
Genome Mutational and Transcriptional Hotspots Are Traps

for Duplicated Genes and Sources of Adaptations

Mario A. Fares1,2,3,*, Beatriz Sabater-Mu~noz1,2,3, and Christina Toft2,4,5

1Instituto de Biolog�ıa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cient�ıficas (CSIC), Universidad Politécnica de Valencia,
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Abstract

Gene duplication generates new geneticmaterial, whichhas been shownto lead tomajor innovations inunicellular and multicellular

organisms.Awhole-genomeduplicationoccurred in theancestorof Saccharomyces yeast speciesbut92% ofduplicates returned to

single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic

innovations, which have been the source of the unique biotechnological capabilities in the Baker’s yeast Saccharomyces cerevisiae.

What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local

genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of

duplicatedgenes in themutational and transcriptionalhotspotsofS. cerevisiaegenome.Themechanismofduplicationmatters,with

whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and

transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tol-

erance todeleteriousmutations induplicateswith repetitivepromoter elements, which in turnexhibit higher transcriptional plasticity

against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory

and functional divergence of their gene copies providing a source of novel adaptations in yeast.

Key words: gene duplication, mutational genome hotspots, expression genome hotspots, environmental stress, pheno-

typic plasticity, adaptations, genetic redundancy.

Introduction

Gene duplication is considered the most important source of

novel functions (Ohno 1970, 1999). Relaxed selective con-

straints after gene duplication allows duplicated genes to ex-

plore novel genotypes and find new functions (Haldane 1932;

Ohno 1999; Payne and Wagner 2014; Taylor and Raes 2004).

However, since most emerging mutations are degenerative

(Kimura 1983; Kimura and Takahata 1983), the common fate

of duplicated genes is the nonfunctionalization of one of the

gene copies and its subsequent erosion from the genome

(Ohno 1970). An example of this is the return of 92% of the

yeast Saccharomyces duplicates to single-copy genes “shortly”

after the duplication of Saccharomyces ancestor genome> 100

MYA (Wolfe and Shields 1997; although see [Marcet-Houben

2015]). The remaining duplicates (around 8% of the genome)

led to major metabolic innovations. Because duplication impacts

genome size and can alter the genetic map of organisms, re-

vealing the factors that determine the persistence of duplicates

is an important question in evolutionary genomics.

A number of scenarios have been proposed to explain why

some genes and not others persist in the genome as duplicates.

Firstly, natural selection may favor individuals with an increase

in gene dosage through duplication (Conant and Wolfe 2008).

Secondly, purifying selection will prevent the loss of one of the
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gene copies after duplication if a balance between dosage-

sensitive genes is required (Birchler et al. 2001, 2005; Freeling

and Thomas 2006). Thirdly, highly expressed genes have been

shown to be more duplicable after whole-genome duplication

than lowly expressed genes because of absolute dosage con-

straints and constraints on dosage balance (Gout et al. 2009,

2010; Gout and Lynch 2015; Papp et al. 2003; Qian et al.

2010; Seoighe and Wolfe 1999). Fourthly, the functional

backup provided by gene copies can mask the effects of de-

generative mutations and be selectively advantageous (Fares

et al. 2013; Keane et al. 2014), although the selective value

of this masking effect remains controversial (Fares 2015). In the

absence of selective advantage for the genetic redundancy

provided by gene duplication, the nonfunctionalization of a

gene copy and its erosion from the genome remains the

most likely outcome. However, a rapid relief of genetic redun-

dancy through the divergence between gene copies may pre-

vent the return of duplicates to the single-copy gene status.

One way of resolving genetic redundancy is through a quick

divergencebetween thegenecopiesof theduplicate.Under this

scenario, the preservation of duplicated genes should be more

likely in genome regions with high mutation rates than in ge-

nome regions with low mutation rates. Mutation rates vary con-

siderably across the genome (Chuang and Li 2004), with the

heterochromatic late replicating regions exhibiting remarkable

differences in the mutation rates when compared with the early

replicating euchromatin (Schuster-Bockler and Lehner 2012;

Supek and Lehner 2015). Transcription has also been shown

to be mutagenic, with highly expressed genes revealing higher

netmutation rates than lowlyexpressedgenes (Parketal. 2012).

Notwithstanding the fact that mostmutationswould lead to the

nonfunctionalization of one copy of the duplicated gene, the

likelihood for the functional divergence between gene copies of

duplicates is higher in genomic regions with higher mutation

rates. Once a gene copy has found novel functions, purifying

selection would preclude the loss of this gene copy.

