (1). UAV 1 does not need to move aside.

• Standard takeover (2). Both UAVs follow a similar trajectory, although UAV
2 is approaching UAV 1 from behind at a higher speed. UAV 1 must move
aside so that UAV 2 can takeover.

• Face-to-face meeting (3). This situation also requires UAV 1 to move aside
in order to allow UAV 2 to pass without taking any risk.

• Angled trajectories (4). UAV 1 does not need to move aside.

72

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

Figure 5.10: Collision avoided on a crop field (scenario 6).

• Angled trajectories, opposite directions (5). Again, UAV 1 does not need to
move aside.

• Supervision of a crop field (6). It simulates a real situation where a UAV
approaches another UAV that is supervising a crop field sized 1500× 900 m,
going through it in a zig-zag fashion (see Figure 5.10), following lanes sepa-
rated by 100 m. The two UAVs meet with perpendicular trajectories when
UAV 2 is on its third pass over the crop field, and UAV 1 does not need to
move aside.

During the experiments the flight speed was set to 10 m/s, except for scenario
(2) where UAV 1 was flying at a lower speed (5 m/s), so that UAV 2 was able
to takeover. The collision was avoided in all cases, and the time overhead (∆t)
introduced by the protocol is shown in Table 5.1.

In general, we find that the flight time for the UAV with the highest priority was
incremented between 19 and 29 seconds, while the UAV with the lowest priority
experienced a time overhead ranging from 35 to 56 seconds, both cases being
acceptable considering the current duration of standard multicopter batteries.

We also tested scenarios 1 and 2 with high wind speed (20 m/s) in order to
verify if this factor affects the correctness and performance of the protocol. Table
5.2 shows that the overall flight time has no significant variation. Moreover, the
time overhead introduced by the protocol is not affected by the wind speed.

Overall, we find that MBCAP avoids the collision in all cases, and the time
overhead associated to the collision risk handling procedure is quite acceptable.

5.3 MBCAP-e: Enhanced Mission Based Collision
Avoidance Protocol

In section 5.1 we propose MBCAP, a distributed protocol offering a cooperative
sense & avoid solution. Experimental validation has confirmed that it is reliable, as

73

5. Mission Based Collision Avoidance Protocol (MBCAP)

Table 5.1: MBCAP flight time overhead (min:sec).

Scenario UAV MBCAP: on MBCAP: off
∆tNormal Avoiding Total Total

1 1 3:14 0:27 3:41 3:03 0:38
2 2:57 0:24 3:21 3:03 0:18

2 1 3:41 0:47 4:28 3:35 0:53
2 2:48 0:44 3:32 3:03 0:29

3 1 3:13 0:46 3:59 3:03 0:56
2 2:48 0:44 3:32 3:03 0:29

4 1 3:14 0:26 3:40 3:03 0:37
2 2:57 0:24 3:21 3:03 0:18

5 1 3:13 0:38 3:51 3:03 0:48
2 2:50 0:36 3:26 3:03 0:23

6 1 10:20 0:26 10:46 10:11 0:35
2 30:21 0:26 30:47 30:27 0:20

Table 5.2: Time overhead (min:sec) vs. wind.

Scenario Wind
orientation UAV MBCAP: on

Total
MBCAP: off

Total ∆t

1 Crosswind 1 3:41 3:03 0:38
Headwind 2 3:31 3:13 0:18

1 Crosswind 1 3:41 3:03 0:38
Tailwind 2 3:21 3:03 0:18

2 Headwind 1 4:28 3:35 0:53
Headwind 2 3:41 3:12 0:29

2 Tailwind 1 4:26 3:33 0:53
Tailwind 2 3:31 3:02 0:29

74

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

id event mode idAv speed Δt n x1,y1,z1, ... xn,yn,zn
8 2 2 8 4 8 2 24 x n Bytes

land
2

pspeed
4

Figure 5.11: Periodic beacon content.

it is able to avoid collisions between two multicopters in all cases, and introducing
only an acceptable overhead in terms of overall flight time. In addition, three
alternatives were introduced for the mechanism predicting future UAV positions;
experiments showed that the alternative 3, which considers the UAV acceleration
on the prediction calculus, is the most accurate and adequate at predicting future
positions.

In order to test and validate MBCAP under more complex situations we per-
formed an extensive set of experiments with different numbers of UAVs, in a limited
area, where more than two UAVs can meet at the same time. Results showed that
the multicopters can collide under several circumstances, and also that some of
them could be avoided by optimizing the protocol. In this section we propose
MBCAP-e, an enhanced version of MBCAP which solves these problems. As the
protocol has been already detailed in the previous sections, here we only detail
the improvements made to the protocol.

5.3.1 Improvements overview

5.3.1.1 Beacon content

The data provided by the beacon sent by each flying multicopter showed insuffi-
cient to adequately detect collision risks, and to avoid the collision in some rare
cases. The beacon transmitted in MBCAP-e (see Figure 5.11) adds the following
fields:

• land. Whether the UAV started the landing phase. When a UAV reaches
the end of the mission, it lands. MBCAP-e is not used while the UAV is
landing because there are conditions under the landing procedure preventing
it from being stopped.

• pspeed. Planned ground speed for the mission (m/s). This value is used in
the collision avoidance strategy to assert if the high-priority UAV is close
enough to a waypoint to increase the collision risk, as detailed later on section
5.3.1.3.

We have also reduced the number of predicted locations included in a beacon
(see the following section), and at the same time, we have modified the format of
the predicted locations, using double instead of float numbers, which increases the
prediction accuracy.

75

5. Mission Based Collision Avoidance Protocol (MBCAP)

0 5 10 15

Flight speed (m/s)

0

5

10

15

20

25

30

B
ra

k
e

 d
is

ta
n

c
e
 (

m
)

Measured distance

Fitted curve

Figure 5.12: Measured brake distance vs. current flight speed.

5.3.1.2 Collision risk detection strategy

MBCAP-e includes several improvements over the protocol version detailed in
the previous chapter. We now proceed to detail the most relevant one, which is
related to the number of future predicted locations included in each beacon. The
previous version of the protocol (MBCAP) sent 50 predicted locations within each
beacon, which corresponds to 25 seconds in the future, considering to detect a
possible collision risk only with locations that are less than 90 meters away from
the current location of the multicopter. This configuration is prone to stop the
UAVs too soon when their speeds differ significantly. In MBCAP-e we just send
the necessary amount of locations to detect a collision risk considering the current
speed of the UAV (see Equation 5.4).

d = dGPS + dbrake + dreact + dcomm (5.4)

Where:

dGPS = 2.5 m
dbrake = f(speed)
dreact = 1 s× speed
dcomm = 2 s× speed

We consider that there is a collision risk if the distance d between the UAV
and the location where a collision risk is detected is lower than the sum of: (i)
the GPS error (dGPS), (ii) the distance required to brake (dbrake), being that
the latter depends on the current UAV speed (see Figure 5.12), (iii) the distance
traveled between two collision risk checks (dreact), and (iv) the distance traveled
throughout a predefined time when considering that some messages can be lost
during transmission (dcomm).

Given the safety distance d, we calculate the total prediction time to be in-
cluded in beacons as the safety distance divided by the current speed, and the

76

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

2 4 6 8 10 12 14 16

UAV speed (m/s)

20

40

60

80

100

120

140

160

180
S

to
p
 d

is
ta

n
c
e

 U
A

V
-U

A
V

 (
m

) MBCAP

MBCAP-e

(a) UAVs flying at the same speed.

2 4 6 8 10

Slower UAV speed (m/s)

0

100

200

300

400

S
to

p
 d

is
ta

n
c
e

 U
A

V
-U

A
V

 (
m

) MBCAP: 5 m/s

MBCAP-e: 5 m/s

MBCAP: 15 m/s

MBCAP-e: 15 m/s

(b) UAVs flying at different speeds.

Figure 5.13: Distance between UAVs after stopping, in a face-to-face meeting.

number of locations to include in the beacon as the total prediction time divided
by the time elapsed between two predicted locations (500 ms in the default con-
figuration). With the new configuration, the beacon only includes between 12 and
17 predicted locations depending on the speed, which represents a maximum of 9
seconds in the future, considerably lower than the original version of the protocol.

Figure 5.13a compares the distance between the UAVs when they stop due
to a collision risk in the original (MBCAP), and the enhanced version of the
protocol (MBCAP-e), both flying at the same speed. In the previous version, the
UAVs stop too soon, causing the low-priority UAV to wait for a long time period
until the high-priority UAV overtakes it. Furthermore, the distance between them
increases as the speed goes down. On the other hand, with MBCAP-e, the distance
is significantly lower, and it increases with speed. Figures 5.13b and 5.14 show
similar results when the UAVs travel at different speeds. As stated before, the
original version of the protocol is prone to stop the UAVs too soon when their
speeds are quite different. With MBCAP, when the UAVs meet face-to-face, this
distance could be up to 380 m, and when one of them overtakes the other from
behind, it could be up to 260 m, making the process unnecessary slow. With
MBCAP-e, the distance becomes almost independent of speed differences, and it
is significantly lower.

In order to enhance the performance of the protocol, we have introduced ad-
ditional improvements regarding the information included in the beacon:

• Prediction window. As referred above, the number of future locations
sent is reduced from 50 floats to a number of doubles ranging from 12 to 17.
This improvement reduces the size of the beacon from 634 Bytes to 328-448
Bytes, despite the fact that we have added two new fields, and reduces the
CPU overhead while checking if there is a collision risk, thereby improving
the overall quality of the prediction.

77

5. Mission Based Collision Avoidance Protocol (MBCAP)

2 4 6 8 10 12 14

Slower UAV speed (m/s)

0

50

100

150

200

250

300

S
to

p
 d

is
ta

n
c
e

 U
A

V
-U

A
V

 (
m

) MBCAP: 5 m/s

MBCAP: 10 m/s

MBCAP: 15 m/s

MBCAP-e: 5 m/s

MBCAP-e: 10 m/s

MBCAP-e: 15 m/s

Figure 5.14: Distance between UAVs after stopping in a standard takeover, both
flying at different speeds.

0 50 100 150 200 250 300

Flight time (s)

0

10

20

30

40

50

M
a
x
.
p

re
d

ic
te

d
 l
o
c
a

ti
o
n

 e
rr

o
r

(m
)

MBCAP

MBCAP-e

(a) Maximum predicted location error.

0 50 100 150 200 250 300

Flight time (s)

0

5

10

15

20

25
M

e
a
n

 p
re

d
ic

te
d

 l
o
c
a

ti
o
n

 e
rr

o
r

(m
)

MBCAP

MBCAP-e

(b) Average predicted location error.

Figure 5.15: MBCAP vs. MBCAP-e: Predicted location error vs. flight time.

• Beacon renewal. If the protocol state of the UAV changes, we immediately
update the predicted locations in the beacon.

• Location accuracy. The predicted locations were originally sent as UTM
coordinates in float numbers, and now, in MBCAP-e, they are sent as dou-
ble numbers instead, which increases the precision when detecting possible
collision risks.

• Braking awareness. Now, if the multicopter is braking (a < −0.6 m/s2),
only the current location is sent.

All of these changes have improved the overall quality of the prediction. To
check the accuracy improvement of the mechanism used to predict future locations,
we repeated the experiments detailed in section 5.1.4. Figure 5.15a compares the
maximum predicted location error for the original protocol and MBCAP-e, and
Figure 5.15b shows the mean error. Again, when the UAV accelerates at the

78

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

0 5 10 15 20 25

Predicted time (s)

0

5

10

15

20

25

M
e
a

n
 p

re
d
ic

te
d
 l
o

c
a
ti
o

n
 e

rr
o

r
(m

)

MBCAP

MBCAP-e

Figure 5.16: MBCAP vs. MBCAP-e: Average predicted location error for each of
the predicted positions on the beacon.

beginning of the experiment, while it takes the curve (second 140), and when it
brakes for landing, the prediction error is higher. The error when flying at constant
speeds remains mostly uniform. In all cases, the error in MBCAP-e is significantly
lower than in the original version of the protocol, with a uniform maximum error
of 1 meter when the UAV traverses each segment of the mission at a constant
speed. Figure 5.16 shows the average error for each of the predicted positions in
the beacon along the whole experiment. We can see that we now send much fewer
locations than before, and that the prediction quality increases, showing in general
less error.

Additional enhancements have been included regarding the collision detection
calculation. These changes, detailed below, improve the success rate at avoiding
collisions, and reduce the time overhead introduced by the protocol (see section
5.3.2):

• Risk detection during landing disabled. We have disabled the protocol
when one of the UAVs involved is landing because some landing procedures
cannot be stopped, making it impossible to apply the protocol. This up-
date required modifying transitions f, i, j, and k of the finite state machine
(see Figure 5.17) to avoid detecting a possible collision risk when the other
multicopter is in fact landing. Furthermore, we added the field land to the
beacon (see Figure 5.11) to allow any UAV to analyze the flying state of
other UAVs.

• Risk detection over time. To detect if there is a collision risk we check
if the predicted locations match in space and time. Now we check if they
match on time only if the speed of both UAVs is greater than 1 m/s, and both
beacons send more locations in addition to the current location of the UAV.
This is a more conservative approach, as we assume that a stopped, or almost
stopped UAV, will maintain its location over time, and the approaching UAV

79

5. Mission Based Collision Avoidance Protocol (MBCAP)

Normal
flight

Stand
still

Passing by

Moving asideGo on
please

Stop

Move
asideResume

mission

Resume
mission

Risk detected

(5)

(4) & lower id &
in unsafe place

(4) & upper id &
has given way

safe place
reached

(6)

Emergency Land

(6)

(6)
(1) or has

been overtaken

(4) &
lower id &

in safe place
(1) or (2)

(3)

(1)

(1) t > Gtimeout & not avoiding, or t < Gtimeout & avoiding & other UAV is landing

(5) t > Ptimeout & other UAV has been overtaken, or t > Gtimeout, or t < Gtimeout & avoiding & other UAV is landing

(2) t > SStimeout & other UAV is landing
(3) t < SStimeout, or t > SStimeout & other UAV is avoiding
(4) t > SStimeout & avoiding

(6) t > Gtimeout & avoiding

a

j

c

h bi

d

e

f

g

k

Figure 5.17: MBCAP-e finite state machine.

will detect a risk when any of the future locations that it reports in the
beacon matches in space with the location of the UAV that is standing still.

• Short-term position status. If the other UAV is in the Go on please
or the Stand still state, we only check if there is a collision risk with the
current location of the UAV, ignoring the remaining locations included in
the beacon. The first case includes the location where the UAV has detected
the collision risk, and the second case includes a list of waypoints. None of
these locations represent a position where the UAV will be on the short term,
and so checking the existence of a possible collision risk at these locations
would be inappropriate.

• Fewer waypoints per beacon in the Stand still state. In order to
improve performance, we now include only the waypoints needed to report
the path the UAV will follow for the next 400 meters, a distance that is
greater than the maximum distance between UAVs when they stop to avoid
the collision.

• Risk check timeout. This new timeout works as follows: Once a collision
risk has been avoided, we wait four seconds before attending any other UAV
informing that there is a collision risk with the current UAV (field idAv of
the beacon). This approach solves a race condition in the protocol, due to its
distributed nature, where the current UAV again detects a collision risk with

80

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

the other UAV because the latter keeps signaling that the previous collision
situation is still in the process of being avoided.

• Global timeout set to 120 seconds. If a UAV is in an state different
from Normal flight for more than 120 seconds, it must resume the mission if
possible (see Figure 5.17), or land due to a deadlock condition associated to
a protocol failure. This threshold is wide enough to consider the worst case,
where the high-priority UAV (planned speed 1 m/s) could need 92 seconds
to overtake the other UAV (planned speed 15 m/s). This situation could
happen when the UAVs meet face-to-face.

5.3.1.3 Collision avoidance strategy

In order to improve the success ratio at avoiding collisions, and the overall per-
formance of the protocol, several changes have been introduced in the collision
avoidance strategy:

• Reduced safety distance. In the original version of MBCAP, when the
low-priority UAV needs to move aside, it moves until the distance to the
mission segment is of 20 meters. We have rationalized this distance as the
sum of the probable GPS error of both UAVs, an error margin due to detected
errors of the flight controller while trying to take a curve at a high speed,
and an additional error margin due to slight movements of the UAV while
standing still:

ds = 2×GPSerror + curveerror + positionerror (5.5)

Where:

GPS error = 2.5 m, curveerror = 1.5 m, positionerror = 1 m

• Overtaking end behavior. In MBCAP-e, the overtaking process does
not finish until the high-priority UAV is at least 20 meters (collision risk
threshold) beyond the other UAV when the distance is increasing. As the
safety distance is now lower than 20 meters, without this requirement the
UAV would immediately detect another collision risk with the low-priority
UAV, and the protocol would be triggered again.

