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We present a new set of direct numerical simulation data of a turbulent plane Couette
flow with constant wall-normal transpiration velocity V0, i. e. permeable boundary
conditions, such that there is blowing on the lower side and suction on the upper. Hence,
there is no net change in flux to preserve periodic boundary conditions in streamwise
direction. Simulations were performed at Reτ = 250, 500, 1000 with varying transpiration
rates in the range of V +

0 ≈ 0.03 to 0.085. Additionally, a classical Couette flow case at
Reτ = 1000 is presented for comparison. As a first key result we found a considerably
extended logarithmic region of the mean velocity profile, with constant indicator function
κ = 0.77 as transpiration increases. Further, turbulent intensities are observed to decrease
with increasing transpiration rate. Mean velocities and intensities collapse only in the
cases where the transpiration rate is kept constant while they are largely insensitive
to friction Reynolds number variations. The long and wide characteristic stationary
rolls of classical turbulent Couette flow are still present for all present DNS runs. The
rolls are affected by wall transpiration, but they are not destroyed even for the largest
transpiration velocity case. Spectral information indicate the prevalence of the rolls and
the existence of wide structures near the blowing wall. The statistics of all simulations
can be downloaded from the webpage of the Chair of Fluid Dynamics.

1. Introduction

Direct Numerical Simulation (DNS) is a fundamental tool for the study of wall
turbulence, and it is the only available one when experiments are difficult, or simply
impossible, to perform. Focusing on turbulent channel flow, there has been a continuous
increase in Reynolds number of simulation of Poiseuille flows since the seminal work
of Kim et al. (1987), followed by the works of Moser et al. (1999), Del Alamo et al.
(2004), Hoyas & Jiménez (2006) and, the very recent works by Bernardini et al. (2014)
and Lee & Moser (2015). Turbulent Couette flows have been studied less, most probably
due to the long and wide streamwise rolls existing in this flow, as it has been stated
experimentally (Tillmark 1995; Kitoh et al. 2005; Kitoh & Umeki 2008) and numerically
(Bech et al. 1995; Komminaho et al. 1996; Tsukahara et al. 2006; Pirozzoli et al. 2011,
2014; Avsarkisov et al. 2014a). The necessity of large boxes to capture these structures
makes the study of this flow much more computationally expensive than a turbulent
Poiseuille flow. Furthermore, these rolls seem to grow with Reynolds number, while at
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the same time the Kolmogorov scale decreases. As it is explained later on, these rolls do
not disappear due to presence of the transverse flow.

In the case of non-canonical boundary conditions such as wall-normal transpiration,
the bibliography for both types of channel flow is considerably reduced.

Up to the knowledge of the authors, the only experimental work about Poiseuille
flow with wall transpiration (PTF) was conducted by Zhapbasbaev & Isakhanova (1998)
for small transpiration velocities. For direct numerical simulations of related flows, the
interested reader is referred to Avsarkisov et al. (2014b) and references therein. In the
case of a turbulent Couette with wall Transpiration Flow (CTF), the present study is
the first work addressing this phenomenon.

However, this problem is of great interest both from the point of view of applications
and fundamental science. Porous wall flows and the respective blowing and suction ones
are known to greatly affect the friction coefficient, see Jiménez et al. (2001). In this case,
using a single numerical experiment, we can study the influence of the transpiration
velocity in the flow at both sides simultaneously, which is very interesting. Furthermore,
for this particular flow, there is a drag reduction at the blowing side and drag increasing
at the suction one. At the blowing side, some new spectral structures have been found,
related to an inflection point of the mean velocity in the streamwise direction. These new
structures have not been described earlier and could be one of the explanations of this
drag reduction. The lack of experimental work for non-canonical boundary conditions
can be linked to the extraordinary difficulties of performing such an experiment. For
Couette flows the moving walls are simulated by moving belts (Kitoh et al. 2005). To
create a transpiration flow through this belt is almost impossible.

Moreover, the kinematics of CTF are more similar to turbulent asymptotic suction
boundary layers (TASBL, see for instance Bobke et al. (2015) and references therein)
than to PTF. This was somehow expected as in TASBL, the thickness of the boundary
layer is kept constant using suction. An interesting conclusion of Bobke et al. (2015) is
that realistic experiments of this kind of flow are nearly impossible.

The organization of the paper is as follows. The numerical method and the validation
strategy are explained in the second section. The statistics of the flow, including the tur-
bulent budgets, are discussed in the third section. The various new turbulent structures
found for the present flow are discussed in the fourth section. The fifth section contains
the conclusions.

