
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/147922

Pavia, JM.; Cantarino-Martí, I. (2017). Dasymetric distribution of votes in a dense city.
Applied Geography. 86:22-31. https://doi.org/10.1016/j.apgeog.2017.06.021

https://doi.org/10.1016/j.apgeog.2017.06.021

Elsevier



1 
 

Dasymetric distribution of votes in a dense city 

 

Jose Manuel Pavía (corresponding author) 

Universitat de Valencia  

Av Tarongers, s/n, 46022-Valencia (Spain) 

email: pavia@uv.es 

 

Isidro Cantarino 

Department of Land Engineering, Polytechnic University of Valencia 

Escuela de Caminos, Camino de Vera, s/n, 46071-Valencia (Spain) 

email: icantari@trr.upv.es 

 

Abstract 

A large proportion of electoral analyses using geography are performed on a small area basis, 

such as polling units. Unfortunately, polling units are frequently redrawn, provoking breaks in 

their data series. Previous electoral results play a key role in many analyses. They are used by 

political journalists and parties’ teams to present quick assessments of outcomes, by political 

scientists and electoral geographers to perform detailed scrutinizes and by pollsters and 

forecasters to anticipate electoral results. In this paper, we study to what extent more complex 

geographical approaches (based on a proper location of electors on the territory using 

dasymetric techniques) are of value in comparison to simple methods (like areal 

weighting) for the problem of reallocating votes in a dense big city. The case of 

Barcelona (Spain), a city that recently redrew its census sections’ boundaries, is 

analysed. Although previous studies show the approaches based on dasymetric 

techniques outperforming simpler solutions interpolating census figures, our results 

show that improvements in the process of reallocating votes are marginal. This 

questions the extra effort that entails introducing ancillary sources of information in a 

dense urban area for this kind of data. Additional research is required to know 

whether and when these results are extendable. 
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Dasymetric distribution of votes in a dense city 

 

1. Introduction 

Thanks to the IT revolution, the problem of reallocating census data from a set of 

geographical administrative units onto another overlapping but non-hierarchical set of spatial 

units could be an in-practice solved problem. Nowadays collecting, storing, and transmitting 

detailed data have become simpler than ever and handling big data sets of microdata in such 

an easy task that reconstructing population longitudinal series for the new spatial units is just 

an issue of will and budget for statistical agencies. Furthermore, thanks to popularisation of 

geo-localization tools in mobile devices, we are walking towards a future in which the storing 

of the geographical coordinates where each datum is collected will be possible (Larraz, Pavía 

and Ferrari, 2013). 

The above arguments may lead to conclude that no additional research in this area is 

already needed as census aggregate data could be reconstructed from individual records. That 

of course would be a mistake. On the one hand, it is difficult to conceive a situation in which 

ballot secrecy disappears for political issues and where the votes are not collected and 

declared geographically aggregated. On the other hand, there are many historical data sets for 

which microdata with spatial marks, or just microdata, do not exist. Moreover, due to 

confidentiality issues, average analysts hardly ever have access to the microdata files, when 

available. In these cases, the unique solution is to use geographical and statistical methods to 

estimate the non-available data in one spatial breakdown from the available data in the other 

spatial breakdown. Indeed, the research in this area has been fertile during the last few years. 

We focus on the problem of the spatial redistribution of votes among two census 

section breakdowns. This is an interesting problem due to the key role played by small-area 

past election results in political modelling. For example, they are routinely used by political 

geographers (e.g., Pattie and Johnston, 2000) and electoral pollsters (e.g., Pavía and Larraz, 

2012). The aim of the paper is therefore to utilize geographic approaches to resolve not the 

customary problem of population reallocation, but a problem with a spatial dimension as is the 

reallocation of votes that many political and electoral analysts must face. 

For the general problem of population reallocation, a large number of methods have 

been suggested in the literature. They have evolved from simple areal weighting procedures 

(e.g., Goodchild and Lam, 1980) and point-based areal interpolation methods (e.g., Fisher and 

Langford 1995) to more complex dasymetric mapping strategies. Dasymetric mapping (Wright, 

1936) is a spatial disaggregation procedure that tries to incorporate in an intelligent fashion 

ancillary data in the refinement process. Dasymetric techniques seek to define homogeneous 

areas based on the actual spatial distribution of the variable of interest, rather than on 

administrative or other arbitrary units (Mennis, 2009). Although dasymetric mapping was 

conceived as a disaggregation method, it is employed in the reallocation problem through a 

two-step process in which first source data is spatial refined to then be aggregated to the 
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target units. In the refining process, they have been used among other auxiliary variables: land 

uses (Mennis, 2003; Giordano and Cheever, 2010, night-time lights and road networks (Reibel 

and Bufalino, 2005), the spatial distribution of built structures (Maantay, Maroko and 

Herrmann, 2007), residential building volumes (Sridharan and Qiu, 2013), satellite images 

(Holt, Lo and Hodler, 2004), volunteered geographic information (Bakillah et al., 2014), mobile 

phone data (Deville et al., 2014), and a combination of spatial methods and Maximum Entropy 

or the Expectation-Maximization (EM) algorithm (Sridharan and Qiu 2013; Schroeder, and Van 

Riper, 2013; Buttenfield, Ruther and Leyk, 2015). A new avenue of research based on the 

spatiotemporal interpolation of flow variables is likewise emerging (Mennis, 2016). 

Areal weighting and point-based spatial interpolation methods are conceptually simple 

and do not require an in-depth comprehension of spatial methods. They are quite intuitive and 

can be implemented easily in free software like R. Dasymetric techniques are notably more 

complex and demand a higher understanding and ability in the use of GIS tools. They entail the 

employment of more spatial layers and combining data from several sources. 

