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Neutrino telescopes have been proposed as efficient tools for indirect dark matter searches, 

especially using the Sun as source for its good capability to capture dark matter and since we do 

not expect high-energy neutrinos from it. However, the last statement should be taken with 

caution because high-energy neutrinos may come from cosmic particle interactions in the 

atmosphere of the Sun and producing neutrinos. In this work, we describe an analysis of the 

ANTARES neutrino telescope optimised for the observation of neutrinos coming from the 

atmosphere of the Sun due to cosmic particles interactions. Focusing in the 10 GeV - 10 TeV 

energy range and using 2007-2012 data, the sensitivity obtained for the flux is approximately 

10
12

 km
-2

 y
-1

, whereas the expected flux is two order of magnitudes below. From this, we can 

conclude that present high-energy neutrino telescopes dark matter searches in the Sun can 

indeed neglect this contribution, but could play a role in future detectors with better neutrino 

flux sensitivities in the 10 GeV - 10 TeV energy range and very good angular resolution. 
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1. Introduction 

There are several techniques to detect high energy neutrinos, but for the energy range of 

interest between 10
10

 and 10
16

 eV, the most exploited method is the detection with large volumes 

of dense material (such as water or ice) by photomultipliers sensitive to Cherenkov light. As 

neutrinos can interact with atomic nuclei to produce charged leptons that emit Cherenkov 

radiation in water, this optical pattern can be used to infer direction, energy, and more 

information about incident neutrinos. This is the technique used by the ANTARES underwater 

neutrino telescope [1]. Data from this detector have been used in different Dark Matter (DM) 

searches in the Sun [2] [3] [4]. In this kind of searches the neutrino flux produced by cosmic 

rays interacting with the atmosphere in the Sun is usually neglected. In this paper, we use the 

ANTARES detector to study this flux and to derive possible consequences for DM searches in 

the Sun through neutrino detection.  

Cosmic ray impingement on the solar atmosphere leads to the production of secondary 

particles via high energy pp-interactions, the decay of which results in the flux of both electron 

and muon neutrinos and antineutrinos. 

Studies of the flux of neutrinos originating from cosmic ray interactions with matter in the 

Sun have been performed with Monte Carlo models for high energy particle interactions [5] [6] 

[7] [8] [9]. To do this, it has been taken into account the interplanetary solar magnetic fields and 

the shadowing effect of inelastic neutrino scattering in the Sun. The Solar Atmosphere Neutrino 

(SAν) spectra may be altered by neutrino oscillations, which depend on the neutrino mass 

differences and mixing matrices. The resulting flux at the Earth (within the Sun's solid angle) is 

higher than the corresponding one from cosmic ray interactions with the Earth atmosphere, so it 

is a potential source of background for dark matter searches based on detection of neutrinos 

coming from the Sun. 

 

2. Expected neutrino fluxes from the Sun 

In recent years, significant improvements have been made in the modelling of the solar 

atmosphere. Ingelman and Thunman [10] used a semi-empirical 1D model for solar density 

from the data of [11] for the atmosphere (updated in [12]) and [13] for the deeper layers of the 

Sun. It can be parameterized using the following expression: (ℎ) = 𝜌0𝑒−ℎ/ℎ0 , where ℎ >  0 

and ℎ < 0 are the locations above and below the solar radius 𝑅⊙, respectively. The parameters 

𝜌0 and ℎ0 are presented in Table 1. 
 

ℎ [𝑘𝑚] 𝜌0 [𝑔/𝑐𝑚3] ℎ0[𝑘𝑚] 

ℎ > 0 3.68 · 10−7 115 

−2000 < ℎ < 0 3.68 · 10−7 622 

ℎ < −2000 45.3 · 10−7 2835 

Table 1. Parameters that define the profile of solar density. 

 

The most current profiles [6] [7] start from this 1D model and complement it with 

additional requirements. In Figure 1 we show an outline of how the particles travel through the 

Sun, as well as the density profile. The incoming cosmic rays interact with the Sun creating 

secondary particles that interact or decay producing neutrinos. It is observed that, depending on 
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the angle of impact with respect to the axis connecting the Sun and Earth, the interaction length 

varies, being greater for smaller angles. 

 

Figure 1. Neutrino production scheme of the solar atmosphere and density profile of the Sun. 

 

In Figure 2 we show a first approximation of the expected SAν flux in the Earth without 

considering the oscillations (left) and considering the oscillations (right) [5]. For comparison, 

the flux of neutrinos from the Earth atmosphere is also shown on the left plot. We can infer that, 

for the energy range of interest (10 GeV - 10 TeV) the total expected flux is approximately 

2.7 · 1010 km
-2

 y
-1

. 