2. Numerical method

In this work, a new set of DNS of a plane CTF has been conducted within a com-
putational box of Lx = 8πh, Ly = 2h and Lz = 3πh, with spanwise and streamwise
periodicity. In the past, this box has been used for very large turbulent Poiseuille flow
simulations (Hoyas & Jiménez 2006; Lee & Moser 2015). However, it is known from the
work by Avsarkisov et al. (2014a) that this computational box might be too narrow and
short to adequately reproduce a turbulent Couette Flow. It was confirmed in Pirozzoli
et al. (2014), that for pure Couette flow the correlation length in the spanwise direction
is nominally infinity. In the case of the streamwise correlation length, we are interested to
investigate if the transpiration velocity is capable of breaking down the large streamwise
rolls appearing in classical Couette Flows. Thus, the size of the box is a compromise
between the capacity of running enough parametric cases and a large enough box to
capture some of the largest scales of the flow.

The streamwise, wall-normal, and spanwise coordinates are x, y, and z and the corre-
sponding velocity components are U, V andW or, using index notation, Ui. Statistically
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Figure 1: Schematic view of Couette flow with the moving wall velocity Uw and wall-
normal transpiration velocity V0. Fluid is blown through the lower wall and removed
from the upper wall at a constant rate. The computational box is not scaled.

averaged quantities are denoted by an overbar, whereas fluctuating quantities are denoted
by lowercase letters, i. e. U = U+u. The flow is driven by a constant velocity of the upper
wall such that we have the boundary condition U(x, 0, z) = 0 and U(x, 2h, z) = Uw. The
blowing-suction process is implemented through the following boundary condition at the
wall,

V (x, 0, z) = V (x, 2h, z) = V0,

where V0 is the constant transpiration velocity. The nominal Reynolds numbers studied
are Reτ = 250, 500 and 1000, based on the mean friction velocity uτ and on the channel
half-width h. In all cases the mass flow, and simultaneously the bulk velocity, Ub, is
kept constant, similar to Hoyas & Jiménez (2006); Avsarkisov et al. (2014a). The mean
friction velocity is defined as

uτ =

√
(ubτ )2 + (usτ )2

2
, (2.1)

where the local friction velocities are

ubτ =
√
ν
∣∣∂yU ∣∣b, usτ =

√
ν
∣∣∂yU ∣∣s. (2.2)

Here and subsequently, superscripts b and s correspond to variables taken on the
blowing and the suction side, respectively.

The Navier-Stokes equations, employed to investigate the present flow, are transformed
into an equation for wall-normal vorticity ωy and for the Laplacian of the wall-normal
velocity φ = ∇2v as in (Kim et al. 1987). The spatial discretization uses dealiased
Fourier expansions in x– and z–direction, and seven-point compact finite differences
in y–direction with fourth-order consistency and extended spectral-like resolution (Lele
1992). The temporal discretization is a third-order semi-implicit Runge-Kutta scheme
(Spalart 1991). Initial fields were either taken from previously calculated classical Couette
flows imposing the new boundary conditions, or by further increasing the transpiration
velocities in previously computed CTF cases.

Due to the lack of experimental data or numerical simulations, it has been impossible
to do a formal validation of the code. However, in the past the code has been employed
to successfully run simulations of turbulent Poiseuille flows (Hoyas & Jiménez 2006;
Hoyas & Jiménez 2008), turbulent Couette flows (Avsarkisov et al. 2014a) and turbulent
PTF (Avsarkisov et al. 2014b), while the modifications in the code to impose the new
boundary condition have been minimal. In addition, simulations conducted at very low
transpiration velocity were similar to pure Couette flows. A comparison with the laminar
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Case Line Reτ ReV0 Uw/V0 Uw/U
C00
w V +

0 Nx Ny Nz TUb/Lx Tuτ/h
C00 — ◦— 1000 0 ∞ 1 0 6144 383 4608 9.0 20.5
C02 · · · · · · 1000 32 1243 1.382 0.032 3072 383 2304 18.7 32.2
C05 – – – – 1000 50 685 1.907 0.051 3072 383 2304 22.0 60.1
C10 — ·— 1000 60 492 2.741 0.063 3072 383 2304 22.0 97.5
C20 1000 75 395 4.402 0.071 3072 383 2304 24.7 194
A12 —O— 250 19 400 2.673 0.070 768 251 576 60.6 281
A15 —M— 500 37.5 400 3.342 0.070 1536 251 1152 25.4 151
A20 —3— 500 42 323 3.60 0.085 1536 251 1152 52.3 344

Table 1: Parameters of the simulations. Three different Reynolds numbers are presented:
Reτ is based on the mean friction velocity and the channel half-width h and ReV0

is based
on the transpiration velocity V0 and h. The third column, Uw/V0, is the ratio between
the velocity of the wall Uw and V0, which defines a Reynolds number usually employed
for TASBL, see Bobke et al. (2015). Next, the velocities Uw and V0 are given in terms
of the wall-velocity of the pure Couette case, UC00

w , and the mean friction velocity uτ ,
respectively. Nx, Ny, Nz are the numbers of collocation points. The last two columns
denote the computational time span while statistics were taken in wash-outs (Ub/Lx)
and eddy turn-overs (uτ/h). T is the computational time spanned by those fields. Line
shapes given in the second column are used to identify the cases through all the figures
of the present paper.
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Figure 2: Colour online. Mean velocity profile (a) and Reynolds stresses (b) scaled in
inner scales (uτ ,