• Waypoint behavior. When the high-priority UAV is close to a waypoint
(see the UAV with an arrow indicating its direction in Figure 5.18), it per-
forms a curve to approach that waypoint, but without actually reaching it,
and without stopping at all. If a collision risk is detected, both UAVs stop,
but the previous approach to detect if the low-priority UAV is far enough
from the path the other UAV is about to follow is not good enough, as there
is an offset (dotted line) between the real path and the theoretical mission

81

5. Mission Based Collision Avoidance Protocol (MBCAP)

dl
dc

PwpPi
di-wp

dcurve

α

dh

Figure 5.18: Safe location on curve analysis.

of the UAV. To consider this special case, we have calculated the function
that represents the maximum distance dc between the curve and the theo-
retical mission for different values of the planned speed and angle α between
consecutive segments of the mission (dc = f(s, α)). If the high-priority UAV
is close to a waypoint (dh < dcurve), and the angle between segments of
the mission is reduced so as to trace a curve (α ∈ [−π

2
,
π

2
]); then, if the

low-priority UAV is in the inner side of the corner defined by the mission
segments of the other UAV, and its distance dl to the mission segment is not
safe (dl < dc + ds), we assume that there is a collision risk, and the UAV
must move to the other side of the mission segment to guarantee safety.

5.3.2 Protocol validation

Having introduced the improved version of the MBCAP protocol, in this section
we validate its correctness. To this end, we run ArduSim with different roles (see
chapter 4.1) to perform three different sets of experiments to analyze the behav-
ior of the protocol under several circumstances: (i) UAVs approaching following
straight trajectories under the most common scenarios, and with the presence of
wind (ArduSim running as simulator), (ii) comparison of the results gathered in
simulation with experiments using real multicopters (ArduSim running as simu-
lator and also deployed on real UAVs), and (iii) analysis of the scalability and
behavior of MBCAP when collision risks happen in scenarios with a large number
of UAVs (ArduSim running as simulator).

Like in the previous chapter, for our tests we will refer to the low-priority UAV
with the number 1, and to the high-priority UAV with number 2, meaning that
the UAV 1 is the one moving aside whenever necessary.

82

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

Table 5.3: MBCAP flight time overhead (min:sec).

Scenario UAV MBCAP MBCAP-e
on off ∆t on off ∆t

1 1 3:41 3:03 0:38 3:29 2:59 0:30
2 3:21 3:03 0:18 3:17 3:00 0:17

2 1 4:28 3:35 0:53 4:08 3:33 0:35
2 3:32 3:03 0:29 3:23 2:59 0:24

3 1 3:59 3:03 0:56 3:41 2:59 0:42
2 3:32 3:03 0:29 3:21 3:00 0:21

4 1 3:40 3:03 0:37 3:27 2:59 0:28
2 3:21 3:03 0:18 3:16 3:01 0:15

5 1 3:51 3:03 0:48 3:34 2:59 0:35
2 3:26 3:03 0:23 3:16 3:01 0:15

6 1 10:46 10:11 0:35 10:31 10:04 0:27
2 30:47 30:27 0:20 30:33 30:17 0:16

The main metric used to validate MBCAP-e is the success ratio at avoiding col-
lisions between UAVs, and the second metric is the flight time overhead introduced
by this protocol.

5.3.2.1 Common scenarios and impact of the wind

The first set of experiments analyzes the most common scenarios where two UAVs
approach each other following straight intersecting trajectories, and considering
different angles, with the same setup detailed in section 5.2.

The collision was avoided in all cases, and the time overhead (∆t) introduced by
the protocol is shown in Table 5.3, comparing the original version of the protocol
with MBCAP-e. In general, we find that the flight time overhead introduced by
MBCAP for UAV 1 is in the range between 35 and 56 seconds, and for UAV 2
it ranges from 18 to 29 seconds. On the other hand, MBCAP-e introduces an
overhead of 27 to 42 seconds, and 15 to 24 seconds, respectively. The results show
an overall gain for MBCAP-e in terms of flight time overhead, especially for UAV
1 (lower priority); such improvement is manly associated to having UAVs stop at
a shorter distance between them.

We also tested if the presence of uniform wind affects the correctness and
performance of the protocol (see Table 5.4). We observe that the flight time
increases with headwind, as the UAV is no longer able to keep a ground speed
of 10 m/s, and it has no significant variation when the UAV flies at 5 m/s, or if
sidewind or tailwind are present. Moreover, the flight time overhead introduced
by MBCAP and MBCAP-e is not significantly affected by the wind speed.

83

5. Mission Based Collision Avoidance Protocol (MBCAP)

Table 5.4: MBCAP flight time overhead (min:sec) vs. wind.

Scenario Wind UAV MBCAP MBCAP-e
∆t on off ∆t

1 Crosswind 1 0:38 3:29 3:00 0:29
Headwind 2 0:18 3:26 3:11 0:15

1 Crosswind 1 0:38 3:30 3:01 0:29
Tailwind 2 0:18 3:15 2:58 0:17

2 Headwind 1 0:53 4:09 3:34 0:35
Headwind 2 0:29 3:32 3:08 0:24

2 Tailwind 1 0:53 4:07 3:32 0:35
Tailwind 2 0:29 3:22 2:58 0:24

(a) Quadcopter (b) Hexacopter

Figure 5.19: Multicopters used in real testbed.

Overall, we find that both versions of the protocol avoid the collision in all
cases, being the flight time overhead introduced by MBCAP-e significantly lower
than for the previous version.

5.3.2.2 Simulation vs. real testbed for common scenarios

The second set of experiments analyzes the effectiveness and performance of MBCAP-
e when running on real multicopters. To this end, we deployed ArduSim with
MBCAP-e enabled in a GRCQuad quadcopter from Quaternium [57] (see Figure
5.19a), and in a customized hexacopter (see Figure 5.19b), both capable of running
ArduSim with the multicopter role in a Raspberry Pi 3B+ attached to them, and
connected to the telemetry port of the flight controller through a serial port link
(detailed instructions are available in the ArduSim repository). Experiments were
performed for scenarios 1 to 5 from the previous section with similar missions,
and then they were repeated without using MBCAP-e in order to measure the
flight time overhead. In the experiments, the hexacopter had higher priority than

84

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

the quadcopter. Finally, the experiments with and without MBCAP-e were re-
peated in simulation to compare both results. As an example, Figure 5.20 depicts
a Google Earth 3D view that shows the path followed by the real multicopters
with a red line, the path of the virtual high-priority UAV with a blue line, and the
route of the virtual low-priority UAV with a black line. The green arrows indicate
the direction the UAVs are moving towards before detecting the collision risk, also
marked with a green circle. We can observe that the paths followed in simulation
and in real experiments are quite similar, indirectly validating the accuracy of
ArduSim at simulating the physical properties of an actual UAV.

Figure 5.20: Simulation vs. reality in a perpendicular crossing (scenario 1).

The collisions were avoided in all cases, both in simulation and in real experi-
ments. Table 5.5 shows that, in general, the flight time overhead remains similar
in both environments, with the exception of scenarios 1 and 5, where the presence
of gusty wind slightly increased the time necessary to complete the process. A
video showing these experiments is also available online1.

5.3.2.3 Scalability analysis

In the previous sections we have confirmed that MBCAP-e behaves better than its
previous version. The protocol always avoids collisions whenever two UAVs meet
in the air following a straight line from different directions, and the flight time
overhead is bounded and low enough considering the battery capacity of current
multicopters. Moreover, we have shown that MBCAP can easily be deployed on
real multicopters thanks to ArduSim’s capabilities. In this section, we analyze
how the protocol behaves when the risk of collision increases, and the UAVs trace

1https://youtu.be/xHnMuMOd9C0

85

5. Mission Based Collision Avoidance Protocol (MBCAP)

Table 5.5: MBCAP-e flight time overhead (min:sec). Simulation vs. real testbed.

Scenario UAV Simulation Real testbed
on off ∆t on off ∆t

1 1: Quadcopter 3:53 3:25 0:28 3:56 3:21 0:35
2: Hexacopter 3:10 2:53 0:17 3:15 2:59 0:16

2 1: Quadcopter 4:10 3:38 0:32 4:12 3:36 0:36
2: Hexacopter 3:57 3:33 0:24 4:08 3:43 0:25

3 1: Quadcopter 3:39 2:56 0:43 3:39 2:56 0:43
2: Hexacopter 3:20 2:56 0:24 3:18 2:59 0:19

4 1: Quadcopter 3:30 3:04 0:26 3:29 3:03 0:26
2: Hexacopter 3:20 3:02 0:18 3:29 3:03 0:26

5 1: Quadcopter 3:31 2:54 0:37 3:49 2:55 0:54
2: Hexacopter 3:14 2:58 0:16 3:23 2:59 0:24

curves along their path, by simulating a large number of UAVs in a bounded area.
A video that summarizes some of these experiments is also available online2.

Experimental setup

MBCAP was tested on a squared area of 5 × 5 km, deploying 25, 50, 75, and
100 UAVs on four different scenarios. Each scenario consists on a new random
deployment location for each UAV, and each UAV is assigned a new random
mission based on the Gauss-Markov Mobility pattern [23] included in OMNeT++
[53]. Each experiment was repeated three times, taking the mean value. Moreover,
the flight time and the traveled distance were measured with MBCAP, MBCAP-e,
and without applying the protocol at all, in order to determine its overhead and
performance. When the protocol is not used, the mean flight time was of 1 hour
and 4 minutes, the mean traveled distance per UAV was of 36.9 kilometers, and
the mean number of collisions was of 6.5, 16.5, 45.5, and 84.25 when deploying
25, 50, 75, and 100 UAVs, respectively. Also, we found that the selected scenario
does not significantly affect the experimental results.

We use Algorithm 4 to get a random location and heading for each UAV
included in our experiments. Initially, all the UAVs are randomly located inside the
target area; then, if needed, their initial location is adjusted so that the distance
between them is greater than or equal to the minimum distance specified for the
experiment (100 meters). The minimum distance between UAVs has an upper limit
to assure that they can fit inside the area (dmin < ∆x/

√
n, and dmin < ∆y/

√
n).

Figure 5.21a shows the results gathered for a scenario with 100 UAVs randomly
deployed.

2https://youtu.be/bEdcsPX1hXY

86

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

Algorithm 4 RanLoc returns a random initial location and a random heading
for n UAVs.
Require: area = ∆x×∆y = 5× 5 km, n UAVs (25, 50, 75, or 100), area center

location, dmin = 100 minimum distance between UAVs in meters.
Ensure: A = {(P1, β1), (P2, β2), ...(Pn, βn)}, where Pi are locations, and βi are

headings.
1: A = ∅
2: for i← 1 to n do
3: Pi = random location
4: βi = random heading
5: A = A ∪ (Pi, βi)
6: end for
7: success = false
8: while ¬success do
9: success = true

10: for i← 1 ∧ success to n do
11: for j ← i+ 1 ∧ success to n do
12: if distance Pi to Pj < dmin then
13: Pi = random location
14: success = false
15: end if
16: end for
17: end for
18: end while
19: return A

(a) 100 UAVs randomly deployed. (b) 25 random Gauss-Markov missions.

Figure 5.21: Experiment setup in an area of 5× 5 km.

87

5. Mission Based Collision Avoidance Protocol (MBCAP)

dprev

Pprev

Pj βj

βprev

γj

γj/2

dj

Figure 5.22: Gauss-Markov mobility model calculations.

The main objective of this set of experiments is to force the UAVs to meet
several times in the air, not only when they are flying following a straight line,
but also when they are performing a curve trajectory close to a waypoint. To this
end, we designed long experiments where the UAVs are changing their direction
along almost one fourth of the mission length so as to create a highly unfavourable
scenario. We used Algorithm 5 (see also Figure 5.22) to get all the waypoints of
the mission, starting from the initial location previously calculated. The length
of each segment of the mission was randomly obtained in a range that varies from
250 to 500 meters. Moreover, the maximum length should be lower than half
the side of the area were UAVs are deployed to guarantee that the algorithm can
go on. Global parameter α represents the linearity of the path followed by the
UAVs, varying from 0 (Brownian movement) to 1 (linear motion). We set α to
0.75, which makes the mission significantly linear (see Figure 5.21b), changing to
a Brownian movement when the UAV is too close to the limits of the area, with
the aim of allowing it to bounce inward. Finally, we set the number of waypoints
of the mission to 100, which is equivalent to 99 segments having a mean length of
375 meters.

Global results

Table 5.6 compares the results gathered with MBCAP, and with MBCAP-e,
when varying the number of UAVs in the area. We show the mean value for all
the experiments, finding that MBCAP-e significantly outperforms MBCAP. We
now proceed to analyze the performance metrics included in table 5.6.

• Collisions expected. Represents the mean number of collisions detected
between UAVs in a single experiment, when the protocol is not in use. This
value allows us to determine the success ratio of the protocol at detecting
and avoiding collisions.

• Risks detected. Represents the mean number of times the collision-avoid-
ance protocol is enforced throughout the experiment. Figure 5.23a shows

88

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

Algorithm 5 RanMission gets a random mission for n UAVs.

Require: area = ∆x × ∆y = 5 × 5 km, n UAVs (25, 50, 75, or 100), location
of the area center, [dmin , dmax] = [250, 500] mission segment length range
in meters, mobility linearity of α = 0.75, numWPs = 100 waypoints of the
mission, A = {(P1, β1), (P2, β2), ...(Pn, βn)} starting location and heading of
the n UAVs.

Ensure: M = {mission1,mission2, ...missionn}, where missioni is the sequence
of waypoints that comprises the mission of the UAV i.

1: M = ∅
2: for i← 1 to n do
3: Pprev = Pi

4: missioni1 = Pprev

5: βprev = βi
6: for j ← 2 to numWPs do
7: α′ = α
8: γj = 2π (1− α′)
9: dj = random length ∈ [dmin , dmax]

10: βj = random heading ∈ [βprev − γj/2, βprev + γj/2]
11: Pj = Pprev + f(dj , βj)
12: if Pj /∈ area then
13: do
14: α′ = 0
15: γj = 2π (1− α′)
16: βj = random heading ∈ [βprev − γj/2, βprev + γj/2]
17: Pj = Pprev + f(dj , βj)
18: while Pj /∈ area
19: end if
20: missionij = Pj

21: Pprev = Pj

22: βprev = βj
23: end for
24: M = M ∪missioni

25: end for
26: return M

Table 5.6: MBCAP vs. MBCAP-e: Collision avoidance performance (mean value
by experiment).

MBCAP MBCAP-e
Number of UAVs 25 50 75 100 25 50 75 100
Collisions expected 6.5 16.5 45.5 84.25 6.5 16.5 45.5 84.25

Risks detected 28.17 132.92 338.75 659.42 23.08 105.08 249.08 438
Soft collisions (d < 5m) 0.58 1.83 3.42 10.08 0.08 0.08 0.58 1.5
Hard collisions (d < 4m) 0.58 1.67 2.58 8.42 0.08 0.08 0.58 1.08

Deadlocks avoided 0.08 1.67 4.33 10.83 0 0.33 0.25 0.58
Deadlock failures 0.33 3.42 8.75 21.42 0 0 0 0

89

5. Mission Based Collision Avoidance Protocol (MBCAP)

30 40 50 60 70 80 90 100

Number of UAVs

0

100

200

300

400

500

600

D
e

te
c
te

d
 r

is
k
s
 a

v
e

ra
g

e

MBCAP

MBCAP fit

MBCAP-e

MBCAP-e fit

(a) Total risks vs. number of UAVs:
O(n2).

30 40 50 60 70 80 90 100

Number of UAVs

1

2

3

4

5

6

D
e

te
c
te

d
 r

is
k
s
 a

v
e

ra
g

e
 b

y
 U

A
V MBCAP

MBCAP fit

MBCAP-e

MBCAP-e fit

(b) Risks by UAV vs. number of UAVs:
O(n).

Figure 5.23: MBCAP vs. MBCAP-e: Average risks detected during an
experiment.

that the mean number of risky situations detected along an experiment
increases with the number of UAVs present in the area as O(n2), and it
also shows the precision increment in the collision detection strategy that
is achieved with MBCAP-e, where the latter is able to prevent UAVs from
stopping unnecessarily in many situations. On the other hand, Figure 5.23b
shows that the mean number of dangerous situations detected by a UAV in
a single experiment increases with the number of UAVs as O(n). Finally,
table 5.6 and Figure 5.24 show that, in general, the UAVs detect less risky
situations when adopting MBCAP-e, for any number of UAVs, e.g. 66.4%
for 100 UAVs.

• Soft collisions (d < 5m). Mean number of possible collisions taking place
during an experiment. We consider that a simulated collision has happened
when two UAVs are located at a distance lower than 5 meters. The typical
GPS error on multicopters is 2.5 meters, and so we consider it a very un-
favourable situation, occurring in those cases where the GPS error bias of
both UAVs is exactly the opposite. MBCAP-e highly improves the collision
avoidance ratio with respect to MBCAP, e.g., from 88.04% to 98.22%, for
the worst-case experiment (100 UAVs).

