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ABSTRACT  

This research was conducted in the high-Andean basin of the Zhurucay River in southern Ecuador. In four 

river reaches 19 sampling campaigns were conducted per reach spread over a period of 35 months. The biotic 

samples were selected in the periods with greatest flow stability. Parallel to each sampling, 37 environmental 

variables grouped into three factors (riparian corridor, hydromorphology and water quality) were recorded. 

The study aimed to analyse during periods of stable flow the influence of these environmental factors on the 

structure and density of the EPT community (Ephemeroptera, Plecoptera, Trichoptera) in a quasi-pristine 

aquatic ecosystem. Multivariate statistical analysis revealed that the Froude number (Fr), gravel type, and 

width/depth ratio are the most relevant hydromorphological variables explaining variations in EPT density. 

Xiphocentronidae, Contulma and Helicopsyche were observed to have a relationship with the order of the 

river, while Ochrotrichia, Nectopsyche and Phylloicus varied with the type of riparian vegetation. Phylloicus, 

Ochrotrichia and Nectopsyche were common in lentic sites, while the proportion of gravel and the width/depth 

ratio restricted the genus Helicopsyche. The only relevant water quality factor was the total phosphorus which 

was related with two taxa. In conclusion, although macroinvertebrates are currently employed in water quality 

studies, riparian vegetation and hydromorphological factors are determinant for their communities in pristine 

Andean rivers. Such factors are therefore crucial in the study of environmental flows and the assessment of 

the ecological integrity. 

 

Keywords: Andean streams, headwaters, riparian corridor, hydromorphology, macroinvertebrate, EPT. 
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INTRODUCTION 

One of the concerns in aquatic ecology is the identification of environmental factors (i.e., physical habitat or 

water quality) that restrict the spatial distributions of aquatic communities (Allan et al., 1997; Parsons et al., 

2003; Poff, 1997). Although the variations in macroinvertebrate communities across a wide range of 

environmental conditions are studied in the temperate regions of the northern hemisphere, very few studies 

have been performed in Andean rivers (Jacobsen and Encalada, 1998; Mesa, 2010; Ríos‐Touma et al., 2011). 

For example, several studies documented that changing land use, besides affecting flow (Buytaert et al., 2006) 

and sediment production (Restrepo and Restrepo, 2005), can reduce the physical, chemical (Trimble, 1997) 

and biological quality of water (Miserendino et al., 2011). Land use adjacent to a river is a major determinant 

of surface water quality and the state of aquatic communities (Miserendino et al., 2011; Mesa, 2010), which 

are generally associated with the trophic resources of the river banks (Mesa, 2010). 

Similarly, other important components influence aquatic communities such as the geomorphology of 

the riverbed (Wilcox et al., 2008; Smits et al., 2015), the hydraulic characteristics (Statzner et al., 1988) and 

the biological interactions (Holomuzki et al., 2010). The influence of physical conditions on aquatic biota has 

been studied for several decades (Allen and Vaughn, 2010; McIntosh et al., 2002; Gibbins et al., 2001; Danehy 

et al., 1999; Statzner, 1981); specifically, recent advances have been made in understanding how the hydraulic 

conditions interact with the substrate to affect aquatic macroinvertebrate communities (Allen and Vaughn, 

2010; Gibbins et al., 2001). These studies include an analysis of the effects of flow rate on flow velocity and 

the composition of the substrate, home of different habitats colonized by different benthic organisms (Ward, 

1992). For example, the Froude number (Fr) and the substrate are important interrelated characteristics of the 

physical habitats of rivers. The first factor encompasses water velocity and turbulence (Beschta and Jackson, 

1979), and the second is defined by the size and the diversity of the bottom material (Boyero, 2003). As stated 

by Beisel et al. (2000) are the habitat conditions associated with a thick or heterogeneous substrate more 

stable, even under conditions of high flow velocity. Consequently, these habitats can shelter a higher number 

of taxa compared to those with fine substrates, which are prone to being eroded (Beisel et al., 2000; Erman 
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and Erman, 1984). In mountain areas rivers are prune to a high degree of sediment transport, impacting the 

benthic communities (Statzner et al., 1988). 

While studies such as the above have been relatively abundant in temperate geographical zones, in 

the high-altitude areas of the Andean region research on hydraulics and aquatic macroinvertebrates has been 

scarce (Jacobsen et al., 2013; Cauvy‐Fraunié et al., 2014a; Cauvy‐Fraunié et al., 2014b;; Jacobsen et al., 

2014). These studies generally examine the influence of thaw (flood waves) on aquatic communities in 

association with the distance from a glacier located over 4,000 m above sea level (m a.s.l.) without accounting 

for specific variables, such as the Fr, velocity, water depth, among others. One limitation of these studies is 

that the altitudinal range of the target rivers restricts the presence of some important benthic groups, such as 

EPT (Ephemeroptera, Plecoptera and Trichoptera), due to the extreme conditions of these environments and 

the low concentration of dissolved oxygen in the water (Jacobsen et al., 2003; Jacobsen et al., 1997). However, 

a study by Ríos‐Touma et al. (2011) included waters at lower altitudes and found that seasonality and flow 

rate critically affected the composition of aquatic communities.  

An approach to understand the environmental processes that control the structure and behaviour of 

aquatic communities is through the analysis of quasi-pristine ecosystems. At present, the increase in water 

abstraction areas, plantations of exotic species, the burning of grasslands and the expansion of agricultural 

land use strongly reduces the existence of totally pristine ecosystems in many mountainous countries, 

especially Ecuador (Spehn et al., 2006). Headwater basins become more and more exposed to extreme 

anthropogenic pressures (Jacobsen and Marín, 2008) and are susceptible to any type of disturbance (Meyer et 

al., 2001). Indeed, these headwater basins are used as references or controls in studies of biological water 

quality to assess the effect of changes in land use or anthropogenic activities (Acosta et al., 2009; Villamarín 

et al., 2013). Given the vulnerability of mountain headwaters we focused our study on a headwater area, which 

under natural conditions provide the habitats for organisms’ subject to extreme temperature, flow, predation, 

and exotic species invasion (Meyer et al., 2007). Specifically, aquatic macroinvertebrates of the EPT orders, 

given their abundance and diversity, have been used in eco-hydraulic (Gibbins et al., 2010; McIntosh et al., 

2002; Mérigoux et al., 2009) and water quality studies (Bonada et al., 2002; López-López and Sedeño-Díaz, 
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2015; Miserendino et al., 2011). We concentrated our study on EPT for the following reasons: i) the adequate 

taxonomic knowledge of these invertebrates and the ease of sampling; ii) their sedentary nature (compared to 

fish), which provides a reliable spatial signal of their status in each sampled habitat (Johnson et al., 2003); iii) 

the rapid changes in the trophic structure, composition and abundance of the benthic community in response 

to various types of natural and anthropogenic disturbances (Rice et al., 2001); and iv) the lack of other native 

aquatic taxa that can serve as bio-indicator (e.g., Astroblepus; Vimos-Lojano unpublished) at these altitudes. 

Other taxa, such as those of the order Diptera, that are usually dominant in Andean rivers (Scheibler et al., 

2014) were not used as they are opportunists that quickly adapt to fluctuating conditions (Ladle et al., 1985) 

and are therefore inappropriate for the purposes of this study.  

The main objective of this study was to analyse the influence of three environmental factors (riparian 

corridor, hydromorphology, water quality) on the structure and density of aquatic macroinvertebrate 

communities, specifically EPT taxa, in a high-Andean, quasi-pristine aquatic ecosystem during periods of 

stable flow discarding short-term effects of high-flow events, corresponding basically to base flow conditions. 

In summary, the study aimed to answer the following questions: i) which environmental variables primarily 

determine the structure of the EPT community during base-flow in a quasi-pristine mountain river system? 

and, ii) how do the EPT communities respond to those environmental variables?  

 

MATERIALS AND METHODS 

 

Study area 

This study was performed in the Andean micro-watershed of the Zhurucay River (with an area of 7.53 km2), 

located in southern Ecuador (between coordinates 9662500 N, 9658750 S, 694630 W and 698010 E, PSAD56 

- UTM Zone 17S), releasing its water into the Rircay River which drains a basin area of 826.16 km2 and 

discharges on its turn into the Pacific Ocean via the Jubones River (Fig. 1). The study area is characterized by 

an unaltered geological condition and quasi-zero anthropogenic intervention (Hampel et al., 2010), covered 

by herbaceous vegetation (scrubland) encompassing a few patches of quinoa trees (e.g., Polylepis incana 
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Kunth and Polylepis reticulata Kunth) and native shrubs. The only human activity that in the study area could 

affect the ecosystem is the sporadic burning of the tussock vegetation in preparation of the extension of 

grassland, a typical action in the high Andean regions (Matson and Bart, 2013).  Four river reaches (segments 

of 50 m in length) were selected throughout the basin (approximately 3,600 m a.s.l.). The vegetation coverage 

of the riversides in the reaches at the sampling points encompassed tussock grass (TG1 and TG2) and quinoa 

forests (QF1 and QF2) (Fig. 1). Annual average rainfall fluctuates around 1,289 ± 142.3 mm and average 

daily temperature between 4.8 and 5.9ºC (Padrón, 2013).  

 

Data collection 

In each of the four reaches, five cross-sections for sampling were established in the most representative and 

abundant aquatic mesohabitats (pool, riffle and run). Biotic and abiotic samples were collected during eight19 

field campaigns stretched between December 2011 and October 2013.  