In addition to functional divergence, divergence between

gene copies can also take place at the expression level, such

that each gene copy can be expressed under specific environ-

mental conditions. This would allow the organism to adapt to

different environments without a need to optimize the

encoded function of the gene to each environment. A way

of achieving a divergence in expression between gene copies

is through the presence of sequence repeats in the promoters

of duplicated genes. Interestingly, Sequences composed of

tandem repeats, which are repeated DNA sequences adjacent

to one another in a head-to-tail orientation, evolve at a higher

rate than the surrounding genome (Rando and Verstrepen

2007). There is evidence that such repeats influence the ex-

pression of certain genes (Martin et al. 2005; Rockman and

Wray 2002; Streelman and Kocher 2002). Moreover, genes

driven by repeat-containing promoters show higher rate of

transcriptional divergence (Vinces et al. 2009). Therefore, ge-

nome mutational and transcriptional hotspots can be traps for

duplicated genes because duplicates at such genome regions

can diverge functionally and in their expression quicker than in

other regions and thus be subsequently maintained by puri-

fying selection. We also hypothesize that such genome hot-

spots are sources of novel functions and adaptations.

In this study, we compare the mutational and transcrip-

tional rates of genome regions containing duplicated genes in

S. cerevisiae with the rates of genome regions containing only

singletons. Duplicated genes fall preferentially within genome

regions with high rates of mutation, high rates of evolution,

and high transcription levels. There are important differences

in terms of mutation rates between genome regions contain-

ing duplicates emerging from whole-genome duplication

events (WGDs) and those with duplicates generated through

small-scale duplications (SSDs). Experimentally evolved S. cer-

evisiae tolerates more mutations in mutational and transcrip-

tional genome hotspots. Remarkably, the promoters of

duplicates that accumulate mutations are rich in repetitive

motifs, known to influence the expression of certain genes

(Gemayel et al. 2010; Martin et al. 2005; Rockman and Wray

2002; Streelman and Kocher 2002; Tirosh et al. 2009; Vinces

et al. 2009). Duplicates containing repetitive motifs exhibit

larger regulatory plasticity under environmental perturbations.

Collectively, we demonstrate that genome mutational and

expression hotspots retain genes in duplicate and are the

source of adaptations to environmental stress.

Materials and Methods

Identification of Duplicated Genes

Paralogs pairs of duplicated genes were identified as the result-

ing best reciprocal hits from all-against-all BLAST searches us-

ing BLASTP with an E-value cutoff of 1E-5 and a 50 bit score

(Altschul et al. 1997). Paralogs were then divided into two

groups according to the mechanism of their origin: WGDs

and SSDs. WGDs are those extracted from the reconciled list

provided by the YGOB (Yeast Gene Order Browser, http://

wolfe.gen.tcd.ie//ygob; last accessed May 4, 2017 [Byrne and

Wolfe 2005]) (555 pairs of genes), and these were not sub-

jected to subsequent SSD. All other paralogs were considered

to belong to the category of SSDs (560 pairs of genes).

Sequence Alignments and Analysis of Divergence

For each protein-coding gene of S. cerevisiae, we searched for

its ortholog in the closely related species S. paradoxus using

the program blastP. Pairwise sequence alignments were built

using the program ClustalW. To calculate the distance be-

tween S. cerevisiae and S. paradoxus for each of the genes,

we estimated the number of nonsynonymous nucleotide

substitutions per nonsynonymous site (dN), synonymous sub-

stitutions per synonymous site (dS), and the nonsynonymous-

to-synonymous rates ratio (x¼ dN/dS) using the

maximum-likelihood approach under the Goldman and
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Yang model (Goldman and Yang 1994) as implemented in

the PAML package version 4.7 (Yang 2007).

Mapping SNPs in Experimentally Evolved S. cerevisiae
Genomes

The evolution experiment was performed in our previous study

(Keane et al. 2014). Briefly, the evolution experiment started

with a single-colony-founded population, from which we de-

rived five evolving lineages of the S. cerevisiae strain Y06240.