• Hard collisions (d < 4m). Represents the same metric, but with a more
realistic threshold. In this case, we only consider that a collision has hap-
pened if the UAVs are closer than 4 meters. As expected, the success ratio
is higher (98.92%), but this is only detected in experiments with 100 UAVs,
as in other cases the number of collisions is too low to compare.

• Deadlocks avoided. Represents the number of situations where a UAV
surpasses the global timeout when waiting for other UAVs to solve another

90

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

0 2 4 6 8

Risks detected by each UAV

0

5

10

15

20

25

30

35

N
u

m
b

e
r

o
f
U

A
V

s
 (

%
)

MBCAP

MBCAP-e

(a) Experiment with 25 UAVs.

0 5 10 15 20

Risks detected by each UAV

0

5

10

15

20

25

N
u

m
b

e
r

o
f
U

A
V

s
 (

%
)

MBCAP

MBCAP-e

(b) Experiment with 50 UAVs.

0 5 10 15 20 25

Risks detected by each UAV

0

5

10

15

N
u
m

b
e
r

o
f
U

A
V

s
 (

%
)

MBCAP

MBCAP-e

(c) Experiment with 75 UAVs.

0 10 20 30 40

Risks detected by each UAV

0

2

4

6

8

10

12

14

N
u
m

b
e
r

o
f
U

A
V

s
 (

%
)

MBCAP

MBCAP-e

(d) Experiment with 100 UAVs.

Figure 5.24: MBCAP vs. MBCAP-e: Distribution of UAVs given the risks
detected by each one.

collision risk situation, but it resumes its mission (transitions f, i, j, or k
in Figure 5.17). Somehow the protocol has failed, and the UAV has been
waiting for an excessive time because it is trying to solve a collision with a
UAV that has already moved out of the contending area; in this situation,
the protocol is able to detect that the UAV is no longer present and that
the risk has gone, allowing the waiting UAV to go on with its mission. With
MBCAP-e, the UAVs are in this situation only in extremely rare cases, i.e.
0.07% for 100 UAVs in these specially unfavourable scenarios.

• Deadlock failures. Represents the number of situations where a UAV
surpasses the global timeout while waiting for other UAVs to solve another
collision risk situation, and it is not safe for it to go on with the mission
(transition g in Figure 5.17). If a low-priority UAV is blocked in a state
for too long, and the high-priority UAV is already present in the conflict
area, it should not continue with the mission, because resuming it could
cause a collision. MBCAP showed an undesirable behavior, failing in many

91

5. Mission Based Collision Avoidance Protocol (MBCAP)

Table 5.7: MBCAP vs. MBCAP-e: Performance comparison (mean value by
experiment).

Reference MBCAP MBCAP-e

Flight
time (s)

Min. 3618 3691 3688
Mean 3848 4154 4006
Max. 4111 5511 4457

Max. overhead - 1120 553

Flight
length (m)

Min. 34893 34916 34918
Mean 36898 36949 36933
Max. 39194 39258 39253

Max. overhead - 229 127
Mean speed (m/s) 9.59 8.9 9.22

encounters, while with MBCAP-e no UAV needed to land.

To gain further insight on the protocol performance, we analyzed in detail the
few collisions detected, finding that the collision risks between two UAVs were
always avoided, meaning that collisions always happened when three or more
UAVs met in the same area, and at the same time; in particular, problems only
occur when a third UAV stops in the path that the high-priority UAV is following
while overtaking the low-priority UAV. We can consider this case a possible but
improbable situation.

Regarding the behavior of the low-priority UAV, when it stops it can stand
still while being overtaken, or it could move aside to allow the other UAV to go
on. With MBCAP it needed to move aside in 22.8% of the cases, while with
MBCAP-e this occurred for 28.3% of the cases. This increment is due to the
Waypoint behavior improvement included in the collision avoidance strategy (see
section 5.3.1.3 and Figure 5.18), as it forces the low-priority UAV to move further
away from the path the high-priority UAV has to follow.

Up to this point, we have compared the success ratio of MBCAP and MBCAP-
e. Now we analyze the flight time overhead of both versions of the protocol. Table
5.7 shows the mean flight time and path length for a UAV using MBCAP, MBCAP-
e, and without using the protocol. We can observe that, with MBCAP-e, a UAV
needs to travel for additional 35 meters on average, and consumes a mean extra
time of 158 seconds at avoiding collisions, while with MBCAP it needs 51 extra
meters and 306 extra seconds, respectively. The mean speed during flight is also
higher with MBCAP-e, showing that MBCAP-e is significantly more efficient at
avoiding collisions than the previous version. Figure 5.25 shows the mean time
overhead for a UAV during the whole experiment, given the number of times
that UAV needed to stop to avoid a collision. We can observe that the slope of
the line is nearly constant, independently of the number of UAVs included in the

92

5.3. MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol

0 10 20 30 40

Number of risks detected by each UAV

0

200

400

600

800

1000

1200

M
e

a
n

 t
im

e
 o

v
e

rh
e
a

d
 (

s
)

MBCAP: 25 UAVs

MBCAP: 50 UAVs

MBCAP: 75 UAVs

MBCAP: 100 UAVs

MBCAP-e: 25 UAVs

MBCAP-e: 50 UAVs

MBCAP-e: 75 UAVs

MBCAP-e: 100 UAVs

Figure 5.25: MBCAP vs. MBCAP-e: Global time overhead given the risks
detected by each UAV.

20 40 60 80 100

Number of UAVs

0

5

10

15

20

25

30

35

T
im

e
 o

v
e

rh
e

a
d

 a
v
e
ra

g
e

 b
y
 r

is
k
 (

s
)

MBCAP

MBCAP-e

Figure 5.26: MBCAP vs. MBCAP-e: Time overhead by risk detected vs.
number of UAVs.

experiment. Also, we find that its slope is lower with MBCAP-e, as the UAV
requires less time to avoid each collision. We also find that, the more UAVs are
present in a same experiment, the more collision risks per UAV are detected,
and that with MBCAP a UAV detects more collision risks than with MBCAP-e.
Finally, Figure 5.26 shows the mean time needed for a UAV to avoid a single
collision depending on the number of UAVs flying around in the same experiment.
It is clear that, with MBCAP-e, UAVs require less time to avoid a collision, with a
mean value lower than 25 seconds, while with the previous version it needed more
than 30 seconds.

Overall, experiments have shown that MBCAP-e adds a significant improve-
ment over the earlier version of this protocol when performing large scale sim-
ulations in a congested airspace. Also, we have found that the time overhead
introduced by the protocol remains quite low (mean overhead of 25 seconds per
risky situation solved).

93

5. Mission Based Collision Avoidance Protocol (MBCAP)

5.4 Summary

As new mission-based applications for multicopters emerge, the number of UAVs
flying simultaneously also increases, and the risk of collision between them becomes
higher. In addition, there are currently no collision avoidance protocols developed
for UAVs from different owners when performing planned missions.

In this chapter we propose MBCAP, a collision avoidance protocol for multiro-
tor UAVs performing planned missions by relying on a cooperative sense & avoid
approach, and MBCAP-e, an enhanced version of MBCAP. Experimental results
showed that MBCAP-e is able to avoid collisions between two UAVs in all cases,
and with a success ratio of 98.22% in highly crowded environments (100 UAVs
scenario). Experiments using real UAVs evidenced the resemblance between the
simulated and the real-life performance of MBCAP-e. In addition, we found the
flight time overhead introduced by the protocol to be quite low and well bounded,
considering the current lifespan of multicopter batteries. Overall, the effectiveness,
reliability, and efficiency of MBCAP-e proved to be considerably higher when com-
pared to its previous version (MBCAP), making it suitable for deployment in real
multicopters.

94

Chapter 6

Mission-based UAV Swarm
Coordination Protocol (MUSCOP)

Although there are already some solutions for the automation of UAV swarm
flights, in certain situations automatic guidance can be required. Examples of
such situations may include applications for large-scale agriculture in search of
pests or weeds [19, 2], wild life recordings [5], or border surveillance [13], among
others. In these specific cases, the different UAVs that make up the swarm must
allow the coordination of multiple UAVs when carrying out the mission. Such
mission must be planned beforehand. Then, the communications between UAVs
should enable near-real-time responsiveness to maintain the consistency of the
swarm.

In this chapter, we propose the MUSCOP protocol which provides UAV co-
ordination to maintain the desired flight formation when carrying out planned
missions. MUSCOP uses a centralized approach where the master UAV synchro-
nizes all slave UAVs each time they reach an intermediate point in the mission.

6.1 Protocol overview

6.1.1 Introduction

MUSCOP aims at keeping a stable flight formation while performing a planned
mission. To design the protocol, we rely on a master-slave model where the master
UAV synchronizes all the slave multicopters every time they reach a waypoint
in a mission. Furthermore, before beginning the mission, all the slaves receive

95

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

a mission brief having waypoint coordinates modified so as to agree with their
position offset with regard to the swarm leader. This way, each UAV can move
from one waypoint to the following one according to its own mission when the
master UAV sends the corresponding command. Our solution keeps the flight
formation consistent throughout the entire flight mission.

The messages used to synchronize UAVs in the swarm are transmitted from
the master to the slaves, and from the slaves to the master, meaning that only two
threads per UAV (Talker Thread and Listener Thread) are required for message
handling. The Listener Thread thread implements the protocol’s finite state ma-
chine, and reacts as soon as the required messages are received from other UAVs,
sending commands to the flight controller to dynamically control the behavior of
the multicopter.

6.1.2 Finite state machine

Figure 6.1 shows the finite state machine that rules the behavior of the master
and slave UAVs. The circles represent the states, the curved arrows represent
the messages sent and received, and the straight lines represent the transitions
between states. The curved arrows above the states are the messages sent by the
UAV (Talker Thread), while the arrows below the states represent the messages
received from other UAVs (Listener Thread).

Letters "M" and "S" refer to the master and the slave UAVs. Before the UAVs
take off, the UAV located in the centre of the flight formation ("C") becomes the
master UAV, and the remaining UAVs take the role of slaves, being identified as
"NC". Notice that, by setting the UAV in the middle of the formation as the
master, we are able to optimize communications, as the messages are sent from
master to slaves and vice-versa, and we need to minimize the distance between
sender and receiver to mitigate the impact of channel losses.

All the UAVs begin in the Start state. The slaves send to the master a hello
message to inform it about their presence, so it can know the number of UAVs that
will integrate the swarm flight formation. When the user is informed that all the
UAVs have successfully connected to the master, he presses a button that allows
switching to the Setup state, thereby starting the initial configuration procedure.
First, the master UAV decides the location of each UAV in the flight formation.
Then, it computes a modified mission brief for each specific UAV, according to their
position in the swarm, and sends the message data to the different slaves, which
includes the personalized mission each of them will have to follow. Afterward,
the slaves inform the master (dataAck) that they have received the message. Only
when all the slaves have the required data does the master UAV switch to the Ready
to fly state, and broadcasts a readyToFly message to force the remaining UAVs
to switch to that same state, and send back the corresponding acknowledgement
(readyToFlyAck). When all the UAVs are ready to fly, the master UAV starts the
take off (Taking off state), and stops sending the readyToFly message, forcing the

96

6.1. Protocol overview

St
ar

t

M
: w

ai
t

Ta
lk

er
 T

hr
ea

d

Li
st

en
er

 T
hr

ea
d

S:
 h

el
lo

M
: h

el
lo

S:
 d

is
ca

rd

Se
tu

p

M
: d

at
a

S:
 d

at
a

->
 d

at
aA

ck

M
: d

at
aA

ck
S:

 d
at

a

 r

ea
dy

To
Fl

y

Se
tu

p
st

ar
te

d
M

: a
ll

re
ad

y
S:

 re
ad

yT
oF

ly

i+
+;

 m
ov

e

La
nd

in
g

C
: l

an
d

R
ea

dy
to

 fl
y

M
: r

ea
dy

To
Fl

y
S:

 re
ad

yT
oF

ly
Ac

k

M
: r

ea
dy

To
Fl

yA
ck

S:
 re

ad
yT

oF
ly

Ta
ki

ng
 o

ff
M

: a
ll

re
ad

yT
oF

ly
Ac

k
S:

 ti
m

eo
ut
RT

F

ta
rg

et
R

ea
ch

ed
Se

tu
p

fin
is

he
d

-

di
sc

ar
d

W
ay

po
in

t
re

ac
he

d

C
: -

N
C

: r
ea

ch
ed

W
PA

ck
i

C
: r

ea
ch

ed
W

PA
ck

i
N

C
: l

an
d

 m
ov

eT
oW

P

Te
st

st
ar

te
d

M
ov

in
g

to
w

ay
po

in
t

C
: m

ov
eT

oW
P

N
C

: r
ea

ch
ed

W
PA

ck
i-1

di
sc

ar
d

M
ov

in
g

to
ta

rg
et

i =
 0

C:
al

l r
ea

ch
ed

 &
 i

!=
 la

st

NC
: m

ov
eT

oW
P

re
ac

he
dW

Pi

C
: a

ll
re

ac
he

d
&

i =
=

la
st

NC
: la

nd

ta
rg

et
Re

ac
he

d

Fi
ni

sh
ed

no
t a

rm
ed

Figure 6.1: MUSCOP protocol finite state machine.

97

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

slaves to also take off. The setup process finishes when all the UAVs reach their
respective location in the flight formation, switching to the Setup finished state.

The flight coordination protocol begins when the user presses a button to start
the flight. The initial UAV location during flight is considered as the first waypoint
of the mission, so all the UAVs begin in the Waypoint reached state. When the
master UAV receives the reachedWPAck message from all the slaves, it starts to
move to the next waypoint (Moving to waypoint state), and forces the slaves to
also move to the next waypoint through message moveToWP. All the UAVs remain
in the Moving to waypoint state until they reach the next waypoint. During that
process, the master UAV is continuously sending a command to move to the next
waypoint, while the slave UAVs return an acknowledgement of having reached the
previous waypoint earlier on. This redundant behavior increases the reliability
of the protocol, as the messages sent among the UAVs could be lost due to the
distance or the presence of noise in the communications channel. In addition, we
find that the proposed protocol is characterized by a very low occupancy of the
wireless medium, as these messages are really short (6 and 14 bytes, respectively).
When all the UAVs reach the last waypoint of the mission, the master UAV lands
in its current location, and broadcasts the land message, including its current
location, to force slaves to start the landing procedure. Before landing, the slaves
move closer to the master. This way they maintain the same formation used
during the flight while reducing the distance between them (i.e. 5 meters) to
make sure the swarm landing area remains small. Otherwise, they would land on
a much wider area, possibly on unexpected places, making it difficult to recover
these UAVs afterward.

6.1.3 Message format

Figure 6.2 shows the format of the messages transmitted from the master to the
slave UAVs, and vice-versa. In this section we detail their content and purpose.
All the messages start with the type field, which identifies the type of message,
and they are sent periodically (period of 200 ms) taking into account that they
can be lost due to an unreliable communications channel. Furthermore, the com-
munications rely on UDP broadcasting to be reached by all the UAVs within range
while guaranteeing the lowest possible network overhead.

Message hello (1) is sent from the slaves to the master when they are turned
on. This allows the master to detect their presence and their intention to take
part in the swarm. The id represents a unique identifier for the sender UAV, and
it is included in all the messages transmitted towards a specific UAV. On a real
UAV, it is based on the MAC address of the communications adapter, as it is
also unique, while in simulation it is a unique number provided by ArduSim. The
current location is also included to allow the master UAV to organize the mission
that must be followed by each UAV.

98

6.1. Protocol overview

type id(1)

type id

type id

(2)

(4)

x y

z n (x,y,z)i

type(5) waypoint

type id(6) waypoint

type(3)

idc

hello

nUAVs form. pos. data

dataAck, readyToFlyAck

readyToFly

reachedWPAcki

moveToWP

type(7) x y land

h

Figure 6.2: MUSCOP protocol message types.

During the setup phase, the master UAV defines the relative location of each
UAV in the flight formation, and then it calculates the mission they will follow.
The UAV in the center of the formation will follow the original planned mission,
while the remaining UAVs will follow a modified version of that mission that
includes a constant offset so as to maintain a same relative position in the swarm
formation throughout the flight. During the flight, the UAV located at the center
will be the master, a strategical choice which allows us to optimize master-slave
communications. The data (2) message includes the following fields:

• id. Identifier of the target UAV.

• idc. Identifier of the UAV that will be in the center of the flight formation.
When idc matches id, the target multicopter will become the master UAV
during the flight, sending coordination messages to the remaining UAVs.
Otherwise, the multicopter will become a slave, and will accept commands
from the UAV with this identifier.

• nUAVs. Number of UAVs that will take part on the flight formation. This
is a parameter required by the master UAV to know when all the UAVs have
reached a specific waypoint.

• form. Type of formation, selected between the options provided by ArduSim:
linear, matrix, and circular, among others.