 

Sampling of biotic variables 

Macroinvertebrate samples were collected using a Surber net (area of 625 cm2, 250 µm net mesh, 30 seconds 

of sampling effort) at the centre of each cross-section. The substrate within the sampling area was removed to 

a depth of 6 cm and washed by hand so that all the organisms were dragged into the net. The material collected 

in the field was preserved in individual bottles containing water and a proportion of 4% formalin. In the 

laboratory, the samples were washed with tap water over a 250 µm mesh to remove excess formaldehyde, silt 

and sand. Individuals were identified, using specialized taxonomic keys and a stereo microscope (Olympus 

SZ-6145TR, Japan), to the most detailed taxonomic level (usually genus) except for those from the 

Xiphocentronidae family as the larvae are indistinguishable at the genus level (Domínguez et al., 2009). In 

addition, the ash free dry mass (AFDM) content in the riverbed sediment was determined to estimate the 

organic matter content in accordance with the protocol established by Steinman et al. (2007).  
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Sampling of abiotic variables 

A total of 37 environmental variables were measured in this study (Table 1) including the type of vegetative 

cover along the riparian corridor. The riverside of the QF1 reach is characterized by quinoa forest and shrubs 

with a coverage area of 300 m in length with lateral strips of 30 m on average. Similarly, the QF2 section also 

features quinoa forest and shrubs over a length of 250 m along the riverside with lateral strips of 27 m on 

average on both sides of the tributary. In the TG1 and TG2 reaches, the vegetation type along the channels 

was tussock grass with some small shrubs. The order of the river was identified using Strahler’s (1975) 

classification and ArcGis 10.1 software (version 10.1; ESRI Inc., Redlands, CA, USA).  

The hydromorphological characteristics of the river cross-section in each of the four river reaches 

were monitored at the sites where the biological samples were collected. The depth (m) and width of the water 

surface (m) were expressed in cm, and the average velocity (m s-1) measured at 60% of the water depth (Wyżga 

et al., 2012) using a propeller flow meter (Hydromate CMC3, Sydney, Australia). The composition of the 

substrate in each habitat was visually estimated (over the coverage area of the Surber net, i.e., 25 cm x 25 cm) 

based on the proportion of each type of substrate applying the simplified classification method of Elosegi 

(2009): silt (<0.006 mm), sand (between 0.006 and 0.2 mm), gravel (between 0.2 and 20 mm), pebble 

(between 20 and 60 mm), cobble (between 60 and 250 mm) and boulder (>250 mm).  

The physicochemical variables in each river were measured using a portable multi-sensor (Horiba U-

52, USA, 2010) and included water temperature (°C), pH, oxidation-reduction potential (ORP; mV), electrical 

conductivity (µS cm-1), turbidity (NTU), dissolved oxygen (mg l-1), and total dissolved solids (TDS; g l-1) 

(Table 1). Additionally, water samples were collected in amber glass (100 cm3) and plastic (500 cm3) 

containers for laboratory analysis with the water quality sets using a colorimeter (HACH, DR / 890, USA, 

2011). The following parameters were measured: nitrites (mg l-1), total organic carbon (TOC, mg l-1), 

ammonium (mg l-1), total phosphorus (mg l-1), total chlorine (mg l-1), total hardness (mg CaCO3 l-1), alkalinity 

(mg CaCO3 l-1) and iron (mg l-1). The extensive array of physicochemical water quality variables measured in 

the study area, is quite an exception with respect to the water quality variables that are usually collected in 

classical multi-metric studies in the Andes rivers above 3,000 m a.s.l. (Acosta et al., 2009; Villamarín et al., 
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2013).  

 

Data pre-processing 

To determine the effects of various environmental factors on EPT taxa, it is essential to eliminate the noise 

(and interactions) produced by other factors not under study (hydrological variations; Poff, 1997; Rolls et al., 

2012). For the prevention of the effect of noise caused by hydrological events that influence the 

presence/absence of certain flood-sensitive taxa, biological samples were only collected in periods with stable 

flow rate for a period at least of 30 days prior to sampling. The environmental conditions during the months 

of September, October, and November 2012 and April, July, August, September, and October 2013 had the 

highest stability in this study (Fig. 2) with an average monthly rainfall of 67.1±28.9 mm. In total, 8 sampling 

campaigns were carried out in the mentioned periods. The condition of stable flow rates was identified using 

gauging stations, equipped with DI1501 Mini-Diver and Baro-Diver DI500 measuring sensors (Schlumberger 

Water Services), next to each sampling site. The measurement interval was 5 min, and the daily average of 

the collected data were analysed. For much of the year, the Andes mountain area above 3,000 m is 

characterized by constant low-flow levels interrupted by high hydrological pulses of varying magnitude in 

response to heterogeneous rainfall events (Mosquera et al., 2015). We believed that the absence of 

hydrological disturbances (pulses) over a range of four weeks is needed to allow the communities to recover 

(Flecker and Feifarek, 1994; Suren and Jowett, 2006). Unstable flows over longer periods (> four weeks) can 

cause significant decreases in the number of individual macroinvertebrates due to the drag force of the flow 

(Flecker and Feifarek, 1994; Ríos‐Touma et al., 2011).  

With respect to the habitat information, three mesohabitat types were classified using the Froude 

number (Jowett, 1993); respectively Fr <0.18 for pools, 0.18<Fr<0.41 for runs and Fr>0.41 for riffle. The 

number of mesohabitats was used to calculate the proportion of mesohabitats at a river reach. 

To guarantee the robustness of the analysis, some samples were discarded based on the following 

criteria: a) those with richness in only a single taxon, b) those with an abundance of less than four individuals, 

and c) those whose abundance was outside the 95% confidence interval. In addition, data corresponding to 
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rare taxa (<1% of the total abundance of EPT) were eliminated as determined by a Grubb test (p <0.05) 

performed with Statgraphics Centurion XVI software (version 16.1.17; StatPoint Technologies Inc., 

Warrenton, Virginia) via the revision of the mean and the standard deviation.  

Finally, direct measurements were used to calculate the hydraulic variables whose importance to 

aquatic communities was demonstrated in previous studies: Froude number (Fr) (Jowett, 1993), Reynolds 

number (Re) (Rempel et al., 2000), velocity times water depth (v·d), width/depth ratio (WDR) (Weigel et al., 

2003), relative roughness (kv) (Lamouroux et al., 2004; Statzner et al., 1988), and shear stress (SS) (Almeida 

et al., 2013; Cauvy‐Fraunié et al., 2014a). The Shannon-Wiener substrate diversity index (SuD) was 

calculated according Demars et al. (2012) with the proportions found in the field, which were subsequently 

transformed (arcsine). The transformation log(x+1) was used for the hydraulic and physicochemical variables, 

except for ordinal values and pH.  

 

Data analyses 

The 37 environmental variables were grouped into three environmental factors: riparian corridor, 

hydromorphology and water quality (Table 1). Taxa densities were log(x+1) transformed and standardized by 

dividing them by their average. For each environmental factor prior to analysis, we independently discarded 

variables that correlated to each other to avoid redundancy (Spearman’s r >0.8); this was also applied for the 

community metrics. Time was considered a control variable for the temporal variation in the results (ordinal 

number of the sampling campaign), as specifically indicated for each statistical test.  

In a first step, we assessed which of the environmental variables are the main drivers of the EPT 

community structure, using the partial Canonical Correspondence Analysis (pCCA, Borcard et al., 1992), 

available in the CANOCO software (version 5.02; Biometric, Plant Research International, The Netherlands, 

and P. Smilauer, Czech Republic) (Ter Braak, 1986). This type of analysis quantifies the relative contribution 

of each environmental factor group to the total variation in the structure of the macroinvertebrate community 

(Šmilauer and Lepš, 2014). For the pCCA, the variables whose influence was of direct interest were 

established as covariates (concomitant variables). For example, if the variables grouped under the riparian 
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corridor factor were of interest, they were set as covariates of the hydromorphological factors and water 

quality variables; this was also performed for each group of variables under the remaining two factors. 

Furthermore, to prevent an artificial increase in the explained variation, significant environmental variables 

(p <0.05) were selected with an automatic forward selection and a Bonferroni correction to avoid false 

positives in each group of variables. Finally, based on the global variation obtained from the pCCA tests (sum 

of all canonical eigenvalues), a partition variation analysis of each group or factor was conducted. This 

procedure allowed distinctions to be made between singular effects, i.e., the variance explained by a single 

set of variables, and joint effects, i.e., the variance jointly explained by three factors (Borcard et al., 1992).  

In the second phase of the analysis, several EPT community metrics were calculated for each cross-

section and sampling date; richness (S), total density of individuals (ind. m-2), Pielou’s evenness (J), Shannon-

Wiener diversity index (H'), and density of individuals in each of the Ephemeroptera, Plecoptera and 

Trichoptera orders. To ensure the temporal independence of the data, each community metric was analysed 

using the autocorrelation function (ACF) in Statistica software (version 8.0, StatSoft Inc., USA). The 

responses of the metrics to the environmental variables were explored by canonical correlation analysis 

(CCorA) using all the samples. The sampling sequence in time was considered as a variable (ordinal number 

of the sampling campaign; Table 1). This type of analysis allows two sets of composite variables to be 

analysed (canonical random variable) and maximizes the correlations between all possible pairs of canonical 

random variables (Quinn and Keough, 2002). The analysis included the environmental variables that 

maximize the explained variance to the greatest extent in the Principal Component Analysis (PCA) (Chester 

et al., 1983), for a proper performance in the CCorA analysis. All analyses were made with PRIMER statistical 

software (version 6; PRIMER-E, Ivybridge, UK) and XLSTAT (version 03313; Addinsoft, NY, USA).  