This work examines whether and to what extent a more complex approach is worth it 

in the spatial vote redistribution problem. In particular, we pick up the gauntlet thrown down 

by Pavía and López-Quilez (2013, p. 663), who point out that it would be worth testing “how 

the use of dasymetric mapping and related techniques would enhance the quality of 

approximations”. Although dasymetric mapping has been proved being more robust and 

accurate for the spatial reallocation of census data, we explore here whether this superiority is 

maintained for voting data. The comparison between approaches is customary (see, e.g., 

Ruther, Leyk and Buttenfield, 2015; Buttenfield, Ruther and Leyk, 2015; Pavía and Cantarino, 

2016) an relevant because depending on the final objectives of the redistribution process, the 

analyst should weight if it is worth enough to apply more time consuming and complex 

methods or just to consider simple approaches. 

We have performed the assessment for the case of reallocating votes among really 

small areas of a big city, a situation in which the more complex approaches are valuable a 

priori. On the one hand, small areas’ boundaries are routinely shape with no special meaning 

in terms of the underlying spatial distribution of the variable of interest, an issue implicitly 

assumed by simpler methods. On the other hand, according to Poulsen and Kennedy (2004), 

dasymetric techniques are particularly useful with data that have spatial patterns dictated by 

an underlying geographically distributed structure, either physical or social; and, as it is known 

(see, e.g., O’Loughlin, 2002; Johnston and Pattie, 2006; Pavía, Larraz and Montero, 2008), 

election results show geographical structure and spatial patterns. 

Barcelona in Spain, a polycentric and spatially complex city (Catalán, Saurí and Serra, 

2008) with a marked social structure (Broner, 2010) and more than 1.6 million of inhabitants, 

has been taken as a case of study and the outcomes corresponding to its 2007 local election as 

target variable. At the beginning of 2009 the way Barcelona (the second-largest city in Spain) 

was broken up in small areas was redrawn and its number of precincts (called census sections 

in Spain) dropped from 1,482 to 1,061 (defining a total of 6,329 different intersection 

polygons). Every four years local elections are held in Spain to elect mayors. Therefore, having 
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available (an approximation of) the results recorded in the 2007 local election in the census 

sections (the smallest geographical units for which votes are declared in Spain) corresponding 

to the 2011 local elections is of interest for many agents, including political analysts, 

sociologists, economists, geographers, politicians, survey pollsters and electoral forecasters. 

The rest of the paper is stated as follows. Section 2 describes the spatial methods 

analysed in this research. In addition to the baseline approaches of point-based spatial 

interpolation and areal weighting, four additional methods based on dasymetric techniques, 

are proposed as alternatives. In particular, we compare to four dasymetric procedures that 

have proven to be superior to the simplest methods using exactly the same breakdowns for 

the customary problem of reallocating census data (Pavía and Cantarino, 2016). Section 3 

focuses on the challenge that individual secret ballots entails in terms of disposing of a 

standard for validation and how this can be solved. In Section 4 the different reallocations 

obtained after applying the approaches described in section 2 and section 3 are compared and 

their relative merits assessed. Section 5 discusses and summarizes findings. 

 

2. Methods and Data 

In this section, the particular details of the reallocating approaches assessed in this 

research are described. The first two proposals are common interpolation methods (point-

based spatial interpolation and areal interpolation without ancillary data, or areal weighting), 

classical and quite simple. They are used as baseline to gauge the value of four other 

alternatives based on dasymetric techniques, and therefore more complex (areal interpolation 

with ancillary data). We have followed Pavía and Cantarino (2016) to choose the dasymetric 

methods considered in this research. For exactly the same breakdowns analysed in this paper, 

Pavía and Cantarino (2016) have shown that dasymetric refinements clearly outperform simple 

methods when dealing with the customary problem of reallocating census figures. They find 

the expected hierarchy: 3-D procedures producing the better outcomes, followed by multiclass 

2-D methods, binary 2-D approaches, and areal weighting and 1-D algorithms, with the point-

based interpolation procedures generating by far the worst estimates. As dasymetric 

procedures of comparison, we have chosen within each one of the classes (1-D, binary 2-D, 

multiclass 2-D and 3-D) one representative. In what follows, we first introduce the sources and 

variables employed for the dasymetric refinements. Afterwards, we present the procedures 

considered. 

2.1. Geographic sources of information 

In addition to the election figures, we have managed geographical files provided by 

four institutions: the City Council of Barcelona (l’Ajuntament de Barcelona), the Spanish 

Geographic Institute (Instituto Geográfico Nacional), the European Environment Agency (EEA) 

and the Spanish Cadastral Agency (Dirección General del Catastro). From the official website of 

cartographic information of l’Ajuntament de Barcelona, we took (i) the shape (shp) files 

corresponding to the 2007 and 2011 section breakdowns of Barcelona and (ii) the Barcelona 



5 
 

city street map (Callejero). From the Instituto Geográfico Nacional, we have downloaded the 

2009 Land Cover and Land Use Information System of Spain (SIOSE), which is a unique 

database of Spain produced at 1:25,000 scale combining topographic maps, satellite imagery, 

aerial photography and cadastral registers, with a minimum mapping unit (MMU) of 1 ha for 

the urban fabric areas. This dataset contains information about heterogeneity of land use 

within any given polygon in Spain (Goerlich and Cantarino, 2013). SIOSE comprises 2.5 million 

polygons with nearby 820,000 different land cover categories, obtained after combining with 

different weights the land cover elements (Cantarino et al. 2014). In the SIOSE model each 

polygon is defined by a land cover. Each land cover can be simple (uniform over the entire 

polygon) or composite. A variety of simple or even composite covers within a polygon defines 

a composite coverage (Cantarino et al., 2014). Four different attributes are used to identify 

types of inhabited buildings in SIOSE. They correspond to compact apartment blocks, 

isolated apartment blocks, terraced houses, and detached houses. 