• pos. Position of the target UAV in the flight formation. Beside the previous
two fields, this one allows each UAV to know its relative location in the flight
formation.

• h. Heading of the UAV swarm, fixed during the whole flight. Before landing,
the multicopters surrounding the center UAV approach it, conforming a more
compact version of the flight formation in order to land in a reduced area,

99

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

making it easier to collect the multicopters afterward. This field is needed
for each UAV to calculate its location in the landing formation.

• z. Altitude over the ground for the take-off step.

• n. Number of waypoints of the mission included in the message.

• (x,y,z)i. Coordinates for all the waypoints included in the message. The
maximum number of waypoints that can fit in the message is 58, considering
the maximum payload of a UDP datagram over standard Ethernet.

The master UAV sends the readyToFly message (3) when all the slaves have
received the data message, and makes them ready to take-off.

Messages dataAck and readyToFlyAck (4) are used by slaves to inform the
master UAV that the corresponding message has already been received. The
former points out that the UAV has received the mission to be followed, and the
later that it is ready to take-off. As the master needs to know when all of them
have received these messages, they must include the identifier of the sender UAV.

Message moveToWP (5) allows the master UAV to synchronize the formation.
When it notices that all the slaves have arrived to the current waypoint, it sends
this command to make them all move towards the next waypoint. The slaves use
the reachedWPAcki message (6) to inform the master UAV that they have reached
the waypoint defined.

Finally, the land command (7) is sent by the master UAV, including its loca-
tion, which allows slaves to determine where to land, adopting a more compact
version of the flight formation.

6.2 Data sources and error assessment

Once the MUSCOP protocol was introduced, we now proceed to validate it. To
this purpose, we will first provide details about the used data sources. Then, we
will describe the procedure adopted to determine the errors associated with our
tests.

6.2.1 Data source

The MUSCOP protocol needs a planned mission to be used as data source, so
that the master UAV can guide the swarm along the defined route. In this sense,
for our tests we plan different missions in such a way that the complexity of the
missions is increasing. For this, we fixed the total distance for all missions to 1840
meters, defining a set of missions where the UAVs move towards the northeast
direction with an increasing number of steps. In figure 6.3 there are a few mission
examples where the same total distance to be traveled is maintained, but having

100

6.2. Data sources and error assessment

Figure 6.3: Samples of test missions with 2, 6, and 30 waypoints.

different mission complexity levels: 2 waypoints (brown), 6 waypoints (white), and
30 waypoints (green), respectively.

Once the missions were obtained and used as input, different simulations were
performed. ArduSim generates a set of data for each UAV in the simulation.
The information generated by ArduSim allows us to obtain UTM coordinates,
speed, acceleration, height, heading, and time per UAV along the experiment. In
our evaluation set, the location recorded at the beginning of the experiment is
taken as the origin. Then, we use the time interval during which the flight data
is available for all the UAVs in the simulation, and then proceed to perform the
interpolation for the simulated data set at fixed time steps.

We now proceed to describe the methodology used to calculate the error asso-
ciated to the different UAVs when flying as a swarm using MUSCOP. In general,
we measure the time delay produced between the master UAV and the slave UAVs
for the different formations tested: linear, matrix and circular. To achieve this,
we first determined the general formation error.

Figure 6.4 shows the general error for an array formation. The point marked
with "X" (blue color) represents the theoretical position on the formation calcu-
lated for each of the UAVs, and centered on the master UAV. The yellow line
represents the calculated error corresponding to the position of the slave UAV
(black color) and the theoretical one. The black arrows represent the direction of
the movement for each of the UAVs in the swarm. It is noteworthy that all the
UAVs move in the same direction along straight lines, and thus the offset for the
entire journey will in general be parallel to the mission segments. Below we pro-
vide more details about the procedure adopted for the calculation of the position
and time offsets for the UAVs in the swarm.

101

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

ε8

ε1 ε2 ε3

ε4 ε5

ε6
ε7

Figure 6.4: Distance offset error for the matrix formation.

6.2.2 Error analysis

The global swarm formation error (ε) refers to the theoretical location of all the
slave UAVs, where the individual positions in the formation are defined based on
the current location of the master UAV

−−→
PMi

, and taking as reference a constant
heading for the formation.

−−→
PMi = (Pxi , Pyi) (6.1)

In equation 6.1, i represents the current time step for a real position on x and
y axes, respectively.

−→
Pki

represents the theoretical position of the slave UAV k
calculated for time instant i.

−→
Pki =

−−→
PMi +

−→
∆k (6.2)

where:−→
Pki = (xki , yki)−→
∆k = (∆xk,∆yk)

xki
= Pxi

+ ∆xk
yki

= Pyi
+ ∆yk

∆xk = offsetxk
· cos(h) + offsetyk

· sin(h)

∆yk = offsetyk
· cos(h)− offsetxk

· sin(h)

As the heading h of the flight formation and the relative offset of a slave k
with respect to the master UAV remain constant to achieve swarm cohesion, the
theoretical position of the slave k is calculated adding a constant

−→
∆k value to the

current master location.

102

6.3. Protocol validation

The actual position of a specific UAV is
−→
P ′ki

= (x′ki
, y′ki

) on the period of time
i. Notice that x′ki

is the real value obtained by the simulator in the x axis, and
y′ki

is the real value obtained in the y axis, for each slave UAV at time instant i
for the given interpolated data set.

The equation to calculate the error or distance offset of the slaves with regard
to the master UAV is defined as:

εki
=

√
(xki
− x′ki

)
2

+ (yki
− x′ki

)
2 (6.3)

Finally, we calculate the time offset as εki
/vki

, where vki
is the current speed

of UAV k.

6.3 Protocol validation

Once the data source and the methodology used to calculate the errors have been
defined, we proceeded to evaluate our proposed protocol. To achieve this, we con-
ducted an extensive set of experiments using different numbers of UAVs, different
distances between UAVs, and different formations. In this sense, we will divide our
evaluation set in 3 parts: (i) impact of MUSCOP and mission complexity on fly-
ing time; (ii) impact of channel losses on swarm cohesion for the given formation;
(iii) impact of using different inter-UAV distances in the swarm formation; and
finally (iv) scalability analysis. Please notice that, in all the simulations carried
out, we have only evaluated performance when the swarm formations are in the
flight phase, discarding from our traces the take-off and landing phases. In an
illustrative video1 we run three experiments with different flight formations on the
ArduSim simulator. Below we provide details about the results obtained.

6.3.1 Impact of MUSCOP and mission complexity

In this section, we seek to evaluate the time and distance offsets produced by our
protocol, checking the performance achieved in the presence of an ideal lossless
channel. For this purpose we use the default configuration of the ArduSim simula-
tor, keeping the speed constant at 10 m/s, using the linear formation for 9 UAVs,
and varying the complexity of the mission. The total distance travelled by each
UAV is 1840 meters.

6.3.1.1 Time series analysis

In this first evaluation, we analyze the behavior of a single simulation using nine
UAVs and a linear formation. The target flight speed is set to 10 m/s, and we

1https://youtu.be/VLMsbL5B6tA

103

https://youtu.be/VLMsbL5B6tA

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

(a) Formation distance offset. (ε). (b) Formation time offset.

Figure 6.5: Evaluation using the linear formation with 9 UAVs (ideal channel).

adopt a distance between UAVs of 50 meters (our default value). The total number
of waypoints in the mission is just 2.

Figure 6.5 shows the formation error measured as position offset, and the
corresponding delay offset as a function of time for a single experiment. At time
105 seconds it shows the offset between slaves and master UAV assessed when the
flight coordination is taking place, when the UAV switches from the first to the
second waypoint of the mission. Note that the distance offset error in the swarm
formation remains low despite the time offset increases for that point. This is
due to the deceleration of all UAVs, and the synchronization time overhead when
arriving at this coordination point.

In general, Figure 6.5 (a) shows that the average error obtained for this type of
formation is lower than 2 meters. Concerning the time offset, Figure 6.5 (b) shows
that the average error is of 0.16s, which coarsely corresponds to the synchronization
time requirements of our protocol (∼200 ms).

6.3.1.2 Impact of mission complexity

Once the behavior for a single simulation was analyzed, we proceeded to perform
multiple simulations to evaluate the behavior when the complexity of the mission
increases. The complexity of the mission studied was defined by varying the total
number of waypoints while maintaining the overall mission length, as explained
in section 6.2.1. In particular, we defined missions having 2, 4, 6, 10, 14, 18, and
30 waypoints, respectively. In total, five simulations were made for each mission
type, and the speed and the separation between UAV was kept constant, adopting
the values defined earlier.

Figure 6.6 shows the results obtained when we vary the complexity of the mis-
sion. In general, Figure 6.6a shows that the time offset maintains an approximate
average value of 0.20s. Also, maximum atypical values are shown, which vary

104

6.3. Protocol validation

2 4 6 10 14 18 30
Number of waypoints

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Ti

m
e

of
fs

et
 (s

)

(a) Time offset.

2 4 6 10 14 18 30
Number of waypoints

0

1

2

3

4

5

6

7

Di
st

an
ce

 o
ffs

et

 (m
)

(b) Distance offset.

Figure 6.6: UAVs offset on a swarm of 9 UAVs (ideal channel).

Table 6.1: Overall simulation statistics (ideal channel).

Formation Distance offset ε (m) Time offset (s)
Mean Max. Std. Mean Max. Std.

Linear 1.0865 7.2788 0.9077 0.1749 1.7724 0.1278
Matrix 1.0496 6.6886 0.8564 0.1720 1.3376 0.1209
Circular 1.1624 8.2147 0.9314 0.1854 1.6323 0.1266

according to the mission. Concerning the distance offset error, it becomes evident
that, in general, it tends to decrease as the mission becomes more complex. Such
behavior is shown in Figure 6.6b. To understand the reasons underlying this phe-
nomenon, notice that distances between the coordination points decrease as the
mission complexity increases, meaning there is less time for UAVs to accelerate
and reach maximum speed values.

Table 6.1 shows the average, maximum, and standard deviation values for
each flight formation evaluated. In particular, it shows that the matrix formation
appears to achieve slightly better performance than the other formations, but the
overall results are equivalent, as the distance between UAVs does not affect the
communications link quality (ideal channel). In general, we conclude that, under
an ideal channel, the number of waypoints and the complexity of the mission
defined for the swarm is relevant for the distance offset error when the UAVs do
not have enough time to reach maximum speed, but irrelevant otherwise. Table
6.1 also shows that the average time offset is close to the update interval adopted
by our protocol regarding message broadcasting (messages are transmitted every
200 ms).

105

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

Table 6.2: Flight time overhead.

Number of
Waypoints

Reference
mission (s)

Linear
formation (s) ∆t (s)

2 205.33 206.33 1.00
4 226.00 228.33 2.33
6 247.67 250.00 2.33
10 288.00 293.00 5.00
14 326.00 334.33 8.33
18 364.33 374.00 9.67
30 466.00 479.33 13.33

Reference

MUSCOP

Figure 6.7: Flight time overhead using the linear formation with 9 UAVs (ideal
channel).

6.3.1.3 MUSCOP time overhead

In this section we analyze the time overhead introduced by our protocol. We
measured the flight time when varying the number of waypoints (see Table 6.2),
and we repeated the experiments five times, taking the mean value. Then, we
compared the flight time with the value obtained when the UAV follows the same
mission automatically (Reference mission), obtaining the time overhead for the
whole flight ∆t. We found that the protocol only adds 0.55 seconds to the flight
time for each waypoint crossed.

Figure 6.7 shows that the flight time increases linearly with the number of
waypoints, and that the total time added to the flight remains very low.

6.3.2 Impact of channel losses

In the previous section we evaluated the performance under ideal channel condi-
tions to determine the impact of the mission complexity and the protocol time

106

6.3. Protocol validation

2 4 6 10 14 18 30
Number of waypoints

0

2

4

6

8

10

12

14
Ti

m
e

of
fs

et
 (s

)

(a) Linear formation.

2 4 6 10 14 18 30
Number of waypoints

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
of

fs
et

 (s
)

(b) Matrix formation.

2 4 6 10 14 18 30
Number of waypoints

0.0

0.5

1.0

1.5

2.0

Ti
m

e
of

fs
et

 (s
)

(c) Circular formation.

Figure 6.8: Time offset on a swarm of 9 UAVs (lossy channel).

overhead. We now proceed to evaluate our protocol under a more realistic lossy
communications channel based on IEEE 802.11 technology, and where the maxi-
mum communications distance is of about 1300 meters (channel conditions based
on real experiments, as detailed in section 4.1.3). The idea is to maintain the
same experimental conditions as in the previous section, and assess the impact of
channel losses on performance. Specifically, we use nine UAVs for each simulation.
The distance between UAVs was set to 50 meters, and the speed was maintained
at 10 m/s. Figures 6.8 and 6.9 show the time and distance offset error for each of
the formations evaluated.

Figure 6.8 shows that, in general, the time offset does not vary significantly
when comparing the different formations. However, compared to the results ob-
tained under ideal channel conditions, we can now find outlier values for the delay
which are quite higher than for the previous experiments. Besides, these values
increase as the complexity of the mission also increases. Specifically, in the linear
formation, we can see delay values that are much higher than for the rest of the

107

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

2 4 6 10 14 18 30
Number of waypoints

0

2

4

6

8

10

12

Di
st

an
ce

 o
ffs

et

 (m
)

(a) Linear formation.

2 4 6 10 14 18 30
Number of waypoints

0

1

2

3

4

5

6

7

Di
st

an
ce

 o
ffs

et

 (m
)

(b) Matrix formation.

2 4 6 10 14 18 30
Number of waypoints

0

2

4

6

8

10

Di
st

an
ce

 o
ffs

et

 (m
)

(c) Circular formation.

Figure 6.9: Distance offset on a swarm of 9 UAVs (lossy channel).

formations. This occurs because, with 9 UAVs, the maximum distance from the
farthest UAV to the leader is of about 200 meters.

Figure 6.9 shows that the average error in distance, measured as position offset
differences, tends to decrease as the complexity of the mission increases. Specifi-
cally, the matrix formation introduces lower errors with respect to the linear and
circular formations. In the case of linear training, we can see that it is associ-
ated with higher errors; this is due to the higher distances regarding inter-UAV
communications, and whose details will be analyzed later.

Table 6.3 shows the mean, maximum, and standard deviation values for each
of the evaluated formations under a lossy channel. We can see that, compared to
the ideal channel conditions presented earlier, it shows a slight increase in all its
values. Figure 6.10 shows the behavior of our proposed protocol using an ideal
channel and a lossy channel for each of the formations analyzed, and using the
average values obtained from the different missions (with 2, 4, 6, 10, 14, 18, and
30 waypoints). In general, it becomes evident that the time differences between

108

6.3. Protocol validation

Table 6.3: Overall simulation statistics (lossy channel).

Formation Distance offset ε (m) Time offset (s)
Mean Max. Std. Mean Max. Std.

Linear 1.2766 13.223 1.1753 0.2020 13.8883 0.1882
Matrix 1.0807 6.9097 0.8625 0.1763 1.8721 0.2667
Circular 1.1804 9.982 0.9920 0.1889 2.3161 0.1370

Linear Matrix Circle
Formation

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Di
st

an
ce

 o
ffs

et

 (m
)

Type
Ideal-channel
Lossy-channel

(a) Formation distance offset (ε).

Linear Matrix Circle
Formation

0.16

0.18

0.20

0.22

0.24

0.26

Ti
m

e
of

fs
et

 (s
)

Type
Ideal-channel
Lossy-channel

(b) Formation time offset.

Figure 6.10: Performance comparison between ideal and lossy channel conditions
for different formations.

ideal channel and lossy channel conditions are in fact minimal, which validates
our MUSCOP protocol under realistic scenarios.

6.3.3 Impact of varying the inter-UAV distances

In the previous analysis, it was shown that the inter-UAV distance affects the
formation error in terms of both delay and position offsets. In this section, we
adopt the linear formation to provide additional insight into the impact of varying
the inter-UAV distances, and thus the channel losses, on the flight formation
cohesion. To this end, we vary the distance towards the leader UAV so that
it ranges from 100 to 1000 meters. In particular, our flight formation is now
limited to 3 UAVs (1 leader plus 2 slaves), so that the distance from all the slaves
to the leader is exactly the same. The number of mission waypoints used for
this evaluation is 14, and 5 independent simulations were run for each distance
measured.

Figure 6.11 shows the time offset when varying the distance between UAVs.
In general, it is observed that the mean time offset increases as the separation
distance increases. This is expectable since, in a lossy channel, large distances will
difficult the synchronization between UAVs, thus becoming a critical problem. It

109

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

100 200 300 400 500 600 700 800 900 1000
Distance separation in flight (m)

10 3

10 2

10 1

100

101

102

Ti
m

e
of

fs
et

 (s
)

Figure 6.11: Time offset for the linear formation when varying the inter-UAV
distance.

