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Abstract

The resource constrained project scheduling problem (RCPSP) is widely studied in the
literature and has a host of applications in practice. As a variant of the RCPSP, the resource
availability cost problem (RACP), which has the aim of minimizing the availability costs of
renewable resources in order to complete a project subject to a given deadline, is considered
in this paper. We divide the RACP into two sub-problems: the sequencing problem and
the resource decision problem, and propose a multi-start iterative search heuristic (MSIS)
to solve it. For the sequencing problem, an iterative search framework is constructed to
effectively search the activity sequences. A two stage resource adjustment procedure and a
backward peak elimination procedure is developed for solving the resource decision problem.
MSIS is compared with three existing algorithms on both PSPLib and RanGen data sets
involving 1380 instances. A complete calibration of the different parameters and operators of
MSIS by means of a design of experiments approach is given. Experimental and statistical
results show that MSIS outperforms the other three algorithms in both effectiveness and
efficiency by a significant margin.
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1. Introduction

The resource constrained project scheduling problem (RCPSP) is one of the classical
project scheduling problems which receives extensive attention in both academia and indus-
try. The resource availability cost problem (RACP) is a variant of the RCPSP, which has
the aim of minimizing renewable resource costs in order to complete a project subject to a
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given project deadline. RACP was first introduced by Möhring [17], motivated by a small
bridge construction project. The author referred to it as the resource investment problem
(RIP) and proved that it is NP-hard.

The existing research on the RCPSP is abundant [24], [14], [15]. However, to the best of
our knowledge, the research on RACP is rather scarce. The existing algorithms for RACP
can be classified into exact algorithms, heuristics and meta-heuristics. Möhring [17] proposed
an exact algorithm based on comparability graphs and the recognition and orientation of
interval graphs. He also proved the duality relation between the RACP and the Single
Mode Resource Constrained Project Scheduling Problem (SMRCPSP). Demeulemeester [2]
transformed the RACP into multiple SMRCPSPs, so that it could be solved based on the
branch and bound algorithm by Demeulemeester and Herroelen [4]. An exact cutting plane
algorithm (MBA) was developed. This made use of efficient points that delimited the solu-
tion space of all possible combinations of resource availability. If the maximal completion
time (makespan) exceeds the deadline, the availability of one resource is increased by one
unit. The procedure above is repeated until the makespan is not greater than the deadline.
Rodrigues and Yamashita [20] presented an improved MBA algorithm (MMBA). The initial
solutions were constructed by a heuristic and new lower bounds were calculated for reducing
the solution space so as to improve the effectiveness of the branching scheme. Experiments
were carried out on the PSPLib instances by Kolisch and Sprecher [13], and results showed
that MMBA improves MBA by 24%. Drexl and Kimms [7] proposed two lower bounds by
Lagrangean relaxation and column generation methods. They pointed out that the solution
of the RACP with different deadlines provides time-cost tradeoffs, which were valuable for
negotiating the price for the project. Yamashita et al. [25] developed a meta-heuristic based
on scatter search, named SS. They also transformed the RACP into muliple SMRCPSPs so
that the heuristic by Tormos and Lova [22] could be adopted. Comparison was made on
the solutions obtained by SS with those by Demeulemeester [2] and upper and lower bounds
by Drexl and Kimms [7] on small instances. SS was also compared with the regular scatter
search on large instances. The results showed that SS outperforms the other algorithms
in all cases. Shadrokh and Kianfar [21] presented a genetic algorithm for the RACP with
tardiness permit. The chromosome was represented by an activity list and a capacity list of
resources. Van Peteghem and Vanhoucke [23] proposed an artificial immune algorithm for
the RACP. Differing from all the algorithms mentioned above, Ranjbar et al. [19] addressed
the RACP without transforming it into SMRCPSPs. The problem was represented via a
priority list and converted into a real schedule using an available schedule generation scheme.
Two meta-heuristics on the basis of path-relinking (PR) and genetic algorithm (GA) were
developed.

In most of the existing work, the RACP is transformed into multiple SMRCPSPs by
decreasing the resource availability so that heuristics for the SMRCPSP can be adopted to
solve the RACP. Since the SMRCPSP is NP-hard it is time consuming to find a feasible
solution under predetermined resources. This usually leads to inefficiencies in the algorithms.
Ranjbar et al. [19] first solved the RACP without transforming it into SMRCPSPs. However,
in their algorithms, precedence unfeasible activity lists may be generated during the search
which makes the algorithm inefficient. Furthermore, a simple resource decision strategy also
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makes it difficult to find better solutions. To overcome this disadvantage, in this paper,
the RACP is solved by dividing it into two sub-problems: the sequencing problem and the
resource decision problem. These two sub-problems are sequentially addressed. A multi-
start iterative search method (MSIS) is proposed. In the MSIS for the sequencing problem, a
feasible neighbourhood and a path-relinking based method are constructed. For the resource
decision problem, two heuristics: backward peak elimination procedure (BPEP) and two
stage resource adjustment procedure (TSRAP) are developed. Experiments are carried out
and compared with the three best existing algorithms (SS [25], PR [19], GA [19]). The
results show that MSIS is superior to the others in both effectiveness and efficiency in a
significant way.

The rest of the paper is organized as follows: Section 2 describes the RACP in detail.
Section 3 presents the solution representation and feasible solution definition. The multi-
start iterative search method is introduced in Section 4. Experimental results are shown in
Section 5 and conclusions and future research are given in Section 6.

2. Problem Description

A project with n activities can be represented by an activity-on-node (AON) network
denoted as G = (V,E). V = {1, 2, ..., n} is the activity set. Activity 1 and n are two dummy
activities that indicate the start and finish time of the project respectively. Edge (i, j) ∈ E
denotes the precedence relation between i and j, that is, j can start only after i is finished.
M = {1, 2, ...,m} is the set of renewable resources of m types needed by the activities of the
project. The unit cost of resources of the k-th type is denoted as ck. Each activity i has a
duration di and a resource requirement vector Ri = (ri

1, r
i

2, ..., r
i

m), where ri

k are the required
units of resources of the k-th type needed by activity i over its duration. Variables sti, fti,
esti, lsti, efti, lfti are the start time, the finish time, the earliest feasible start time, the
latest feasible start time, the earliest feasible finish time and the latest feasible finish time
of activity i. succi and predi are the immediate successor set and predecessor set of activity

i. D is the deadline of the project. Let H =

n∑
i=1

di be the maximum possible duration of the

project, ak(t) be the usage of resources of the k-th type during the time interval (t− 1, t]. The
resource availability during the project duration is represented as a vector A = (A1, A2, ..., Am)

where Ak = max
t∈{1,...,H}

{ak(t)}, and the resource availability cost of a project can be calculated

by C(A) =
∑
k∈M

ckAk.

The RACP can be conceptually modeled as:

Min C(A) =
∑
k∈M

ckAk (1)
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s.t.

lftj∑
t=eftj

xj

t = 1 (2)

lftj∑
t=eftj

txj

t −
lfti∑

t=efti

txi

t ≥ dj, (i, j) ∈ E (3)

lft1∑
t=eft1

tx1

t = 0 (4)

lftn∑
t=eftn

txn

t ≤ D (5)

Ak ≥
∑
j∈V

rj

kx
j

t ≥ 0, k ∈M, t ∈ {1, ...,H} (6)

xj

t ∈ {0, 1}, j ∈ V, t ∈ {eftj, ..., lftj} (7)

Constraint (7) states that the decision variable xj

t is one if activity j is completed in
time slot (t − 1, t] (zero otherwise). Eq.(1) denotes the objective of the project, i.e. the
minimization of resource availability cost. Constraint (2) states that every activity must be
completed whereas (3) makes sure that the activities are scheduled in accordance with the
precedence constraints. Constraint (4) forces the project to start at time zero and constraint
(5) determines the deadline constraint of the project. Constraint (6) states that the resource
availability of the k-th type resource equals to its maximum usage during all time slots.