From the European Environment Agency (EEA), we have downloaded the Urban Atlas 

database that provides pan-European comparable land use and land cover data for Functional 

Urban Areas. Its date of production is 2009 and it is available at a 1:10,000 scale with a 

position accuracy of +/-5 m. We have used the layer “Urban Fabric” from this database. This 

layer classifies the polygons into categories according to their percentage of soil sealing or 

sealing levels. Assuming that the larger the percentage of soil sealing in a polygon the larger 

the percentage of residential area in the polygon is, we have set as proportions of residential 

areas in each polygon the average of soil sealing of its class: 0.05, 0.20, 0.40, 0.70 and 0.90, 

respectively, for categories “Discontinuous Very Low Density Urban Fabric”, “Discontinuous 

Low Density Urban Fabric”, “Discontinuous Medium Density Urban Fabric”, “Discontinuous 

Dense Urban Fabric” and “Continuous Urban Fabric” and “Isolated Structures”. 

From Dirección General del Catastro, we have downloaded the Spanish cadastral 

database composed of shape and ASCII (*.cat) files. This administrative register contains the 

description of all the rustic, urban and special feature properties in Spain. The shape files 

define the boundaries of each cadastral parcel. The  ASCII files contain exhaustive information 

about the use (residential or other types), year of building and living area per dwelling. 

2.2. Reallocating approaches 

This subsection offers the details of the six reallocating procedures considered in our 

scrutiny. The point-based areal interpolation and areal weighting solutions just require the files 

providing the polygon attribute tables of the spatial breakdowns to be executed. As point-

based procedure (M1), we have used natural neighbour (NN) interpolation (Sibson, 1981), as 

default in ArcGis® 10.2, to derive the density surface. The point-based method does not verify 

the pycnophylactic condition of volume preservation (Tobler, 1979). All the other five 

approaches implemented are volume-preserving and share approach. All of them use as 

allocation function an estimator of the form given by equation (1), where �̂�𝑗𝑘 are the allocated 

votes for party 𝑘 in target unit 𝑗, 𝑉𝑖𝑘 are the recorded votes for party 𝑘 in source unit 𝑖, 𝑁 is 

the total number of source units and 𝑤𝑖𝑗 is the weight assigned to source unit 𝑖 in estimating 

the votes of target unit 𝑗. The methods just differ in the way the weights 𝑤𝑖𝑗 are calculated. 
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We follow the classical terminology (Goodchild and Lam, 1980) of calling source units (or 

polygons) to the units in which the variable of interest is available and target units to the units 

where the reallocated data are required. 

�̂�𝑗𝑘 = ∑ 𝑤𝑖𝑗

𝑁

𝑖=1
𝑉𝑖𝑘                                                         (1) 

The areal weighting approach (M2), also known as polygon overlay (Markoff and 

Shapiro 1973), estimates the values in the target areas using a geometric approach. It handles 

source and target polygons as geometric figures and computes weights, 𝑤𝑖𝑗, as the ratio 

between the area of the intersection between source unit 𝑖 and target unit 𝑗 and the total area 

of unit 𝑖. This approach assumes that the variable of interest is distributed uniformly within 

each source unit and that source polygons with null intersection have no effect on the 

predicted value. A total of 6,329 polygons were obtained by intersecting 2007 and 2011 

polygons.  

Areal weighting and point-based interpolation are simple methods. They not require 

any additional geographical data besides source and targets polygons. Dasymetric mapping 

adds additional information that provides insights on how the population is distributed within 

each unit of analysis. The most popular methods employ two-dimensional (2-D) areal 

measures to locate where population lives in each source unit. From richer databases, three-

dimensional (3-D) volume measures are also computed. There are also examples in the 

literature using one-dimensional (1-D) length measures (e.g. the street network  in Reibel and 

Bufalino, 2005). 

The simplest 2-D dasymetric mapping methods are based on a binary classification of 

land uses: residential and nonresidential. In the binary approach, nonresidential land use areas 

are observed as unpopulated and consequently as zero weighted. In the SIOSE approach (M4), 

we use SOISE residential areas to compute weights. In a similar fashion that in areal weighting, 

source and target units are overlaid but restricted to residential areas and weights, 𝑤𝑖𝑗, are 

determined by the ratio between the corresponding area of the intersection between the 

source unit 𝑖 and the target unit 𝑗 and the residential area of unit 𝑖. 

Land use data are useful to separate residential and non-residential areas, but they do 

not discriminate by residential attributes. In 2-D polycategorical dasymetric procedures, 

residential areas are grouped by categories and a different weight per area unit is assigned to 

each type attending to their relative population density. In the Urban Atlas procedure (M5), we 

use the five Urban Fabric categories defined in the Urban Atlas database using the average of 

soil sealing of the corresponding class as density (see below). In particular, denoting by 𝑑𝑡 the 

relative soil sealing surface of residential polygons of type 𝑡 and by 𝑤𝑖𝑗𝑡 the area of the 

intersection among the source unit 𝑖, the target unit 𝑗 and the residential polygons of type 𝑡, 

we compute the 𝑤𝑖𝑗 weights dividing ∑ 𝑑𝑡𝑤𝑖𝑗𝑡
5
𝑡=1  by ∑ 𝑑𝑡𝑤𝑖𝑡

5
𝑡=1 , where 𝑤𝑖𝑡 is the area of the 

intersection between the source unit 𝑖 and the residential polygons of type 𝑡. 
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As alternative to 2-D polycategorical dasymetric procedures, the 3-D approaches 

consider the vertical distribution of the population. 3-D methods account for the height, 

volume or total area of the residential buildings. In the Cadastral method (M6), we compute 

weights exploiting the more detailed information available in Spain about households. Using 

the information about the postal address, floor, uses and square meters of each existing 

property in Spain, we compute in each cadastral polygon its total housing area to then 

calculate the 𝑤𝑖𝑗 weights as the ratio between the total housing area placed within the 

intersection of the source unit 𝑖 and the target unit 𝑗 and the total housing area of unit 𝑖. 