This clonal population was serially passaged onto YPD plates for

roughly 2,200 generations of the yeast by repeated streaking,

each passage resulting from restreaking a single colony. Since

only one colony was passaged into the next generation, this

experiment simulated a Muller ratchet dynamic, in which ge-

nome mutations in generation t, included those from genera-

tion t� 1 in addition to the new emerging mutations. The low

effective population size (Ne) of our experiment implies that Ne

multiplied by the mutation rate (l) is lNen 1, and thus the

population evolved under strong genetic drift effects. Under

these conditions, most of the mutations fixed in the population

are likely deleterious and the fixation rate of mutations is ap-

proximated to the mutation rate—the fixation rate is 80% the

mutation rate, as 20% of all mutations were estimated to be

lethal (Keane, et al. 2014). Whole genome sequencing of the

ancestor and each of the five evolved lineages was carried out

at 2,200 generations using Illumina technology, as previously

described (Keane, et al. 2014). Mapping of mutations was pos-

sible using the program breseqv0.24rc (Deatherage and Barrick

2014). Sequence reads are available at the Sequence Read

Archive with accession numbers (SRP012321). Mutations

were then separated into two groups: those affecting

protein-coding genes and those localized within the first 600

nucleotides upstream of protein-coding genes. The second

group of mutations was further divided into those mutations

affecting upstream regions of duplicated genes and those af-

fecting upstream regions of singleton genes.

Analysis of Gene Expression Under Stress in S. cerevisiae

We tested the transcriptional plasticity of S. cerevisiae genes by

comparing the expression of genes in YPD to that obtained

from other studies after growing S. cerevisiae in eight different

stress conditions, including acidic stress (Casamayor et al.

2012), alkaline stress (Casamayor et al. 2012), wine fermen-

tation at 12 h, heat stress (Berry and Gasch 2008), lithium

stress (Bro et al. 2003), impairment of manganese (Garcia-

Rodriguez et al. 2012), osmotic stress with NaCl (Berry and

Gasch 2008), and glucose limitation (Jansen et al. 2005). We

also performed new growth experiments in which we sub-

jected S. cerevisiae to an additional five stress conditions (eth-

anol, lactic acid, glycerol, oxygen, and oxygen supplemented

with dextrose) (supplementary data 1–5, Supplementary

Material online). We therefore performed analyses for

13 stress conditions altogether. We considered a duplicated

gene to increment significantly its expression levels under

stress conditions if the proportional normalized expression of

this gene increased or decreased (i.e., incremented) signifi-

cantly, corresponding this to an expression increment under

stress of more than 20% of the gene expression.

The transcriptomic profiling in our study was performed in

the S. cerevisiae Y06240 haploid strain, with three technical

replicates for each biological stress condition (3% lactic acid

[YPL], 3% Ethanol [YPE], 3% glycerol [YPG], 0.25mM H2O2

[YPOx], and 0.25mM H2O2þ 1.5% glucose [YPOxD]) in com-

parison with the normal growth condition (YPD media).

Therefore, in total S. cerevisiae was grown in YPD and five

other stress conditions for 24h. Total RNA extractions were

performed with RNeasy kit (Qiagen) following manufacturer

instructions. Ribosomal RNA was removed by using Ribo-Zero

Gold rRNA removal yeast (Illumina) depletion kit. Stranded

RNA libraries were constructed using TruSeq stranded mRNA

(Illumina) from oligo-dT captured mRNAs from depleted sam-

ples. Libraries were run in NextSeq 500 (Illumina) at 75nt sin-

gle read by using High Output 75 cycles kit v2.0 (Illumina).

RNA libraries were sequenced at Genomic core facility at

Servicio Central de Soporte a la Investigaci�on Experimental

(SCSIE) from University of Valencia, Spain. Raw reads were

analyzed using FastQC report and cleaned with CutAdapt as

implemented in RobiNA software package v 1.2.4 (Lohse

et al. 2012). Low quality reads were filtered and trimmed

(Pred score inferior to 20 and size <40 nt were discarded).

The reads were then aligned with Bowtie (up to two mis-

matches accepted) to the reference transcriptome

(PRJNA290217) from the reference S288c strain. Statistical

assessment of differential gene expression was done either

with edge R (Robinson et al. 2010) or with DeSeq (Anders and

Huber 2010) as implemented in RobiNA. All newly sequenced

RNA sequences are available from the Sequence Read Archive

with the following accession number (SRP074821).