+). Black line, case C00 in Table 1. Blue squares from Pirozzoli et al.
(2014). Only half of the channel is shown.

solution, which can be derived analytically in form of an exponential function, and a
comparison with the first Reτ = 1000 simulation reported (Pirozzoli et al. 2014) has
been performed. Tests show a perfect agreement between DNS data and the analytic
solution, though these results are omitted for brevity. The comparison of the present
case C00 (explained below) with Pirozzoli et al’s simulation is shown in Figure 2. The
agreement is excellent, both for the average velocity and the turbulent intensities.

Table 1 summarizes the parameters of the present simulations. The wall-normal grid
spacing is adjusted to keep the resolution at ∆y = 1.5η, i. e., approximately constant
in terms of the local isotropic Kolmogorov scale η = (ν3/ε)1/4 for every Reτ case. In
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wall units, ∆y+ varies from 0.42 at the wall up to ∆y+ ' 7.2 at the centerline. The
wall-parallel resolution in Fourier Space for x and z is ∆x+ ' 12.2 and ∆z+ ' 6.13. The
case C00 is a pure turbulent Couette flow in a 16πh× 2h× 6πh computational box used
as a reference case. The transpiration velocity grows for the cases C02 to C20. Cases
A15 and A12 were ran to study the effect of increasing Reτ keeping the dimensionless
parameters Uw/V0 and V +

0 approximately constant. Case A20 was employed to see the
effects of a higher transpiration rate at a lower Reynolds number.

In every simulation, the flow had to evolve from an initial file, which has been taken
from previous different simulations. The code was run until a transition phase was passed
and the flow had adjusted to the new set of parameters. The transition phase until the
simulations reached a statistically steady state, which can be very time consuming, is
not contemplated in the two right columns of table 1. One of the measures used to asses
that the code has run enough time to compile accurate statistics is to compute the total
shear stress, which for the CTF reads

τb + V0Ū = ν
dŪ

dy
− uv, (2.3)

and, non-dimensionalized by ubτ , yields

1 + V +b
0 Ū+b − dŪ+b

dy+b
+ uv+b = 0. (2.4)

For the most unfavourable cases, i. e. Reτ = 1000, the verification of 2.3 can be seen
in figure 3a, where the deviation from 0 of the left hand side of equation 2.4 has been
plotted versus y. As some of the terms of this equation can be large, the error has been
normalized by the absolute maximum value of the terms presented in equation 2.4. The
deviation in all cases is less than 0.15% of the maximum value. It is worth to note that
the transpiration velocity strongly modifies the shear stress at the wall, reducing it at
the blowing wall and increasing it at the suction one, see 3b. This modification of the
value of τb can be up to two orders of magnitude in the cases simulated.

Another important consequence of equation 2.3 is that, evaluating it at the upper wall
and employing equation 2.2, we obtain

(usτ )2 − (ubτ )2 = V0Uw, (2.5)

linking friction velocities with the value of the transpiration and the moving wall velocity.

Equation 2.5 has a strong effect in the developing processes of the flow once a
new simulation is started. To run a simulation at a larger ReV0

, a field at smaller
ReV0

is chosen. Thus the relationship between the local friction velocities changes, and
consequently the global Reτ . In turn, it is necessary to change both the ReUb

and the
wall velocity after a few hundred steps to obtain the desired value of the parameters. A
second option would have been to increase ReUb

, but this option was discarded because
the appropriate mesh size changed considerably.

In the present study we restrict ourselves to describe the new data coming from these
simulations and to compare them with the results obtained for the pure Couette flow
and other flows with wall transpiration, pointing out the key differences.
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(a) (b)

Figure 3: Colour online. Lines as in table 1. The suction wall is on the right of the
figure. (a) Deviation of 2.4 from zero given in error percentage of the computation of the
transpiration CXX cases. (b) Total shear stress τb at the blowing (open symbols) and
suction (closed symbols) walls for the different CXX cases.
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Figure 4: Colour online. Lines as in table 1. Mean velocity profile scaled in inner local
scales at the suction (a) and blowing (b) sides. Blue thin solid line corresponds to viscous
sublayer linear scaling law; red thin solid line represents near-wall classical logarithmic
scaling law at κ = 0.41 and B = 5.1.