For the sake of completeness, we have also implemented a 1-D procedure. In 1-D 

length methods, the density of population across a polygon is assumed to be directly related to 

the density of road, streetlights or power network segments across the polygon. In the 

Callejero method (M3), we have used the street and road network available in Callejero, and 

after constructing a buffer of 10 meters centered in each road/street line we have proceeded 

as in the 2-D binary method (SIOSE approach) by viewing the buffer polygons as residential 

areas. 

All the spatial computations have been completed in ESRI ArcGIS® 10.2 (ESRI, 2014), 

using its geo-processor ArcPy to create scripts. The calculation routines have been 

performed with Python 2.7.3 (Python Software Foundation, 2014). 

 

3. The secret ballot challenge 

Once votes (including abstentions) have been reallocated from source units to target 

units using whatever of the techniques described in section 2, a problem emerges when we try 

to assess the different approximations. The votes (proportions) imputed to each target unit 

refer to an estimate of which would have been its 2007 local election outcomes if it had 

existed at that time. However, the observed outcomes available for target units are those 

recorded in the 2011 local election and they cannot be directly compared to the 2007 imputed 

values because, even assuming stationary electorates, there are always swings from one party 

or candidate to another between elections. Likewise, due to secret ballot, individual votes are 

not available and therefore a standard of comparison cannot be obtained from single records. 

Fortunately, both over time and around the world, there is evidence that strong 

relationships persist among polling units in the outcomes harvested by the different electoral 

options in consecutive elections (see, e.g., Mosteller et al., 1949; Pavía-Miralles, 2005; Curtice 

et al., 2011). On the one hand, in voting units where, say, Republican support is relatively high 

in an election, this will still be relatively high in the next election. On the other hand, the so-

called swings, or vote changes between options that occur between elections, tend to be 

spread throughout the set of voting units, with quite stable constant rates of change among 

them.  

These patterns also arise in our case of study, as can be observed in Figure 2. Our 

strategy to construct a standard of comparison is based on exploiting these patterns. To do 
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that, however, we need (i) to specify a statistical model that permits us to transfer the 2007 

imputations to 2011 and (ii) to decide how to estimate fairly the model in order to apply it 

without favouring any particular approach. Then, the closer the transferred allocations to the 

actual recorded values are, the better the spatial imputation approach will be considered. 

In subsection 3.2 we revise the relevant literature and specify a model that relates 

current and past vote proportions. In subsection 3.1 we compare the geography of 2007 

source units and 2011 target units to search for a set of unchanged census sections that (i) 

assist us in the process of selecting a proper model and, mainly, (ii) can be used to estimate 

the parameters of the transfer model using their actual outcomes recorded in the 2007 and 

2011 Barcelona local elections. 

 

3.1. Equivalent polygons 

Despite the profound reorganization of census sections that Barcelona’s cartographic 

authorities performed in 2009, some of the sections remained basically unchanged. Identifying 

what they are is interesting for assessing purposes. Unfortunately, almost no polygon 

remained exactly the same between 2007 and 2011. Polygon boundaries are usually placed on 

streets and some small shifts just occurred by a slight translation of the axis within their 

surface without entailing any population shift. We consider two sections as equivalent when 

they keep the same residential buildings. 

Deciding if two polygons are equivalent is not an easy task (Kidner, 1996) and, in our 

case, identifying them is hampered by the small shifts faced by the boundaries of the 

equivalent polygons. For example, for a rectangular polygon of one hectare, a displacement of 

just one meter in every direction could result in a variation in surface up to 4%. Therefore, 

whatever the measures of comparison chosen, some margin of discrepancy should be allowed. 

Given the large number of polygons to be compared and the computational cost that 

would entail making over than 1.5 million of comparisons, as initial screening we consider two 

polygons as potentially equivalent when the distance between their centroids is less than 50 

meters. This is a really conservative condition that guarantees the detection of any pair of 

equivalent polygons. Once we have a set of potential equivalent polygons, to resolve their 

equivalence a battery of six measures of similarity has been calculated for each potential pair, 

(𝑆𝑖, 𝑇𝑗), where 𝑆𝑖 refers to source polygon j and 𝑇𝑗 to target polygon 𝑗: (i) the rate of total 

surfaces, Δ(𝑆𝑖)/Δ(𝑇𝑗); (ii) the rate of residential surfaces, Δ(𝑆𝑖 ∩ 𝑅𝑆)/Δ(𝑇𝑗 ∩ 𝑅𝑆); (iii) the rate 

between the 2011 surface and the intersection of 2007 and 2011 surfaces, Δ(𝑇𝑗)/Δ(𝑆𝑖 ∩ 𝑇𝑗)  

(always ≥1); (iv) the rate between the 2007 surface and the intersection of 2007 and 2011 

surfaces, Δ(𝑆𝑖)/Δ(𝑆𝑖 ∩ 𝑇𝑗) (always ≥1); (v) the rate of elongation shape factors, Δ(𝑆𝑖)𝐸(𝑇𝑗)2/

Δ(𝑇𝑗)𝐸(𝑆𝑖)2, where 𝐸(𝑆) denotes the maximum elongation of surface S obtained from its 

convex hull and 1.27Δ(𝑆)/𝐸(𝑆)2 is unitary for circular polygons; and (vi) the rate of 

circularities, Δ(𝑆𝑖)𝑃(𝑇𝑗)2/Δ(𝑇𝑗)𝑃(𝑆𝑖)2, where 𝑃(𝑆) is the perimeter of surface S and 
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 4𝜋Δ(𝑆)/𝑃(𝑆)2 is unitary for circular polygons. Two polygons are considered equivalent if all 

the six measures are inside the range [0.95, 1.05]. 