Genetic Interaction Data

We used the latest update of the genetic functional chart of

S. cerevisiae (Costanzo et al. 2010; supplementary files S4 and

S5, Supplementary Material online from http://drygin.ccbr.

utoronto.ca/�costanzo/; last accessed May 4, 2017). The ge-

netic map is based on the synthetic genetic array methodol-

ogy (Tong et al. 2001). In this methodology, synthetic lethal

genetic interactions are systematically mapped to single and

double mutants. In this study, two genes are considered to

interact genetically if the double knock out mutant of the two

genes has significantly larger or smaller effect than the mul-

tiplicative effects of simple knockouts.

Software

Calculations and statistics were performed using MS Excel

and R 3.2.1. Data management was possible using in-house

built PERL scripts.
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Results

Duplicated Genes Fall within Evolutionary Genome
Hotspots

To determine whether genes with paralogs in the genome fall

preferentially within evolutionary genome hotspots, we fol-

lowed two approximations: a wider genome window analysis

of evolutionary rates and a more local genome region analysis

of these rates. In both approximations, we compared the di-

vergence levels across the genome between S. cerevisiae and

its close phylogenetic relative S. paradoxus. Duplicates gener-

ated through WGD and SSD predate the divergence between

S. cerevisiae and S. paradoxus, and thus duplicates should be

all represented in these two species. Divergence levels were

estimated using two measures: the nonsynonymous nucleo-

tide distance per nonsynonymous site (i.e., nucleotide replace-

ments that lead to amino acid changes: dN) and the

synonymous changes per synonymous site (dS).

In the first approximation, we examined dN for a genome

window of 40 Kilobases (kb), which we moved 40 kb across

the genome in each step. This window size (40 kb) was

enough to ensure that at least one duplicated gene was pre-

sent in the genome region defined by the window. For each

of the steps, we counted the number of duplicates—that is,

genes with paralogs elsewhere in the genome (supplementary

data 6, Supplementary Material online). We then compared

the number of duplicates genome wide to dN for that window

once duplicated genes were excluded. We found a positive

significant but moderate correlation between the number of

duplicates and the mean dN across the genome (Pearson cor-

relation: r¼ 0.12, P¼ 0.034). To determine whether such a

correlation is homogeneous across chromosomes, we re-

peated this analysis for each of the 16 chromosomes in

S. cerevisiae. We found two types of chromosomes (supple-

mentary data 7, Supplementary Material online): (a) Group 1

included those chromosome (12 out of the 16 chromosomes)

in which the relationship was positive between the number of

duplicates and dN and (b) Group 2 included those chromo-

somes (four out of the 16: I, VI, XI, and XVI) in which this

relationship was negative. We took all the genome windows

for the 12 chromsomes in which the relationship between the

number of duplicates and dN was positive and tested the

correlation between these two numbers. These chromosomes

exhibited a positive correlation between dN and the number

of duplicates they contained (Pearson correlation: r¼ 0.19,

P¼ 0.002). Most duplicates (82.4%) belonged to chromo-

somes of Group 1. These results were not reproduced in

the case of dS, which showed no significant relationship

with the number of duplicates (Pearson correlation:

r¼ 0.01, P¼ 0.892). Therefore, this first approximation

showed that duplicates fell within genome regions with

high rates of evolution.

Because defining a genome window of 40 kb may include

subregions with different mutation rates, we reanalyzed the

data using a much more local genome region neighboring

duplicated genes. We determined dN for genes belonging to

the group of the six singletons in the immediate genome

neighborhood of duplicated genes, three singletons at either

side (We call these regions GRDs, fig. 1a, table 1, and sup-

plementary data 8, Supplementary Material online). We use

three singletons at either side because this number ensured a

real genome neighborhood of the six genes considered in the

GRDs, such that none of the six genes is located far away in

the chromosome from the other five genes. We then com-

pared the rates of evolution of GRDs with the rate of evolution

of those regions that only contained single copy genes (seven

singletons, one singleton neighbored by three other single-

tons at either side, called hereafter GRSs). In the GRDs, dupli-

cated genes were excluded from distance estimations and

only singletons were used to calculate the rates of evolution

of that genomic region, thereby avoiding the bias in the re-

sults due to the contribution of dosage-sensitive genes (fig.

1a). GRDs contained genes with higher dN (Mean 6 SD:

0.040 6 0.02) than GRSs (Mean 6 SD: 0.038 6 0.03)

(Wilcoxon rank test: P¼ 3.05 � 10�5). This indicates that

the GRDs evolve faster than GRSs. Unlike dN, there was no

significant difference in dS between GRDs and GRSs (supple-

mentary data 8, Supplementary Material online; Wilcoxon

rank test: P¼ 0.343), indicating that GRDs are hotspots of

amino acid replacing mutations, that is they exhibit high rates

of evolution (table 1).