  

RESULTS 

 

The abiotic characteristics of the 133 analysed samples taken in the subsequent river cross sections are 

summarized in Table 1. The average flow rate is of the same order in the TG1 and QF1 river reaches, with 
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QF1 possessing on average a 12.7% larger discharge. The average flow rate in the TG2 and QF2 study sections 

is 4 to 5 times smaller. There is a certain similarity in the flow of pairs of sections, for example, the sections 

with greater size and flow, TG1 (order 3) and QF1 (order 4), and the other pair, TG2 and QF2. However, the 

highest values of flow per unit area were recorded in the QF1 section, which also exhibited the maximum 

average water velocity value. The depth was very shallow in all sections, 18 cm for both TG1 and QF1 and 

~10 cm for TG2 and QF2, and the average width of the water surface of the cross-sections of the stretches 

varied between 0.60 m and 1.2 m. The amount of AFDM in the river substrate was small and varied between 

22 and 42 g m-2. Regarding the composition of the substrate, similar proportions of thick (~50%) and small 

(~50%) substrates were found in the quinoa forest areas (QF1 and QF2), while the proportions differed in the 

sections with a bank of tussock grass. In terms of the hydraulic variables, the highest Fr and SS values were 

obtained in the TG2 stretch. Regarding water quality, the four micro-watersheds had similar average values 

of water temperature (8.9°C), pH (6.0), turbidity (2.5 NTU), dissolved oxygen (9.0 mg l-1), total dissolved 

solids (0.035 g l-1), total organic carbon (TOC, 3.5 mg l-1), ammonium (0.019 mg l-1), total chlorine (0.022 mg 

l -1), hardness (15.9 mg CaCO3 l-1) and iron (0.274 mg l-1). Finally, with respect to temporal variation, all 

statistical tests indicated that time was not a factor in the results; the results of the autocorrelation function of 

the community metrics indicated temporal independence.  

A total of 3,820 individual EPT aquatic macroinvertebrates belonging to 14 genera and 12 families 

were collected, and the average density was 483 individuals per square meter (ind. m-2). The dominance genera 

were Metrichia and Contulma in the mesohabitat pool, followed by Helicopsyche and Ecuaphlebia in the 

mesohabitat run (Table 2). In contrast, a poor number of individuals were obtained in Andesiops and 

Mortionella, generally located in areas with arboreal vegetation (QF, Table 2). In the first phase of the 

analysis, the riparian corridor factor explained 53% of the variance on the first axis and 36% on the second 

(Fig. 3a, b), which agreed with the results of the pCCA test. Due to the low number of significant variables 

(Strahler and TG), additional variables (Time and AFDM) were manually included in the pCCA to improve 

the interpretability of the results. The variable of river order (Strahler) was chosen by forward selection, 

although its explanatory power was low (6%, F: 5.5, p: 0.01), and a certain relationship was found between 
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both the Xiphocentronidae family and the Contulma genus and the higher-order study sites, while the 

Helicopsyche genus (Trichoptera) was associated with lower-order sites. The tussock grass (TG) vegetation 

explained 6.8% of the variation (F: 7.5, p: 0.01) and was associated with the Ochrotrichia genus, whereas the 

abundances of the Nectopsyche and Phylloicus genera were negatively related with this type of vegetation. 

These genera were usually found in the presence of QF vegetation, a variable that was previously discarded 

due to its collinearity (Fig. 3a).  

The hydromorphological variables explained 55% of the variance on the first axis and 15% on the 

second axis (Fig. 3c, d). Among the relevant variables, the Fr was found to contribute little to the variation in 

the community (4.8%, F: 5.7, p: 0.03), but it was related to several taxa. The Phylloicus, Ochrotrichia and 

Nectopsyche genera were associated with the pool mesohabitat (Fr <0.18), and the Xiphocentronidae family 

was associated with the riffle mesohabitat (Fr >0.41). The gravel variables (Gra) and the width/depth ratio 

(WDR) contributed 2.3% (F: 2.7, p: 0.03) and 2.2% (F: 2.7, p: 0.05) of the variation in the community, 

respectively, and the only genus that was positively associated with these two variables was Helicopsyche. 

The pCCA included additional variables (Depth, Kv and Silt) to improve visualization. 

For water quality, despite finding an explanation of 54% of the variance on the first axis and 26% on 

the second axis, the only important variable in the pCCA was the total phosphorus (TotalP). We observed a 

clear negative relationship between the Phylloicus and Xiphocentronidae taxa and this variable. Additional 

variables (ORP Turb and TOC) were included to improve the quality and the interpretability of the figure 

(Fig. 3e, f). The partition analysis of the variation in the aquatic macroinvertebrate communities (Fig. 4) 

yielded low explanatory values for each environmental factor, which were expressed as the sum of the 

canonical eigenvalues: 18.9% for the riparian corridor, 17.0% for hydromorphology and 10.5% for water 

quality. The percentage of the variation that was not explained was 20.1%.  

Finally, in the second phase of the analysis, a positive canonical correlation was observed between 

the average velocity of the current and the density of Plecoptera individuals, but velocity was negatively 

related to Pielou’s evenness (Fig. 5). A positive relationship was also found between the density of individuals 

and the cobble substrate. The Shannon-Wiener diversity and richness metrics were negatively related to water 
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velocity and temperature, and the density of Ephemeroptera individuals was similarly negative related to water 

temperature. At the temporal scale (Annex 1a, b) no significant influence of the environmental variables on 

the community metrics was found, although the results generally followed the same response pattern as those 

obtained at the global scale.  

 

DISCUSSION  

 

Going beyond previous studies, in high-Andean rivers, this piece of research analysed the ecology of aquatic 

macroinvertebrates and their relationship with the riparian corridor, hydromorphology and water quality. 

Based on the first exploratory analysis, the matrix of the data had a high variability of macroinvertebrate 

abundance corresponding to high and low flow periods. This study covers the analyses of stable conditions 

with moderate hydrological variability (average flow, SD: 8.5±7.3 mm, average peak flow: 36.5 mm), 

characterized by smaller and regular precipitations; the intense rain periods were discarded. Hence, the 

community is representative of all the taxa found in these rivers (Vimos-Lojano, unpublished). For this reason, 

the sample design represents the entire community without the ecological filtering on some taxa exerted by 

high flows. In addition, the pre-selection of non-autocorrelated data and the statistical analysis enabled the 

detection of the influence of abiotic factors on the composition and structure of communities of the orders 

Ephemeroptera, Plecoptera and Trichoptera. The analysis confirmed that the data were not autocorrelated and 

that time was not a relevant factor in the community, which supports the robustness of the results. The lack 

of a temporal effect is related to disturbance by floods, which reconfigures the communities (Flecker and 

Feifarek, 1994; Suren and Jowett, 2006).  

 

Relevance of the riparian corridor 

Headwater ecosystems usually feature riparian vegetation that shades much of the channel, which is 

characterized by low allochthones primary productivity (Vannote et al., 1980). The leaf holding capacity of 

the riverbed depends on the hydraulic and geomorphological characteristics of the river and, to a lesser extent 
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to the intrinsic characteristics of the leaves, such as their size, texture and shape (Canhoto and Graça, 1998). 

All allochthones material in the river is important for several aquatic organisms (Bastian et al., 2008), 

explaining the positive response of the density of shredders to the arboreal riparian vegetation; an important 

source of energy for these trophic groups (Li and Dudgeon, 2008).  

In this study, Ochrotrichia was the only taxon linked to TG vegetation. This may be related to the low 

percentage of shading of the channel by these herbaceous plants, causing the TG sections to have high primary 

productivity. The effect is detected mainly when the vegetation has been removed from the riparian corridors 

by human activity as it happens in the areas of median altitude (Scarsbrook and Halliday, 1999, Miserendino 

et al., 2010). Specifically, this level of productivity positively affects the periphyton, the main food source of 

Ochrotrichia (Tomanová et al., 2006). In the stretches of the riparian corridor with quinoa forest, which is the 

only native tree found at these altitudes (above 3,000 m a.s.l.) (Cázares-Martínez et al., 2010), the results 

indicated that the allochthones contributions that reaches the river are relevant. It should be emphasized that 

the arboreal vegetation cover in the high-Andes region differs from the mountains at other latitudes, which 

are dominated by pine and spruce forests (Scarsbrook and Halliday, 1999). Therefore, the QF vegetation was 

related to the presence of the genera Nectopsyche and Phylloicus, organisms that are almost exclusively 

characteristic of sites with forest vegetation cover (QF) because they use the accumulated material from the 

riverbed (Bispo et al., 2006). Although the TG2 site contained the double of the AFDM of the other study 

locations, this variable did not prove to be relevant, suggesting that the provision of a canopy over the river 

by the vegetation favoured the presence of groups associated with this resource, as opposed to the amount of 

organic matter (Encalada et al., 2010; Graça, 2001; Albariño and Balseiro, 2002).  

Additionally, taxonomic changes were observed in response to the size of the river; a variation in 

community expected under the river continuum concept (Vannote et al., 1980). This result contrasted with 

the study by Haggerty et al. (2002) in Appalachian and Cascade mountain headwaters, where abundance and 

richness of the community did not differ with river order, likely due to the low number of individuals in that 

area (<134 ind. m-2) in comparison with our research. Additionally, in our study the small spatial scale allowed 

us to observe taxa substitution as the order of the river increased. Specifically, the Helicopsyche genus 
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occurred at lower order sites, its convex hemispherical shape results in a low resistance to high water velocity 

(Vaughn, 1985). This species was replaced by Contulma in larger channels, the latter being a common taxon 

in high velocity headwater streams (Holzenthal and Ríos-Touma, 2012). Therefore, we hypothesize that the 

relatively large size of Contulma in relation to the other taxa directly influenced their resilience and presence 

in larger as well as higher-order rivers. It is doubtless that the complexity of these environments, i.e., the 

diverse trophic resources and physical conditions of the habitats of headwater rivers, explains this result 

(Allan, 2004).  

 

Relevance of Hydromorphology 

Another important environmental factor in the spatial distribution of aquatic communities is the 

hydromorphological conditions of the river, which vary according the flow rate (hydrology) and the 

geomorphology of the channel (Wilcox et al., 2008). During baseflow periods, the flow of high-Andean rivers 

varies moderately, which contributes to the maintenance of habitat quality through the constant washing of 

accumulated silt and periphyton resulting in a dominant coarse sediment as occurs at other latitudes (e.g., 

Biggs et al., 2008). In this research, we found the Fr and the gravel substrate are the variables that determine 

the composition of the aquatic EPT communities.  