Take a RACP project with 10 activities as an example. Assume that there are two types
of resources (m = 2), the project deadline is D = 28, and the unit costs of the two resources
are c1 = 2 and c2 = 8 respectively. The project is described by the AON network shown in
Figure 1. The two-tuples (R i, di) on the nodes represent the resource requirement vector (R i)
and duration of activity i (di). For example, ((3, 1), 8) on node 2 represents that the resource
requirement vector of activity 2 is (3, 1) and its duration is 8. H is 56.

Figure 1: An example of the AON network of a project.

Figure 2 represents a schedule of the project shown in Figure 1. Its makespan is 24. The
resource usage variables ak(t) can be easily obtained. For example, the usage of resource 1

and resource 2 in time slot (1, 2] are a1(2) = 13 and a2(2) = 4 respectively. Also, a1(14) = 21

and a2(14) = 16, a1(21) = 11 and a2(21) = 6, a1(25) = 0 and a2(25) = 0, etc. Therefore, the
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resource availability vector is A = (21, 16). The resource availability cost can be calculated
by C(A) = 2× 21 + 8× 16 = 170.
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Figure 2: A schedule of the project given in Figure 1.

3. Solution representation and feasible solution

3.1. Solution representation

There are many ways to represent a RACP solution. Yamashita et al. [25] used a
resource availability list. By searching for the best resource availability within the upper
and lower bounds of the requirments of resource of each type, the problem was transformed
into multiple SMRCPSPs. Shadrokh and Kianfar [21] and Van Peteghem and Vanhoucke
[23] adopted the combination of a capacity list and an activity list to represent a solution.
They also transformed the problem into multiple SMRCPSPs. A priority list was employed
to represent a solution by Ranjbar et al. [19]. They explored permutations of the activities
and developed a schedule generation scheme.

To represent a solution π in this paper, the combination of an activity list and a resource
availability list by Shadrokh and Kianfar [21] is adopted:

π = (T,R) (8)

where T = (T1,T2, ...,Tn) is the activity list and R = (R1,R2, ...,Rm) is the resource availability
list. Ti ∈ V (1 ≤ i ≤ n) denotes the index of the i-th activity in T. In the activity list the
activities at the front have higher priorities than the activities behind.

3.2. Feasible solution generation

The standard serial scheduling scheme (SGS) dated to Kelley [11] is adopted to generate a
solution for RACP problem. For solution π = (T,R), under the resource availability constraint
of R, a schedule is generated by sequentially choosing activities in the order of T and ensuring
that each activity can start as early as possible. In fact, a schedule can be regarded as a
start time list of all the activities. When an new activity is added into the current partial
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schedule or the start time of an activity in the current schedule is changed, the resource
usage variable ak(t) is adapted accordingly.

If activity Ti is added to the current schedule at the start time stTi , the current ak(t)

will be changed by ak(t) ← ak(t) + r
Ti
k , t ∈ [stTi , stTi + dTi ], k ∈ M . It means the resource usage

increases by R Ti during the time slot [stTi , stTi + dTi ]. If activity Ti which starts at time stTi is
removed from the current schedule, ak(t) will be changed by ak(t)← ak(t)−r Ti

k , t ∈ [stTi , stTi +dTi ],
k ∈ M . It means the resource usage decreases by R Ti during the time slot [stTi , stTi + dTi ].
Additionally, if activity Ti which starts at time stTi is postponed to start at time st′Ti , ak(t)

will be changed by

ak(t)←

ak(t)− r Ti
k t ∈ [stTi , stTi + dTi ], k ∈ G

ak(t) + r
Ti
k t ∈ [st′Ti , st

′
Ti

+ dTi ], k ∈ G

It means the resource usage decreases during the time slot [stTi , stTi +dTi ] and increases during
the time slot [st′Ti , st

′
Ti

+ d Ti ] by R Ti . After all the activities of π = (T,R) have been scheduled,
the resource usage variables for m types in all the time slots of the project are obtained.
The pseudocode for SGS is described in Algorithm 1.

For a better understanding, the serial scheduling scheme of a solution π = (T,R) of the
project in Figure 1 is numerically illustrated as follows: Suppose the activity list of π is
T = (1, 2, 7, 9, 3, 5, 8, 4, 6, 10) and the resource availability list is R = (20, 19). The earliest feasible
start time of each activity Ti is calculated as estTi . Initialize ak(t) ← 0 for all k ∈ M and
t ∈ [1, ...,H]. When i = 2, T2 = 2, the earliest feasible start time of activity 2 in time slot [0, 56]

under constraint R is w ← 0. So st2 ← 0 and a1(t) = 3, a2(t) = 1, t ∈ [1, 8]. Activity 7 is the
successor of activity 2. Since est7 = 0 < 8, then est7 ← 8. When i = 3, T3 = 7, the earliest
feasible start time of activity 7 in time slot [8, 56] under constraint R is w ← 8. So st7 ← 8

and a1(t) = 7, a2(t) = 6, t ∈ [9, 14]. Activity 9 and 8 are two successors of activity 7. Since
est9 = 0 < 14, est8 = 0 < 14, then est9 ← 14, est8 ← 14. The rest i (= 4, 5, . . . , 10) can be done
in the same manner. As a result, the earliest feasible start time of each activity is changed
into est1 = est2 = est3 = 0, est4 = est5 = est7 = 8, est6 = 25, est8 = 16, est9 = 14, est10 = 35. The final
resource usage variables are obtained and showed in Table 1. The schedule derived from π

is shown in Figure 3(a). The Makespan of this schedule is 35. It is worth noticing that when
i = 8, T8 = 4, the earliest feasible start time of activity 4 in time slot [8, 56] under constraint
R is neither 8 nor 16, but 19.

A special case of Algorithm 1 is when deciding the start time of an activity under no
resource constraint and thus a fast schedule is generated. In the fast schedule, all activities
are started as early as possible leading to maximum parallelism. Therefore, the resource
availability vector of a fast schedule is the upper bound of resource availabilities to complete
the project which can be defined as Ā. For a RACP project, since different activity lists
result in the same fast schedule, Ā can be calculated in advance.

If the makespan of the newly generated schedule is not greater than the deadline, it
is called a feasible schedule. If a solution can produce a feasible schedule, it is called a
feasible solution. The feasibility of a solution can be attempted by the forward-backward-
procedure (FBP) [6]. The FBP algorithm is also adjusted with the necessary adaptations
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Table 1: The final value of resource usage variable ak(t).

t ∈ k = 1 k = 2

[1, 8] 13 4
[9, 14] 14 7
[15, 16] 13 3
[17, 19] 7 11
[20, 21] 13 12
[22, 25] 7 9
[26, 35] 5 3
[36, 56] 0 0

Algorithm 1: Serial Generation Scheme (SGS) (π)

1 begin
2 Initialize the resource usage variable ak(t)← 0 for all k ∈ G and t ∈ [1, ...,H];
3 for each activity Ti ∈ T do
4 estTi ← 0;

5 for i = 1 to n do
6 Find the earliest feasible start time w of activity Ti under the constraint R in

[estTi , H];
7 Add Ti to the current schedule at the start time w ;
8 for k = 1 to m do
9 for t = w to w + dTi do

10 ak(t)← ak(t) + r
Ti
k ;

11 stTi ← w;
12 for each activity j ∈ succTi do
13 if estj < (stTi + dTi) then
14 estj ← (stTi + dTi);

to work with the proposed solution representation. In FBP, after constructing a schedule
from π by the SGS (Algorithm 1), a backward adjustment of all activities begins. Under
the resource availability constraint of R, the schedule is adjusted by choosing activities in
the reverse order of T and postponing them until as late as possible. ak(t) is updated along
with the adjustment process. After all the activities have been adjusted the makespan is
recalculated. If the makespan is not greater than D the solution is feasible, otherwise the
solution is unfeasible. The pseudocode of FBP is described in Algorithm 2.