The preferential location of duplicates in evolutionary hot-

spots is not a byproduct of positive selection in duplicates:

only 0.13% of all duplicates showed signature of positive se-

lection (i.e., x¼ dN/dS> 1 under the Goldman and Yang

model implemented in the program PAML [Yang 2007])

against 1.9% of the singletons. GRDs were, nevertheless,

more enriched for positive selection than GRSs (5.35% of

the GRDs exhibited evidence of positive selection against

4.04% of the GRSs. Fisher’s exact test: F¼ 1.34, P¼ 0.008).

However, removing GRDs with evidence of positive selection

from the analyses yielded similar results to those before re-

moving them: GRDs exhibited higher dN (0.038 6 0.015) than

GRSs (0.036 6 0.026; Wilcoxon rank test: P¼ 1.69 � 10�4).

To determine the distribution of evolution hotspots and

GRDs across the 16 chromosomes, we compared dN of

GRDs and GRSs across the 16 chromosomes (supplementary

data 9, Supplementary Material online and fig. 1b). Seven out

of the 16 chromosomes (Chromosomes II, IV, V, VIII, XII, XIV,

and XV) showed significantly higher dN for GRDs than GRSs,

while in the other nine chromosomes there was no significant

differences (fig. 1b). The seven chromosomes with evidence

of accelerated rates of evolution for GRDs included 1,342 out

of the 2,240 duplicated genes (�60% of all duplicates), which

was a higher proportion than expected given that those seven

chromosomes represented 52% of all the genes in S. cerevi-

siae (Binomial test: P¼ 5.43 � 10�14). We found that for

each chromosome the probability of a duplicated gene to
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have its paralog in the same chromosome was low (the mean

proportion of duplicated genes with paralogs being located in

the same chromosome was 10.27% 6 1.16), with the lowest

percentage being found in chromosome XI (1.75%) and the

highest in chromosome XII (17.44%). This means that the ma-

jority of duplicated genes (�90% of all duplicates in the ge-

nome) had their paralogs in a different chromosome from the

one in which they were located. Importantly, with the excep-

tion of chromosome XIII, when duplicates were in GRDs with

low dN (i.e., the duplicates located in the nine chromosomes

that contained 40% of duplicates) their paralogs were in

GRDs with higher dN than expected (fig. 1c). In conclusion,

preserved duplicated genes were those in which at least one

gene copy fell within a genome region with high rates of

evolution.

Genome Regions with Different Mutation Rates Trap
Differently Whole-Genome and Small-Scale Duplicates

Since the signature of high evolutionary rates for GRDs was

clear when using dN but not when using dS, we investigated

whether this pattern was due to the mixed signatures of evo-

lution of GRDs containing duplicates originated through two

different mechanisms: whole-genome or small-scale duplica-

tion. The mechanism of duplication is known to influence the

functional fate of duplicates: duplicates originated by whole

genome duplication (WGDs) are more prone to partition an-

cestral functions, while those generated by small-scale dupli-

cations (SSDs) are generally more prone to acquire novel

functions (Carretero-Paulet and Fares 2012; Fares 2015;

Fares et al. 2013; Keane et al. 2014). WGDs are known to

have undergone substantial divergence in their expression

levels, perhaps due to mutations in their promoter regions

(Conant and Wolfe 2008; Keane et al. 2014). The gene copies

of SSDs have also diverged in their expression and functional

roles (Keane et al. 2014). In order to determine if GRDs exhibit

different evolutionary and mutational properties when they

include WGDs than SSDs, we split GRDs into those containing

YAR002C-A YAR003W YAR007C YAR008W YAL002W YAL001C YAR002W 

Duplicate 

GRDs 
Non-synonymous substitutions per site (dN) 
Synonymous substitutions per site (dS) 

Mean

Chromosome 

d N

GRDs GRSs

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI 

Chromosome 

dN

GRDs GRDs-paralogs

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI 

A

B

C

0.00

0.05

0.10

0.15

0.20

0.00
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0.10

0.15

Singletons Singletons

0.20

FIG. 1.—Duplicated genes persist in genome evolutionary hotspots.