3. Statistics

3.1. Mean velocity profile

Figure 4 shows U at the suction and blowing sides scaled by the local uτ . At the
suction wall the flow appears to follow the linear law in the viscous sublayer. However,
at the blowing wall the interval where the linear law holds is shorter than the one near
the suction side, and it gets further reduced as the transpiration number is increased. In
the same figure, the red solid line shows the logarithmic profile,

U =
1

κ
ln y+ +B

at the classical coefficient values of κ = 0.41 and B = 5.1 (Pope 2000). Qualitatively, the
deviation from this logarithmic profile is in accordance with Sumitani & Kasagi (1995)
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Figure 5: Colour online. Lines as in table 1. (a) Mean velocity profile scaled in outer
scales (Uw, h). (b) Mean velocity profile at the suction side scaled in usτ . Cases plotted:
C20, A12, A15 and A20. Red thin solid line represents modified logarithmic scaling law
for κ = 0.77 and B = 8.7.
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Figure 6: Colour online. Lines as in table 1. Indicator function for the logarithmic layer,
i. e. the inverse of the von-Kármán-constant scaled with usτ , (a) with dashed lines at
κ = 0.41 and κ = 0.77, (b) in semi-logarithmic plot. Suction wall is at the left side of the
plots.

and Kametani et al. (2015). This change in the slope seems to stop when V +
0 is larger

than 0.07 approximately, corresponding to U∞/V0 6 400. Figure 5b shows U for the C20
and all A cases compared to a modified log law with κ = 0.77 and B = 8.7, with an
excellent agreement.

However, using LES, Schlatter & Örlü (2011) gave a value of κ = 0.82 and B = 9.2 for
a TASBL, independent of both U∞/V0 and Reτ numbers. Further, Bobke et al. (2015)
observed κ = 0.89 and B = 9.6 for a TASBL at U∞/V0 = 333. It is clear from figure 4a,
that the slope of U changes with U∞/V0.

From a global point of view, the effect of the transpiration velocity in the mean velocity
profiles may be taken from figure 5a. This figure shows how transpiration leads to the
loss of symmetry even for small V +

0 , leading to higher mean velocity gradients at the
suction wall and lower gradients at the blowing wall.

Figure 6 shows the mean velocity profile in terms of the inverse of the Kármán
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constant 1
κ = y+s∂U+s/∂y+s = Ξ, which is the definition of the log-indicator function.

Apparently, with increasing transpiration rate, the region where this term is almost
constant increases drastically. In fact, for the highest transpiration rate presented here,
an approximately constant region between y+s = 80 and y+s = 1000 can be observed.
This flattening effect is related to the vanishing of the secondary maximum that exists
around y+ = 300 for the C00 case. The value of the log indicator function Ξ for the
second set of simulations (C20, A20, A15 and A12) can be seen in the semi-logarithmic
representation in figure 6b. There is a perfect collapse of the data below the logarithmic
layer, i. e. in the viscous sub-layer and the buffer layer, as the lower Reynolds number
cases AXX collapse onto the Reτ = 1000 curve (cases CXX). All cases present a similarly
extended region, and in the range of transpiration numbers studied, this seems to be an
intermediate limit. The existence of a displaced secondary maximum or minimum can be
discarded in the range of the presently studied parameters.

One of the possible reasons for the greatly extended range of validity of the log-region
might be the value of usτ which is ten times larger than the one for the classical Couette
flow. As will be shown later, this effect can also be tentatively linked to the size and
structure of the eddies present in the flow.

3.2. Turbulent intensities

In figure 7, the root-mean-square velocity fluctuations u′i
+

=
(
u[i]u[i]

+
)1/2

, where
index in brackets denote no summation, and uv′+ = uv+ are presented for the different
transpiration cases to be also compared to the pure Couette case. As for the mean velocity
U , the scaling with a local uτ does not collapse the data.

It should be mentioned that normalization is not trivial here, since there are several
velocity scales acting on the flow. Through the boundary conditions we have the external
scales Uw and V0, while internally we have the two friction velocities defined in equation
2.2, which are all related through the global momentum balance in equation 2.5. As
was observed in previous works investigating the TASBL, (Sumitani & Kasagi 1995;
Kametani et al. 2015; Schlatter & Örlü 2011; Bobke et al. 2015), we analogously find
that by scaling with the local friction velocity, the turbulent intensities get reduced at
the suction wall and increased near the blowing wall. Further, the known peaks of u′i

+

and w′i
+

(Hoyas & Jiménez 2006; Avsarkisov et al. 2014b) disappear at the blowing wall.
The situation when keeping the transpiration rate constant, while at the same time

varying the Reynolds number, i. e. comparing the C20 case and all AXX cases is depicted
in figure 8. In this context, at the suction wall the local friction velocity usτ seems to be the
most appropriate scaling as it nicely collapses the data. However, this scaling, using ubτ ,
fails completely at the suction wall (not shown). This failure is apparently a consequence
of the term V0Uw in the momentum conservation equation 2.3, as the product U+

w V
+
0 is

constant for the C20 and AXX cases. This obvious scaling problem near the suction side
will be studied in a companion paper. To facilitate the visualization and the comparison
between both walls, in most of the figures and discussion that follows, global wall units
will be used.