 

                                   Without oscillations With oscillations 

 
Figure 2. Comparison of expected atmospheric solar neutrino fluxes on Earth, with and without oscillation, for the 

three neutrino families. From [5].  
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From most recent studies [6] we extract the fluxes (Figure 3) from each of the neutrino and 

antineutrino flavours of the solar atmosphere that reach the Earth (solid line), compared to those 

produced in the solar atmosphere (discontinuous). Shaded bands show the region of uncertainty 

in all models. In this case, we have the dependence on the angle with respect to the solar centre. 

These fluxes have been used in the studies. 

 

 

Figure 3. Fluxes of the three neutrino and antineutrino flavours at production in the atmosphere of the Sun and on 
Earth. From [6].  

 

3. ANTARES search for neutrinos from cosmic ray interactions in the Sun 

To place the most restrictive limits on a signal model, the strategy to choose the 

appropriate event selection is based on two steps: 

 

1
st
 Step. From a flux of particles known by a physical model of a source (e.g. the Sun) and 

the efficiency of the telescope (expressed through the effective area), we can obtain the 

sensitivity to that flux from a model of rejection. For this, the parametric cuts that optimize the 

sensitivity to this flux are looked for. Although we cannot know the actual upper limit that will 

result from an experiment until we see the data, we can use in this step the Monte Carlo 

predictions to calculate the sensitivity (average upper limit calculated according to Feldman-

Cousins [14]) that would be observed after a hypothetical repetition of the experiments with an 

expected background, 𝑛𝑏, and no true signal (𝑛𝑠 =  0). This average upper limit, 𝜇̅90, is the sum 

of the expected upper limits, 𝜇90(𝑛𝑜𝑏𝑠, 𝑛𝑏), weighted by its probability of occurrence of 

Poisson, i.e.: 

 

𝜇̅90(𝑛𝑏) = ∑ 𝜇90(𝑛𝑜𝑏𝑠, 𝑛𝑏)
(𝑛𝑏)𝑛𝑜𝑏𝑠

(𝑛𝑜𝑏𝑠)!
𝑒

−𝑛𝑏∞
𝑛𝑜𝑏𝑠

. ( 1 ) 

 

On a set of identical experiments, the strongest constraint on the expected flow of the 

signal 𝛷 corresponds to the set of selection cuts that minimizes the model rejection factor and, 

therefore, minimizes the upper limit of average flow that would be obtained on the hypothetical 

experimental set. For the purposes of calculation with neutrino telescopes, we will use the 

following expression [15] [2]: 
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𝑆̅(𝑛𝑏) = Φ
𝜇̅90

𝑛𝑠
=

𝜇̅90

𝐴𝐸𝑓𝑓 · 𝑇
 ( 2 ) 

 

where 𝐴𝐸𝑓𝑓 is the average effective area in the energetic range in question for both neutrinos 

and antineutrinos and 𝑇 is the live time of the detector. 

2
nd

 Step. With the values obtained in the first step, the flux observed by the telescope is 

searched applying these selection cuts and if no significant excess over background is observed 

the upper limit to the flux is established. Then, the corresponding upper limit at 90% confidence 

level of the flux from the source is [15]: 

 

𝐿(𝑛𝑜𝑏𝑠, 𝑛𝑏) = Φ
𝜇90(𝑛𝑜𝑏𝑠,𝑛𝑏)

𝑛𝑠
=

𝜇90(𝑛𝑜𝑏𝑠,𝑛𝑏)

𝐴𝐸𝑓𝑓·𝑇
. ( 3 ) 

 

As for the 2008-2012 analysis [3], a binned method is used in order to optimize the 

sensitivities of ANTARES in the search for neutrinos from cosmic ray interactions in the Sun. 

The Model Rejection Factor (MRF) is used to optimize the angular distance to the sources 

(0≤angle≤3º) and the track quality cut parameter 0 ≤ 𝜒2 ≤ 2 for events detected with more than 

one line, so both zenith and azimuth of neutrino direction could be determined with good 

accuracy.  

Table 2 summarises the results of the study. The selection parameters that optimise the 

sensitivity are shown. It is also presented the effective area times the live time of the detector for 

these parameters and the observed and expected background events. Finally, the SAν flux 

sensitivity and upper limit obtained are shown. 