(a) We estimated the mean nonsynonymous nucleotide substitutions per

nonsynonymous site (dN: black column) and the synonymous substitutions

FIG. 1. Continued

per synonymous site (dS; white column), for the three singleton genes

(Locus tag genes in the white rectangles) immediately flanking a dupli-

cated gene (black rectangle) at either side. (b) The mean dN for each region

containing a duplicate (GRDs) within each chromosome was calculated

and compared to that of genome regions containing only singletons

(GRSs). We identified seven chromosomes in which GRDs exhibited signif-

icantly higher dN than GRSs (red-labeled roman numbers in x axis). (c) For

each of the duplicates contained in each GRD of each chromosome, we

searched for its paralogue elsewhere in the genome. Then we compared

the dN of both these groups and found that when one GRD of a chromo-

some exhibited a mean dN below the mean dN for GRSs (white boxes),

their paralogs exhibited the inverse pattern (gray boxes), and vice versa.

Red-labeled chromosomal numbers in the x axis indicate those for which

evidence exist that at least one of the paralogs is in a GRD with high dN.
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WGDs and SSDs and compared their rates of evolution to

those of GRSs.

We analyzed the rates of evolution of genome regions

containing WGDs or SSDs (supplementary data 10 and 11,

Supplementary Material online). We found that GRDs of

WGDs were in genome hotspots in comparison with GRSs

for both dN (Mean dN 6 SD for GRDs¼ 0.042 6 0.02,

Wilcoxon rank test: P¼ 5.47 � 10�9) and dS (Mean dS

6 SD for GRDs¼ 0.316 6 0.06, mean dS for

GRSs¼ 0.29 6 0.1. Wilcoxon rank test: P¼ 2.50 � 10�4). In

contrast to WGDs, dN of GRDs containing SSDs was not sig-

nificantly different from that of GRSs (Mean dN for

GRDs¼ 0.038 6 0.02. Wilcoxon rank test: P¼ 0.625), while

exhibited lower dS than GRSs (Mean dS for

GRDs¼ 0.279 6 0.13. Wilcoxon rank test: P¼ 0.021).

Removing GRDs and GRSs that contained positively selected

genes led to similar results, GRDs containing WGDs are in

genome hotspots for dN (0.04 6 0.2) (Wilcoxon rank test:

P¼ 1.47 � 10�8) and dS (0.32 6 0.1) (Wilcoxon rank test:

P¼ 6.59 � 10�5), while GRDs containing SSDs showed no

evidence of mutational hotpots for dN (0.035 6 0.02)

(Wilcoxon rank test: P¼ 0.93) and slightly significantly lower

rate for dS (0.28 6 0.13) (Wilcoxon rank test: P¼ 0.041).

Finally, for most chromosomes, dN of GRDs containing

WGDs was higher than that of GRSs (Mean of the differences:

0.003; t-paired test: t¼ 2.52, d.f.¼ 15, P¼ 0.023). In the case

of dS, this was higher for GRDs containing WGDs than that for

GRSs in most chromosomes (Mean of the differ-

ences¼ 0.024. Paired t-test: t¼ 5.05, d.f.¼ 15, P¼ 1.4 �
10�4). Unlike GRDs containing WGDs, those containing

SSDs showed no evidence for higher or lower dN than GRSs

(Mean of the differences¼�0.002. Paired t-test: t¼�1.44,

d.f.¼ 15, P¼ 0.16) nor they exhibited any pattern for dS that

distinguishes GRDs from GRSs (Mean of the differ-

ences¼�0.013. Paired t-test: t¼�1.76, d.f.¼ 15, P¼ 0.09).

Finally, using SNP data from en evolution experiment of

S. cerevisiae under strong genetic drift (Keane et al. 2014),

GRDs containing WGDs were significantly enriched for SNPs

and indels compared to GRSs (table 2, 26.1% of GRDs with

WGDs contained SNPs against the 21.95% of GRSs with

SNPs; Fisher’s exact test: F¼ 1.26, P¼ 1.6 � 10�3), while

GRDs containing SSDs showed no difference in terms of

SNPs or indels with GRSs (table 2, 22.64% of GRDs with

SSDs contained SNPs. Fisher’s exact test: F¼ 1.04, P¼ 0.60).

Taken together, our results support that genome regions with

high mutation rates trap differently duplicates depending on

the mechanism of duplication. These data also point to higher

mutation rates clearly when using WGDs but not SSDs. GRDs

containing SSDs may therefore hide the difference in dS be-

tween GRDs and GRSs when the analyses do not separate

these GRDs from the ones containing WGDs.