The Fr is a standardized numerical index (Shoffner and Royall, 2008). Individuals with hydrodynamic 

(flattened) bodies or structures attach themselves to the riverbed (anal or tarsal claws and suckers) persist in 

places with high Fr value (Statzner and Beche, 2010; Tomanová and Usseglio-Polatera, 2007). For example, 

the Nectopsyche and Phylloicus genera were most represented in slow flow habitats (pools), which have a low 

Fr, as these organisms use tubular structures composed of stones and leaves and are not well resistant to 

current (Tomanova et al., 2008). These organisms create these structures with the material accumulated on 

the riverbed in these habitats (Houghton et al., 2011). In contrast, the Xiphocentronidae family occurred at 

greater density in habitats with a high Fr, and the most likely reason is that the structures they employ to 

adhere to the riverbed (cases, anal and tarsal claws) provide greater flow resistance (Thirion, 2016) compared 

to other taxa.  
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One of the negative associations was found between the Metrichia genus and both the gravel substrate 

and high width/depth ratio. In addition, a positive relationship was found between this taxon and large 

substrates (Spearman’s r: 0.247, p <0.01), i.e., those that provide habitat stability (Erman and Erman, 1984). 

The opposite result was found for the Helicopsyche genus, because this taxon is associated with the presence 

of gravel substrate in high-mountain lentic areas. It should be noted that individuals of this genus could be the 

Helicopsyche cotopaxi (subgenera Feropsyche), the only species recorded over 3,000 m a.s.l. in the north of 

Ecuador (Rios-Touma et al., 2017, Johanson, 2002), without presenting information on its biology or ecology. 

In previous studies, the presence of Helicopsyche cotopaxi was associated with the presence of fine substrate, 

which provides the base material for the construction of the helical structures they manufacture (Vaughn, 

1985). However, it is possible that the steep slope and irregular flow of the high-Andean rivers influence the 

low proportions of fine material (sand) by constantly washing it from lentic areas. Therefore, in some degree 

our results for Helicopsyche refute the suggestion by Schwendel et al. (2011), who considered this genus to 

be a good indicator of stable substrates in New Zealand streams. 

Our results confirm that the Fr is a valid and good predictor of aquatic assemblages (Gibbins et al., 

2016), since the response of the macroinvertebrate community can be considered like that in temperate rivers 

(Wyżga et al., 2012; Lamouroux et al., 2004; Almeida et al., 2013). The positive effect of the gravel substrate 

on the composition of the aquatic community is analogous to other rivers, despite the instability of this type 

of substrate against hydrological disturbances (Rice et al., 2007).  

 

Relevance of water quality 

One of the factors determining the physicochemical quality of the water and the aquatic communities of a 

river is the dominant type of land use or land cover of the riparian corridor (Burt et al., 2010; Miserendino et 

al., 2011). Our study is one of the few studies in high-Andean Rivers above 3,000 m a.s.l. linking water quality 

variables with aquatic macroinvertebrate communities, apart from a summarized multi-metric analysis 

(Acosta et al., 2009; Villamarín et al., 2013). In this research, the only decisive physicochemical variable 

explaining the spatial distribution of some taxa (Xiphocentronidae and Phylloicus) was the total phosphorus 
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concentration, which ranged between 0 and 0.880 mg l-1. The total phosphorus seems to be a good indicator 

of possible anthropogenic influences that can alter biodiversity (Niyogi et al., 2003; Villamarín et al., 2013), 

although in some cases this variable did not differ significantly among land uses (e.g., pasture, pine and native 

forest, urban, etc.; Miserendino and Masi, 2010). Among the few studies at these altitudes, Villamarín et al. 

(2013) related phosphorus levels with contaminated areas but observed no taxonomic response. In our study 

are the natural concentrations of phosphorus determined by the high organic matter content and, in turn, the 

nutrients in these soils (Andisols) (Quichimbo et al., 2012). Therefore, this study provides new information 

on the influence of water quality variables in quasi-pristine rivers above 3,000 m a.s.l.  

 Analysing the three environmental factors together explained a high percentage (~80%) of the spatial 

variation in the aquatic communities. However, other variables (hydrological) that were not considered in this 

study can have an important influence on the temporality of some organisms (Flecker and Feifarek, 1994; 

Gibbins et al., 2001; Hannah, et al., 2007). The influence of those variables on high-Andean communities 

deserves to be studied.  

Finally, as for the physical and hydrological characteristics of these environments, these low-order or 

headwater rivers are characterized by very high spatial complexity (Allan, 2004; Meyer et al., 2007), which 

includes variations in the depth, the width of the water surface, the Fr, SS and AFDM between sections and 

sites. At the same time, the channels have homogeneous substrates and variable flow, which in turn are linked 

with high abundance of aquatic macroinvertebrate communities in the Andean regions (Principe et al., 2007); 

however, the diversity of these communities is limited at higher altitudes (Jacobsen and Marín, 2008). Under 

the conditions of spatial and temporal variability in these rivers (Mosquera et al., 2015), the aquatic 

communities mostly seek stable environments that are characterized by a thick, heterogeneous substrate 

(Beisel et al., 2000; Duan et al., 2008). Given its stability, the cobble substrate (60-250 mm) was positively 

related with the density of individuals in the EPT orders, a result that has been found in studies conducted in 

Asian mountain rivers where the Ephemeroptera order is dominant (Duan et al., 2008). On the other hand, the 

diversity and richness of EPT taxa diminished by increasing flow velocity, and this decrease was characterized 

by a decline in the most representative groups, i.e., Trichoptera order, whose biological features confer low 
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resistance to high-velocity flows (Tomanova et al., 2008). Additionally, a low number of individuals and taxa 

from other groups (Ephemeroptera and Plecoptera) were observed in general. By contrast, Plecoptera was the 

only order associated with high velocity conditions, and their presence was favoured by their large size and 

strength, which enabled them to adhere to the riverbed under more turbulent conditions (Peters, 1986; 

Tomanova and Tedesco, 2007).  

 In this context, the low number of Ephemeroptera taxa in high-Andean rivers is due to altitude 

(Jacobsen, 2003; Jacobsen and Marín, 2008; Jacobsen et al., 1997). The preference of some species of 

mayflies for low temperature conditions has been shown in studies in the Patagonian Andes (Miserendino and 

Pizzolán, 2001). To explore this potential relationship, the density of individuals of the order Ephemeroptera, 

represented by the Ecuaphlebia genus (98% relative abundance), was graphed against temperature. This 

graph, concerning Meridialaris chiloeensis and Metamonius sp., indicated maximum abundances in a 

temperature range between 7.5 and 9.5°C, but no clear correlation was observed (Spearman r: -0.143, p >0.05; 

Miserendino and Pizzolán, 2001). Notwithstanding, the analysis suggested that temperatures higher than 

9.5°C may cause a drastic decrease in the densities of these groups (Vimos-Lojano, unpublished), but for this 

to be confirmed, a detailed database of temperature and flow would be necessary to understand the 

phenological, behavioural and environmental effects, among others (Dallas and Ross-Gillespie, 2015). 

Although Jacobsen (2008) found a negative influence of temperature on diversity, in a short-term monitoring 

study (two days with time interval of 15 min) in an Altiplano river, that study did not show which taxa were 

affected or which is the influence during the base-flow periods. 

 

CONCLUSIONS 

 

Our results indicate that the habitats of the studied high-Andean aquatic headwater ecosystems show a very 

high natural heterogeneity, which plays an important role in shelter availability and the maintenance of 

macroinvertebrates biodiversity. By analysing various factors operating at different scales (riparian corridor, 

hydromorphology, water quality), this study demonstrated that macroinvertebrates belonging to the EPT 
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orders showed strong associations with the type of natural vegetation surrounding the aquatic ecosystem. 

Furthermore, a few variables (average velocity, cobble substrate and water temperature) played a critical role 

in the patterns of aquatic EPT communities, specifically concerning the density, richness, diversity, evenness, 

and density of Ephemeroptera. The lentic zones were characterized by substrates of sand, gravel and boulders 

of varying size, which make the habitats more heterogeneous than the lentic areas of lower altitude. 

Consequently, such heterogeneity facilitates the presence and availability of shelters, which favour reduced 

mortality from disturbances (Lancaster and Belyea, 1997) related with the highly fluctuating flow regimes in 

this region. In terms of community structure, the orders that prevailed were those that have been directly 

correlated with the availability of a given trophic resource, or groups with biological traits that are adapted to 

certain physical habitat conditions. As expected, the still largely unknown and complex interactions (intra- 

and interspecific competition, the effect of introduced species, the variety of habitat preferences of different 

larval stages, hydrological variability, etc.) of Andean aquatic ecosystems hinders the understanding of their 

ecological processes, which should be further analysed in order to be able to assess the relative tolerance of 

aquatic organisms to hydrological disturbances and physical variables.  

 

ACKNOWLEDGEMENTS 

This research was funded by the SENESCYTPIC 11-726 Project (Interpretation of hydro-ecological processes 

as a basis for assessing the ecological flow in the Paute and Jubones watershed), the hydroelectric company 

CELECEP, and DIUC (Investigation Department of the University of Cuenca). Thanks, are due to the 

SENESCYT project PIC 11-715 (Impact of land use change in the hydrogeochemistry of Andean basins) for 

providing the hydrological data used in this study. Further, financial support was provided by SENESCYT 

through a fellowship granted to the first author for carrying out his doctoral programme and through the 

PROMETEO fellowship awarded to the third author. We are greateful to Ing. Andres Quichimbo for 

reviewing the hydrological data, and the staff of the Aquatic Ecology Laboratory at the University of Cuenca 

for their assistance and field logistics. Finally, the authors are grateful to Prof. Jan Feyen for constructive 

polishing edition the manuscript. 



20 

 

 

References 

Acosta, R, Ríos-Touma, BP, Rieradevall, M, and Prat, N. (2009). Propuesta de un protocolo de evaluación de 

la calidad ecológica de ríos andinos (CERA) y su aplicación a dos cuencas en Ecuador y Perú. 

Limnetica, 28, 35-64.  