-1200-1000 -800 -600 -400 -200 0 200 400 600 800 1000 1200
Relative location of UAVs (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pa
ck

et
 lo

ss
 ra

tio

Figure 6.12: Packet loss ratio values at different distances.

is also worth mentioning that, for up to 300 meters between contiguous UAVs, the
time offset does not exceed 1 second, which is a quite acceptable value.

6.3.3.1 Packet loss ratio assessment

In the previous evaluation, it was observed that, at long distances, a greater time
offset is introduced. Next, we proceed to evaluate the message loss ratio that occurs
when using our protocol in the context of a larger swarm. For this purpose, a linear
formation with 13 UAVs was used in such a way that each UAV is separated from
its neighbors by a distance of 200 meters; hence, the UAVs located at the edges
are 1200 meters away from the leader UAV. Several simulations were made, and
the mean values were taken. The total number of waypoints for the mission was
again equal to 14.

Figure 6.12 shows the packet loss ratio measured at different distances. In
general, we can see that the UAVs that are at a greater distance have higher loss

110

6.3. Protocol validation

Figure 6.13: Scalability analysis when varying the mission size and the number
of UAVs.

levels, as expected, a ratio that even exceeds 80% for the UAVs located in the
periphery. These results evidence that ArduSim induces a very realistic model for
UAV communications.

6.3.4 Scalability analysis

Finally, we wanted to determine the impact of increasing the number of UAVs
and the complexity of the mission in performance. For this purpose, we used the
matrix flight formation, and we varied the number of UAVs, testing with 9, 25,
49, and 81 UAVs. For each number of UAVs, several simulations were carried out,
having different mission complexity levels: 2, 6, 10, 14, 18, and 30 waypoints. To
maintain a high degree of similarity between the different formations tested, we
maintained a same distance of 106 meters for the distance between the furthest
away UAVs in the matrix and the leader.

Figure 6.13 shows the scalability results when varying the number of UAVs
under both ideal and lossy channels. In general, the figure shows that the number
of waypoints (WP) is the factor having the greatest impact. In particular, we
find that complex missions having up to 30 waypoints make the overall flight time
grow beyond 450 seconds. It is also observed that the actual number of UAVs
does not have much impact, which means that our solution is highly scalable by
efficiently synchronizing all the UAVs in the swarm. In addition, we can also see
that the differences between both channel types is minimal, which means that our
proposed protocol has a high resilience to packet loss.

To gain further insight on how mission complexity affects the overall flight time,
we analyzed the resulting mobility pattern in more detail, finding that more com-
plex missions introduce more acceleration and deceleration events, which causes
the average flight speed to become lower, thereby increasing the total time asso-
ciated to a mission.

111

6. Mission-based UAV Swarm Coordination Protocol (MUSCOP)

6.4 Summary

In this chapter we focus on applications that require the use of UAV swarms to
undertake some preplanned missions. To this aim we proposed MUSCOP, a novel
protocol able to adequately synchronize all UAVs in a swarm throughout all the
steps involved in the flight.

Experimental validation using the ArduSim simulation platform has shown
that MUSCOP is effective at maintaining the swarm cohesion for different forma-
tions tested, and under different experimental conditions, being highly resilient to
channel losses, and able to seamlessly scale to a large number of UAVs without a
significant performance penalty. In fact, tests have shown that the complexity of
the mission is the main parameter affecting the overall flight times, a factor that
is independent of the number of UAVs involved. Nonetheless, the flight time only
increases by 0.55 seconds due to the required synchronization on each waypoint
when testing with an ideal communications channel, being only slightly higher in
the presence of channel losses.

112

Chapter 7

FollowMe protocol

Technically, a swarm is a group of UAVs powered by artificial intelligence algo-
rithms. UAVs in a swarm communicate with each other while they are in flight,
and can dynamically respond to changing conditions autonomously. This chapter
focuses on those applications where drone guidance must be manual, not following
a pre-planned mission. In this particular case, the different UAVs that make up the
swarm have to dynamically adjust their routes in order to follow the master UAV
acting as the leader of the swarm. Such a solution may be required in scenarios
such as search & rescue [66, 3], fire tracking [65], or the monitoring of disaster ar-
eas. In these cases, the pilot must respond to visual stimuli in real-time, and adapt
the UAV course accordingly. Our focus on UAV swarms also addresses situations
where, in addition to manual guidance, there is a need to carry multiple items or
sensors that go beyond the lifting capacity of a single UAV. An example would
be a rescue scenario where different UAVs carry food, water, medicine, or shelter.
Thus, our proposed application becomes very useful in these situations, by allow-
ing the pilot to control the leader UAV following the usual manual procedures,
while seamlessly dragging along the rest of the UAVs conforming the swarm.

One of the main problems to address when creating swarms is communications
reliability; whenever a cluster leader is present, such master UAV must maintain
an almost real-time synchronization with slave UAVs. The distance separating
neighboring UAVs must also maintain consistency to avoid collision problems.
Finally, the swarms can also experience a slight lag between the different UAVs,
an issue associated to distance and communication disruption, which at times
difficults synchronization throughout the whole process.

In this chapter, we propose the FollowMe protocol to define and maintain the

113

7. FollowMe protocol

Figure 7.1: FollowMe protocol operation using a matrix formation.

formation of UAVs in a swarm in the specific case where a real pilot controls the
swarm leader, and the other UAVs must follow it in real time.

7.1 Protocol overview

7.1.1 Introduction

The FollowMe protocol adopts a master-slave model, where a single UAV is man-
ually controlled by a pilot (master), and several UAVs follow the former automat-
ically (slaves). Figure 7.1 shows the scheme of the FollowMe protocol operation
using a matrix formation.

The multicopter acting as swarm leader (master) requires two threads to com-
municate with the slaves. The MasterTalker thread allows commands to be sent
to the slaves, and the MasterListener thread gathers state information from them.
When running the protocol in simulations, an additional thread (MasterRemote)
is used to simulate the input of a remote control, using the trace of a real flight
performed with a quadcopter model GRCQuad from Quaternium [57]. This thread
is in charge of controlling the virtual multicopter the same way the remote control
does in a real deployment of the protocol.

On the other hand, the slaves receive commands through the SlaveListener
thread, and send feedback about the progress of the protocol to the master UAV
through the SlaveTalker thread. In order to achieve the fastest possible response to
the commands received from the master multicopter, each slave UAV is controlled
from the SlaveListener thread, reacting immediately each time a new command
is received.

114

7.1. Protocol overview

7.1.2 Finite state machine

Figure 7.2 represents the finite state machine that rules the behavior of the master
and slave UAVs. The upper and lower lines show the progress of the protocol in
the master and the slave multicopters, respectively. Above each step, a curve line
shows the action performed by the talker thread on the UAV, while the lower line
shows the message the UAV is waiting for at each particular state.

The master multicopter starts by waiting until the flight controller is ready to
accept commands (UAVs ready) in the Start state. Then, it waits for the slaves
to signal their presence (message ID) in the Wait slaves state. When the master
detects all the slaves, the user can press the setup button (Setup started), going to
the Wait takeoff state. The TakeOff message is issued with enough information
to let the slaves know their location in the flight formation. The master UAV
is ready to fly when all the slaves reach their formation location (message Ready
received from all of them). The master UAV starts the flight when the user presses
the start button (Test started), and the pilot performs manually the takeoff. Once
it reaches enough altitude, it changes to the Follow me state, and then it starts
to issue messages (Coordinates) that allow the slaves to follow the leader flight
pattern. Finally, the flight ends by changing to the Landing state, sending the
slaves the Land message to finish their flight. In simulation, this happens when the
real recorded trace used to feed the master UAV finishes, and in a real multicopter
when the user changes the flight mode to Land. The master UAV only waits for
messages from the slaves during the initial steps. Since the master-slave model
gives this multicopter full control over the rest of the UAVs while they are flying,
the listener thread becomes useless when reaching the Ready state, and so it is
terminated.

Regarding the slave UAVs, they also start by waiting in the Start state until the
flight controller is ready to receive commands (UAVs ready). Then, they remain
in the Hello state, signaling their presence with their own message ID until the
takeoff command (TakeOff message) is received from the master UAV. All slaves
remain silent until they reach the target location in the formation with respect
to the master UAV, and then they switch to the Wait master state, meaning
that they are ready to follow the master (Ready message). When a UAV receives
commands to follow the master (Coordinates message), it changes to the Following
state, going after the master UAV until the landing command (Land message) is
received. Notice that the talker thread is not needed once the UAV starts to follow
the master (Following state), and it is terminated, similarly to the listener thread,
when the land command is received.

7.1.3 Message format

Several messages are needed to coordinate the behavior of the master and the slave
multicopters. Figure 7.3 shows the format of these messages. Fields type and ID

115

7. FollowMe protocol

St
ar

t
M

A
ST

ER
 U

AV
U

AV
s

re
ad

y
W

ai
t s

la
ve

s
W

ai
t t

ak
e

of
f

R
ea

dy
Ta

ki
ng

 o
ff

Fo
llo

w
 m

e
La

nd
in

g
Se

tu
p

st
ar

te
d

Al
l

re
ad

y
Te

st
st

ar
te

d
Al

tit
ud

e
re

ac
he

d
Tr

ac
e

fin
is

he
d

w
ai

t
w

ai
t

se
nd

 m
sg

.T
ak

eO
ff

w
ai

t
w

ai
t

se
nd

 m
sg

.C
oo

rd
in

at
es

se
nd

 m
sg

.L
an

d

w
ai

t
re

ce
iv

e
m

sg
.ID

re
ce

iv
e

m
sg

.R
ea

dy

Th
re

ad
 ta

lk
er

Th
re

ad
 li

st
en

er

St
ar

t
SL

AV
E

U
AV

U
AV

s
re

ad
y

H
el

lo
Ta

ki
ng

 o
ff

W
ai

t m
as

te
r

Fo
llo

w
in

g
La

nd
in

g
Ta

ke
O

ff
re

ce
iv

ed
Ta

rg
et

re
ac

he
d

C
oo

rd
.

re
ce

iv
ed

La
nd

re
ce

iv
ed

w
ai

t
se

nd
 m

sg
.ID

w
ai

t
se

nd
 m

sg
.R

ea
dy

w
ai

t
lis

te
n

m
sg

.T
ak

eO
ff

re
ce

iv
e

an
d

di
sc

ar
d

re
ce

iv
e

m
sg

.C
oo

rd
in

at
es

re
ce

iv
e

m
sg

.C
oo

rd
in

at
es

m

sg
.L

an
d

Th
re

ad
 ta

lk
er

Th
re

ad
 li

st
en

er

Figure 7.2: FollowMe protocol finite state machine.

116

7.1. Protocol overview

type IDID

type ID

type ID x y z

x y heading

heading

n id1, id2, ... , idn

type ID

type ID

Takeoff

Ready

Coordinates

Land

Figure 7.3: FollowMe message types.

y2
y1

x1

x2

h

offsetk
offsetk

PM i

Δx2

Δy2

Pk i+1

P'k i y1

x1

Figure 7.4: FollowMe protocol: target location calculation.

are common to all messages, and represent the message type, and the identifier of
the sender UAV, respectively.

The message ID is used by slave UAVs to inform the master UAV about their
presence, in order to join the swarm at the beginning of the process.

When all the slaves are detected by the master UAV, and the user starts the
setup step of the simulation, the TakeOff message is issued by the master UAV. It
adds its current coordinates and heading using the Universal Transverse Mercator
(UTM) coordinate system, as well as an ordered list of the UAV identifiers of the
slaves that were previously detected. This information allows a slave k to know its
theoretical position in the flight formation

−−−→
Pki+1

, besides the current location of
the master

−−→
PMi

. Then, the offset between the target location of the UAV and the
master (see Figure 7.4) is calculated considering the current heading of the master
h, and the slave takes off and moves to the designated location in the formation−−−→
Pki+1

.
Message Ready is sent by the slaves to the master UAV when the takeoff process

finishes. The master UAV cannot start the flight until all the slaves have taken-off
and are ready at their expected relative positions, surrounding its current location.
Only then can the manually controlled flight start.

117

7. FollowMe protocol

Once the master UAV reaches the same altitude as the rest of the UAVs in
the swarm, it periodically broadcasts message Coordinates during its flight, which
includes the current 3D location and heading of the master. Each time a slave
receives this message, it calculates a new target location

−−−→
Pki+1

, and issues a com-
mand to the flight controller to move to the designated location in the formation.

−−−→
Pki+1 =

−−→
PMi +

−−→
∆ki (7.1)

where−−→
∆ki

= (∆x2,∆y2)

∆x2 = offsetkx1
· cos(h) + offsetky1

· sin(h)

∆y2 = offsetky1
· cos(h)− offsetkx1

· sin(h)

On each iteration i, the offset of a slave k with respect to the master UAV in
frame 1 remains constant to achieve swarm cohesion, while the target coordinates
of that slave (

−−−→
Pki+1) at instant t+1 are calculated considering the current location

of the master UAV (
−−→
PMi) at instant i, and a translation relative to the master

UAV (
−−→
∆ki

), calculated with the theoretical relative location of the UAV towards
the master

(
offsetk1

)
, and the current heading (h) of the master. The slave will

need time to reach the target location at instant i+1, as calculated for the current
location of the master at instant i, and so a slight delay between the master and
its slaves is expected.

Finally, message Land is sent by the master to all the slaves at the end of the
experiment to force them to land in a coordinated manner.

7.2 Data sources and error assessment

Once the FollowMe protocol was introduced, we now proceed to validate its cor-
rectness. To this end, we will first provide details about the source data used, as
well as the process followed to achieve data synchronization. Then, we will de-
scribe the method followed to determine the errors associated to our tests. Next,
we present the details of the data source used, and the methodology for estimating
the error.

7.2.1 Data source

For the proposed protocol to come into operation, a real data source is needed so
that the master drone can guide the swarm. To this purpose, a UAV assembled by
our own research group was used, which allowed us to capture the commands issued
by the pilot along the flight path. The captured dataset stores approximately 11
flight minutes. The UAV was piloted in manual mode, making several turns in
order to obtain a more realistic data set. Figure 7.5 (a) shows the trajectory of

118

7.2. Data sources and error assessment

X (UTM) Y (UTM)

He
ig

ht
 (m

)

0

10

20

30

40

Begin
End

(a) 3D view.

(b) Upper view using ArduSim.

Figure 7.5: Real-time data source.

the data source used in the simulation, and Figure 7.5 (b) shows the actual flight
trajectory in a real map.

As complementary information, to gain further insight into the flight pattern
generated, Figure 7.6 shows how different variables have evolved throughout time.
It is noteworthy that, in Figure 7.6 (top and down), there are several variations
regarding speed and acceleration, respectively. This is due to the different turns
the pilot made when generating the trace. Figure 7.6 (left) also shows the three
changes of altitude taking place in our reference dataset.

Once the dataset was obtained and used as input, different simulations were
performed. Notice that ArduSim generates a set of data for each drone in the
simulation. The information generated by ArduSim allows us to obtain UTM
coordinates, height, speed, acceleration, heading, and time. In our evaluation set,
the location registered at the beginning of the experiment is taken as the origin.
Then, we use the range of time for which flight data is available for all the drones

119

7. FollowMe protocol

0 200 400 600
Time (s)

0

10

20

30

40

Re
la

tiv
e

al
tit

ud
e

(m
)

0 200 400 600
0

5

10

15

20

Sp
ee

d
(m

/s
)

0 200 400 600
Time (s)

4

2

0

2

Ac
ce

le
ra

tio
n

(m
/s

2)

Figure 7.6: Data source variables

in the simulation, and afterward we proceed to perform the interpolation for the
simulated dataset at regular time intervals.

7.2.2 Error analysis

Having obtained a simulated and synchronized dataset, we now proceed to describe
the methodology for calculating the error. We measured two types of errors: (i)
the swarm formation error (σ), and (ii) the global error (ε). Figure 7.7 illustrates
the error regarding the stability of the formation (left), as well as the global error
(right). The point marked as X (light blue) represents the calculated theoretical
value for the different UAV positions, and the yellow line represents the calculated
errors regarding the positions of the slave UAVs (black), and the master UAV (red
colour). Below we provide details about the calculations we made.

The formation error (σ) refers to the theoretical UAV layout centered on the
mean location for all the slave UAVs mi, where the formation is built around mi

taking as reference the heading for the master UAV.

mi = (mxi
,myi

), where

{
mxi

=
∑n

k=1 xk

n

myi =
∑n

k=1 yk

n

(7.2)

In equation 7.2, i represents the current time step, k represents the different
slave UAVs, and n is the total number of slave UAVs.

120

7.3. Protocol validation

ε8

ε1 ε2 ε3

ε4
ε5

ε6 ε7

mi(mxi, myi)

σ1
σ2

σ3

σ4

σ5

σ6 σ7
σ8

Figure 7.7: FollowMe protocol: Formation stability error (left), and global error
(right).