The backward adjustment process conducted on the schedule in Figure 3(a) can be
illustrated as follows: For each activity Ti ∈ T, initialize lstTi ← 35. When i = 9, T9 = 6,
the latest feasible start time of activity 6 in time slot [25, 35] under constraint R = (20, 19) is
25. So st6 and ak(t) keep their original values. Activity 4 is the predecessor of activity 6.
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Algorithm 2: Forward Backward Procedure (FBP) (π)

1 begin
2 Call SGS(π) to generate a schedule;
3 flag ← false;
4 for each activity Ti ∈ T do
5 lstTi ← stTn ;

6 for i = n to 1 do
7 Find the latest feasible start time w of activity Ti under the constraint R in

[stTi , lstTi ];
8 Start time of activity Ti is postponed from stTi to w ;
9 for k = 1 to m do

10 for t = stTi to stTi + dTi do
11 ak(t)← ak(t)− r Ti

k ;

12 for t = w to w + dTi do
13 ak(t)← ak(t) + r

Ti
k ;

14 stTi ← w;
15 for each activity j ∈ predTi do
16 if lstj > (stTi − dj) then
17 lstj ← (stTi − dj) ;

18 if ((stTn + dTn)− stT1) ≤ D then
19 flag ← true;

20 return flag.

Since lst4 = 35 > (25 − 6), then lst4 ← 19. When i = 8, T8 = 4, the latest feasible start time
of activity 4 in time slot [19, 35] is 19. So st4 and ak(t) keeps the original value. Activity
3 is the predecessor of activity 4. Since lst3 = 35 > (19 − 8), then lst3 ← 11. When i = 7,
T7 = 8, the latest feasible start time of activity 8 in time slot [16, 35] is 32. So st8 ← 32. Then
a1(t) ← (7 − 1) = 6, a2(t) ← (11 − 8) = 3, t ∈ [17, 19], and a1(t) ← (5 + 1) = 6, a2(t) ← (3 + 8) = 11,
t ∈ [33, 35]. The rest i (= 6, 5, . . . , 1) can be done in the same manner. The final resource usage
variables are obtained and shown in Table 2. The adjusted schedule is shown in Figure 3(b).
Since ((stTn + dTn) − stT1) = (35 − 10) = 25 < 28, then solution π =

(
(1, 2, 7, 9, 3, 5, 8, 4, 6, 10), (20, 19)

)
is feasible.

4. Multi-start iterative search algorithm

In this paper, a multi-start iterative search algorithm (MSIS) is developed to solve the
RACP. The procedure consists of two processes: generation of the sequence of activities and
the determination of the resources requirements. All the activity lists produced in each step
of the algorithm are guaranteed to be precedence feasible. The main idea of MSIS is as
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(a) A schedule generated by conducting serial scheduling scheme.
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(b) The adjusted schedule after conducting backward process.

Figure 3: An example of FBP process.

follows: First, Npop initial start points are constructed by the initial start points generation
strategy (ISPG) in which the priority rule is adopted. An elite pool, which is initially empty,
is built to reserve Nelite best found solutions. The following processes are repeated until the
termination criterion is satisfied. The start points are assigned as the current solutions.
All the current solutions are improved by the local search method (LS). The elite pool is
updated by adding the current solutions by the given acceptance rules. The best solution
of the elite pool is reserved as the global best solution. If any of the current solutions can
be added into the elite pool, path-relinking (PR) is conducted on all pairs of solutions in
the elite pool for further exploitation. The good solutions found among all the paths are
reserved and enhanced by the local search method. The elite pool is updated by adding the
good solutions by the given acceptance rules. The global best solution is updated by the new
best solution of the elite pool. If the elite pool or the global best solution is not updated for
a given number of generations, all the current solutions are refreshed by the restart strategy.
If it is not the case, the new start point generation strategy (NSPG) is pair-wisely applied
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Table 2: The final value of resource usage variable ak(t) after FBP process.

t ∈ k = 1 k = 2

[1, 10] 0 0
[11, 11] 3 1
[12, 18] 13 4
[19, 19] 17 9
[20, 24] 14 15
[25, 25] 14 10
[26, 28] 12 4
[29, 32] 18 7
[33, 35] 12 14

to the current solutions to produce Npop new start points for the next iteration. Finally, the
global best solution is returned. The framework of the proposed algorithm is depicted in
Algorithm 3 and further details of the proposed operators are introduced in the following
subsections.

Algorithm 3: Multi-Start Iterative Search algorithm (MSIS)

1 begin
2 Initialize Npop feasible start points by ISPG and an empty elite pool ;
3 repeat
4 Assign the start points as the current solutions;
5 Improve the current solutions by LS;
6 Update the elite pool by adding the current solutions by the acceptance rules;
7 Reserve the best solution of the elite pool as the global best solution;
8 if the elite pool is updated then
9 Apply PR to all solutions of the elite pool pair-wisely to generate new

good solutions;
10 Improve the new good solutions by LS;
11 Update the elite pool by adding the new good solutions by the acceptance

rules;
12 Update the global best solution by the new best solution in the elite pool;

13 if the elite pool or the global best solution is not updated for a given number of
generations then

14 Generate Npop new start points by the restart strategy;
15 else
16 Apply NSPG to the current solutions pair-wisely to produce Npop new start

points;

17 until (Termination criterion is satisfied);
18 return the global best solution.
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As mentioned before, the sequencing sub-problem of the RACP is actually a permutation
optimization problem with a precedence constraint, whose solution space is composed of
precedence feasible activity lists. For the general permutation optimization problem, the
solution space can be regarded as a continuous area and the local optima spread in this area.
However, for the permutation optimization problem with precedence constraints, the solution
space is not continuous but consists of many isolated islands made of feasible solutions [10].
The remaining areas among these islands are non-feasible solutions. Local optima lie on the
islands. Therefore, designing some effective search strategies to explore and exploit these
islands is important for solving the considered problem. In this paper, two different search
approaches LS and PR are proposed for exploitation enhancement and a new start points
generation method, NSPG, is presented for exploration enhancement. Taking advantage of
these strategies, the solution space can be sufficiently searched.

Figure 4: Search space by new start points
generation and local search.

A B

C

D

F

S1

S2LS

F’

E F

HG

G’

E’

LS

H’

LS

LS

LS LS

Figure 5: Extended search space by path-
relinking.

Figure 4 illustrates the solution space by NSPG and LS processes. Points A and B are
two local optima found in the last iteration, points C and D are new start points generated
by conducting NSPG on points A and B. Taking C and D as the centers, local optima C ′ and
D′ are found respectively. The coverage of the search is S1. Nevertheless, the search space
can be extended by path-relinking as shown in Figure 5. Path-relinking is applied between
the new local optima C ′ and D′ and the previous ones A and B. During the path-relinking
procedure, all candidate solutions on the path C ′ → A, C ′ → B, D′ → A, D′ → B are accessed
and the new good solutions E, F , G, H are obtained to conduct the local search. Then,
the new local optima E′, F ′, G′, H ′ are produced. As a result, the coverage of the search
is extended to S2. Start points for the next iteration are generated by conducting NSPG
on these new local optima. Some points lie within S2 and some lie outside S2. The search
starting from the former can improve exploitation and the latter can enhance exploration.