A total of 122 polygons were identified as equivalent. As example, the zone around 

Catalonia Square, the one with the highest density of equivalent polygons, is depicted in Figure 

1. The polygons identified as equivalent in both breakdowns have been shaded. The values 

recorded for the relevant variables of 2007 and 2011 Barcelona local elections in the 

equivalent polygons are likewise portrayed in Figure 2. The strategy followed to identify the 

equivalent polygons is reinforced by the existence of strong statistical patterns in Figure 2. 

 
Figure 1. Extract of Barcelona (Spain) division in census sections during the 2007 (left panel) 
and 2011 (right panel) local elections. The same zone (area around Catalonia Square) depicted 
in both figures. The polygons identified as equivalent are shaded in both panels. 

 

3.2. A temporal transfer model 

Twenty-two and twenty-five parties presented candidatures in Barcelona in, 

respectively, 2007 and 2011 local elections. Among them, only five parties or coalitions—CiU, a 

right-wing coalition of regional parties; PSC, the Socialist Party; PP, the Conservative Party; ICV, 

a national coalition of left-wing; and, ERC a left-wing coalition of regional parties—surpassed in 

both elections the 5% threshold to reach representation. We focus exclusively on these parties 

and on an additional artificial party (Others), which adds the remaining voted options, 

including null and blank votes. 

As can be observed in Figure 2 and in line with previous findings in the literature, 

strong relationships link the outcomes of 2007 and 2011 Barcelona local elections at census 

sections. Strong linear patterns relate turnout rates and the proportions of votes gained by the 

main political parties. The results recorded for ICV (a left-wing national coalition) and ERC (a 

left-wing regional coalition) show however a volatility relatively higher around their underlying 

straights. This seems to be a reflection of both statistical and political issues. On the one hand, 
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these proportions are closer to zero. On the other hand, these parties have strategies of 

coalitions more unstable and electorates showing more pronounced tactical behaviours. 

Moreover they compete in more crowded electoral spaces. For example, in the 2007 election 

ERC concur in coalition with just AM. However, in 2011 and as a response to the rise of new 

political actors (SI, CUP, Ri.Cat, DCat) contesting its electoral space, ERC extended its strategy 

of agreements and presented candidature together with more partners. 

Despite the strong relationships displayed in each panel of Figure 2, it is not possible 

simply to consider separate regression models for the change in each party’s share of the vote 

without violating the sum-to-1 constraint. It is clear that, within any individual section, the sum 

of the share of the votes is unitary and that likewise the outcomes of each of the parties are 

not independent of the results gained for the rest of parties. Therefore, the model proposed 

should be multivariate and guarantee the sum-to-1 constraint. 

 

Figure 2. Relationships between actual outcomes recorded during 2007 (horizontal 
axes) and 2011 (vertical axes) Barcelona local elections in the equivalent census sections. The 
variables drawn are turnout rates (upper left panel) and proportions of votes gained by the 
five parties that reached representation: CiU, a right-wing regional coalition (upper middle 
panel); PSC, the Socialist Party (right upper panel); PP, the Conservative Party (lower left 
panel); ICV, a left-wing national coalition (lower middle panel); and, ERC, a left-wing regional 
coalition (lower right panel). Highlighted with a circle an outlier with significant leverage. 
(Source: Own elaboration from Spanish Home Office data, 
http://www.infoelectoral.interior.es/min/areaDescarga.html). 

 

Different proposals can be found in the literature. Pavía-Miralles and Larraz-Iribas 

(2008) suggested (i) using an independent model for turnout rates and (ii) jointly modelling 
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proportions of votes by a multivariate linear Gaussian model with zero-mean-distributed 

random disturbances and correlations constant between parties and independent between 

polling units. Bernardo (1997) advocates for the superiority of working with logit 

transformations and, in a Bayesian framework, proposed (i) employing logit transformations 

for both current and past proportions and (ii) using directly previous recorded turnouts as 

weights. And Curtice and Firth (2008), in a context of exit polling, employed a linear hierarchy 

‘nested’ regression for modelling the change in each party’s share of the vote. They also 

assume no change in the pattern of turnout. 

Inspired by the above three models, we propose to use a two-block model to 

temporally transfer the spatial imputations; a route which incidentally mimics the decision-

making process of voters. First electors decide on whether or not to vote and then for which to 

vote (Aldrich, 1997). A model is suggested to time transfer turnout rates and a separate model 

is proposed to transfer share of votes. In this way, for each individual section, the product of (i) 

the people entitled to vote in the target section, (ii) the transferred turnout and (iii) the vector 

of the transferred share of the vote leads to a time transferred prediction of the vector of 

votes gained in the section by the different parties. This can be compared to the outcomes 

actually recorded in the census section and aggregating by sections also compared to the 

results of the whole constituency. 

To guarantee the congruence of the transferred proportions, we consider a binomial 

response for the number of voters and a multinomial response for the vector of votes. As first 

block, we employ a logit regression to transfer turnouts. The logit transformation of previous 

turnout is used as predictor. In the second block, we propose a multinomial logistic regression 

model to transfer vote proportions, using the logit transformations of previous vote 

proportions as predictors. 