The theoretical position of a slave UAV
−→
Pki

calculated for time instant i is
obtained with

−−→
∆ki

from equation 7.1, and equation 7.3:

−→
Pki

= (xki
, yki

), where

{
xki = mxi + ∆x2

yki = myi + ∆y2

(7.3)

The actual position of a specific UAV is
−→
P ′ki

= (x′ki
, y′ki

) on the period of time
i. Notice that x′ki is the real value obtained by the simulator in the x axis, and
y′ki

is the real value obtained in the y axis, for each slave UAV.
Finally, the equation to calculate the error of a single UAV in the swarm layout

is defined as:

σki
=

√
(xki − x′ki)

2
+ (yki − x′ki)

2 (7.4)

To calculate the global swarm layout error (ε), we replace the mean location
of the slaves mi with the current location of the master UAV

−−→
PMi

in equation 7.3.
Finally, ε is calculated the same way as σ through equation 7.4.

7.3 Protocol validation

Once the data source and the methodology used to calculate the errors were de-
fined, we proceeded to evaluate our proposed protocol. To achieve this, we con-
ducted an extensive set of experiments using different numbers of UAVs, different
distances between UAVs, different formations, and different update intervals of
the information sent from the master UAV. In this sense, we will describe our
evaluation set in 4 parts: i) Swarm with linear formation, ii) swarm with matrix
formation, iii) swarm with varying communication settings, and finally iv) swarm

121

7. FollowMe protocol

0 100 200 300 400 500 600
Time (s)

0

5

10

15

20

25

30

35

 (m
)

UAVs identifier
id=1
id=2
id=3
id=4
id=5
id=6
id=7
id=8

(a) Formation error (σ). (b) Global swarm layout error (ε).

Figure 7.8: Error on a swarm of 9 UAVs using a linear formation, and with a
separation between neighbors of 75m.

comparing the different proposed formations. Below we provide details about the
results obtained.

7.3.1 Swarm with linear formation

We used the default settings of the ArduSim simulation platform to evaluate two
different linear approaches: i) formation evaluation using nine UAVs, and ii) for-
mation evaluation using different numbers of UAVs.

7.3.1.1 Formation evaluation using nine UAVs

In this first evaluation, we launched nine drones with the speed set to 15 m/s, and
a separation distance between multicopters equal to 75 meters. Several simulations
were made, and the average of the whole set of all the tests was taken. Figure 7.8
shows both the stability error in the swarm formation (a), and the global error
(b), for each of the slaves of the formation. Figure 7.8a shows that, most of the
time, the values do not exceed the average obtained of 3.85m, while the behavior
in (b) is very similar, being that, at specific times, some values may approach the
maximum distance threshold established for the simulation. The global average
error is 22.61 meters. We also get this value while flying at constant speed, due to
a delay of about 4 seconds between master and slaves. That effect appears because
the slaves calculate their target location accounting for the current location of the
master drone, instead of its location in a near future.

In general, it is observed that many of these high error values occur when
there are changes in speed, and the UAVs take several turns along their path, thus
representing worst-case conditions. Also, both figures 7.8 (a) and (b) show that
the UAV IDs that are the furthest away from the master UAV tend to experience

122

7.3. Protocol validation

 7 5 3 1 Master 2 4 6 8
UAVs in formation

0

5

10

15

20

25

30

35

 (m
)

Figure 7.9: Box and whisker plot of the formation error (σ) of the 9 UAVs of the
swarm.

higher errors. For this reason, we decided to evaluate the behavior of each of the
slave drones in more detail. Figure 7.9 shows the linear formation that the drones
perform in the simulation according to the UAV ID. The leading (master) drone
received ID=0. It is worth noticing that, the greater the distance towards the
master, the bigger the error values become. This is due to small fluctuations in
the heading parameter of the master UAV.

7.3.1.2 Formation evaluation using different numbers of UAVs

In the second analysis, we wanted to compare formation and global errors for
different numbers of drones. The same separation distance and default configu-
rations established in the previous evaluation were used. Seven simulations were
performed with 3, 5, 7, 9, 11, 13, and 15 drones, respectively. Figure 7.10 shows
the formation and global errors for these numbers of UAVs. Figure 7.10 (a) evi-
dences that, as the number of UAVs increases, the formation error tends to grow
as well. Figure 7.10 (b) shows that most of the route has an average error of 22.84
meters, although higher values (above 40 meters) can take place in simulations
with 13, and 15 UAVs.

Regarding the evaluations discussed above, we find that our developed protocol
is capable of achieving the desired flight pattern. In terms of swarm formation
errors, they are due to the following factors: i) Slave drones calculate their target
position accounting for the current location of the master drone, taking a few
seconds to reach that new position (up 4 seconds), which introduces a delay; ii) It
was evidenced that the greater is the distance from the slave drones to the master,
the higher the error becomes, an issue that is mostly due to small fluctuations in
the heading parameter of the master UAV.

123

7. FollowMe protocol

(a) Mean formation error (σ). (b) Mean global swarm layout error (ε).

Figure 7.10: Mean error for all the UAVs in a swarm of n drones using a linear
formation, and a neighbor separation of 75m.

(a) Formation error (σ) formation. (b) Global swarm layout error (ε).

Figure 7.11: Error on a swarm of 9 UAVs using a matrix formation, and for an
inter-UAV separation of 75 m.

7.3.2 Swarm with matrix formation

In this section, we evaluate the swarm performance when adopting a matrix layout
for the swarm. To this aim we use three approaches: Evaluation of (i) formation
errors when simulating nine UAVs, (ii) Matrix formation error when adopting
different distances between UAVs, and (iii) using different numbers of UAVs.

7.3.2.1 Formation evaluation using nine UAVs

We used the same configuration described in the linear formation, but changing
the swarm layout to a matrix formation. Figure 7.11 shows the results regarding

124

7.3. Protocol validation

(a) Formation error (σ). (b) Global swarm layout error (ε).

Figure 7.12: Error on a swarm of 9 drones using a matrix formation, varying the
distance of separation between drones.

distance errors in the swarm. In general, the results show that, for the matrix
formation, the errors are much lower than those previously obtained for the linear
formation. In particular, Figure 7.11 (a) shows that the errors are less than 10
meters for most part of the route traveled in the simulation. Specifically, the
average error obtained with this formation is 1.83 m. Figure 7.11 (b) shows that
the global distance error is far from the distance between UAVs we have set, having
an average of 21.67 meters throughout the whole path.

7.3.2.2 Evaluating swarm cohesion when varying the inter-UAV
distances

After the previous analysis, we proceeded to evaluate the error by varying the
distance between UAVs, and using the same configuration of 9 drones. In this
test we used several separation distances: 25, 50, 75, 100, 125, 150, 160, and 225
meters. We consider the maximum distance of the master drone equivalent to the
maximum in the linear formation previously analyzed.

Figure 7.12 (a) shows that the formation error magnitude is directly related
to the separation distance, but, at the distances evaluated, values do not exceed
14 meters in general. Figure 7.12 (b) shows that the behavior does not vary much
with distance, and the average value of the error obtained is 21.82 meters.

7.3.2.3 Formation evaluation using different number of UAVs

In the previous results it has been proven that, for larger inter-UAV distances, the
formation error grows, being the matrix swarm more stable. Starting from this
point, we now want to check the swarm performance for a matrix layout when

125

7. FollowMe protocol

(a) Mean formation error (σ). (b) Mean global swarm layout error (ε).

Figure 7.13: Mean error for all the UAVs in a swarm of n drones using a matrix
formation and an inter-UAV distance of 75 m.

having 9, 25, and 49 UAVs, while maintaining the same distance between them
(75 meters).

In Figure 7.13 (a) we observe that the errors in this formation do not exceed
18m, becoming higher when a matrix formation having 49 UAVs is used. In Figure
7.13 (b) the variability detected can be considered small, and the average error
found is 21.58 m.

In general, experimental results so far show that the matrix formation approach
is more effective in reducing formation errors compared to the linear formation
pattern. The reason is that the matrix pattern allows minimizing the distance
between the master and the different slaves, provided that the master occupies a
central position with respect to the slaves. In addition, since the slave drones are
closer to the master, the delays associated to the transmission and processing of
information are lower than those obtained in the linear formation.

7.3.3 Formation error when varying the position refresh period

In this part, we want to evaluate how our protocol behaves if we vary the position
update period in terms of communications. For this analysis we used the matrix
formation. Different simulations were performed using nine UAVs with a distance
between them of 75 m. The refresh time values evaluated were: 250ms, 500ms,
750ms, 1000ms, 1250ms, 1500ms, 1750ms, and 2000ms.

Figure 7.14 shows the results obtained. In general we observe that, the shorter
the update period, the higher the evaluation error becomes. In particular, Figure
7.14 (a) shows that, with a refresh period of 1000ms, the performance is optimal.
Figure 7.14 (b) shows that, when using update values between 1000ms and 1500ms,
the error tends to decrease in those peaks that correspond to situations where the

126

7.3. Protocol validation

(a) Mean formation error (σ). (b) Mean global swarm layout error (ε).

Figure 7.14: Mean error for all the UAVs in a swarm of 9 drones using a matrix
formation, varying the network refresh period.

Table 7.1: Errors values using different refresh periods.

Refresh
period (ms)

σ (m) ε (m)
Mean Max. Std. Mean Max. Std.

250 5.31 8.60 2.19 37.85 44.80 5.02
500 3.07 5.01 1.22 26.57 30.87 2.89
750 2.18 3.09 0.70 22.74 25.45 1.97
1000 1.84 2.52 0.54 21.70 23.87 1.60
1250 1.75 2.30 0.47 21.67 23.61 1.50
1500 1.70 2.15 0.43 22.06 23.87 1.44
1754 1.74 2.18 0.43 22.74 24.54 1.46
2000 1.77 2.21 0.43 23.43 25.42 1.47

UAVs slow down.

Table 7.1 shows the results of the average formation errors obtained, evidencing
the maximum values in this evaluation.The results show that having the master
UAV announcing its current position more than once per second is counterproduc-
tive, and is prone to increase errors. Also, it becomes evident that refresh rates of
1250 ms allow us to optimize performance, having a maximum general error value
of 23.61, and a mean value of 21.67. Overall, we find that, beyond this value, the
longer it takes for slave UAVs to receive the information, the longer it will take for
them to react and place themselves in their expected location in the formation.
So, in general, the error tends to be greater.

127

7. FollowMe protocol

(a) Mean formation error (σ). (b) Mean global swarm layout error (ε).

Figure 7.15: Mean error for all the UAVs in a swarm of 9 drones at a separation
distance of 50 m, varying the formation type.

7.3.4 Formation error for linear, matrix, and circular
formations

Finally, we decided to assess the effectiveness of our protocol when comparing the
three formations: linear, matrix and circular. In addition, the collision control sys-
tem of ArduSim was enabled. The idea is to check if, at a considerable distance,
our proposal presents UAV collision problems. The previous validation tests do
not include results for the circular formation because the behavior along each ex-
periment was quite similar to the matrix formation results. The distance adopted
for this set of simulations was 50 meters. Thus, the parameters established for
the collision system were: the distance threshold was set to 10 meters, and the
altitude threshold to 20 meters.

Figure 7.15 (a) and (b) show the results obtained for both these types of
errors. In general, a smaller distance error is observed when the circular and
matrix formations were used, compared with the linear formation, where higher
error values are expected. As explained before, the results obtained for matrix
and circular formations are quite similar.

Table 7.2 shows the results obtained for the formation and global swarm lay-
out errors. The results obtained favor swarms adopting a matrix formation, as
distances towards the master UAV are minimized. We found that the matrix
approach was more effective in reducing formation errors compared to linear or
circular patterns.

128

7.4. Summary

Table 7.2: Errors values for the three formations.

Formation σ (m) ε (m)
Mean Max. Std. Mean Max. Std.

Linear 2.48 4.42 1.18 21.76 24.96 1.90
Matrix 1.20 1.60 0.35 21.31 22.70 1.06
Circular 1.34 1.77 0.31 21.67 23.30 1.14

7.4 Summary

In this chapter we proposed the FollowMe protocol, a solution to coordinate UAV
swarms where the leader UAV is manually controlled by a pilot, and the remaining
UAVs (slaves) must attempt to follow its mobility pattern in real time.

To validate and assess the performance of the proposed protocol, we first
recorded a real trace of control inputs when a real pilot was controlling a UAV.
Then, this trace was used as input to ArduSim, our multi-UAV simulation plat-
form.

Our results have shown that the developed protocol is able to achieve the de-
sired functionality, as expected. Regarding the swarm formation errors, we found
that these errors are mainly due to two causes: first, the lag between the master
and the followers, expectable due to the different delays involved in transmission
and information processing, which can be of up to 4 seconds; and second, due to
the fluctuations associated to the heading parameter for the master UAV, which
where amplified for the slave UAVs, especially those located far away from it.

In terms of position updates, we also found that having the master UAV ad-
vertise its current position more than once a second is counterproductive, being
prone to increase errors.

In terms of swarm formations, we found that the matrix approach was more ef-
fective at reducing formation errors when compared to linear or circular formation
patterns.

129

Chapter 8

Conclusions, Publications and
Future Work

Low cost multicopters are spreading around the world due to many new applica-
tions not even envisioned before, and new UAV coordination protocols are needed
to satisfy the requirements of these applications. In this thesis we proposed Ar-
duSim as a multi-UAV simulation platform that allows developers to design and
implement such protocols, porting them to real multicopters in a straightforward
manner, reducing the time and money needed during the research phase. Once
a protocol is tested and validated on real multicopters, it can be implemented in
dedicated hardware. We also propose three protocols to coordinate the flight of
UAVs, all of them developed and validated with ArduSim.

Below we briefly summarize the most relevant contributions of this thesis:

• ArduSim Simulation Platform. We proposed a platform to design and
implement novel protocols to coordinate the flight of multicopters. ArduSim
can run up to 100 UAVs in soft real-time in a high-end computer, which
enables to test a wide range of novel protocols that would otherwise be hard
to validate without assembling a large number of multicopters.

ArduSim also includes a realistic WiFi model based on real experiments
performed in the 5 GHz frequency band, where the packet losses are directly
related to the distance between UAVs. We also modeled the wireless channel
occupancy through a carrier sensing mechanism, and included the possibility
of detecting collisions of data packets.

131

8. Conclusions, Publications and Future Work

• MBCAP Protocol. We presented a collision avoidance solution for multi-
copters that are following independent planned missions. The UAVs broad-
cast their current and predicted future locations, calculated considering the
path they must follow. A collision risk is detected if there is a match be-
tween the UAV future locations and those included in the messages received
from other UAVs. In such case the UAVs stop, and the low-priority UAV
waits while the high-priority UAV goes beyond the risk area, resuming its
own mission afterwards.

To validate our proposal we performed tests with real multicopters perform-
ing independent missions, and we performed a thorough set of simulation
tests in highly crowded environments (100 UAVs) with a success ratio of
98.22%. We also found that the flight time overhead introduced by the
protocol is quite low and well bounded.

• MUSCOP Protocol. Some applications can be optimized through coop-
eration, parallelizing a sensoring task, like large-scale agriculture in search
of pests or weeds. To this end, we proposed a protocol where a master UAV
synchronizes the slave UAVs each time they reach an intermediate point
in the mission, maintaining the formation cohesion for different formations
tested. Results showed that MUSCOP is highly resilient to channel losses,
and it is able to seamlessly scale to a large number of UAVs without a sig-
nificant performance penalty.

• FollowMe Protocol. Similarly to the former protocol, FollowMe can
speedup tasks that need manual guidance, like searching for missing per-
sons in wide areas. The proposed solution is also based in the master-slave
model, where the slaves mimic in real-time the movements of the leader that
is manually guided by a pilot using a standard remote control.

To validate our proposal, we recorded a real trace of a flight of a multicopter,
and we used it as input for the leader UAV in ArduSim. We measured two
type of errors: first, the swarm formation error, i.e., the relative error of
the slaves in the formation, and second, the global error of all the UAVs in
relation to the theoretical formation centered in the leader UAV. We found
that having the master UAV advertise its current location more than once
a second is counterproductive, and that the errors are mainly due to two
causes: first, the delay involved in the transmission from master to slaves
and the processing of messages; and second, detected fluctuations in the
heading parameter for the master UAV, that where amplified for the slaves,
being the effect increased for the UAVs located far away from the former.

Having accomplished all our objectives, the original goal of this thesis has
been achieved, and so this dissertation can now be concluded. The next section

132

enumerates the publications related to this thesis. The last section of this chapter
refers to some open issues for the future.

Publications

This section lists the publications that have been produced as a result of this
thesis, as well as some other collaborations and related publications we published
during this time.

International Journals

• Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Ac-
curate and real-time multicopter simulation. Simulation Modelling Practice
and Theory, 2018. I.F. 2018: 2.426; JCR: Q2 Category.