3.3. Turbulent budgets

The budget equation for the Reynolds-stress tensor components uiuj , is given by

Bij ≡
Duiuj
Dt

= Pij + εij + Tij +Πs
ij +Πd

ij + Vij , (3.1)

where D/Dt is the mean substantial derivative and (u1, u2, u3) = (u, v, w). The different
terms on the right hand side are referred to as production, dissipation, turbulent diffusion,
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Figure 7: Colour online. Lines as in table 1. Velocity fluctuation intensities of the CXX-
cases. Left column, u′ and v′; right column w′ and uv. (a) and (b) adimensionalized
by usτ , plotted versus dimensionless distance from the suction wall in local inner units,
y+s = (2 − y/h)usτ/ν. (c) and (d) adimensionalized by ubτ , plotted versus distance from
blowing wall in outer units. (e) and (f) adimensionalized by uτ .
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Figure 8: Lines as in table 1. Velocity fluctuation intensities of the AXX and C20 cases
are plotted versus the dimensionless distance from the suction wall in local inner units.

(a) (b)

(c) (d)

Figure 9: Budgets for Reynolds stresses uu and vv. Only Cases C02 and C20 are shown.
(a) Buu, blowing side; (b) Buu, suction side; (c) Bvv, blowing side; (d) Bvv, suction side.
Production �, dissipation �, viscous diffusion •, pressure-strain H, pressure diffusion N,
turbulent diffusion ∗. Lines as in table 1, colour online.
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(a) (b)

(c) (d)

Figure 10: Budgets for Reynolds stresses uv and ww. Only Cases C02 and C20 are shown.
(a) Buv, blowing side; (b) Buv, suction side; (c) Bww, blowing side; (d) Bww, suction side.
Production �, dissipation �, viscous diffusion •, pressure-strain H, pressure diffusion N,
turbulent diffusion ∗. Lines as in table 1, colour online.

pressure-strain, pressure diffusion, and viscous diffusion. They are respectively defined
according to

Pij = −uiuk∂xk
U j − ujuk∂xk

U i, (3.2a)

εij = −2ν∂xk
ui∂xk

uj , (3.2b)

Tij = −∂xk
uiujuk, (3.2c)

Πs
ij = p(∂xjui + ∂xiuj), (3.2d)

Πd
ij = −∂xk

(δkipuj + δkjpui) , (3.2e)

Vij = ν∂xk
∂xk

uiuj , (3.2f )

In the previous definitions, δij is Kronecker’s delta and repeated indices imply summation
over k = 1, 2, 3. In canonical wall flows without wall-transpiration (Hoyas & Jiménez
2008; Avsarkisov et al. 2014b), Duiuj/Dt is zero. However, as soon as V0 is different
from zero, the convective derivative in y–direction does not vanish. Hence, from the four
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(a) (b)

(c) (d)

Figure 11: Budgets for Reynolds stresses. Cases for V +
0 = 0.07 at the suction side are

shown. (a) Buu, (b) Buv, (c) Bww, (d) Bww. Production �, dissipation �, viscous diffusion
•, pressure-strain H, pressure diffusion N, turbulent diffusion ∗. Lines differ from table
1: Case C20, solid. Case A15, dashed. Case A12, dash-dotted.

terms, the only remaining one is

Bij = V0∂x2
uiuj . (3.3)

The four non-trivial budgets are shown in figures 9 and 10 non-dimensionalized by
ν/u4τ . For the sake of clarity, only the cases C02 and C20 are plotted. The data from all
the cases can be downloaded from our webpage given at the end of the abstract above.
A general observation is that transpiration leads to a reduction of essentially all terms in
the balance equation for uiuj in (3.1). Near the blowing wall, the values are several orders
of magnitude smaller than at the suction wall. The peaks of the different quantities are
in the same location as for the canonical flows (Hoyas & Jiménez 2008). In accordance
to our observations for the turbulent intensities, uτ alone seems not to be sufficient to
properly scale, i. e. collapse, the turbulent budget. However, studying a constant suction
at varying Reynolds number, i. e. considering V +

0 = 0.07, the curves of the budgets Buu
and Bww for the cases A12, A15 and C20 collapse onto one curve, as can be seen in
figure 11. This clearly indicates that the value of V +

0 is the key parameter for most of
the turbulence properties.
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The data presented in this section are in agreement with several other works of
Sumitani & Kasagi (1995); Kametani et al. (2015); Bobke et al. (2015), if the local
friction velocity is used for scaling the flow. The values of the intensities increase near
the blowing wall and decrease close to the suction side as expected. However, this effect
is larger than in the flows studied previously. At the blowing wall, as the transpiration
velocity increases, the value of Rebτ gets reduced. For V +

0 > 0.06, the known peaks of
the intensities of u′+bi and w′+bi disappear (see figures 7c and 7d). In contrast to the
previous works, the existence of the global uτ linking both walls can be used to analyze
and compare the behaviour of the flow at both walls, see figures 7e and 7f. This is not
possible in TASBL flows as these experiments have only one type of permeable boundary
condition. The damping of turbulence induced by the reduction of the local friction
velocity at the blowing wall does not coincide with an increase of the turbulent budgets
near the blowing wall when V +

0 > 0.06, as can be seen in fig 9 and 10. Turbulence
is dampened in both walls if scaled in global wall units. In the following section, the
turbulent structures created by the joint action of both walls will be analyzed.