 Mathematically, the first equation states that: 

𝑙𝑜𝑔𝑖𝑡(𝑡1) = 𝛼𝑡 + 𝑙𝑜𝑔𝑖𝑡(𝑡0) 𝛽𝑡                                                                              (9)  

where, for a target section, 𝑡1 denotes the turnout registered during 2011 election, 𝑡0 the 

turnout in the section in 2007 and 𝛼𝑡 and 𝛽𝑡 are unknown parameters. 

On the other hand, the multinomial logistic regression transfer model can be stated as: 

𝑙𝑜𝑔
𝜋𝑖1

𝜋𝐼1
= 𝛼𝑖 + 𝑙𝑜𝑔𝑖𝑡(𝜋10, 𝜋20, . . . , 𝜋𝑖0, … , 𝜋𝐼0) 𝛽𝑖

′    𝑖 = 1, 2, … , 𝐼 − 1     (10)  

where (𝜋11, 𝜋21, . . . , 𝜋𝑖1, … , 𝜋𝐼1) is the vector of share of the votes recorded in 2011, 

𝑙𝑜𝑔𝑖𝑡(𝜋10, 𝜋20, . . . , 𝜋𝑖0, … , 𝜋𝐼0) is the vector of logit transformations of the vote proportions 

recorded in the same section in 2007, and the (𝛼𝑖 , 𝛽𝑖) are unknown parametric vectors of 

length 𝐼 + 1, being 𝐼 = 6 the number of main parties (CiU, PSC, PP, ICV, ERC plus Others, an 

artificial party grouping the rest of voted options). 

We use the actual values observed in 2007 and 2011 in the equivalent sections 

(excluding the section for which the outlier identified in the lower right panel of Figure 2 



12 
 

belongs to) to fit the models and estimate the parameters by maximum likelihood. The 

electoral censuses, 𝐸𝐶, of the target sections are the sizes of the binomial distributions and 

the number of votes registered, 𝑉, the sizes of the multinomial distributions. In particular, it is 

assumed that 𝑉𝑗~𝐵𝑖(𝐸𝐶𝑗 , 𝑡1𝑗) and (𝑉𝑗1, … , 𝑉𝑗𝑘, … , 𝑉𝑗𝐼)~𝑀𝑛(𝑉𝑗, 𝜋11𝑗, . . . , 𝜋𝑖1𝑗, … , 𝜋𝐼1𝑗), where j 

indexes the target section and 𝑉𝑗𝑘 are the votes gained by party k in the section 𝑗. Once 

estimated, the parameters of equations (9) and (10) were applied to each set of spatial 

imputations to translate them to 2011. All the computations have been performed in the 

version 3.3.1 of free statistical software R (R Core Team, 2016) with the assistance of versions 

0.9-1 and 7.3-6 of, respectively, packages VGAM (Yee, 2013) and nnet (Venables and Ripley, 

2002). 

As a matter of assessing the transfer strategy, we have also applied it to predict 2015 

elections from 2011 outcomes, using the equivalent sections to estimate the parameters of 

the corresponding model. Between 2011 and 2015, there were almost no geographic shifts in 

the boundaries of Barcelona section breakdown, what makes it unnecessary to reallocate 

votes, but a political earthquake took place in Spain (see, e.g., Pavía, Bodoque, and Martín, 

2016), with some new strong parties emerging. Despite this, the robustness of the transfer 

strategy is manifested in the fact that (i), at the aggregate level, the approach is able to 

generate forecasts three times more accurate than when (the intermediate step of) 

reallocating votes is necessary and (ii), at the level of sections, it produces estimates in average 

two times more precise. 

 

4. Assessing imputations 

Once the six sets of spatial allocations corresponding to the values recorded in 2007 

were temporally translated to 2011, we carry out several analyses to assess their relative 

performance. The time transferred imputations have been compared, both separately at 

section level and jointly aggregated, to actual results. In this section, we just present the 

outcomes of reallocating votes in absolute numbers, very similar results are obtained when we 

focus on reallocating proportions. 

At census section level, we performed 2-goodness-of-fit tests to decide whether the 

transferred estimates can be observed as random variations of the actual data. Likewise, the 

2011 actual and time transferred proportions are graphically compared in Figure 3 for all the 

spatial approaches. At 1% significant level, the percentage of census sections for which the 

imputed votes can be considered as generated by the actual section distributions reached 

75.4, 78.7, 79.0, 79.7, 79.2, and 79.8 for, respectively, NN point-based areal interpolation (M1), 

areal weighting (M2), Callejero (M3), SIOSE (M4), Urban Fabric (M5) and Cadastral (M6) 

approaches. Despite the differences between the approaches being not too high, a clear order 

emerges among the spatial approaches considered: M6 ≻ M4 ≻ M5 ≻ M3 ≻ M2 ≻ M1.  

Although null hypothesis aceptance rates around 79% (which drop to around 55% and 

65% for, respectively, 10% and 5% significant levels) can lead to consider imputations as not 
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sufficiently suitable, it should be noted that a portion of the deviations between actual results 

and approximations are not attributed to the spatial approach followed to allocate votes. 

Rather, it is a consequence of (i) the obvious fluctuations that naturally happen between 

elections and of (ii) the statistical model specified to transfer proportions temporally. In fact, 

we find that the rates of null acceptance for the time transferred votes in the equivalent 

sections are 58.3%, 70.8% and 85.8% for, respectively, 10%, 5% and 1% significant levels, 

despite them having been used to fit equations (9) and (10). On the other hand, as we will 

discuss in the last section, the closeness between temporal transferred allocations and actual 

results also depends on a part of the model specified. 