Albariño, R, and Balseiro, E. (2002). Leaf litter breakdown in Patagonian streams: native versus exotic trees 

and the effect of invertebrate size. Aquatic Conservation: Marine and Freshwater Ecosystems, 12, 

181-192. doi:10.1002/aqc.511 

Almeida, D, Merino-Aguirre, R, and Angeler, DG. (2013). Benthic invertebrate communities in regulated 

Mediterranean streams and least-impacted tributaries. Limnologica - Ecology and Management of 

Inland Waters, 43, 34-42. doi:10.1016/j.limno.2012.02.003 

Allan, D, Erickson, D, and Fay, J. (1997). The influence of catchment land use on stream integrity across 

multiple spatial scales. Freshwater Biology, 37, 149-161. doi:10.1046/j.1365-2427.1997.d01-546.x 

Allan, JD. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual 

Review of Ecology, Evolution, and Systematics, b35, 257-284. 

doi:10.1146/annurev.ecolsys.35.120202.110122. 

Allen, DC, and Vaughn, CC. (2010). Complex hydraulic and substrate variables limit freshwater mussel 

species richness and abundance. Journal of the North American Benthological Society, 29, 383-394. 

doi:10.1899/09-024.1 

Bastian, M, Pearson, RG, and Boyero, L. (2008). Effects of diversity loss on ecosystem function across trophic 

levels and ecosystems: A test in a detritus‐based tropical food web. Austral Ecology, 33, 301-306. 

doi:10.1111/j.1442-9993.2007.01817.x 

Beisel, J-N, Usseglio-Polatera, P, and Moreteau, J-C. (2000). The spatial heterogeneity of a river bottom: a 

key factor determining macroinvertebrate communities: . In Assessing the Ecological Integrity of 

Running Waters (pp. 163-171). Springer Netherlands. doi: 10.1007/978-94-011-4164-2_13 



21 

 

Beschta, RL, and Jackson, WL. (1979). The intrusion of fine sediments into a stable gravel bed. Journal of 

the Fisheries Board of Canada, 36, 204-210. doi:10.1139/f79-030 

Biggs, BJ, Ibbitt, RP, and Jowett, IG. (2008). Determination of flow regimes for protection of in-river values 

in New Zealand: an overview. Ecohydrology & Hydrobiology, 8, 17-29. doi:10.2478/v10104-009-

0002-3 

Bispo, P, Oliveira, L, Bini, L, and Sousa, K. (2006). Ephemeroptera, Plecoptera and Trichoptera assemblages 

from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution 

and abundance of immatures. Brazilian Journal of Biology, 66, 611-622.  

Bonada, N, Prat, N, Munné, A, Rieradevall, M, Alba-Tercedor, J, Álvarez, M, Avilés, J, Casas, J, Jáimez-

Cuéllar, P, Mellado, A, Moyá, G, Pardo, I, Robles, S, Ramón, G, Suárez, ML, Toro, M, Vidal-Abarca, 

MR, Vivas, S, and Zamora-Muñoz, C. (2002). Criterios para la selección de condiciones de referencia 

en los ríos mediterráneos. Resultados del proyecto GUADALMED. Limnetica, 21, 99-114.  

Borcard, D, Legendre, P, and Drapeau, P. (1992). Partialling out the spatial component of ecological variation. 

Ecology, 73, 1045-1055. doi:10.2307/1940179 

Boyero, L. (2003). The quantification of local substrate heterogeneity in streams and its significance for 

macroinvertebrate assemblages. Hydrobiologia, 499, 161-168. doi:10.1023/ A:1026321331092 

Boyero, L, Ramírez, A, Dudgeon, D, and Pearson, RG. (2009). Are tropical streams really different? Journal 

of the North American Benthological Society, 28, 397-403. doi:10.1899/08-146.1 

Burt, T, Pinay, G, and Sabater, S. (2010). What do we still need to know about the ecohydrology of riparian 

zones? Ecohydrology, 3, 373-377. doi:10.1002/eco.140 

Buytaert, W, Celleri, R, Willems, P, Bièvre, BD, and Wyseure, G. (2006). Spatial and temporal rainfall 

variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of 

hydrology, 329, 413-421. doi: 10.1016/j.jhydrol.2006.02.031 

Canhoto, C, and Graça, M. (1998). Leaf retention: a comparative study between two stream categories and 

leaf types. Verhandlungen-Internationale Vereinigung für theoretische und angewandte Limnologie, 

26, 990-993.  



22 

 

Cauvy‐Fraunié, S, Andino, P, Espinosa, R, Calvez, R, Anthelme, F, Jacobsen, D, and Dangles, O. (2014a). 

Glacial flood pulse effects on benthic fauna in equatorial high‐Andean streams. Hydrological 

Processes, 28, 3008-3017. doi:10.1002/hyp.9866 

Cauvy‐Fraunié, S, Espinosa, R, Andino, P, Dangles, O, and Jacobsen, D. (2014b). Relationships between 

stream macroinvertebrate communities and new flood‐based indices of glacial influence. Freshwater 

Biology, 59, 1916-1925. doi: 10.1111/fwb.12395 

Cázares-Martínez, J, Montaña, C, and Franco, M. (2010). The role of pollen limitation on the coexistence of 

two dioecious, wind-pollinated, closely related shrubs in a fluctuating environment. Oecologia, 164, 

679-687. doi:10.1007/s00442-010-1696-z 

Chester, AJ, Ferguson, RL, and Thayer, GW. (1983). Environmental gradients and benthic macroinvertebrate 

distributions in a shallow North Carolina estuary. Bulletin of Marine Science, 33, 282-295.  

Dallas, H, and Ross-Gillespie, V. (2015). Sublethal effects of temperature on freshwater organisms, with 

special reference to aquatic insects. Water SA, 41, 712-726. doi:10.4314/wsa.v41i5.15 

Danehy, R, Ringler, N, and Ruby, R. (1999). Hydraulic and geomorphic influence on macroinvertebrate 

distribution in the headwaters of a small watershed. Journal of Freshwater Ecology, 14, 79-91. doi: 

10.1080/02705060.1999.9663657 

Demars, BO, Kemp, JL, Friberg, N, Usseglio-Polatera, P, and Harper, DM. (2012). Linking biotopes to 

invertebrates in rivers: biological traits, taxonomic composition and diversity. Ecological Indicators, 

23, 301-311. doi:10.1016/j.ecolind.2012.04.011 

Domínguez, E, Fernández, HR, and Lillo, FM. (2009). Macroinvertebrados bentónicos sudamericanos: 

Sistemática y biología: Fundación Miguel Lillo Tucumán. 656  pp 

Duan, X, Wang, Z, and Tian, S. (2008). Effect of streambed substrate on macroinvertebrate biodiversity. 

Frontiers of Environmental Science & Engineering in China, 2, 122-128. doi:10.1007/s11783-008-

0023-y 

Elosegi, A. (2009). La estructura física de los cauces fluviales. In A Elosegui and S Sabater (Eds.), Conceptos 

y técnicas en ecología fluvial (pp. 71-84). Bilbao, España: Fundacion BBVA. 



23 

 

Encalada, AC, Calles, J, Ferreira, V, Canhoto, CM, and Graca, MA. (2010). Riparian land use and the 

relationship between the benthos and litter decomposition in tropical montane streams. Freshwater 

Biology, 55, 1719-1733. doi: 10.1111/j.1365-2427.2010.02406.x 

Erman, DC, and Erman, NA. (1984). The response of stream macroinvertebrates to substrate size and 

heterogeneity. Hydrobiologia, 108, 75-82. doi:10.1007/BF00028185 

Flecker, AS, and Feifarek, B. (1994). Disturbance and the temporal variability of invertebrate assemblages in 

two Andean streams. Freshwater Biology, 31, 131-142. doi: 10.1111/j.1365-2427.1994.tb00847.x 

Gibbins, C, Batalla, RJ, and Vericat, D. (2010). Invertebrate drift and benthic exhaustion during disturbance: 

Response of mayflies (Ephemeroptera) to increasing shear stress and river‐bed instability. River 

Research and Applications, 26, 499-511. doi:10.1002/rra.1282 

Gibbins, C, Dilks, C, Malcolm, R, Soulsby, C, and Juggins, S. (2001). Invertebrate communities and 

hydrological variation in Cairngorm mountain streams. Hydrobiologia, 462, 205-219.  

Gibbins, C, Vericat, D, Batalla, R, and Buendia, C. (2016). Which variables should be used to link invertebrate 

drift to river hydraulic conditions? Fundamental and Applied Limnology/Archiv für Hydrobiologie, 

187, 191-205. doi:10.1127/fal/2015/0745 

Graça, MA. (2001). The role of invertebrates on leaf litter decomposition in streams-a review. International 

Review of Hydrobiology, 86, 383-393. doi:10.1002/1522-2632(200107)86:4/5<383::AID-

IROH383>3.0.CO;2-D 

Haggerty, SM, Batzer, DP, and Jackson, CR. (2002). Macroinvertebrate assemblages in perennial headwater 

streams of the Coastal Mountain range of Washington, USA. Hydrobiologia, 479, 143-154. doi: 

10.1023/A:1021034106832 

Hampel, H, Cocha, J, and Vimos, D. (2010). Incorporation of aquatic ecology to the hydrological investigation 

of ecosystems in the high Andes. MASKANA, 1, 91-100.  

Hannah, DM, Brown, LE, Milner, AM, Gurnell, AM, McGregor, GR, Petts, GE, Smith, BP, and Snook, DL. 

(2007). Integrating climate–hydrology–ecology for alpine river systems. Aquatic Conservation: 

Marine and Freshwater Ecosystems, 17, 636-656. doi: 10.1002/aqc.800 



24 

 

Holomuzki, JR, Feminella, JW, and Power, ME. (2010). Biotic interactions in freshwater benthic habitats. 

Journal of the North American Benthological Society, 29, 220-244. doi:10.1899/08-044.1 

Holzenthal, RW, and Ríos-Touma, B. (2012). Contulma paluguillensis (Trichoptera: Anomalopsychidae), a 

new caddisfly from the high Andes of Ecuador, and its natural history. Freshwater Science, 31, 442-

450. doi:10.1899/11-067.1 

Houghton, DC, Rogers, SE, Hocquard, K, and Wolfe, CI. (2011). Case-building behavior, persistence, and 

emergence success of Pycnopsyche guttifer (Walker)(Trichoptera: Limnephilidae) in laboratory and 

in situ stream environments: potential trade-offs of material preference. Great Lake Entomologist, 44, 

103-116.  