• Fabra, F., Zamora, W., Masanet, J., Calafate, C. T., Cano, J. C., & Manzoni,
P. (2019). Automatic system supporting multicopter swarms with manual
guidance. Computers & Electrical Engineering, 2019. I.F. 2018: 2.189;
JCR: Q2 Category.

• Fabra, F., Zamora, W., Sangüesa, J., Calafate, C. T., Cano, J. C., & Man-
zoni, P. (2019). A Distributed Approach for Collision Avoidance between
Multirotor UAVs Following Planned Missions. Sensors, 2019. I.F. 2018:
3.031; JCR: Q2 Category.

• Fabra, F., Zamora, W., Reyes, P., Sangüesa, J., Calafate, C. T., Cano, J.
C. & Manzoni, P. (2019). MUSCOP: Mission-based UAV Swarm Coordina-
tion Protocol. Submitted to Computer Communications, 2019. I.F. 2018:
2.766; JCR: Q2 Category.

• Fabra, F., Sangüesa, J., Zamora, W., Calafate, C. T., Cano, J. C. &Manzoni,
P. (2019). UAV deployment: challenges, applications, and collaborative
solutions based on wireless communications. Submitted to IEEE Vehicular
Technology Magazine, 2019. I.F. 2018: 6.145; JCR: Q1 Category.

International Conferences

• Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2017, January). A
methodology for measuring UAV-to-UAV communications performance. In
14th IEEE Consumer Communications and Networking Conference (CCNC),
2017 (pp. 280-286). IEEE. Core B.

• Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2017, June). On the
impact of inter-UAV communications interference in the 2.4 GHz band. In

133

8. Conclusions, Publications and Future Work

13th International Wireless Communications and Mobile Computing Con-
ference (IWCMC), 2017 (pp. 945-950). IEEE. Core B.

• Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018, April). A
Collision Avoidance Solution for UAVs Following Planned Missions. In IEEE
Wireless Communications and Networking Conference (WCNC), 2018 (pp.
55-60). IEEE. GRIN-SCIE class 2.

• Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018, May). MBCAP:
Mission Based Collision Avoidance Protocol for UAVs. In 32nd IEEE Inter-
national Conference on Advanced Information Networking and Applications
(AINA), 2018 (pp. 579-586). IEEE. Core B.

• Fabra, F., Zamora, W., Reyes, P., Calafate, C. T., Cano, J. C., Manzoni, P.
& Hernández, E. (2019, Jul). An UAV Swarm Coordination Protocol Sup-
porting Planned Missions. In 28th International Conference on Computer
Communications and Networks (ICCCN), 2019 (pp. 1-9). IEEE. Core A.

National Conferences (Spain)

• Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018, September).
MBCAP: Protocolo de Evitación de Colisiones para Vehículos Aéreos No
Tripulados. In XXIX Jornadas de Paralelismo, 2018.

• Fabra, F., Reyes, P., Calafate, C. T., Cano, J. C., Manzoni, P. & Zamora,
W. (2019, September). Protocolo de coordinación de enjambres de VANTs
para misiones planificadas. In XXX Jornadas de Paralelismo, 2019.

Future Work

In this thesis we proposed ArduSim as a simulation platform for the development
of new UAV coordination protocols. Regarding this simulator, we propose the
following tasks as future work:

• UAV-to-UAV simulated communications. We included a model based
on WiFi ad-hoc networks, using the 802.11a protocol, and specifically with
5 dBi antennas. As this setup is not a general usage case, we plan to ex-
tend the application by integrating new communication models based on
different types of antennas and wireless technologies. We will also use flight
traces obtained with ArduSim to analyze in more detail the performance
of wireless communications in OMNeT++, and thus develop more realistic
communication models. Studies about the influence of different factors in
the communications link quality between UAVs have not been completed, as
the results in the 2.4 GHz band were masked by the interference caused by

134

remote controls. We plan to repeat all the experiments in the 5 GHz band
to analyze the relative influence of such factors.

• Sensors integration. We also plan to implement interfaces to allow the
developer to use virtual sensors (CO2, ozone, LIDAR, etc.). This function-
ality will help to test new protocols that require sensors before deploying
them in real multicopters.

• Swarm protocols safety. UAVs are prone to collisions while they takeoff
or land in a small area, and so any swarm protocol should automate the
takeoff and landing of all the UAVs in a safe manner. We plan to integrate
in ArduSim a protocol to achieve a safe takeoff prior to applying any swarm-
based protocol, like MUSCOP or FollowMe, and another protocol to bring
slave UAVs closer to the leader before landing, using an integrated camera
to land with high accuracy in a specific place, and avoiding collisions.

Regarding the MBCAP protocol, we found that collisions only take place with
MBCAP-e when multiple UAVs are implied in a conflicting situation, and one of
them remains stopped along the path of the high-priority UAV while taking over,
a situation associated to the priorities adopted for the collision avoidance strategy.
As future work, we plan to study alternative collision avoidance strategies based
on safety areas, like artificial potential fields, and roundabout-like manoeuvres
[20], to further enhance the effectiveness of MBCAP-e at avoiding collisions, and
to reduce the time overhead involved in collision avoidance manoeuvres.

Additionally, we proposed two swarm coordination protocols: MUSCOP and
FollowMe. As future work, we plan to validate both protocols in a testbed using
real UAVs. We also plan to reduce the swarm formation error in the FollowMe
protocol by introducing predictions regarding the future location of the leader
UAV.

135

Acronyms

ArduSim Arducopter Simulator . 12
GCS Ground Control System . 1
SES Single European Sky . 3
EU European Union. .3
MAV Micro Aerial Vehicle . 8
MUAV Mini Unmanned Aerial Vehicle . 8
LASE Low Altitude, Short Endurance. .8
LALE Low Altitude, Large Endurance . 8
MALE Medium Altitude, Large Endurance . 8
HALE High Altitude, Large Endurance . 8
LOS Line Of Sight. .8
VTOL Vertical Take Off and Landing. .8
ESC Electronic Speed Controller. .9
PWM Pulse Width Modulation . 10
PPM Pulse Position Modulation . 10
SDDL Scalable Data Delivery Layer . 15
GS Ground Station . 15
DDDAS Dynamic Data-Driven Application System. 16
MAVLink Micro Air Vehicle Link . 10
TCP Transport Control Protocol . 12
ns-2 The Network Simulator . 11
OMNeT++ Objective Modular Network Testbed in C++ 11

137

8. Conclusions, Publications and Future Work

MBCAP Mission Based Collision Avoidance Protocol . 14

MUSCOP Mission-based UAV Swarm Coordination Protocol 16

DTN Delay-Tolerant Network . 1

LIDAR Laser Imaging Detection and Ranging . 14

API Application Programming Interface. .22

SITL Software In The Loop . 23

ACK acknowledgment. .26

PIC Pilot in Command . 29

UTM Universal Transverse Mercator . 30

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance 36

FIFO First In First Out . 37

ESC Electronic Speed Controller. .9

UAV Unmanned Aerial Vehicle .1

138

Bibliography

[1] F. A. Administration. Automatic Dependent Surveillance-Broadcast (ADS-
B). https://www.faa.gov/nextgen/programs/adsb/, accessed 6/3/2019
(cited on pp. 13, 19, 62).

[2] D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni. “Monitoring and map-
ping with robot swarms for agricultural applications”. In: 2017 14th IEEE
International Conference on Advanced Video and Signal Based Surveillance
(AVSS). Aug. 2017, pp. 1–6. doi: 10.1109/AVSS.2017.8078478 (cited on
pp. 3, 95).

[3] M. Aljehani and M. Inoue. “Multi-UAV tracking and scanning systems in
M2M communication for disaster response”. In: 2016 IEEE 5th Global Con-
ference on Consumer Electronics. Oct. 2016, pp. 1–2. doi: 10.1109/GCCE.
2016.7800524 (cited on pp. 3, 113).

[4] M. Aljehani and M. Inoue. “A swarm of computational clouds as multiple
ground control stations of multi-UAV”. In: 2017 IEEE 6th Global Conference
on Consumer Electronics (GCCE). Oct. 2017, pp. 1–2. doi: 10.1109/GCCE.
2017.8229200 (cited on p. 17).

[5] K. Anderson and K. J. Gaston. “Lightweight unmanned aerial vehicles will
revolutionize spatial ecology”. In: Frontiers in Ecology and the Environment
11.3 (2013), pp. 138–146 (cited on pp. 3, 95).

[6] I. Bayezit and B. Fidan. “Distributed cohesive motion control of flight vehicle
formations”. In: IEEE Transactions on Industrial Electronics 60.12 (2013),
pp. 5763–5772 (cited on p. 16).

139

https://www.faa.gov/nextgen/programs/adsb/
https://doi.org/10.1109/AVSS.2017.8078478
https://doi.org/10.1109/GCCE.2016.7800524
https://doi.org/10.1109/GCCE.2016.7800524
https://doi.org/10.1109/GCCE.2017.8229200
https://doi.org/10.1109/GCCE.2017.8229200

Bibliography

[7] I. Bekmezci, O. K. Sahingoz, and Şamil Temel. “Flying Ad-Hoc Networks
(FANETs): A survey”. In: Ad Hoc Networks 11.3 (2013), pp. 1254 –1270.
issn: 1570-8705. doi: https://doi.org/10.1016/j.adhoc.2012.12.004
(cited on p. 15).

[8] Y. Ben-Asher, M. Feldman, S. Feldman, and P. Gurfil. “IFAS: Interactive
flexible ad hoc simulator”. In: Simulation Modelling Practice and Theory
15.7 (2007), pp. 817 –830. issn: 1569-190X. doi: https://doi.org/10.
1016/j.simpat.2007.04.004 (cited on p. 11).

[9] Y. Chai and K. c. Cao. “Distributed UAV formation control with two-hop
relay protocol”. In: 2017 36th Chinese Control Conference (CCC). July 2017,
pp. 8707–8712. doi: 10.23919/ChiCC.2017.8028739 (cited on p. 1).

[10] C. Chen, Q. Zhu, and C. Wang. “Rejection Methods for Nakagami-m Fad-
ing Simulation”. In: International Conference on Internet Technology and
Applications- iTAP’11. Wuhan, China, 2011. isbn: 9781424472550 (cited on
p. 27).

[11] P. H. Chen and C. Y. Lee. “UAVNet: An Efficient Obstacel Detection Model
for UAV with Autonomous Flight”. In: 2018 International Conference on
Intelligent Autonomous Systems, ICoIAS 2018 (2018), pp. 217–220. doi:
10.1109/ICoIAS.2018.8494201 (cited on p. 14).

[12] L. Ciarletta, A. Guenard, Y. Presse, V. Galtier, Y. Q. Song, J. C. Ponsart, S.
Aberkane, and D. Theilliol. “Simulation and platform tools to develop safe
flock of UAVs: a CPS application-driven research”. In: 2014 International
Conference on Unmanned Aircraft Systems (ICUAS). May 2014, pp. 95–
102. doi: 10.1109/ICUAS.2014.6842244 (cited on p. 12).

[13] E. Commission. Autonomous swarm of heterogeneous RObots for BORDER
surveillance. https://cordis.europa.eu/project/rcn/209949/factsheet/
en. Accessed: 2019-01-30 (cited on pp. 3, 95).

[14] K. Dalamagkidis. “Classification of UAVs”. In: Jan. 2015, pp. 83–91. isbn:
978-90-481-9706-4. doi: 10.1007/978-90-481-9707-1_94 (cited on p. 7).

[15] F. Darema and M. Rotea. “Dynamic Data-driven Applications Systems”. In:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC ’06.
Tampa, Florida: ACM, 2006. isbn: 0-7695-2700-0. doi: 10.1145/1188455.
1188458 (cited on p. 16).

140

https://doi.org/https://doi.org/10.1016/j.adhoc.2012.12.004
https://doi.org/https://doi.org/10.1016/j.simpat.2007.04.004
https://doi.org/https://doi.org/10.1016/j.simpat.2007.04.004
https://doi.org/10.23919/ChiCC.2017.8028739
https://doi.org/10.1109/ICoIAS.2018.8494201
https://doi.org/10.1109/ICUAS.2014.6842244
https://cordis.europa.eu/project/rcn/209949/factsheet/en
https://cordis.europa.eu/project/rcn/209949/factsheet/en
https://doi.org/10.1007/978-90-481-9707-1_94
https://doi.org/10.1145/1188455.1188458
https://doi.org/10.1145/1188455.1188458

Bibliography

[16] DJI. DJI Worldwide leader in Drones/Quadcopters. https://www.dji.com.
Accessed: 2019-04-3 (cited on p. 9).

[17] X. Dong, Y. Zhou, Z. Ren, and Y. Zhong. “Time-varying formation con-
trol for unmanned aerial vehicles with switching interaction topologies”. In:
Control Engineering Practice 46 (2016), pp. 26 –36. issn: 0967-0661. doi:
https://doi.org/10.1016/j.conengprac.2015.10.001 (cited on p. 16).

[18] Dronethusiast. Drone Flight Simulator – Analysis & Comparison. http://
www.dronethusiast.com/drone-flight-simulator/, accessed 15/06/2017
(cited on p. 11).

[19] B. S. Faiçal, G. Pessin, G. P. R. Filho, A. C.P.L. F. Carvalho, G. Furquim,
and J. Ueyama. “Fine-Tuning of UAV Control Rules for Spraying Pesticides
on Crop Fields”. In: 2014 IEEE 26th International Conference on Tools with
Artificial Intelligence. Nov. 2014, pp. 527–533. doi: 10.1109/ICTAI.2014.
85 (cited on pp. 3, 95).

[20] E. Ferrera, A. Alcántara, J. Capitán, A. Rodríguez Castaño, P. Marrón,
and A. Ollero. “Decentralized 3D Collision Avoidance for Multiple UAVs in
Outdoor Environments”. In: Sensors 18 (Nov. 2018), p. 4101. doi: 10.3390/
s18124101 (cited on p. 135).

[21] S. G Gupta, M. Ghonge, and P. Jawandhiya. “Review of Unmanned Aircraft
System (UAS)”. In: International Journal of Advanced Research in Computer
Engineering & Technology 9 (Apr. 2013) (cited on p. 7).

[22] R. Garcia and L. Barnes. “Multi-UAV Simulator Utilizing X-Plane”. In: Jour-
nal of Intelligent and Robotic Systems 57.1 (Oct. 2009), p. 393. issn: 1573-
0409. doi: 10.1007/s10846-009-9372-4 (cited on p. 11).

[23] Gauss-Markov mobility. https://doc.omnetpp.org/inet/api-current/
neddoc/inet.mobility.single.GaussMarkovMobility.html. Accessed:
2019-01-30 (cited on p. 86).

[24] L. Ghouti. “Mobility prediction in mobile ad hoc networks using neural
learning machines”. In: Simulation Modelling Practice and Theory 66 (2016),
pp. 104 –121. issn: 1569-190X. doi: https://doi.org/10.1016/j.simpat.
2016.03.001 (cited on p. 1).

[25] C. Giannini, A. A. Shaaban, C. Buratti, and R. Verdone. “Delay Tolerant
Networking for smart city through drones”. In: Proceedings of the Interna-

141

https://www.dji.com
https://doi.org/https://doi.org/10.1016/j.conengprac.2015.10.001
http://www.dronethusiast.com/drone-flight-simulator/
http://www.dronethusiast.com/drone-flight-simulator/
https://doi.org/10.1109/ICTAI.2014.85
https://doi.org/10.1109/ICTAI.2014.85
https://doi.org/10.3390/s18124101
https://doi.org/10.3390/s18124101
https://doi.org/10.1007/s10846-009-9372-4
https://doc.omnetpp.org/inet/api-current/neddoc/inet.mobility.single.GaussMarkovMobility.html
https://doc.omnetpp.org/inet/api-current/neddoc/inet.mobility.single.GaussMarkovMobility.html
https://doi.org/https://doi.org/10.1016/j.simpat.2016.03.001
https://doi.org/https://doi.org/10.1016/j.simpat.2016.03.001

Bibliography

tional Symposium on Wireless Communication Systems. Vol. 2016-Octob.
Poznan, Poland, 2016, pp. 603–607. isbn: 9781509020614. doi: 10.1109/
ISWCS.2016.7600975 (cited on p. 1).

[26] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore.
“Google Earth Engine: Planetary-scale geospatial analysis for everyone”. In:
Remote Sensing of Environment 202 (2017), pp. 18 –27. issn: 0034-4257
(cited on p. 23).

[27] J. Holt, S. Biaz, L. Yilmaz, and C. A. Aji. “A symbiotic simulation archi-
tecture for evaluating UAVs collision avoidance techniques”. In: Journal of
Simulation 8.1 (Feb. 2014), pp. 64–75. issn: 1747-7786. doi: 10.1057/jos.
2013.5 (cited on p. 11).