Duplicated Genes Fall within Mutational Genome Hotspots

Our previous analysis demonstrated that GRDs exhibit higher

evolution rates than GRSs. We sought to investigate if GRDs

also exhibit higher mutation rates than GRSs. The estimated

rates of synonymous and nonsynonymous substitutions be-

tween species are largely influenced by selection, and thus is a

very crude estimate of the rate of mutation. To determine

whether genome mutational hotspots are traps for duplicated

genes, we performed analyses on three additional data sets:

(a) analysis of the correlation between the genome density of

duplicates and experimentally measured mutation rates for

chromosome VI of S. cerevisiae (Lang and Murray 2011);

(b) analysis of yeast interstrain single nucleotide synonymous

polymorphisms (SNPs) from a previous study (Agier and

Fischer 2012) based on polymorphism data in yeast strains

from another study (Liti et al. 2009), and (c) analysis of SNPs

from an evolution experiment of S. cerevisiae under strong

genetic drift effects (Keane et al. 2014).

Lang and Murray measured the mutation rate of the URA3

gene integrated at 43 different locations tiled at chromosome

VI of S. cerevisiae. They found three main regions in the chro-

mosome that are distinguished by virtue of their differential

mutation rates: (a) the first 70 kb of the chromosome ex-

hibited the highest mutation rate (we call this the fast region),

(b) the 70 to 160 kb, including the centromeric and close

pericentric chromosomal region, showed the lowest mutation

rate (slow region), and (c) the remaining of the chromosome

showed an intermediate mutation rate (intermediate region).

We slid a 10-kb window across each of these three regions

and determined the average number of duplicates for the

slow, fast, and intermediate regions. In agreement with the

distribution of mutation rates, the fast region contained the

greatest number of duplicates (Mean¼ 2.77), which was

Table 1

Genome Regions with Duplicates (GRD) Are Mutational, Transcriptional,

and Interaction Hotspots Compared with Genome Regions with

Singletons (GRS)

GRDs GRSs t d.f. P P (Wilcoxon)

dN
a 0.04 0.038 2.24 4398.15 0.024 3.13 � 10�5

dS
b 0.30 0.29 2.08 4776.90 0.037 0.343

Expression 3.33 3.17 3.58 4024.11 3.5 � 10�4 7.5 � 10�4

GIc 220.04 211.73 2.35 3927.28 0.018 3.5 � 10�3

aMean number of nonsynonymous nucleotide substitutions per nonsynony-
mous site.

bMean number of synonymous nucleotide substitutions per synonymous site.
cMean number of genetic interactions.

Table 2

Distribution of SNPs among GRDs and GRSs

# SNPs Total # Regions % Regions

GRSs 1582 7208 21.95

GRDs (WGDs) 311 1192 26.1

GRDs (SSDs) 276 1219 22.64
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54% higher than that for the slow region (Mean¼ 1.77),

while the intermediate region showed an intermediate aver-

age number of duplicates (Mean¼ 2.1).

In the second data set, we analyzed the distribution of du-

plicates across the genome and measured the correlation of

this with the distribution of neutral SNPs identified in a previous

study (Agier and Fischer 2012), which used data on polymor-

phism for 40 different S. cerevisiae strains (Liti et al. 2009). In

this study, 144,164 SNPs were identified, of which 85,980

SNPs were synonymous. Because synonymous SNPs are more

likely to be fixed neutrally than nonsynonymous SNPs. We

counted the number of synonymous SNPs in GRDs and GRSs

and divided this number by the number of synonymous sites

for each GRD and GRS. We used this SNPs rate as a reflection

of the mutation rate in each of the genome regions. SNPs rate

at GRDs (rate¼ 0.053 synonymous SNPs per site) was 36%

higher than this rate at GRSs (rate¼ 0.039 synonymous SNPs

per site), and the difference was highly significant (Wilcoxon

rank test: P< 2.2 � 10�16). Our rate estimates for GRDs can

be biased by an enrichment of these regions for dosage sensi-

tive genes. For example, it is possible that GRDs containing

dosage sensitive duplicates may also contain dosage sensitive

genes. We identified dosage sensitive genes in the S. cerevisiae

genome as those encoding transcription factors and proteins

from protein complexes (Birchler and Veitia 2012). Such genes

were cataloged in a previous study, which showed that roughly

2,078 genes encoded proteins that form part of protein com-

plexes (Pu et al. 2009). Of all the dosage sensitive genes, we

identified 450 that belonged to the set of duplicated genes.