4. Turbulent structures

The one-point statistical study conducted in the previous section is complemented here
with the analysis of the geometrical structures of the flow. Figure 12 shows the vortical
structures for the case A12, computed using Hunt’s vortex criterion (Hunt et al. 1988).
This criterion is based on the second invariant of the velocity gradient tensor, Q, defined
as

Q =
1

2

(
(Ω2

ii)
1/2 − (S2

ii)
1/2
)
, (4.1)

where S and Ω are the symmetric and antisymmetric parts of the gradient tensor,

Sij =
1

2
(∂iUj + ∂jUi) , Ωij =

1

2
(∂iUj − ∂jUi) . (4.2)

and S2
ii = SijSji, Ω

2
ii = ΩijΩji. At each point a single value of Q is calculated based

on the velocity field. If this value of Q is larger than a certain threshold, (Chakraborty
et al. 2005; del Álamo et al. 2006) a vortical structure is detected. Using this method it
is possible to define a map, H(x, y, z), such that

H(x, y, z) =

{
1 if Hunt’s criterion is true,
0 elsewhere.

The methods by Jeong and Hussain (Jeong & Hussain 1995) and Chong et al (Chong
et al. 1990) were also implemented, but as the results of all three methods were similar,
we only used Hunt’s criterion.

It is clear from this figure that the structures at the blowing side are wider, larger and
less frequent than those at the suction side. A statistical measure for the distribution of
vortices is presented in figure 13a. This figure shows the function Φ, defined as

Φ(y) =
∑
x

∑
z

H(x, y, z)/(Nx ×Nz)× 100, (4.3)

i. e. for every plane Φ(y) is the number of points where Hunt’s criterion is true over the
total number of points. This quantifies the average area covered by eddies in the box.
When the transpiration velocity is larger than a certain threshold, Φ seems to converge
to a linear function in the center region of the channel. This is most clearly visible for
the case C20. For the cases A12 and A15, Φ still presents some curvature at the center
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Figure 12: Colour online. Vortical structures for the A12 case, coloured by height. Only
a fourth of the length in x and an eighth in z is shown.

of the channel. The integral of Φ,

VΦ =

∫ h

−h
Φ dy, (4.4)

gives an estimation of the part of volume of the channel where a vortical structure exists.
This volume grows from VΦ = 34.25 for the pure Couette flow to VΦ = 53.12 for the case
C20. Hence, it indicates a greater percentage of vortices as the transpiration velocity is
increased. Although the value of Φ at the blowing wall is reduced as the transpiration
is increased, the growing of Φ at the center of the channel compensates this decrease.
Moreover, the values of Φ for the case C20 in the outer region of the channel, i. e. from
h = −0.8 to h = 0.8, lie in the range from Φ = 22 to Φ = 34, which is approximately
the range of values for Φ in the logarithmic layer of the case C00. This corresponds to
more “streaky” flow structures which can be confirmed in figure 14. Here contours of the
streamwise velocity in parallel planes to the wall are shown for the pure Couette flow,
and instantaneous and ensemble averaged values for the C20 case are presented at the
centreline y/h = 0 and at y+ = 10, where the latter is the position of the maximum of
the production in figure 9b.

As it was expected from figure 13a, it is clear that the density of vortices is larger in
case C20 compared to case C00. A clear organization into high (red) and low (blue) speed
streaks is observed. These streaks maintain some coherence along the whole channel. Case
C20 shows a stronger organization of the flow than case C00 close to the suction wall. To
investigate this further, the ratio of production to dissipation P/ε is shown in figure 13b.
Following the classical result from Lam & Banerjee (1992), streaks can only be sustained
if P/ε is at least of order unity. This ratio is almost exactly one for the case C20 case,
and the cases A12 and A15 are more flat than any other case. The mechanisms triggering
these two effects, linear decreasing of the area of eddies and P/ε = 1 could be the same
which provoke the extremely long region where the indicator function is constant, see
section 3.1. One of the arguments in favor of this can be seen in figure 16. Herein, the
local excess of P over ε is plotted, though pre-multiplied by y+, so that equal areas below
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(a) (b)