 

Parameters 𝐴𝑒𝑓𝑓 · 𝑇 
 

[m
2
·d] 

Events Sensitivity Upper flux Limit 

𝜒2 Angle [º] 𝑛𝑜𝑏𝑠 𝑛𝑏 [km
-2

·y
-1

] ·10
12

 [km
-2

·y
-1

] ·10
12

 

1.4 2.1 3.4·10
-4

 1 1.8 3.9 3.5 

Table 2. Values of the parameters that optimise the sensitivity, the effective area times the live time, the observed and 
expected background events, and the SAν flux sensitivity and upper limit obtained. 

 

4. Solar neutrino floors for ANTARES  

We have derived the floor for Secluded Dark Mather (SDM) searches in the Sun with 

the ANTARES detector due to interactions of cosmic rays in the atmosphere of the Sun. 

Particularly, the case when two DM particles annihilates to meta-stable mediators which, in 

turn, decay into neutrino plus antineutrino [16] [4] [17] has been selected as example because of 

the enhanced signal in high-energy neutrino telescopes. For this purpose, we have to reinterpret 

the flux of SAν in terms of flux for the SDM detection studies. A simplified approach to the 

problem is to weight the original neutrino flux 𝜙𝐴𝑆𝜈
 with the effective areas for SDM and SAν, 

as follows: 

𝜙𝜈 = 𝜙𝐴𝑆𝜈
·

𝐴𝐸𝑓𝑓,𝐴𝑆𝜈

𝐴𝐸𝑓𝑓,𝑆𝐷𝑀
 . 
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From the optimization of the event selection criteria for SDM searches with ANTARES 

[4], we obtained the best sensitivities from neutrino fluxes using the Model Rejection Factor 

(MRF) method [15], as well as the effective areas 𝐴𝐸𝑓𝑓,𝑆𝐷𝑀. With these best sensitivities we 

have the best quality and angular cuts. In addition, from the present study we obtain the 

corresponding effective areas 𝐴𝐸𝑓𝑓,𝐴𝑆𝜈
 for the resulting quality and angular cuts for SDM 

searches. We present the results of the floor for the case of mediator that decays directly into 

neutrinos, in which the neutrino signal is enhanced, and thus the one that first will reach the 

floor. This happens in the situation in which the mediator lifetime is long enough, so that the 

absorption of neutrinos in the Sun becomes negligible, but not so long that the mediator decays 

before reaching the Earth. In this scenario, for long-lived mediators (𝐿 > 10
5
 km), the 

relationship between Γ and 𝜙𝜈 is [4]: 

Γ =
4𝜋𝐷2𝜙𝜈

4
3

(1 − 𝑒−𝐷 𝐿⁄ )
 

where D is the distance between the Sun and the Earth and L is the mediator’s decay length, 

𝐿 = 𝛾𝑐𝜏, i.e. the product of the mediator’s lifetime, 𝜏, the speed of light, 𝑐, and the relativistic 

boost factor 𝛾. The limits on the DM-proton cross sections have been derived assuming that 

there is equilibrium of the DM population in the Sun, and the same approximations shown in [4] 

[18]. Figure 4 shows the neutrino floor for SDM in the case of mediator decay into neutrino for 

a decay length of 2.8·10
7
 km. Here, we only consider Spin-Dependent (SD) cross sections, as 

direct detection experiments are more efficient for testing the Spin-Independent cross sections. 

The floor for ANTARES is more than two orders of magnitude below the current limit. IceCube 

limit from [17] is closer to the neutrino floor, although this should be taken with caution since 

the floor does depend in the detector as well, and the floor presented here is for ANTARES.  

 

 

Figure 4. ANTARES neutrino floor due to SAν for the SDM model in which the mediator decays directly into 
neutrinos. It is compared with the limits from ANTARES [4] and IceCube-79 [19] [17] and the limits from the direct 

detection experiments PICO [20] [21] [22] [23]. 
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5. Conclusions 

We have obtained the sensitivity of ANTARES for SAν flux, and derived an upper limit 

to this flux. We have also studied the SAν as a background to the signal from DM annihilation 

in the Sun. Particularly for SDM that annihilates into meta-stable mediators that decay into 

neutrinos. For this SDM case, in which we expect the largest flux, the floor due to SAν is still 

more than one order of magnitude below the current ANTARES upper limit. Anyway, the SAν 

flux will be an essentially irreducible background for neutrino searches from DM annihilation in 

the Sun, and thus, this background should be studied as well for the next generation of neutrino 

telescopes, such as KM3NeT [24]. 
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