Jacobsen, D. (2003). Altitudinal changes in diversity of macroinvertebrates from small streams in the 

Ecuadorian Andes. Archiv für Hydrobiologie, 158, 145-167. doi: 10.1127/0003-9136/2003/0158-

0145 

Jacobsen, D. (2004). Contrasting patterns in local and zonal family richness of stream invertebrates along an 

Andean altitudinal gradient. Freshwater Biology, 49, 1293-1305. doi: 10.1111/j.1365-

2427.2004.01274.x 

Jacobsen, D, Andino, P, Calvez, R, Cauvy-Fraunié, S, Espinosa, R, and Dangles, O. (2013). Temporal 

variability in discharge and benthic macroinvertebrate assemblages in a tropical glacier-fed stream. 

Freshwater Science, 33, 32-45. doi: 10.1086/674745 

Jacobsen, D, Cauvy‐Fraunie, S, Andino, P, Espinosa, R, Cueva, D, and Dangles, O. (2014). Runoff and the 

longitudinal distribution of macroinvertebrates in a glacier‐fed stream: implications for the effects of 

global warming. Freshwater Biology, 59, 2038-2050. doi: 10.1111/fwb.12405 

Jacobsen, D, and Encalada, A. (1998). The macroinvertebrate fauna of Ecuadorian highland streams in the 

wet and dry season. Archiv für Hydrobiologie, 142, 53-70.  

Jacobsen, D, and Marín, R. (2008). Bolivian Altiplano streams with low richness of macroinvertebrates and 

large diel fluctuations in temperature and dissolved oxygen. Aquatic Ecology, 42, 643-656. doi: 

10.1007/s10452-007-9127-x 



25 

 

Jacobsen, D, Rostgaard, S, and Vásconez, JJ. (2003). Are macroinvertebrates in high altitude streams affected 

by oxygen deficiency? Freshwater Biology, 48, 2025-2032. doi:10.1046/j.1365-2427.2003.01140.x 

Jacobsen, D, Schultz, R, and Encalada, A. (1997). Structure and diversity of stream invertebrate assemblages: 

the influence of temperature with altitude and latitude. Freshwater Biology, 38, 247-261. 

doi:10.1046/j.1365-2427.1997.00210.x 

Johanson, KA. (2002). Systematic revision of American Helicopsyche of the subgenus Feropsyche 

(Trichoptera, Helicopsychidae). Insect Systematics & Evolution, 3-147.  

Johnson, RK, Wiederholm, T, and Rosenberg, DM. (1993). Freshwater biomonitoring using individual 

organisms, populations, and species assemblages of benthic macroinvertebrates. Freshwater 

biomonitoring and benthic macroinvertebrates, 40-158.  

Jowett, IG. (1993). A method for objectively identifying pool, run, and riffle habitats from physical 

measurements. New Zealand journal of marine and freshwater research, 27, 241-248. doi: 

10.1080/00288330.1993.9516563 

Ladle, M, Cooling, D, Welton, J, and Bass, J. (1985). Studies on Chironomidae in experimental recirculating 

stream systems. II. The growth, development and production of a spring generation of Orthocladius 

(Euorthodadius) calvus Pinder. Freshwater Biology, 15, 243-255. doi:10.1111/j.1365-

2427.1985.tb00197.x 

Lamouroux, N, Dolédec, S, and Gayraud, S. (2004). Biological traits of stream macroinvertebrate 

communities: effects of microhabitat, reach, and basin filters. Journal of the North American 

Benthological Society, 23, 449-466. doi: 10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2 

Lancaster, J, and Belyea, LR. (1997). Nested hierarchies and scale-dependence of mechanisms of flow 

refugium use. Journal of the North American Benthological Society, 221-238. doi: 10.2307/1468253 

Li, AO, and Dudgeon, D. (2008). Food resources of shredders and other benthic macroinvertebrates in relation 

to shading conditions in tropical Hong Kong streams. Freshwater Biology, 53, 2011-2025. 

doi:10.1111/j.1365-2427.2008.02022.x 



26 

 

López-López, E, and Sedeño-Díaz, JE. (2015). Biological Indicators of Water Quality: The Role of Fish and 

Macroinvertebrates as Indicators of Water Quality. In RH Armon and O Hänninen (Eds.), 

Environmental Indicators (pp. 643-661): Springer Netherlands. 

Matson, E, and Bart, D. (2013). Interactions among fire legacies, grazing and topography predict shrub 

encroachment in post-agricultural páramo. Landscape Ecology, 28, 1829-1840. doi: 10.1007/s10980-

013-9926-5 

McIntosh, MD, Benbow, ME, and Burky, AJ. (2002). Effects of stream diversion on riffle macroinvertebrate 

communities in a Maui, Hawaii, stream. River Research and Applications, 18, 569-581. 

doi:10.1002/rra.694 

Mérigoux, S, Lamouroux, N, Olivier, J-M, and Dolédec, S. (2009). Invertebrate hydraulic preferences and 

predicted impacts of changes in discharge in a large river. Freshwater Biology, 54, 1343-1356. 

doi:10.1111/j.1365-2427.2008.02160.x 

Mesa, LM. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean 

streams. Hydrobiologia, 641, 85-95. doi:10.1007/s10750-009-0059-4 

Meyer, J, Wallace, J, Press, M, Huntly, N, and Levin, S. (2001). Lost linkages and lotic ecology: rediscovering 

small streams. Paper presented at the Ecology: achievement and challenge: the 41st Symposium of 

the British Ecological Society sponsored by the Ecological Society of America held at Orlando, 

Florida, USA, 10-13 April 2000. 

Meyer, JL, Strayer, DL, Wallace, JB, Eggert, SL, Helfman, GS, and Leonard, NE. (2007). The Contribution 

of Headwater Streams to Biodiversity in River Networks1. Journal of the America Water Resoureces 

Association, 48, 86-103. doi: 10.1111/j.1752-1688.2007.00008.x 

Miserendino, ML, Casaux, R, Archangelsky, M, Di Prinzio, CY, Brand, C, and Kutschker, AM. (2011). 

Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity 

in Patagonian northwest streams. Science of the Total Environment, 409, 612-624. 

doi:10.1007/s11270-008-9701-4 



27 

 

Miserendino, ML, and Masi, CI. (2010). The effects of land use on environmental features and functional 

organization of macroinvertebrate communities in Patagonian low order streams. Ecological 

Indicators, 10, 311-319. doi: 10.1016/j.ecolind.2009.06.008 

Miserendino, ML, and Pizzolán, LA. (2001). Abundance and altitudinal distribution of Ephemeroptera in an 

Andean-Patagonean River system (Argentina). In E Domínguez (Ed.), Trends in Research in 

Ephemeroptera and Plecoptera (pp. 135-142): Springer US. 

Mosquera, GM, Lazo, PX, Célleri, R, Wilcox, BP, and Crespo, P. (2015). Runoff from tropical alpine 

grasslands increases with areal extent of wetlands. Catena, 125, 120-128. doi: 

10.1016/j.catena.2014.10.010 

Niyogi, DK, Simon, KS, and Townsend, CR. (2003). Breakdown of tussock grass in streams along a gradient 

of agricultural development in New Zealand. Freshwater Biology, 48, 1698-1708.  

Padrón, RS. (2013). Análisis de la estructura de la lluvia del páramo. Universidad de Cuenca, Cuenca, 

Ecuador.   81 pp 

Parsons, M, Thoms, MC, and Norris, RH. (2003). Scales of macroinvertebrate distribution in relation to the 

hierarchical organization of river systems. Journal of the North American Benthological Society, 22, 

105-122. doi:10.2307/1467981 

Peters, RH. (1986). The ecological implications of body size (Vol. 2): Cambridge University Press. 

Poff, NL. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in 

stream ecology. Journal of the North American Benthological Society, 391-409. doi: 

10.2307/1468026 

Principe, RE, Raffaini, GB, Gualdoni, CM, Oberto, AM, and Corigliano, MC. (2007). Do hydraulic units 

define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica-

Ecology and Management of Inland Waters, 37, 323–336. doi: 323-336. 10.1016/j.limno.2007.06.001 

Quichimbo, P, Tenorio, G, Borja, P, Cárdenas, I, Crespo, P, and Célleri, R. (2012). Efectos sobre las 

propiedades físicas y químicas de los suelos por el cambio de la cobertura vegetal y uso del suelo: 

Páramo de Quimsacocha al sur del Ecuador. Suelos Ecuator, 42, 138-153.  



28 

 

Quinn, GP, and Keough, MJ. (2002). Experimental design and data analysis for biologists: Cambridge 

University Press. 537 pp 

Rempel, LL, Richardson, JS, and Healey, MC. (2000). Macroinvertebrate community structure along 

gradients of hydraulic and sedimentary conditions in a large gravel‐bed river. Freshwater Biology, 

45, 57-73. doi:10.1046/j.1365-2427.2000.00617.x 

Restrepo, JC, and Restrepo, JD. (2005). Efectos Naturales y antrópicos en la producción de sedimentos de la 

cuenca del río Magdalena. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y 

Naturales, 29, 239-254.  

Rice, SP, Buffin-Bélanger, T, Lancaster, J, and Reid, I. (2007). 24 Movements of a macroinvertebrate 

(Potamophylax latipennis) across a gravel-bed substrate: effects of local hydraulics and micro-

topography under increasing discharge. Developments in Earth Surface Processes, 11, 637-659. doi: 

10.1016/S0928-2025(07)11152-4 

Rice, SP, Greenwood, MT, and Joyce, C. (2001). Tributaries, sediment sources, and the longitudinal 

organisation of macroinvertebrate fauna along river systems. Canadian Journal of Fisheries and 

Aquatic Sciences, 58, 824-840.  