4.1. Sequencing problem

The sequencing problem is to determine the scheduling order of activities. After a
scheduling order of activities has been determined, the solution of the RACP can be easily
obtained by applying a heuristic for the resource decision problem (in Sect.4.2).
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4.1.1. ISPG: Initial start points generation strategy

Since the RCPSP aims at minimizing the makespan of a project subject to precedence
relations among activities and limited renewable resource availabilities, the minimization of
makespan and resource usage of the project should be considered in the design of activity
priorities. Likewise, these priorities can also be used to generate initial activity lists for the
sequencing problem of the RACP. Demeulemeester and Herroelen [3] classified the priority
rules for the RCPSP into 5 categories and analyzed the most commonly used rules in each
category. Yang [26] compared 13 priority rules. Computational results showed that rules
GCRR (Greatest Cumulative Resource Requirement), RPW (Rank Positional Weight) and
MAS (Minimum Activity Slack) were superior to the others in most cases. Chtourou and
Haouari [1] tested 16 priority rules and concluded that rule RPW outperformed the others.
In this paper, three priority rules GCRR, RPW and LFT (Latest Finish Time of activity),
which are commonly used for RCPSP, are adopted to generate the initial activity lists T0 of
the RACP. Because the proposed algorithm is based on multi-start points, the priority rules
are modified by combining a randomly generated number. The new priority of activity j is
depicted as:

PI ′(j) = PI(j) + rand (9)

where PI ∈ {GCRR,RPW,LFT} is the priority rule for the RCPSP, rand is a random number
uniformly distributed in the range [0, P Imax], and PImax is the maximum possible value of
priority PI. The final three priority rules are denoted as PI ′ ∈ {GCRRR,RPWR,LFTR}.
Tests are made on these three rules and a fully random priority (RAN) and the best one is
chosen to generate T0, see Sec.5.3 for more details.

Based on the initial activity lists T0, a fast schedule can be constructed in advance. Then,
a feasible initial solution π = (T0,R0) is obtained, where R0 is the upper bound of resource
availabilities, i.e. Ā. After that, the Backward Path Elimination Procedure (BPEP) (in
Sec.4.2) is conducted on π to adjust the resource availability. The resulting solution is
regarded as a feasible start point for the algorithm. The pseoducode of the initial start
points generation process is depicted in Algorithm 4, where POP is the set of initial start
points of size Npop.

4.1.2. Feasible neighbourhood and local search

Let M(i, j) (1 < i < n, 1 < j < n, i 6= j, i 6= j − 1) be a move (also called shift [9]) operation
which indicates the movement of the activity at position i of an activity list to position j.
After applying M(i, j) to a feasible solution π = (T,R), a new solution π′ = (T′,R) is generated.
In order to directly generate a precedence feasible activity list T′, the move operation M(i, j)

is redefined as follows: For the activity Ti in the i-th position of the activity list T, the
largest position p of its immediate predecessors and the smallest position q of its immediate
successors are calculated. A random integer j ∈ (p, q) (j 6= i), is generated. Then, activity Ti

is moved to position j to generate a new activity list. Obviously, the new activity list is
precedence feasible.

On each start point π, a VNS [16] based local search (LS) is conducted to search for
the local optimum. For a feasible solution π = (T,R), the neighbourhood Nr(π) is defined as
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Algorithm 4: Initial Start Points Generation, ISPG (POP )

1 begin
2 while (|POP | ≤ Npop) do
3 Calculate the priority of each activity according to the priority rule PI ′ ;
4 while activity set V is not empty do
5 The activity with no predecessor in AON network and maximal priority is

removed from V and added into T0 ;

6 R0 ← Ā, π ← (T0,R0);
7 Call BPEP(π) to allocate resources;
8 if π /∈ POP then
9 POP ← POP ∪ {π};

10 return POP .

a solution set where each solution is obtained by applying M(i, j) to π r times and where
r = 1, 2, . . . ,K, K is the maximum neighbourhood number and i is a random integer in
(1, n). For example, suppose the activity list of a solution π of the project in Figure 1 is
T = (1, 2, 7, 9, 3, 5, 8, 4, 6, 10). If r = 2, M(i, j) is applied to π twice to create a neighbour solution.
In the first round, assume i = 7 ∈ (1, 10), i.e. activity 8 is selected. For activity 8, two
immediate predecessors are activity 5 in position 6 and activity 7 in position 3, thus p = 6.
The immediate successor is activity 10 in position 10, thus q = 10. Let j = 9 ∈ (6, 10), then
activity 8 is moved to position 9 to generate the new activity list T = (1, 2, 7, 9, 3, 5, 4, 6, 8, 10).
In the second round, assume i = 6 ∈ (1, 10), i.e. activity 5 is selected. For activity 5, the
immediate predecessor is activity 3 in position 5 and the immediate successor is activity 8 in
position 9, thus p = 5, q = 9. Let j = 7 ∈ (5, 9), then activity 5 is moved to position 7. Finally,
the activity list of the neighbour solution is T = (1, 2, 9, 3, 5, 4, 7, 6, 8, 10).

The local search process can be described as follows: Initially set r ← 1. Move operation
M(i, j) is applied to the current solution π to create its neighbourhood Nr(π). Solution π′ is
randomly chosen from Nr(π) and a feasibility verification is conducted by FBP. If π′ is feasible,
a two stage resource adjustment procedure (TSRAP, in Sec.4.2) is adopted to adjust the
resource usage of π′. If π′ is better than π, then π ← π′ and set r ← 1. The processes above is
repeated until there is no feasible solution from Nr(π) or no improvement on π for a number
of λ (the maximum number of attempts) iterations, then r ← r + 1 and the next iteration
starts. All steps above are repeated until r = K. The pseudocode of local search is described
in Algorithm 5.

4.1.3. PR: Path-relinking

Path-relinking was originally proposed by Glover et al. [8] as an approach to integrate
intensification and diversification strategies in tabu search. It explores the trajectories link-
ing two high quality solutions, starting from an initial solution (πs) and moving towards
a guiding solution (πg). This is accomplished by selecting moves that introduce attributes
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Algorithm 5: Local Search, LS (π, λ,K)

1 begin
2 r ← 0;
3 while r ≤ K do
4 r ← r + 1;
5 for i = 1 to λ do
6 π′ ← randomly choose a solution from Nr(π);
7 feasible← FBP(π′);
8 if feasible then
9 Call TSRAP(π′) to allocate resources;

10 if C(R′) < C(R) then
11 π ← π′, r ← 0;
12 Goto Step 4;

13 return π.

contained in the guiding solution. In this paper, path-relinking is used to search for promis-
ing solutions on the paths between the current local optima and some of the previous local
optima. This strategy is used to find high quality solutions that have been missed in the
previous searches efficiently and to help exploit the solution space. In order to reduce the
time consumption, path-relinking is applied only between all pairs of solutions in the elite
pool. The pseudocode of path-relinking is presented in Algorithm 6.

Algorithm 6: Path Relinking, PR (πs, πg)

1 begin
2 min← +∞, π∗ ← ∅;
3 for i = 1 to n do
4 if Ts

i 6= Tg

i then
5 Find the position p of activity Tg

i in Ts, remove activity Ts

p from Ts and
insert into position i;

6 Rs ← Ā, π ← (Ts,Rs);
7 Call BPEP(π) to allocate resources;
8 if C(π) < min then
9 min← C(π), π∗ ← π;

10 return π∗.

Theorem 1 For a pair of precedence feasible activity lists, the path-relinking described
in Algorithm 6 creates precedence feasible activity lists.