In many applications more important than closely approximating actual values is to 

dispose of a variable really alike in correlation terms. This variable could be used in place of the 

unobserved variable in a regression. Overall, almost all the approaches produce transferred 

imputations closely correlated to actual figures. The correlations fluctuate between a 

minimum of 0.9694 for NN interpolation and a maximum of 0.9724 for Cadastral dasymetric. 

Certainly, the graphical comparison in Figure 3 shows a good level of agreement for all the 

approaches between actual proportions and estimates. 

 
Figure 3. Comparing real proportions (vertical axes) and time transferred imputations 
(horizontal axes) at census section level for Barcelona (Spain) 2011 local elections. From left to 
right, top to bottom: NN interpolation, areal weighting, Callejero, SIOSE, Urban Fabric and 
Cadastral approaches. The distance from the 45º line indicates how far apart time transferred 
allocations and outcomes are. The number of data points in each scatterplot is 6,366 (1,061 
sections per 6 political options: ○ right-wing coalition of regional parties (CiU), + the Socialist 

Party (PS), Δ the Conservative Party (PP),  national coalition of left-wing parties (ICV), ◊ left-

wing coalition of regional parties (ERC), and  Others (OT)). (Source: Own elaboration from 
Spanish Home Office data, http://www.infoelectoral.interior.es/min/areaDescarga.html). 
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Regarding the comparison in aggregated terms, Table 1 presents the combined results 

obtained after assigning a 2007 vote history to each target section of the city of Barcelona and 

transferring them to 2011 using the two-block process specified by equations (9) and (10). As 

can be observed, despite the swings registered between 2007 and 2011 Barcelona local 

elections, the forecasts obtained with all the spatial approaches are very accurate. All the 

aggregate party approximations obtained are quite precise, the aggregate global fit being 

impressive. The average absolute error per party is just around 0.1%, as clearly shows the 

computed Error = 100

6
∑ |�̂�𝑖

𝑋 − 𝜋𝑖|6
𝑖=1  statisticwhere �̂�𝑖

𝑋 represents the aggregate proportion 

of votes estimated for party i using spatial approach X (with X = M1, M2, M3, M4, M5, M6) and 

𝜋𝑖 the actual party i share of the vote. Table 1 moreover shows the average of the 2 distances, 

computed at census sections, between recorded votes and time-transferred allocations. 

Table 1. Estimates for 2011 Barcelona local election after time transferring spatial imputations. 
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2
8.04 
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1
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1
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5
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5
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2
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5
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5
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2
8.24 

2
1.77 

1
6.95 

1
0.21 

5
.50 

1
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- 
 

- 
 

1
4 

1
1 

9 5 2 

a M1: NN point-based areal interpolation, M2: areal weighting, M3: Callejero dasymetric, M4: SIOSE 
dasymetric, M5: Urban Fabric dasymetric, and M6: Cadastral dasymetric. 

b Result rows show the proportions of votes won by each political party. Approach rows portray the 
forecasts that would have been obtained after transferring the corresponding 2007 imputation to 2011. 

c The error column displays the average sum of the differences in absolute values between percentages of 

predictions and actual outcomes: Error = 100

6
∑ |�̂�𝑖

𝑋 − 𝜋𝑖|6
𝑖=1 . 

d This column shows the average of the 2-distances in each census section between its actual votes and 
its corresponding time-transferred allocations. 

 

As can be inferred, the average distances measured using the 2-statistic show an 

order of preference among the spatial approaches analysed that as a rule favours dasymetric 

strategies (M6 ≻ M5 ≻ M3 ≻ M2 ≻ M4 ≻ M1). As expected, the introduction of more 

information in the allocation process tends to produce better imputations. The differences 

between the approaches is nevertheless really small and the increases of accuracy obtained 

with the more complex approaches compared to the baseline methods (areal interpolation 
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and areal weighting) are dubious enough to reward the extra effort that dasymetric 

approaches require. 

In the presentation of the results performed so far, we have not yet tackled the spatial 

analysis of the reallocation errors. The issue is that as a rule no great differences exist among 

the spatial distributions of the different errors attained. The more relevant result is that, as 

expected, the relative worse performance of the NN point-based areal interpolation approach 

at census level has its origin in the relative worse imputations that this method produces in the 

border sections. In any case, the gains in accuracy of dasymetric refinement regarding to areal 

weighting are, for the example here studied, just marginal. More likely, the great similarity that 

areal weighting and dasymetric methods show is a consequence of the uniformity in the 

distribution votes in neighbouring areas (“the homogeneity assumption” cited in Goodchild & 

Lam, 1980). For instance, the spatial autocorrelations for the two big political parties in 2007, 

measured on the Moran index of the share of votes, reach 0.50 for CiU (p-value ¼ 0.0000) and 

0.48 for PSC (p-value ¼ 0.0000). 

As an example of a spatial distribution of errors, Fig. 4 shows the relative absolute 

errors obtained at census section level using the dasymetric Cadastral approach. The one 

producing the better allocations. The general picture displayed for this approach is common to 

all the other procedures. As we can observe, the errors present a peripheral or radial 

distribution, which defines a statistically significant non-random spatial distribution, although 

probably not significant in practical terms (Gelman and Carlin, 2017 
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Figure 4. Spatial distribution of relative absolute errors at census section level after time-

transferring the reallocated absolute number of votes using dasymetric cadastral-based areal 

interpolation. 