Ríos-Touma, B, Holzenthal, RW, Huisman, J, Thomson, R, and Rázuri-Gonzales, E. (2017). Diversity and 

distribution of the Caddisflies (Insecta: Trichoptera) of Ecuador. PeerJ, 5, e2851. doi: 

10.7717/peerj.2851 

Ríos‐Touma, B, Encalada, AC, and Prat Fornells, N. (2011). Macroinvertebrate Assemblages of an Andean 

High‐Altitude Tropical Stream: The Importance of Season and Flow. International Review of 

Hydrobiology, 96, 667-685. doi: 10.1002/iroh.201111342 

Rolls, RJ, Leigh, C, and Sheldon, F. (2012). Mechanistic effects of low-flow hydrology on riverine 

ecosystems: ecological principles and consequences of alteration. Freshwater Science, 31, 1163-1186. 

doi: 10.1899/12-002.1 



29 

 

Scarsbrook, MR, and Halliday, J. (1999). Transition from pasture to native forest land‐use along stream 

continua: Effects on stream ecosystems and implications for restoration. New Zealand Journal of 

Marine and Freshwater Research, 33, 293-310. doi: 10.1080/00288330.1999.9516878 

Scheibler, EE, Roig Juñent, SA, and Claps, MC. (2014). Chironomid (Insecta: Diptera) assemblages along an 

Andean altitudinal gradient. Aquatic Biology, 20, 169-184. doi:10.3354/ab00554 

Schwendel, AC, Joy, MK, Death, RG, and Fuller, IC. (2011). A macroinvertebrate index to assess stream-bed 

stability. Marine and Freshwater Research, 62, 30-37. doi:10.1071/MF10137 

Shoffner, D, and Royall, D. (2008). Hydraulic habitat composition and diversity in rural and urban stream 

reaches of the North Carolina Piedmont (USA). River Research and Applications, 24, 1082-1103. 

doi:10.1002/rra.1097 

Šmilauer, P, and Lepš, J. (2014). Multivariate analysis of ecological data using CANOCO 5: Cambridge 

University Press. 362 pp 

Smits, AP, Schindler, DE, and Brett, MT. (2015). Geomorphology controls the trophic base of stream food 

webs in a boreal watershed. Ecology, 96, 1775-1782. doi:10.1890/14-2247.1 

Spehn, EM, Liberman, M, and Korner, C. (2006). Land use change and mountain biodiversity: CRC Press. 

361 pp 

Statzner, B. (1981). A method to estimate the population size of benthic macroinvertebrates in streams. 

Oecologia, 51, 157-161. doi:10.1007/BF00540594 

Statzner, B, and Beche, LA. (2010). Can biological invertebrate traits resolve effects of multiple stressors on 

running water ecosystems? Freshwater Biology, 55, 80-119. doi:10.1111/j.1365-2427.2009.02369.x 

Statzner, B, Gore, JA, and Resh, VH. (1988). Hydraulic stream ecology: observed patterns and potential 

applications. Journal of the North American Benthological Society, 7, 307-360. doi:10.2307/1467296 

Steinman, AD, Lamberti, GA, and Leavitt, P. (2007). Biomass and pigments of benthic algae. In FR Hauer 

and GA Lamberti (Eds.), Methods in Stream Ecology (Vol. 2, pp. 357-379): Elsevier Inc. 

Strahler, AN. (1957). Quantitative analysis of watershed geomorphology. Civ. Eng, 101, 1258-1262. doi: 

10.1029/TR038i006p00913 



30 

 

Suren, AM, and Jowett, IG. (2006). Effects of floods versus low flows on invertebrates in a New Zealand 

gravel‐bed river. Freshwater Biology, 51, 2207-2227. doi: 10.1111/j.1365-2427.2006.01646.x 

Ter Braak, CJ. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct 

gradient analysis. Ecology, 67, 1167-1179. doi: 10.2307/1938672 

Thirion, C. (2016). The determination of flow and habitat requirements for selected riverine 

macroinvertebrates.  (Doctoral dissertation, North-West University). 

Tomanová, S, Goitia, E, and Helešic, J. (2006). Trophic levels and functional feeding groups of 

macroinvertebrates in neotropical streams. Hydrobiologia, 556, 251-264. doi:10.1007/s10750-005-

1255-5 

Tomanova, S, Moya, N, and Oberdorff, T. (2008). Using macroinvertebrate biological traits for assessing 

biotic integrity of neotropical streams. River Research and Applications, 24, 1230-1239. 

doi:10.1002/rra.1148 

Tomanova, S, and Tedesco, PA. (2007). Tamaño corporal, tolerancia ecológica y potencial de bioindicación 

de la calidad del agua de Anacroneuria spp.(Plecoptera: Perlidae) en América del Sur. Revista de 

biología tropical, 55, 67-81. doi:10.15517/rbt.v55i1.6058 

Tomanová, S, and Usseglio-Polatera, P. (2007). Patterns of benthic community traits in neotropical streams: 

relationship to mesoscale spatial variability. Fundamental and Applied Limnology/Archiv für 

Hydrobiologie, 170, 243-255. doi:10.1127/1863-9135/2007/0170-0243 

Trimble, SW. (1997). Stream channel erosion and change resulting from riparian forests. Geology, 25, 467-

469. doi:10.1130/0091-7613(1997)025<0467:SCEACR>2.3.CO;2 

Vannote, RL, Minshall, GW, Cummins, KW, Sedell, JR, and Cushing, CE. (1980). The river continuum 

concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137. doi:10.1139/f80-017 

Vaughn, CC. (1985). Evolutionary ecology of case architecture in the snailcase caddisfly, Helicopsyche 

borealis. Freshwater Invertebrate Biology, 4, 178-186. doi:10.2307/1467159 



31 

 

Villamarín, C, Rieradevall, M, Paul, MJ, Barbour, MT, and Prat, N. (2013). A tool to assess the ecological 

condition of tropical high Andean streams in Ecuador and Peru: The IMEERA index. Ecological 

Indicators, 29, 79-92. doi:10.1016/j.ecolind.2012.12.006 

Ward, JV. (1992). Aquatic insect ecology. 1. Ecology and habitat: John Wiley & Sons, Inc. 438 pp. 

Weigel, BM, Wang, L, Rasmussen, PW, Butcher, JT, Stewart, PM, Simon, TP, and Wiley, MJ. (2003). 

Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern 

Lakes and Forest ecoregion, USA. Freshwater Biology, 48, 1440-1461. doi:10.1046/j.1365-

2427.2003.01076.x 

Wilcox, AC, Peckarsky, BL, Taylor, BW, and Encalada, AC. (2008). Hydraulic and geomorphic effects on 

mayfly drift in high‐gradient streams at moderate discharges. Ecohydrology, 1, 176-186. 

doi:10.1002/eco.16 

Wyżga, B, Oglęcki, P, Radecki-Pawlik, A, Skalski, T, and Zawiejska, J. (2012). Hydromorphological 

complexity as a driver of the diversity of benthic invertebrate communities in the Czarny Dunajec 

River, Polish Carpathians. Hydrobiologia, 696, 29-46. doi: 10.1007/s10750-012-1180-3 

 

 



32 

 

 

Figure 1. Location of the (a) Jubones River basin in Ecuador, (b) the micro-watershed of the Zhurucay River 

in the Jubones basin and (c) the sampling reaches in the upper micro-watershed of the Zhurucay River. The 

vegetation is indicated as tussock grass (TG) and quinoa forest (QF). Major cities are marked with rectangles; 

the study area is shown in the triangle. 
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Figure 2. Hydrographs per area unit of the four study sites in the micro-watershed of the Zhurucay River. 

Tussock grass (TG) and quinoa forest (QF). Triangles indicate the sampling campaigns chosen for analysis.  
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Figure 3. Partial canonical analysis (pCCA) of the eight most represented taxa, (a) (c) (e), using the (a) (b) 

riparian corridor (group 1), (c) (d) hydromorphology (group 2) and water quality (group 3) as explanatory 

variables. The significant variables are indicated in bold; other variables were automatically plotted to 

improve the visualization of the results. The spatial distribution of the sampling locations (b) (d) (f). TG: 

tussock grass, QF: quinoa forest, Time: sampling campaign, and AFDM: ash free dry mass of the fine riverbed 

sediments. Froude (Fr), relative roughness (Kv), width/depth ratio (WDR), gravel (Gra), turbidity (Turb), total 

organic carbon (TOC), and total phosphorus (TotalP). 
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Figure 4. Partitioned variation in the aquatic macroinvertebrate community in the upper micro-watershed of 
the Zhurucay River. 
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Figure 5. The results of the canonical correlation analysis of community metrics and environmental variables 

of the upper micro-watershed of the Zhurucay River. Alkal: alkalinity, Vel_med: mean velocity, TOC: total 

organic carbon, Cobb: cobble, v·d: velocity times water depth, and Shannon: Shannon-Wiener diversity. 
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Table 1. Average values  () and standard deviations (± SD) of the abiotic variables of the four study sections 

(TG1, TG2, QF1, and QF2, where TG represents tussock grass and QF represents quinoa forest) in the upper 

micro-watershed of the Zhurucay River. The acronyms for the variables are indicated by brackets [ ]. a Variable 

not included in the analysis. b The six analysed substrate categories summarized into three groups. The 

environmental factors (Env-Factors) indicate the 3 groups of factors considered: (1) riparian corridor and 

large-scale variables, (2) hydromorphological variables, and (3) physicochemical variables. 