Proof. Let Ts = (as

1, a
s

2, ..., a
s

n) and Tg = (ag

1, a
g

2, ..., a
g

n) be a pair of precedence feasible activity
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lists. Apply the path-relinking to them from left to right. Suppose that Ts

p 6= Tg

p, 1 ≤ p ≤ n.
There exists a position q, such that Ts

q = Tg

p (1 ≤ q ≤ n). Obviously, Ts

i = Tg

i , 1 ≤ i < p. Activities
Ts

j (p ≤ j < q) are behind activity Ts

q in Tg and ahead of Ts

q in Ts, so no precedence relations
exist between them. When activity Ts

q is moved to position p, neither the relative precedence
relations between activities Ts

k (q < k ≤ n) and activity Ts

q nor the relative precedence relations
between activities Ts

k (q < k ≤ n) and activity Ts

j are changed. Therefore, the new activity
list obtained is precedence feasible.

4.1.4. NSPG: New start points generation strategy

The two-point crossover operator by Shadrokh and Kianfar [21], which has been proven
to be able to create precedence feasible activity lists for a pair of precedence feasible parents
is used to generate new start points. In the two-point crossover process, two random cutting
sites cs1 and cs2 are drawn with 1 ≤ cs1 < cs2 ≤ n and with n the length of the parent sequences.
The sequence of child1 is then generated by copying the first cs1 and the last n−cs2 positions
from the parent 2. The remaining positions are copied from the parent 1. The sequence of
the child 2 is constructed in a similar way, copying the first and third part from the parent1
and obtaining the middle part from the parent 2. The crossover procedure is illustrated in
Figure 6. The generation process of new start points is shown in Algorithm 7. Each pair
of local optima πf and πm found in the current iteration are combined to generate a pair of
new start points πs and πd. If the number of different new start points generated is greater
than Npop, only the best Npop start points will be reserved. Otherwise, the remaining start
points are supplemented by the ISPG method described in Algorithm 4.

1 2 3 4 5 6 7 8 

1 2 5 4 3 6 7 8 

5 8 1 4 2 3 7 6 

Parent 1 

Child 1 

Parent 2 

cs1 cs2 

Figure 6: An illustration of two-point crossover.

Algorithm 7: New Start Points Generation, NSPG (πf , πm)

1 begin
2 (Ts,Td)← Conduct two-point crossover between Tf and Tm;
3 X ← (s, d);
4 for h = 1 to 2 do
5 RXh ← Ā, πXh ← (TXh ,RXh);
6 Call BPEP(πXh) to allocate resources;

7 return (πs,πd).
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4.1.5. Acceptance rules

Each local optimal solution obtained during the search process is considered as a candi-
date to be inserted into the elite pool. The usual rules for inclusion of a new solution into
the elite set are also adopted in the proposed algorithm. The pool is initially empty with
the maximum size Nelite. If the pool is not yet full, a candidate is accepted if it differs from
all other solutions in the pool. Otherwise, the worst solution in the pool is replaced by a
candidate if the former is worse than the latter. Two solutions are called “different” if the
permutation of activities in their activity lists are not the same.

4.1.6. Restart strategy

After a number of iterations, the algorithm may be trapped in a local optima solution. In
order to avoid repetitive explorations of the same paths in the solution space and to explore
new solutions, it is necessary to enhance the diversification by refreshing the elite pool with
new solutions. Therefore, a restart strategy is introduced into the proposed algorithm. If
the elite pool has not been updated for δ continuous iterations or the best solution found
remains unchanged for 2 ∗ δ continuous iterations, the current solutions will be refreshed by
regenerating Npop new start points by ISPG.

4.2. Resource decision problem

After determining the activity list schedule, the resource availabilities have to be calcu-
lated. A backward peak elimination procedure (BPEP) and a two stage resource adjustment
procedure (TSRAP) are proposed for the resource decision problem.

Let A = (A
1
, A

2
, ..., A

m
) be the lower bound of resource availabilities to complete the project.

During the adjustment of the resource availability, the availability of resource of the k-th
type cannot be less than Ak. A simple definition of Ak (k = 1, . . . ,m) is given as [7]:

Ak = max

{
max
i∈V
{ri

k} ,

⌈ ∑
i∈V di × ri

k

min{D,
∑

i∈V,ri
k
>0
di}

⌉}
(10)

4.2.1. BPEP: Backward peak elimination procedure

The serial scheduling scheme described in Algorithm 1 may overuse a resource which
means the resource usage concentrates on a small period of the project cycle. A resource
usage peak which determines the resource availability cost of the project will arise in this
period. BPEP is constructed to distribute resource usage in the project cycle to reduce the
resource usage peak by moving activities backward according to a defined strategy.

Suppose that a schedule of solution π = (T,R) has been generated already by Algorithm 1.
Activities are moved backward in the reversed order of T subject to the reduction of resource
availabilities R. For each time point between sti and lsti of activity i, the decrement of
resource availability cost caused by moving activity i to that time point is calculated. When
an activity is moved, the resource usage variable ak(t) is updated and the corresponding
resource availability vector A is recalculated. The decrement of resource availability cost is
calculated by:

Cdre =

m∑
k=1

ck × (Ak − Rk) (11)
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Activity i will be moved to the latest time point with maximum decrement of resource
availability cost. The BPEP process is described in Algorithm 8.

Figure 7 shows a schedule created by conducting BPEP on the schedule shown in Figure 2.
The new resource availability vector A = (18, 15) and the resource availability cost C(A) = 156.
The new schedule has a cost reduction of 14 from the original cost of 170.
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Figure 7: A new schedule generated by conducting BPEP on the schedule in Figure 2.

4.2.2. TSRAP: Two stage resource adjustment procedure

In most existing work, the resource availability cost is reduced by decreasing the avail-
ability of each resource progressively. However, the fact that the availability increment of
some resources can decrease the availability of other resources is usually ignored. This situ-
ation may further reduce the resource availability cost of the project. In this paper, both of
these two situations are considered and a two stage resource adjustment procedure (TSRAP)
is constructed.

TSRAP consists of two stages: 1) reduction of resource availability cost (RRAC), that is,
the availability of resource of each type declines; 2) fluctuant decline of resource availability
cost (FDRAC), which is accomplished by decreasing the availability of expensive resources
and increasing the availability of cheap resources.

In the RRAC stage, all resources are sorted in descending order of their costs. For a
solution π = (T,R), the availability of resources of the k-th type is decreased by one unit
and the FBP method is used to verify the feasibility of the solution. If it is feasible, the
procedure is repeated. Otherwise, the availability of resources of the k-th type is increased
by one unit and the resource of the (k+ 1)-th type is checked. Finally, after all the resources
have been considered, the BPEP is applied to improve the solution.

The FDRAC stage is processed after RRAC. For a solution π = (T,R), the initial resource
availability R′ is obtained by setting the availability of resources of the k-th type to be Rk

and the others to be the lower bound values (Eq. 10). Activities in T are sequentially
scheduled under the restriction that R′k ≤ Rk. For each time point between estj and the latest
start time by the forward and backward pass method [3] of activity j, which are calculated
without considering the resource availabilities, the increment of resource availability cost
caused by scheduling activity j is calculated. When an activity is scheduled, the resource
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usage variable ak(t) is updated and the new resource availability vector A is obtained. The
increment of resource availability cost is computed as

Cincre =

m∑
k=1

ck ×max(0, Ak − R′k) (12)

If scheduling activity j at each time point causes an overuse of resources, i.e., Ak > Rk or
C(A) > C(R), the algorithm stops. Otherwise, activity j is scheduled at the earliest time point
with the least cost increment. If the resource availability vector A changes, R′ is updated.
The activities are moved as early as possible between their est(s) and current start times.
Meanwhile the est(s) of their immediate successors are also updated. For solution π with
restriction on the availability of resources of the k-th type, the FDRAC process can be
described in Algorithm 9.