[28] T. C. Hong, K. Kang, K. Lim, and J. Y. Ahn. “Network architecture for
control and non-payload communication of UAV”. In: 2016 International
Conference on Information and Communication Technology Convergence
(ICTC). Oct. 2016, pp. 762–764. doi: 10.1109/ICTC.2016.7763289 (cited
on p. 19).

[29] A. Y. Javaid, W. Sun, and M. Alam. “UAVSim: A simulation testbed for
unmanned aerial vehicle network cyber security analysis”. In: 2013 IEEE
Globecom Workshops (GC Wkshps). Dec. 2013, pp. 1432–1436. doi: 10.
1109/GLOCOMW.2013.6825196 (cited on p. 12).

[30] X. Jinwu, L. Yang, and L. Zhangping. “Flight safety measurements of UAVs
in congested airspace”. In: Chinese Journal of Aeronautics 29 (Aug. 2016).
doi: 10.1016/j.cja.2016.08.017 (cited on p. 13).

[31] E. W. Justh and P. S. Krishnaprasad. A simple control law for UAV forma-
tion flying. Tech. rep. College Park, Maryland 20740, EE. UU.: Maryland
University Institute for Systems Research, 2002 (cited on p. 15).

[32] S. Kang, M. Aldwairi, and K.-I. Kim. “A survey on network simulators in
three-dimensional wireless ad hoc and sensor networks”. In: International
Journal of Distributed Sensor Networks 12.9 (2016), p. 1550147716664740.
doi: 10.1177/1550147716664740. eprint: https://doi.org/10.1177/
1550147716664740 (cited on p. 11).

[33] B. Kate, J. Waterman, K. Dantu, and M. Welsh. “Simbeeotic: A simulator
and testbed for micro-aerial vehicle swarm experiments”. In: Proceedings
of the 11th international conference on Information Processing in Sensor

142

https://doi.org/10.1109/ISWCS.2016.7600975
https://doi.org/10.1109/ISWCS.2016.7600975
https://doi.org/10.1057/jos.2013.5
https://doi.org/10.1057/jos.2013.5
https://doi.org/10.1109/ICTC.2016.7763289
https://doi.org/10.1109/GLOCOMW.2013.6825196
https://doi.org/10.1109/GLOCOMW.2013.6825196
https://doi.org/10.1016/j.cja.2016.08.017
https://doi.org/10.1177/1550147716664740
https://doi.org/10.1177/1550147716664740
https://doi.org/10.1177/1550147716664740

Bibliography

Networks - IPSN’12. Beijing, China, 2012, pp. 49–60. isbn: 9781450312271.
doi: 10.1145/2185677.2185685 (cited on p. 12).

[34] M. A. Khan, H. Hasbullah, and B. Nazir. “Recent open source wireless sensor
network supporting simulators: A performance comparison”. In: 2014 Inter-
national Conference on Computer, Communications, and Control Technol-
ogy (I4CT). Sept. 2014, pp. 324–328. doi: 10.1109/I4CT.2014.6914198
(cited on p. 11).

[35] A. Khvilivitzky. Visual collision avoidance system for unmanned aerial ve-
hicles. US Patent 5,581,250. Dec. 1996 (cited on p. 13).

[36] B. Kim, K. Kim, B. Roh, and H. Choi. “A new routing protocol for UAV
relayed tactical mobile ad hoc networks”. In: 2018 Wireless Telecommuni-
cations Symposium (WTS). Apr. 2018, pp. 1–4. doi: 10.1109/WTS.2018.
8363941 (cited on p. 20).

[37] H. Kim and J. Ben-Othman. “A Collision-Free Surveillance System Using
Smart UAVs in Multi Domain IoT”. In: IEEE Communications Letters 22.12
(2018), pp. 2587–2590. issn: 15582558. doi: 10.1109/LCOMM.2018.2875477
(cited on p. 14).

[38] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar. “Towards a swarm of
agile micro quadrotors”. In: Autonomous Robots 35.4 (Nov. 2013), pp. 287–
300. issn: 1573-7527. doi: 10.1007/s10514-013-9349-9 (cited on p. 15).

[39] J. Lee, K. Kim, S. Yoo, A. Y. Chung, J. Y. Lee, S. J. Park, and H. Kim. “Con-
structing a reliable and fast recoverable network for drones”. In: 2016 IEEE
International Conference on Communications, ICC 2016. Kuala Lumpur,
Malaysia, 2016, pp. 0–5. isbn: 9781479966646. doi: 10.1109/ICC.2016.
7511317 (cited on p. 1).

[40] R. L. Lidowski, B. E. Mullins, and R. O. Baldwin. “A novel communications
protocol using geographic routing for swarming UAVs performing a Search
Mission”. In: 2009 IEEE International Conference on Pervasive Computing
and Communications. Mar. 2009, pp. 1–7. doi: 10.1109/PERCOM.2009.
4912764 (cited on p. 15).

[41] Q. Lin, X. Wang, and Y. Wang. “Cooperative Formation and Obstacle Avoid-
ance Algorithm for Multi-UAV System in 3D Environment”. In: Chinese
Control Conference, CCC 2018-July (2018), pp. 6943–6948. issn: 21612927.
doi: 10.23919/ChiCC.2018.8483113 (cited on p. 13).

143

https://doi.org/10.1145/2185677.2185685
https://doi.org/10.1109/I4CT.2014.6914198
https://doi.org/10.1109/WTS.2018.8363941
https://doi.org/10.1109/WTS.2018.8363941
https://doi.org/10.1109/LCOMM.2018.2875477
https://doi.org/10.1007/s10514-013-9349-9
https://doi.org/10.1109/ICC.2016.7511317
https://doi.org/10.1109/ICC.2016.7511317
https://doi.org/10.1109/PERCOM.2009.4912764
https://doi.org/10.1109/PERCOM.2009.4912764
https://doi.org/10.23919/ChiCC.2018.8483113

Bibliography

[42] Z. Liu and A. G. Foina. “An autonomous quadrotor avoiding a helicopter in
low-altitude flights”. In: IEEE Aerospace and Electronic Systems Magazine
31.9 (Sept. 2016), pp. 30–39. issn: 0885-8985. doi: 10.1109/MAES.2016.
150131 (cited on p. 13).

[43] L. Ma. “Cooperative target tracking using a fleet of UAVs with collision and
obstacle avoidance”. In: 2018 22nd International Conference on System The-
ory, Control and Computing, ICSTCC 2018 - Proceedings (2018), pp. 652–
658. doi: 10.1109/ICSTCC.2018.8540717 (cited on p. 14).

[44] I. Mahjri, A. Dhraief, and A. Belghith. “A Review on Collision Avoidance
Systems for Unmanned Aerial Vehicles”. In: 5th International Workshop,
Nets4Cars/Nets4Trains 2013. Vol. 7865. Villeneuve d’Ascq, France, 2013.
isbn: 978-3-642-37973-4 (cited on p. 13).

[45] R. R. McCune and G. R. Madey. “Swarm Control of UAVs for Coopera-
tive Hunting with DDDAS”. In: Procedia Computer Science 18 (2013). 2013
International Conference on Computational Science, pp. 2537 –2544. issn:
1877-0509. doi: https://doi.org/10.1016/j.procs.2013.05.436 (cited
on p. 16).

[46] L. Meier. Pixhawk. http://pixhawk.org/. accessed 2019-04-03 (cited on
p. 9).

[47] L. Meier and QGroundControl.MAVLink Micro Air Vehicle Communication
Protocol. http://qgroundcontrol.org/mavlink/start. Accessed: 2019-
01-30 (cited on pp. 10, 22).

[48] M.I.C, E.A.S.A, and C.A.A. Warsaw Declaration: Drones as a leverage for
jobs and new business opportunities. https://ec.europa.eu/transport/
sites/transport/files/drones- warsaw- declaration.pdf, accessed
4/3/2019. Nov. 2016 (cited on pp. 2, 61).

[49] J. Modares, N. Mastronarde, and K. Dantu. “UB-ANC Emulator: An Emu-
lation Framework for Multi-Agent Drone Networks”. In: IEEE International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR). San Francisco, USA, 2016, pp. 252–258. isbn: 8750141007
(cited on p. 12).

[50] N. Mohamed, J. Al-Jaroodi, I. Jawhar, A. Idries, and F. Mohammed. “Un-
manned aerial vehicles applications in future smart cities”. In: Technolog-

144

https://doi.org/10.1109/MAES.2016.150131
https://doi.org/10.1109/MAES.2016.150131
https://doi.org/10.1109/ICSTCC.2018.8540717
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.436
http://pixhawk.org/
http://qgroundcontrol.org/mavlink/start
https://ec.europa.eu/transport/sites/transport/files/drones-warsaw-declaration.pdf
https://ec.europa.eu/transport/sites/transport/files/drones-warsaw-declaration.pdf

Bibliography

ical Forecasting and Social Change (2018). issn: 0040-1625. doi: https:
//doi.org/10.1016/j.techfore.2018.05.004 (cited on pp. 2, 61).

[51] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar. “UAVs
for smart cities: Opportunities and challenges”. In: 2014 International Con-
ference on Unmanned Aircraft Systems (ICUAS). May 2014, pp. 267–273
(cited on pp. 3, 61).

[52] NS-2 The Network Simulator. http://nsnam.sourceforge.net/wiki/
index.php/Main_Page. Accessed: 2019-01-30 (cited on p. 23).

[53] OMNeT++ Discrete Event Simulator. https://omnetpp.org/. Accessed:
2019-01-30 (cited on pp. 23, 86).

[54] R. C. Palat, A. Annamalau, and J. R. Reed. “Cooperative relaying for ad-
hoc ground networks using swarm UAVs”. In: MILCOM 2005 - 2005 IEEE
Military Communications Conference. Oct. 2005, 1588–1594 Vol. 3. doi:
10.1109/MILCOM.2005.1605902 (cited on p. 16).

[55] S. Park, H. Kim, K. Kim, and H. Kim. “Drone Formation Algorithm on
3D Space for a Drone-based Network Infrastructure”. In: IEEE 27th Annual
International Symposium on Personal, Indoor, and Mobile Radio Commu-
nications (PIMRC). Valencia, Spain, 2016. isbn: 9781509032549 (cited on
p. 1).

[56] R. Purta, M. Dobski, A. Jaworski, and G. Madey. “A Testbed for Inves-
tigating the UAV Swarm Command and Control Problem Using DDDAS”.
In: Procedia Computer Science 18 (2013). 2013 International Conference
on Computational Science, pp. 2018 –2027. issn: 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2013.05.371 (cited on p. 16).

[57] Quaternium, home of the longest flight time hybrid drone. http://www.
quaternium.com/. Accessed: 2019-01-30 (cited on pp. 84, 114).

[58] R. Rahimi, F. Abdollahi, and K. Naqshi. “Time-varying formation con-
trol of a collaborative heterogeneous multi agent system”. In: Robotics and
Autonomous Systems 62.12 (2014), pp. 1799 –1805. issn: 0921-8890. doi:
https://doi.org/10.1016/j.robot.2014.07.005 (cited on p. 16).

[59] A. Ray and D. De. “An energy efficient sensor movement approach using
multi-parameter reverse glowworm swarm optimization algorithm in mobile
wireless sensor network”. In: Simulation Modelling Practice and Theory 62

145

https://doi.org/https://doi.org/10.1016/j.techfore.2018.05.004
https://doi.org/https://doi.org/10.1016/j.techfore.2018.05.004
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
https://omnetpp.org/
https://doi.org/10.1109/MILCOM.2005.1605902
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.371
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.371
http://www.quaternium.com/
http://www.quaternium.com/
https://doi.org/https://doi.org/10.1016/j.robot.2014.07.005

Bibliography

(2016), pp. 117 –136. issn: 1569-190X. doi: https://doi.org/10.1016/j.
simpat.2016.01.007 (cited on p. 1).

[60] SESAR Joint Undertaking. https://www.sesarju.eu/, accessed 4/3/2019
(cited on pp. 3, 61).

[61] A. Singh. Drone Collision Avoidance. https : / / create . arduino . cc /
projecthub / anshulsingh163 / drone - collision - avoidance - system -
0b6002, accessed 11/03/2019 (cited on p. 13).

[62] A. Sivakumar and C. K.-Y. Tan. “UAV Swarm Coordination Using Coop-
erative Control for Establishing a Wireless Communications Backbone”. In:
Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: Volume 3 - Volume 3. AAMAS ’10. Toronto, Canada:
International Foundation for Autonomous Agents and Multiagent Systems,
2010, pp. 1157–1164. isbn: 0-98265-713-7 (cited on p. 15).

[63] B. J. O. de Souza and M. Endler. “Coordinating movement within swarms
of UAVs through mobile networks”. In: 2015 IEEE International Conference
on Pervasive Computing and Communication Workshops (PerCom Work-
shops). Mar. 2015, pp. 154–159. doi: 10.1109/PERCOMW.2015.7134011
(cited on p. 15).

[64] A. D. Team. SITL Simulator (Software in the Loop). http://ardupilot.
org/ardupilot/. accessed 2019-04-03 (cited on p. 9).

[65] A. Viguria, I. Maza, and A. Ollero. “Distributed Service-Based Cooperation
in Aerial/Ground Robot Teams Applied to Fire Detection and Extinguishing
Missions”. In: Advanced Robotics 24.1-2 (2010), pp. 1–23. doi: 10.1163/
016918609X12585524300339 (cited on pp. 3, 113).

[66] P. Vincent and I. Rubin. “A Framework and Analysis for Cooperative Search
Using UAV Swarms”. In: Proceedings of the 2004 ACM Symposium on Ap-
plied Computing. SAC ’04. Nicosia, Cyprus: ACM, 2004, pp. 79–86. isbn:
1-58113-812-1. doi: 10.1145/967900.967919 (cited on pp. 3, 113).

[67] M. Wang, H. Voos, and D. Su. “Robust Online Obstacle Detection and Track-
ing for Collision-Free Navigation of Multirotor UAVs in Complex Environ-
ments”. In: 2018 15th International Conference on Control, Automation,
Robotics and Vision, ICARCV 2018 (2018), pp. 1228–1234. doi: 10.1109/
ICARCV.2018.8581330 (cited on p. 14).

146

https://doi.org/https://doi.org/10.1016/j.simpat.2016.01.007
https://doi.org/https://doi.org/10.1016/j.simpat.2016.01.007
https://www.sesarju.eu/
https://create.arduino.cc/projecthub/anshulsingh163/drone-collision-avoidance-system-0b6002
https://create.arduino.cc/projecthub/anshulsingh163/drone-collision-avoidance-system-0b6002
https://create.arduino.cc/projecthub/anshulsingh163/drone-collision-avoidance-system-0b6002
https://doi.org/10.1109/PERCOMW.2015.7134011
http://ardupilot.org/ardupilot/
http://ardupilot.org/ardupilot/
https://doi.org/10.1163/016918609X12585524300339
https://doi.org/10.1163/016918609X12585524300339
https://doi.org/10.1145/967900.967919
https://doi.org/10.1109/ICARCV.2018.8581330
https://doi.org/10.1109/ICARCV.2018.8581330

Bibliography

[68] A. Watts, V. Ambrosia, and E. A. Hinkley. “Unmanned Aircraft Systems in
Remote Sensing and Scientific Research: Classification and Considerations
of Use”. In: RS 4 (Dec. 2012), pp. 1671–1692. doi: 10.3390/rs4061671
(cited on p. 7).

[69] Z. Zhao and T. Braun. “Topology Control and Mobility Strategy for UAV
Ad-hoc Networks: A Survey”. In: Joint ERCIM eMobility and MobiSense
Workshop. Citeseer. 2012, pp. 27–32 (cited on p. 15).

[70] X. Zhou, X. Yu, and X. Peng. “UAV Collision Avoidance Based on Varying
Cells Strategy”. In: IEEE Transactions on Aerospace and Electronic Systems
PP.c (2018), p. 1. issn: 15579603. doi: 10.1109/TAES.2018.2875556 (cited
on p. 14).

147

https://doi.org/10.3390/rs4061671
https://doi.org/10.1109/TAES.2018.2875556

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of the Thesis

	2 UAVs and UAV-based systems: An overview
	2.1 Flight simulation alternatives
	2.2 Current solutions for UAV coordination

	3 UAVs built for real experiments
	4 ArduSim simulation platform
	4.1 ArduSim design and implementation
	4.2 ArduSim validation
	4.3 Summary

	5 Mission Based Collision Avoidance Protocol (MBCAP)
	5.1 Protocol overview
	5.2 Protocol validation
	5.3 MBCAP-e: Enhanced Mission Based Collision Avoidance Protocol
	5.4 Summary

	6 Mission-based UAV Swarm Coordination Protocol (MUSCOP)
	6.1 Protocol overview
	6.2 Data sources and error assessment
	6.3 Protocol validation
	6.4 Summary

	7 FollowMe protocol
	7.1 Protocol overview
	7.2 Data sources and error assessment
	7.3 Protocol validation
	7.4 Summary

	8 Conclusions, Publications and Future Work
	Bibliography