Figure 13: Colour online. Lines as in table 1. a) Percentage of points where Hunt’s
criterion is positive. b) Production to dissipation ratio.

the curve corresponds to equal contribution. Pirozzoli et al. (2011) argument that the
excess of production over dissipation around the secondary peak of y+(P−ε) at y+ ≈ 400
has to be transferred towards the underlying layers. This secondary peak is dampened as
the transpiration velocity is increased. For the case C20 there is no excess of production
(or dissipation) for almost the whole core of the channel (see figure 13b)

A second point of view refers to the very long and wide structures in classical Couette
flows (Tsukahara et al. 2006; Kitoh & Umeki 2008; Avsarkisov et al. 2014a; Pirozzoli
et al. 2014), which can be as long as 310h for Reτ = 500, Lee & Moser (2017). As
Pirozzoli et al. (2014) indicates, the streaks with a spanwise length of 2h basically have
an infinite correlation length. This kind of structures has been linked to a quasi-periodic
process (Hamilton et al. 1995). In the core region of a turbulent plane Couette flow, low-
speed velocity streaks generate large-scale vortices. The existence of such a regeneration
mechanism in the core region was confirmed experimentally by Kitoh & Umeki (2008)
and numerically by Pirozzoli et al. (2011) and Pirozzoli et al. (2014). This process does
not occur in turbulent Poiseuille flows. Our observations may indicate that the presence
of transpiration is not, in all the cases we have studied, able to completely break this
mechanism. After averaging the streamwise velocity for 24.7 wash-outs, the rolls are still
present, as can be seen in figures 14e and 14f. This phenomenon can be appreciated in
figure 15 where we show the different pairs of counter-rotating rolls whose footprints are
shown in figures 14e and 14f. The contour level of these rolls can be observed in the
upper right corner of figure 15. This subplot shows different contour levels for the mean
in x of the ensemble average of U . It is clear that some pairs of rolls are stronger than
others, differently from Avsarkisov et al. (2014a), but they are undoubtedly present.

This fact is further confirmed by two-point auto-correlations, to be taken from figure
17. According to 17a, the first zero in x of Ruu for the case C00 coincides with the
simulation of Pirozzoli et al. (2011). This first zero is obtained at smaller x-values,
if the transpiration number is increased indicating towards shorter structures, and,
furthermore, results appear to be independent of Reτ . In the spanwise direction, figure
17b indicates that the situation for the two-point auto-correlation changes for large values
of the transpiration velocity, and it can be seen that the second extremum, indicating
towards a secondary roll, is almost zero. We may interpret that even at the largest
transpiration rate, the Couette-type rolls still exist, but their strength is increasingly
diminished by transpiration.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Colour online. U velocity coherent structures in x − z planes. Left column,
y/h = 0 (centreline). Right column y+ = 10 for the following cases: a) and b) C00,
instantaneous field, c) and d) C20, instantaneous field, e) and f) C20, averaged.

In order to attain further structural information on the flow, we consider two-
dimensional spectral energy densities φ = kxkzE(kx, kz), as shown in figure 18. Two
very different behaviours for the spectrum of u, i. e., φuu, have been observed. The
spectrum at the suction wall is presented in figure 18a. This spectrum is similar to the
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Figure 15: Colour online. Coherent structures obtained from the ensemble average of the
flow field spanning through all the channel length for the C20 case. Only a half of the
length in x is shown.

(a) (b)

Figure 16: Colour online. Distribution of pre-multiplied turbulence kinetic energy
production excess at the blowing (a) and suction wall (b). Lines as in table 1.

one of pure Poiseuille or Couette flows (Hoyas & Jiménez 2006; Hoyas & Jiménez 2008;
Bernardini et al. 2014).

The situation is totally different close to the blowing wall. Figure 18b shows the
spectrum, which we have called butterfly spectrum, at y+b ≈ 3. Two kinds of structures,
centered at two different values of λ, can be observed. They are far wider than the
structures expected in this area compared to flows without transpiration. They seem to
be related to an inflection point in U caused by the transpiration velocity. This inflection
point appears approximately between 2 < y+b < 3 as soon as there is transpiration
velocity, as can be seen in figure 19. The butterfly spectra disappear after the maximum
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(a) (b)

Figure 17: Colour online. Two-point auto-correlation coefficient Ruu for Reτ = 1000 of
velocity fluctuations at the centreline, y/h = 0. (a) streamwise, (b) spanwise. Lines as in
table 1.

(a) (b)

Figure 18: Colour online. Spectral energy densities in terms of the wavelengths λ = 2π/k
for the C20 case. Spectra are normalized in wall units. (a) Suction wall, y+s ≈ 15. (b)
Blowing wall, y+b ≈ 3.

of U , showing a smooth transition from wider and shorter scales than expected from the
classical ones.