Figure 8 displays another schedule for the project of Figure 1. The resource availability
vector is A = (14, 14) and the resource availability cost is C(A) = 140. After FDRAC, the
schedule is changed as shown in Figure 9. The new resource availability vector is A = (19, 11)

and the new resource availability cost is C(A) = 126. Hence, the new schedule has a cost
reduction of 14. The resource availability cost of the project in Figure 8 cannot be reduced
by RRAC. However it can be reduced by FDRAC through decreasing the availability of
expensive resources and increasing the availability of cheaper resources.
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Figure 8: Another schedule of the project in Figure 1.

In TSRAP, these two stages are repeated until neither of them can reduce the resource
availability cost anymore and then they stop. The pseudocode of TSRAP is described in
Algorithm 10.

4.2.3. Overview of the entire algorithm

An overview of the entire heuristic (MSIS) is provided as follows. The heuristic consists
of two processes (problems): generation of the sequencing of activities and the determination
of resource requirements. The sub-procedures initial start point generation (ISPG), Local
Search (LS), Path-relinking (PR), restart strategy and new start point generation (NSPG)
are designed for solving the sequencing problem. By these sub-procedures, sequences of
activities are generated. The sub-procedures Backward peak elimination procedure (BPEP)
and two stage resource adjustment procedure (TSRAP) are concentrated on the resourcing
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Figure 9: A new schedule generated by conducting FDRAC on the schedule in Figure 8.

problem. In both BPEP and TSRAP, the evaluated solutions are constructed by assigning
values to the resource availability variables and executing the improvement heuristic in order
to obtain the makespan. The BPEP is embedded in ISPG, PR and NSPG to improve the
solutions and diversify the population to a certain extent. The TSRAP is embedded only in
the local search procedure to enhance the intensification of the algorithm. In addition, the
serial generation scheme (SGS) is used in ISPG, the forward and backward procedure (FBP)
and BPEP to forwardly generate a schedule, and FBP is adopted to verify the feasibility of
a solution.

5. Computational results

To test the performance of the proposed algorithm, it is compared with the best-existing
algorithms for the considered problem: the scatter search by Yamashita et al. [25] and
the PR and GA by Ranjbar et al. [19]. Additionally, different operators and levels of the
parameters of the proposed algorithm are calibrated by the DOE (Design of Experiments)
approach.

5.1. Instances generation

There are no existing benchmarks for the RACP. The well-known PSPLib instances for
the RCPSP have been adapted to this problem in most of the existing work [25],[21],[19].
In this paper, experiments are also carried out on the well-known PSPLib instances [13]
with n = 30, 60, 90, 120 activities and m = 4 types of resources. When constructing a project,
two important factors are considered: the network complexity NC and the resource factor
RF . NC ∈ {1.5, 1.8, 2.1} is the average number of immediate successors of an activity. RF ∈
{0.25, 0.5, 0.75, 1} is the density of resources of different types needed by an activity. For each
combination of NC and RF , 20 instances are generated. 10 of the instances are used for
parameter calibration and start points generation analysis and the rest are for performance
comparison. According to Drexl and Kimms [7], the deadline is defined as D = θ×estn, where
θ is a deadline factor set as 1.2 and estn is the earliest start time of the last dummy activity
computing by the forward and backward pass method [3]. The costs of the resources are
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randomly drawn from a uniform distribution U [1, 10]. Therefore, in total 4 × 3 × 4 × 20 = 960

PSPLib instances are created.
Demeulemeester et al. [5] designed a random network generator (RanGen) to generate

AON networks and accompanying data for different classes of project scheduling problems.
Experiments prove that RanGen avoids the shortcoming of other existing network genera-
tors. Van Peteghem and Vanhoucke [23] have used RanGen to generate instances for the
RACP. In this paper, RanGen is also adopted to generate instances for performance compari-
son. Instances with n = 30 activities and m = 4, 6, 8 types resources are generated and parame-
ter OS ∈ {0.25, 0.5, 0.75} indicates the network complexity. For each combination of OS and RF ,
five instances are used. The deadline factor θ takes the values 1.1,1.2,1.3,1.4,1.5. The costs
of the resources are also randomly drawn from U [1, 10]. Hence, there are 3× 4× 3× 5× 5 = 900

RanGen instances generated in total.

5.2. Termination criterion and performance measure

To fairly compare the performance of the proposed algorithm to known techniques from
the literature, all the compared methods are re-implemented and share most functions.
All algorithms are coded in Java and run on a PC with 3.4 GHZ Intel Core i7 processor
and 1G RAM. For a fair comparison, the number of schedules generated is adopted as the
termination criterion [12] as it is commonly used in the project scheduling literature. In our
experiments, the termination criterion is set as 1000, 5000 and 10000 generated schedules.
For each instance, every algorithm is independently run for 5 replications. The average value
of these five replication is as the resource availability cost obtained by the algorithm. RPD
(relative percentage deviation) is adopted to evaluate the performance which is defined as

RPD =
f(H)− f∗

f∗
× 100 (13)

where f(H) represents the resource availability cost obtained by the corresponding algorithm
H and f∗ is the best resource availability cost obtained by all the compared algorithms in
this paper.

5.3. Calibration of the algorithms

For our experiments, a number of variants of the proposed algorithm (MSIS) are com-
posed with different combinations of the operators and parameters of previous sections. The
first variant does not include the path-relinking phase, local search phase or restart phase
and is denoted as MSIS 0; the second variant uses the restart strategy and is denoted as
MSIS 1; the third variant uses the local search and is denoted as MSIS 2. The remaining
variants are represented in Table 3, in which “1” stands for include and “0” stands for
exclude:

MSIS and its variants are calibrated taking into account the different choices for the op-
erators and values for the parameters. Each algorithm is calibrated separately and we make
extensive use of the DOE approach. A full factorial design is employed on five parameters
as follows.
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• Initial start points generation strategy (ISPG): four variants (GCRRR, RPWR, LFTR,
RAN).

• Number of start points generated (Npop): five levels (6, 7, 8, 9, 10).

• Size of the elite pool (Nelite): five levels (3, 4, 5, 6, 7).

• Maximum number of neighbourhood (K): seven levels (8, 14, 20, 26, 32, 38, 44).

• Maximum attempts to find a better solution in the neighbourhood of a solution (λ):
four levels (1, 2, 3, 4)

For the MSIS 0 and MSIS 1, there are two factors for calibration (ISPG and Npop), thus
a total of 4× 5 = 20 different combinations are tested. For the MSIS 2 and MSIS 3, there are
four factors for calibration (ISPG, Npop, K and λ), so 4× 5× 7× 4 = 560 different combinations
are tested. For the MSIS 4 and MSIS 5 calibration, there are three factors (ISPG, Npop,
Nelite), so 4 × 5 × 5 = 100 combinations are tested. In the last calibration for the MSIS 6
and MSIS, all factors are included so there are a total of 4 × 5 × 5 × 7 × 4 = 2800 different
combinations.

The experiment is executed under PSPLib instances with 5000 generated schedules as the
termination criterion. The results are analyzed by means of a multi-factor analysis of vari-
ance (ANOVA). Three main hypotheses of ANOVA are checked: normality, homoscedasticity
and independence of the residuals [18]. Residuals from the results satisfy all three hypothe-
ses. Table 4 shows a summary with the different parameter values for the algorithms MSIS
and its variants after the calibration experiments (details about the statistical analysis are
not shown due to space restrictions).

In addition, δ is the only parameter of the restart strategy which determines the maximum
continuous iterations without updating the elite pool. It exerts an indirect impact on the
MSIS algorithm. The parameter calibration would be very time-consuming if we tested all
combinations of δ with all the other parameters. Instead, we carry out a simple one factor
at a time analysis to calibrate δ. The other parameters are fixed to the values determined
previously. The means plot is shown in Figure 10. Figure 10 shows that different levels
of δ are not significantly different. This suggests that the MSIS and its variants are rather
robust with respect to δ. Therefore, we set δ as 5 in the following experiments.