 

Indeed, the Moran indexes of the errors just fluctuate between 0.04 and 0.05; 

although they increase to 0.09 if only the city centre is considered. In summary, given that no 

large differences have been found in the census section errors among the different methods 

(excluding NN spatial interpolation), we could conclude that their origin comes more from the 

fluctuations of political tendencies themselves than on the spatial methods, all of which 

produce really similar allocations. An analysis of the differences/similarities among the 

allocations obtained before time-transferring them indeed corroborates this idea. 
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5. Discussion and final remarks 

Many social statistics are offered in a really small-area basis, like census blocks or 

precincts. The successive computation revolutions, with their subsequent improvements in 

processing power and storage capacity, have enormously eased their inclusion in an increasing 

number of economic and social applications, from determining locations of new business 

settlement to support decision making in government programs. These are not obviously the 

only issues for which they can be of interest. They are also useful for drawing electoral 

boundaries, assessing public program effectiveness, offering litigation support, monitoring 

infectious diseases, determining consumer profiles or deciding sales forecasting, to name but a 

few. 

Small areas are however more exposed than established big areas to experiencing 

changes in their boundaries. Therefore, it is not uncommon that most frequent breaks occur in 

their series of data, making their inclusion in dynamic analysis difficult. Hence, many methods 

have been proposed in the literature to try to allocate data between two spatial divisions of 

the same territory: from a set of source units to a set of target units. 

Given that a precise location of population is the key to answering many practical 

questions of social interest, the introduction in the reallocation process of new ancillary data 

through dasymetric techniques is the route commonly followed to improve spatial allocations. 

However, according to Zandbergen and Ignizio (2010, p. 199) “the performance of dasymetric 

methods varies substantially among study areas, and no single technique consistently 

outperforms all others.” In this paper, we take as a case of study the city of Barcelona in Spain, 

a big city with more than 1.6 million of inhabitants that has recently redrawn its small areas’ 

boundaries, and we analyse how different reallocation approaches based on dasymetric 

mapping perform on the issue of redistributing votes. The problem selected is particularly 

interesting because a solution based on individual records is unimaginable for this kind of 

data. 

Although in urban areas and mainly in big cities, it is expected that dasymetric 

approaches shows limited improvement in accuracy over simple areal weighting approaches, 

in a recent paper Pavía and Cantarino (2016) have shown for the same breakdowns handled in 

this research that dasymetric refinement clearly beats simple methods for the customary 

problem of reallocating census figures. This paper analyses whether this is also true for the 

case for reallocating votes. 

As expected, at the small unit level our analyses show that the approaches 

based on dasymetric techniques outperform the simpler solutions of point-based areal 

interpolation and, in a lesser extent, areal weighting. The improvements can be 

labelled as marginal, however. There are no great differences between the accuracy of 

the approximations achieved with NN point-based areal interpolation and areal 

weighting and those reached with other more complex techniques. The biggest 

differences are concentrated for the NN point-based areal interpolation approach in the 
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border sections, where the NN method harvests its worst allocations. In light of our results, 

we doubt it worth the extra effort of geo-locating population more precisely 

introducing ancillary sources of information in the process of reallocating votes (or 

share of votes) in an urban area, at least when votes show strong spatial patterns in 

cities with a relatively compact population structure. Indeed, in response to Pavía and 

López-Quilez (2013) inquiry stated in the introduction, our recommendation would be 

not to complicate things and to rely on the simplest methods (areal weighting), mainly 

when the aim of the reallocation process is aggregate forecasting. For other kind of 

problems, such as ecological inference (see, e.g, King, 1997), when disposing of 

accurate small area reallocations is certainly quite relevant, it would be interesting to 

explore other approximations. It could be interesting to include in a dasymetric 

procedure to reallocate votes other variables that could be available at census level 

more closely related to the individual determinants of vote, such as the average 

income or the structure by ages of the population. 

Despite the geographical literature showing as a rule more sophisticated and data-

demanding methods producing better allocations (e.g., Sridharan and Qiu 2013; Ruther, Leyk 

and Buttenfield, 2015; Buttenfield, Ruther and Leyk, 2015; Pavía and Cantarino, 2016; Mennis, 

2016), the results of this research come to point out some limits to the improvements 

that can be reached with more complex dasymetric procedures. The tradeoff cost-

effectiveness of each solution is case-dependent: it depends on both the target variable and 

the particular geography. More research should be, therefore, performed to decide 

whether and when our conclusions could be extended to other instances. It should be 

interesting to know to what extent more complex methods improve allocations and 

what is their dependence on the type of variable to be allocated, the ultimate goals of 

the imputation process and/or the kind of urban structure under study. It is 

foreseeable that in other cities with more disperse populations (as a consequence of, 

for example, urban sprawl) and/or a fewest spatial autocorrelation between the 

political trends, the dasymetric methods will produce vote allocations with 

improvements relatively higher. 

To end, we would also add some remarks obtained as by-product of our analyses 

about the specification and estimation of the temporal transfer model employed that could be 

of interest for pollsters and forecasters. In addition to the strategy presented in our exposition, 

we have also tested other specifications. In this sense, it should be remarked that equivalent 

results would have been obtained if (i) no logit transformations had been performed to the 

predictors, (ii) a joint model for turnout and share of votes had been used and/or (iii) the 

outlier section had also been included to fit the model. In all the cases, the spatial allocation 

approaches would have shown the same order of preferences, with similar global relative 

distances (although higher) among them. We have opted for presenting the specification 

producing the temporal translations globally closer to the actual outcomes given that the aim 

of the temporal transfer model is just to build a standard of comparison. During the process, 
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however, we have learned a couple of issues that we think could be of interest for political 

scientists, survey pollsters and electoral forecasters. First, it is considerably worse to model 

jointly turnout and vote proportions (i.e., consider abstention in the same level as voting for a 

particular party) than to use a two-block model. Second, the specifications employing logit 

transformations of the predictors are more sensitive to outliers and in their presence may lead 

to worse outcomes. In light of these two points, in a real situation in which the objective is 

predicting the constituencies’ outcomes of an electoral process, we would recommend using 

the two-block equation approach with raw proportions as predictors. 
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