Variable (Units) TG1 QF1 TG2 QF2 
Env-

Factors 
Number of samples [N] 36 34 25 38 

 
Flow rate (l s-1)a [q] 32.8 (±41.1) 36.96 (±31.1) 8.36 (±9.7) 7.31 (±6.3) - 

Riparian vegetation TG  QF  TG  QF  1 

Watershed area (km2) 1.40 3.28 0.38 1.65 1 

Strahler order 3 4 2 2 1 

Ordinal number of the 

sampling campaign (range) 

(equivalent to Time) [Time] 

1 - 8 

 

1 - 8 

 

1 - 8 

 

1 - 8 

 

1 

 

Water temperature [T] (⁰C) 8.4 (± 1.5) 8.7 (± 1.5) 8.9 (± 1.4) 9.5 (± 1.5) 1 

Ash Free Dry Mass [AFDM] 

(g m-2) 

25.6 (± 63.2) 

 

28.8 (± 38.3) 

 

42 (± 46.1) 

 

22.4 (± 30.1) 

 1 

Velocity times water depth  

[v·d] (m2 s-1) 

0.049 (± 0.05) 0.075 (± 0.09) 0.034 (± 0.05) 0.013 (± 0.01) 2 

Mean velocity (m s-1) 0.186 (± 0.19) 0.337 (± 0.27) 0.128 (± 0.31) 0.019 (± 0.05) 2 

Water depth (m) 0.18 (±0.08) 0.18 (±0.07) 0.10 (±0.05) 0.11 (±0.06) 2 

Water width (m) 1.11 (±0.28) 0.95 (±0.33) 0.58 (±0.29) 1.18 (±0.22) 2 

Coarse substrate (%)b 71.8 (±37.3) 47.2 (±44.4) 19.0 (±32.2) 50.1 (±37.2) - 

Medium substrate (%)b 27.4 (±37.5) 52.1 (±45.0) 79.4 (±31.6) 49.3 (±37.0) - 

Fine substrate (%)b 0.83 (±2.54) 0.74 (±2.5) 1.6 (±4.7) 0.53 (±2.3) - 

Substrate Shannon - Wiener 

diversity [SuD] 

0.37 (± 0.356) 

 

0.385 (± 0.326) 

 

0.555 (± 0.263) 

 

0.481 (± 0.335) 

 2 

Froude number [Fr] 0.20 (± 0.11) 0.27 (± 0.14) 0.38 (± 0.31) 0.15 (± 0.15) 2 

Relative roughness [kv] (cm) 4.58 (± 0.88) 4.67 (± 0.86) 4.89 (± 0.42) 4.69 (± 0.59) 2 

Ratio Width / Depth [RWD] 7.8 (± 5.4) 5.8 (± 2.2) 6.9 (± 4.1) 12.8 (± 5.6) 2 

Shear stress [SS] (m s-1) 45.1 (± 66.2) 98.9 (± 138.6) 174.8 (± 293.2) 33.7 (± 66.9) 2 

Reynolds number [Re] 

 

24450.0  

(± 24321.8) 

38101.8  

(± 41076.2) 

24169.5  

(± 28935.6) 

9551.4 

(± 9406.4) 2 

pH 5.8 (± 0.8) 6.1 (± 0.9) 6.1 (± 0.7) 6 (± 0.5) 3 
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Oxidation-Reduction 

Potential [ORP] (mV) 

305.2 (± 64.2) 

 

264.9 (± 76.6) 

 

243.3 (± 95.0) 

 

302.3 (± 48.5) 

 3 

Electrical conductivity  

(µS cm-1) 

52.3 (± 31.9) 

 

53.0 (± 30.6) 

 

78.8 (± 53.4) 

 

50.0 (± 26.9) 

 

3 

 

Turbidity (NTU) 4.5 (± 10.4) 1.0 (± 1.2) 2.7 (± 3.0) 1.8 (± 2.4) 3 

Dissolved oxygen (mg l-1) 9.4 (± 1.4) 8.9 (± 1.6) 9.8 (± 1.5) 7.9 (± 0.6) 3 

Total dissolved solids [TDS] 

(g l-1) 

0.03 (± 0.02) 

 

0.03 (± 0.02) 

 

0.05 (± 0.03) 

 

0.03 (± 0.02) 

 

3 

 

Nitrites (mg l-1) 0.003 (± 0.003) 0.001 (± 0.001) 0.005 (± 0.005) 0.003 (± 0.002) 3 

Total Organic Carbon [TOC] 

(mg l-1) 

4.1 (± 2.6) 

 

3.5 (± 2.2) 

 

3.2 (± 2.6) 

 

3.1 (± 1.8) 

 

3 

 

Ammonium (mg l-1) 0.034 (± 0.068) 0.013 (± 0.014) 0.01 (± 0.008) 0.017 (± 0.018) 3 

Total Phosphorus (mg l-1) 0.265 (± 0.258) 0.221 (± 0.145) 0.236 (± 0.267) 0.105 (± 0.085) 3 

Total Chlorine (mg l-1) 0.025 (± 0.03) 0.016 (± 0.01) 0.028 (± 0.021) 0.018 (± 0.009) 3 

Ca Hardness (mg CaCO3 l-1) 15.5 (± 7.3) 17.3 (± 7.0) 18.7 (± 3.6) 12.1 (± 6.5) 3 

Alkalinity (mg CaCO3 l-1) 13.2 (± 7.1) 16.6 (± 9.5) 21.9 (± 7.5) 15.7 (± 11.4) 3 

Iron [Fe] (mg l-1) 0.214 (± 0.093) 0.289 (± 0.091) 0.272 (± 0.08) 0.319 (± 0.112) 3 
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Table 2. Average values  () and standard error (± SD) of the absolutes abundances taxa in four study 1 

sections (TG1, TG2, QF1, and QF2, where TG represents tussock grass and QF represents quinoa 2 

forest) in the upper micro-watershed of the Zhurucay River. N = sample number include in this study.  3 

  
Pool Run Riffle 

Taxa 
 

TG1 TG2 QF1 QF2 TG1 TG2 QF1 QF2 TG1 TG2 QF1 QF2 

 N 17 8 10 22 16 10 17 10 1 11 8 3 

Andesiops  0 0 0 4.4 0 0 2.8 10.5 0 2.9 0 0 

 
± SE 0 0 0 2.2 0 0 2.8 6.2 0 2 0 0 

Ecuaphlebia  140.2 46 27.2 85.1 158.3 301.2 32.9 193.7 16 107.8 9.1 128 

 
± SE 35.2 28.6 12.6 25 38.7 226.5 10.3 62.1 0 53.3 7.1 60.6 

Claudioperla  14.1 0 3.2 0 7 0 27.3 3.2 16 1.5 11.1 5.3 

 
± SE 4.5 0 2.1 0 3.6 0 27.3 2.1 0 1.5 7.7 5.3 

Anacroneuria  0 28 0 5.1 0 40 0 12.1 0 27 0 0 

 
± SE 0 14.1 0 1.9 0 15.1 0 6.9 0 9.9 0 0 

Contulma  86.6 2 40.9 2.9 258 14.5 79.1 3.2 832 32.8 231 5.3 

 
± SE 21.3 2 9.7 1.3 71.9 11.1 22.7 3.2 0 15.5 131 5.3 

Phylloicus  1.9 2 16 21.8 0 0 0.9 57.2 0 0 0 16 

 
± SE 1.3 2 14.3 6.3 0 0 0.9 38.5 0 0 0 16 

Mortoniella  0 0 0 9.5 0 0 0.9 14.4 0 0 0 32 

 
± SE 0 0 0 4.8 0 0 0.9 5.6 0 0 0 16 

Helicopsyche  235.9 128 8 92.4 227.6 222.4 4.7 205 32 68.5 2 101.3 

 
± SE 53.3 42.9 2.7 16.4 51.6 73.5 2.3 76.3 0 24.2 2 45.6 

Atopsyche  0.9 0 3.2 3.6 1 22.6 18.8 10.5 16 1.5 22 16 

 
± SE 0.9 0 2.1 1.8 1 22.6 5.5 7 0 1.5 10 9.2 

Smicridea  0 0 0 0 0 140.6 0 0 0 135.5 0 0 

 
± SE 0 0 0 0 0 135.3 0 0 0 54 0 0 

Metrichia  137 12 25.6 13.8 453.6 55.5 62.6 11.2 2240 370.8 202.4 26.7 

 
± SE 29 5.9 9 3.4 145.6 28.4 18.5 5.4 0 244.5 90.3 5.3 

Ochrotrichia  47.1 0 6.4 9.5 54.1 0 4.7 1.6 32 0 16.1 0 

 
± SE 10.8 0 2.6 5.1 13.6 0 2.3 1.6 0 0 14 0 

Atanatolica  0 0 0 0 25 100.1 6.6 0 96 183.6 0 0 

 
± SE 0 0 0 0 19.8 89.8 6.6 0 0 102.1 0 0 



40 

 

Nectopsyche  0 0 33.6 90.9 1 1.6 24.1 89.2 0 1.5 13.1 80 

 
± SE 0 0 26.7 19.6 1 1.6 6 44 0 1.5 7.5 27.7 

Xiphocentronidae  8.5 0 9.6 0 18 0 30.2 1.6 0 0 66.5 0 

 
± SE 3.4 0 4.3 0 4.6 0 9.6 1.6 0 0 32.4 0 

 1 
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Annexes 1 

 2 

Annex 1a. Temporal variation results of the canonical correlation analysis of community metrics 3 

against environmental variables. Letters a), b), c) and d) indicate four different sampling campaigns. 4 

Vel_med: mean velocity, Boul: boulder, Cobb: cobble, Pebb: pebble, Gra: gravel, Kv: relative 5 

roughness, WDR: width/depth ratio, Alkal: alkalinity, TOC: total organic carbon, TDS: total 6 

dissolved solutes, and Shannon: Shannon-Wiener diversity. 7 

 8 

Annex 1b. Temporal variation results of the canonical correlation analysis of community metrics 9 

against environmental variables. Letters f), g), h) and i) indicate four different sampling campaigns. 10 

Vel_med: mean velocity, Boul: boulder, Cobb: cobble, Pebb: pebble, Gra: gravel, Kv: relative 11 

roughness, WDR: width/depth ratio, v·d: velocity times water depth, Alkal: alkalinity, TOC: total 12 

organic carbon, TDS: total dissolved solutes, O2: dissolved oxygen, and Shannon: Shannon-Wiener 13 

diversity. 14 