5.4. Performance comparison on PSPLib instances

To analyze the performance of the algorithms, a considerable amount of experiments
have been carried out. The statistical significance of the observed differences in solution
quality and CPU-time are validated by the ANOVA technique. First of all, a single-factor
ANOVA is carried out. This analysis has a single controlled factor which is the type of
algorithm with 11 levels (the 8 tested MSIS variants and 3 competing methods from the
literature). The response variables are given by the RPD (the aspect of effectiveness) and
elapsed CPU-time (the aspect of efficiency) of every instance. The means plots along with
Tukey confidence intervals (at the 95% confidence level) are given in Figure 11 and Figure
12 for both response variables respectively. As can be seen, under the same termination
criterion (the number of generated solutions), MSIS and all its variants (MSIS 0 ∼ MSIS 6)
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Figure 10: Means plot of RPD 95% confidence level Tukey HSD intervals for various settings of the parameter
δ in MSIS on PSPLib with 5000 generated solutions as the termination criterion.

perform better statistically than GA, PR and SS not only in terms of effectiveness, but also
efficiency. The differences are statistically significant. SS is statistically better than GA and
PR. GA and PR are statistically equal. However, it can be seen from Figure 11 that there
are many overlapping confidence intervals among the MSIS and its variants. This may be
due to the fact that the differences between MSIS and its variants and the other algorithms
are too large to make the small difference among MSIS and its variants hard to observed.
Therefore, for a better comparison, a more in-depth analysis on MSIS and its variants is
provided later.

A multi-factor ANOVA is performed to analyze the interaction between the algorithm and
other controlled factors. Figure 13 shows the means plot of the interaction between the type
of algorithm and n factors on effectiveness. In this plot it can be seen that for all algorithms,
increasing the value of n results in worse performance. The differences are significant for
GA and PR in all cases but small for SS when n = 30, 60, 90. It turns out to be significant for
SS when n = 120. However in all cases, the differences are very small for MSIS 0, MSIS 1,
MSIS 4 and MSIS 5 and not even statistically significant for MSIS 2, MSIS 3, MSIS 6 and
MSIS. It can also be observed that MSIS and its variants are statistically better than GA
and PR when n = 60, 90, 120, and statistically better than SS when n = 120. Furthermore,
SS is statistically better than GA and PR when n = 60, 90, 120. GA and PR are statistically
equal.

Figure 14 shows the means plot of interaction between the type of algorithm and the
termination criterion. As can be seen, the increase in the number of generated solution
results in better performance only for SS but has little effect on the other algorithms. This
means all algorithms demonstrate a stable performance in relation to effectiveness except
SS. Compared to GA and PR, the MSIS and its variants perform better statistically with
significant differences in all cases. Compared to SS, the MSIS and its variants perform better
statistically with significant differences for termination criteria 1000 and 5000, but with a
small difference for termination criterion 10000.

In order to closely study the difference in performance among the proposed MSIS and
its variants, a zoomed analysis is provided and the mean plots are shown in Figure 15
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and Figure 16. Figure 15 shows that MSIS is statistically better than all its variants except
MSIS 6. There is no statistically significant difference between MSIS and MSIS 6. Figure 16
reveals that MSIS needs less CPU-time than MSIS 6 to obtain a given number of solutions.
Therefore, MSIS is the best performing method among all the compared algorithms. It can
also be found that: i) a variant with a restart strategy performs a little better than without
it (e.g. MSIS 1 is statistically better than MSIS 0 with significant difference); ii) a variant
with a local search performs better than without it (e.g. MSIS 3 is statistically better than
MSIS 1 with significant difference); iii) a variant with path-relinking performs better than
without it (e.g. MSIS 4 is statistically better than MSIS 0 with significant difference).

To verify the effectiveness of heuristics BPEP, TSRAP and the two stages of the TSRAP,
the proposed MSIS algorithm is transformed into another four algorithms: i) MSIS BPEP:
the MSIS variant in which the TSRAP (used in the LS) is replaced by the BEPE; ii)
MSIS TSRAP: the MSIS variant in which the BEPE (used in the ISPG, PR and NSPG) is
replaced by the TSRAP; iii) MSIS woR: the MSIS without stage RRAC; and iv) MSIS woF:
the MSIS without stage FDRAC. They are compared with the proposed MSIS and the best of
literature SS [25]. Figure 17 shows that, MSIS and all its variants are statistically better than
SS. From the zoomed mean plots shown in Figure 18 it can been seen that, MSIS TSRAP
is statistically better than MSIS BPEP, which means TSRAP is an effective mechanism for
the algorithm. But MSIS TSRAP is statistically worse than MSIS. The reason for this may
be that, BPEP is a simple resource evaluation method which not only reduce the resource
usage cost in a fast way, but also construct more schedules to diversify the population.
However, TSRAP is a complex resource evaluation method whose two phases are ”deep
digging” methods and need to spend plenty of time to search for near-optimal solutions. If
TSRAP is used in all the sub-procedures, it may incur fast-convergence or premature which
has a negative effect on the final result. It can also be seen that, both two stages of TSRAP
are of great significance to the entire algorithm.

The comparison of the average results are also made between MSIS and the best-existing
algorithms GA, PR and SS. It confirms our previous observation that MSIS outperforms the
other algorithms in instances with a different number of activities and different termination
criteria in terms of both effectiveness and efficiency. However, no details are given here due
to space considerations. Instead, we have put together the results as on-line materials.

5.5. Performance comparison on RanGen instances

The ANOVA-based statistical analysis results on the RanGen instances are displayed in
Figure 19, Figure 20, Figure 23 and Figure 24. The results are similar to those of PSPLib
instances.

Of particular interest is the interaction between the type of algorithm and m (the number
of types of resources) and θ (the deadline) factors. It can be seen from Figure 21 that GA
and PR are statistically equal. They are statistically better than SS when m = 8, but worse
than SS when m = 4 and m = 6. However as m increases, there are no statistically significant
differences for MSIS and its variants. MSIS and its variants are statistically better than GA
and PR, which is even true for them with m = 4 when compared to GA and PR with m = 8.
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Figure 11: Means plot of RPD 95% confi-
dence level Tukey HSD intervals for all the
algorithms tested on the PSPLib instances.
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Figure 14: Interaction plot between the
type of algorithm and the different values
of generated solutions for the termination
criterion with 95% Tukey HSD intervals on
the PSPLib instances.

Figure 22 reveals that increasing the value of θ results in worse performance for GA
and PR with significant differences but it results in better performance for SS, although for
θ = 1.4 and θ = 1.5 the differences are very small. However, there is no statistically significant
difference for MSIS and its variants. From the plot it is also clear that MSIS and its variants
are statistically better than the other algorithms in all cases and by a significant margin.

Similar to those of PSPLib instances, Figure 25 and Figure 26 also show the importance
of the proposed resource decision methods on RanGen instances.