Concerning the situation away from the wall, the differences among the spectra of the
different cases can be highlighted representing the spectra in terms of the spanwise or
streamwise wavelengths and the distance to the nearest wall. This type of representation
was introduced by Hutchins & Marusic (2007) to understand the energetic relevance
of the various scales of motions at different distances from the wall. In figures 21 and
22, we see this representation for all CXX cases with the blowing side on the left, and
the suction side on the right. The left column shows the premultiplied spectra in the
streamwise direction, kxEuu, and the right one in the spanwise direction, kzEuu. The
breaking of the reflectional symmetry due to the transpiration and the flow of energy
from the blowing to the suction wall can be easily seen from the latter figures. Energy
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Figure 19: Colour online. Derivative of the mean streamwise velocity with respect to y
scaled in blowing wall units. Lines as in table 1.

Figure 20: Colour online. Evolution of the pre-multiplied spectra of streamwise velocity
fluctuations for case C20 in the streamwise direction. The black curve is defined as in fig.
19. The points on the curve indicate the height where the different spectra were taken.
After the maximum, the spectra evolve to the one expected for a classical Couette flow.

in the lower half of the channel near the blowing side is gradually disappearing until
even the peaks are lost (figure 22e). The known maximum of the spanwise spectra in
Couette flows (Pirozzoli et al. 2014) is kept at the same position near the suction wall,
approximately at y/h ≈ 0.01, y+ ≈ 12. Energy is concentrated for all cases near λ+z ≈ 110
for the spanwise spectra in the suction half of the channel, to be taken from the right
column of figures 21 and 22. The structures appearing at the top of the spanwise spectra,
at the center of the channel at λz/h ≈ 5, are the footprints of the long rolls of turbulent
Couette flows without wall-transpiration. Notice that as we are using logarithmic scales,
there are just a few points above λz/h ≈ 1, causing an anomalous shape at the top of
the figures representing the spanwise spectra. From these spectra, we may conclude that
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(a) (b)

(c) (d)

Figure 21: Colour online. Pre-multiplied spectra of streamwise velocity fluctuations in
the stream- (kxEuu, left column) and spanwise direction (kzEuu, right column). In every
figure, wavelengths are given adimensionalised in both global wall units (left) and h
(right). The distance from the nearest wall (y/h) is reported on the horizontal axis in
logarithmic scale to emphasize the near-wall behaviour. (a) and (b) case C00, (c) and
(d) case C02.

although the rolls lose energy as the transpiration velocity is increased, they never fully
disappear in the range of parameter that have been studied presently.
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(a) (b)

(c) (d)

(e) (f)

Figure 22: Colour online. Pre-multiplied spectra of streamwise velocity fluctuations in
the stream- (kxEuu, left column) and spanwise direction (kzEuu, right column). In every
figure, wavelengths are given adimensionalised in both global wall units (left) and h
(right). The distance from the nearest wall (y/h) is reported on the horizontal axis in
logarithmic scale to emphasize the near-wall behaviour. (a) and (b) case C05, (c) and
(d) case C10, (e) and (f) case C20.
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5. Conclusion

We have presented, for the first time, a set of turbulent plane Couette flow simulations
extended by a wall-normal transpiration velocity. The main importance of the present
paper lies in the investigation of the effects due to the transpiration velocity and the
analysis of the turbulent structures detected in the flow which are rather distinct on
the blowing side and the suction side. A second important point is the search for the
proper velocity scales to appropriately scale the flow and collapse the statistical data.
The main difficulty about the latter issue is due to the four velocities acting on the
flow. In particular, we have the external velocities Uw and V0 extended by the two local
friction velocities usτ and ubτ , although they are all interconnected by the mean momentum
equation 2.3.

From the computations at the highest transpiration number, i. e., V +
0 = 0.07, we

observe a collapse of the mean velocity and the second moments in wall units for different
Reynolds numbers, essentially showing that V +

0 is the key parameter to control the flow
acting as an invariant. This number has been previously used as Reynolds number in
TASBL with injection and suction. Further, it is observed that at the highest Reynolds
number and the highest transpiration rate, the slope constant of the logarithmic law
increases to κ = 0.77 representing an extremely extended logarithmic region, much longer
than the one that can be observed in turbulent Poiseuille or Couette flows at similar
Reynolds numbers. Further, one of the main effects of transpiration is the reduction of
the value of turbulent intensities and uv+, and thus a general reduction of turbulence in
the flow.

It is noteworthy to mention that the long and wide structures, characteristic of
turbulent Couette flows at zero transpiration, are still present. Their footprints are still
present in the two-dimensional spectra of the flow. It has been possible to find these rolls
in the ensemble averaged U field. The only difference is that this structures are moved
towards the suction wall. On the other hand, spectra near the blowing wall present
two peaks, created by the transmission of energy due to the transpiration velocity. These
butterfly spectra are related to an inflection point in U and evolve to the classical spectra
of Couette flows for y+b % 3.
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