6. Conclusions and future research

In this paper, a multi-start iterative search heuristic named MSIS is proposed for the
project scheduling problem with resource availability cost (RACP). Instead of transforming
the RACP into multiple SMRCPSPs as is commonly done in the literature, we divide the
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Figure 15: Means plot of RPD 95% con-
fidence level Tukey HSD intervals for the
MSIS and its variants on the PSPLib in-
stances.
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dence level Tukey HSD intervals for the MSIS
and its variants on the PSPLib instances.
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Figure 18: Means plot of RPD 95% confi-
dence level Tukey HSD intervals for the M-
SIS BPEP, MSIS TSRAP, MSIS woR, M-
SIS woF and MSIS on the PSPLib in-
stances.

problem into two sub-problems: the sequencing problem and the resource decision problem,
and these two sub-problems are sequentially addressed. A feasible neighbourhood and path-
relinking process are constructed to solve the sequencing problem efficiently. Two heuristics,
BPEP and TSRAP, are developed for the resource decision problem. BPEP makes sure
that the activities are as distributed as possible in the project period to reduce the usage of
resources. In TSRAP, both the consistent and fluctuant decline of resource availability cost
are considered.

The proposed algorithm has been calibrated by means of a design of experiments ap-
proach that involves the evaluation of many different alternative. After the calibration,
the best tested combination of operators and parameters for each proposed alternative is
obtained.

An extensive comparison of the proposed algorithm against the best existing approaches
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of resources with 95% Tukey HSD intervals
on the RanGen instances.
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tor with 95% Tukey HSD intervals on the
RanGen instances.

is carried out. A comprehensive calibration, the study of interactions and a careful algo-
rithm engineering process has resulted in a competitive experiment. The experimental and
statistical results show that the proposed algorithm is superior to the others in terms of both
effectiveness and efficiency by a considerable margin. Of course, this is, at least in part, due
to the extensive experimentation carried out, which evidences the need of proper and sound
statistical experimentation in scientific research.

Future research avenues involve the consideration of the improvement of the proposed
framework. For example, historical information can be introduced as a memory mechanism
for guiding the search and some of the proposed operators may be modified to reduce the time
consumption. It also seems worthwhile applying the proposed algorithm to other resource
constrained project scheduling problems in practical applications.
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[24] Mario Vanhoucke and José Coelho. An approach using sat solvers for the rcpsp with logical constraints.
European Journal of Operational Research, 249(2):577–591, 2016.
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Algorithm 8: Backward Peak Elimination Procedure, BPEP (π)

1 begin
2 Call SGS(π) to generate a schedule;
3 for each activity Ti ∈ T do
4 lstTi ← Calculate the latest start time of activity Ti by the critical-path based

forward and backward pass method [3] ;

5 for i = n to 1 do
6 min← 0;
7 for w = stTi to lstTi do
8 Start time of activity Ti is postponed from stTi to w and ak(t) is updated as:
9 for k = 1 to m do

10 for t = stTi to stTi + dTi do
11 ak(t)← ak(t)− r Ti

k ;

12 for t = w to w + dTi do
13 ak(t)← ak(t) + r

Ti
k ;

14 dre← C(A)− C(R);
15 if dre ≤ min then
16 min← dre, w′ ← w;

/* Retrieve the original ak(t) for the next loop */

17 for k = 1 to m do
18 for t = w to w + dTi do
19 ak(t)← ak(t)− r Ti

k ;

20 for t = stTi to stTi + dTi do
21 ak(t)← ak(t) + r

Ti
k ;

22 Start time of activity Ti is postponed from stTi to w′ and ak(t) is updated as:
for k = 1 to m do

23 for t = stTi to stTi + dTi do
24 ak(t)← ak(t)− r Ti

k ;

25 for t = w′ to w′ + dTi do
26 ak(t)← ak(t) + r

Ti
k ;

27 stTi ← w′;
28 for each activity j ∈ predTi do
29 if lstj > (stTi − dj) then
30 lstj ← (stTi − dj);

31 R← A;

32 Sort T in the increasing order of stTi , where Ti ∈ T;
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Algorithm 9: Fluctuant Decline of Resource Availability Cost, FDRAC (π, k)
1 begin
2 π′ ← π, R′ ← A, R′

k ← Rk;
3 Initialize the resource usage variable ak(t)← 0 for all k ∈M and t ∈ [1, ..., H];

4 for each activity T′
i ∈ T′ do

5 estT′i
← 0;

6 lstT′i
← Calculate the latest start time of activity T′

i by the critical-path based forward and backward pass

method;

7 for i = 1 to n do
8 min← +∞;
9 for w = estT′i

to lstT′i
do

10 Add T′
i to the current schedule at the start time w ;

11 for k = 1 to m do
12 for t = w to w + dT′i

do

13 ak(t)← ak(t) + r
T′i
k ;

14 if Ak ≤ Rk and C(A) < C(R) then
15 incre← C(A)− C(R′);
16 if incre < min then
17 min← incre, w′ ← w;

/* Retrieve the original ak(t) for the next loop */

18 for k = 1 to m do
19 for t = w to w + dT′i

do

20 ak(t)← ak(t)− r
T′i
k ;

21 if min < +∞ then
22 Add T′

i to the current schedule at the start time w′ ;
23 for k = 1 to m do
24 for t = w′ to w′ + dT′i

do

25 ak(t)← ak(t) + r
T′i
k ;

26 stT′i
← w′;

27 for each activity j ∈ succT′i do

28 if estj < (stT′i
+ dT′i

) then

29 estj ← (stT′i
+ dT′i

);

30 R′ ← A, R′
k ← Rk;

31 if min > 0 then
32 for j = 1 to i do
33 estT′j

← 0;

34 for j = 1 to i do
35 Find the earliest feasible start time w for activity T′

j under the constraint of R′ within

[estT′j
, stT′j

];

36 Start time of T′
j is postponed from stT′j

to w;

37 for k = 1 to m do
38 for t = stT′j

to stT′j
+ dT′j

do

39 ak(t)← ak(t)− r
T′j
k ;

40 for t = w to w + dT′j
do

41 ak(t)← ak(t) + r
T′j
k ;

42 stT′j
← w;

43 for each activity k ∈ succT′j do

44 if estk < (stT′i
+ dT′i

) then

45 estk ← (stT′i
+ dT′i

);

46 else
47 π′ ← π, return π′;

48 R′ ← A, sort T′ in the increasing order of stT′i
, T′

i ∈ T′, return π′.
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Algorithm 10: Two Stage Resource Adjustment Procedure, TSRAP (π)

1 begin
2 Sort resources in R in decreasing order of their costs;
3 repeat

/* ---The RRAC procedure--- */

4 flag ← false, π′ ← π;
5 for k = 1 to m do
6 if R′k > Ak then
7 R′k ← R′k − 1, feasible← FBP(π′);
8 if not feasible then
9 Rk ← R′k + 1;

10 Call BPEP(π′) to allocate resources;
11 if C(R′) < C(R) then
12 π ← π′, flag ← true;

/* ---The FDRAC procedure--- */

13 min← 0;
14 for k = 1 to m do
15 if Rk > Ak then
16 Rk ← Rk − 1, π′ ← FDRAC(π, k), dre← C(R′)− C(R);
17 if dre < min then
18 min← dre, π∗ ← π′;

19 Rk ← Rk + 1;

20 if min < 0 then
21 π ← π∗, flag ← true;

22 until not flag;

Table 3: Compositions of the proposed MSIS and its variants.

Path-relinking Local search Restart Algorithm

0 0 0 MSIS 0
0 0 1 MSIS 1
0 1 0 MSIS 2
0 1 1 MSIS 3
1 0 0 MSIS 4
1 0 1 MSIS 5
1 1 0 MSIS 6
1 1 1 MSIS
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Table 4: Operators and parameter values used for MSIS and its variants after calibration.

Factor MSIS 0 MSIS 1 MSIS 2 MSIS 3 MSIS 4 MSIS 5 MSIS 6 MSIS

ISPG RPWR GCRRR GCRRR GCRRR GCRRR GCRRR GCRRR GCRRR
Npop 10 6 9 10 9 8 10 10
Nelite - - - - 6 6 5 5
K - - 32 32 - - 32 26
λ - - 2 1 - - 1 2
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