We reanalyzed the mutation rates for GRDs and GRSs using

the synonymous SNPs once we discarded those GRDs contain-

ing dosage-sensitive duplicates. The rate of mutation based on

this data for GRDs (rate¼ 0.052 synonymous SNPs per site)

was higher than the rate for GRSs (rate¼ 0.039 synonymous

SNPs per site) with the difference being significant (Wilcoxon

rank test: P< 2.2 � 10�16).

Agier and Fischer showed a strong correlation between

replication timing and mutation rates in S. cerevisiae (Agier

and Fischer 2012). Accordingly, a correlation is also expected

between the density of duplicates in a genome region and the

replication timing. We extracted from a previous study the

data on replication timing for nearly 21,000 points in the 16

chromosomes of S. cerevisiae (Raghuraman et al. 2001), as

well as the number of duplicates for these points. We gener-

ated a window with a size of 100 replication-timing points

and slid it along the chromosomes, summing the minutes of

replication for each window and the number of duplicates.

Then, we analyzed the correlation between the replication

timing in minutes and the number of duplicates. In agreement

with the expectation, the number of duplicates correlated

positively with replication timing, with this correlation being

strong using both the parametric method (Pearson correla-

tion: r¼ 0.39, P¼ 4.71 � 10�9) and the nonparametric

method (Spearman correlation: r¼ 0.28, P¼ 2.43 � 10�5).

In the third data set, to determine if the difference in the

evolutionary rates between GRDs and GRSs is the result of

their different mutation rates and is not the result of differ-

ences in the selective constraints among genome regions, we

used the genome SNPs data obtained in an evolution exper-

iment of S. cerevisiae under strong genetic drift (Keane et al.

2014). In this experiment, we evolved five independent pop-

ulations of a haploid S. cerevisiae strain by transferring one

single colony of S. cerevisiae every 48 h to a fresh plate for

2,200 generations of the yeast. Since one single colony was

transferred, and thus the effective population size is low, the

efficacy of natural selection in filtering deleterious mutations

out is very low, and thus the fixation rate of mutations ap-

proximates the mutation rate. We divided genes in the evolv-

ing populations into two categories, those that present a SNP

in the gene or the intergenic region neighboring it and those

that do not present any SNP or indel (i.e., insertion or dele-

tion). For each of these regions we first estimated dN between

S. cerevisiae and S. paradoxus for the six genes neighboring it

in the genome. Regions with SNPs or indels exhibited higher

dN than those without SNPs in all the five experimental pop-

ulations analyzed (fig. 2a), pointing to a positive correlation

A

B

FIG. 2.—Experimental evolution of S. cerevisiae reveals that muta-

tional genome hotspots are traps for duplicates. We identified mutations

in the coding region and 600-nucleotide genome regions upstream genes

in S. cerevisiae and calculated the nonsynonymous nucleotide substitutions

(dN) between S. cerevisiae and its close phylogenetic relative S. paradoxus

for the six genes surrounding that gene with a SNP in its promoter.

(a) Genes that have fixed a SNP in the promoter regions (black columns)

in each of the five experimentally evolving line (MA1–MA5) exhibit signif-

icantly higher (* indicates P<0.01; ** indicates P<0.001) dN than those

without SNPs (white boxes). (b) Genome regions that contain duplicates

(GRDs) exhibit more SNPs than in the promoter (black columns) fixed

during the evolution experiment of each line (MA1 to MA5) (* indicates

P<0.01; ** indicates P<0.001) than genome regions that do not contain

duplicates (GRSs) (white columns).
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between the mutation rate and the evolution rate in the ge-

nome of S. cerevisiae. Moreover, in all five mutation accumu-

lation lines, GRDs were significantly more enriched for

intergenic SNPs than GRSs: an average of 587 out of the

2,410 GRDs contained at least one SNP or indel (24.36%)

against 1,582 of the 7,208 GRSs (21.95%) (Fisher’s exact

test: F¼ 1.14, P¼ 0.01) (fig. 2b). When we analyzed inter-

genic and synonymous SNPs, we found that 45% of the GRDs

contained at least one SNP against 41% of the GRSs (Fisher’s

exact test: F¼ 1.18, P¼ 1.73 � 10�3). Although the number

of data in the evolution experiment is very reduced compared

to that of Liti et al. (2009), we found that the rate of mutation

calculated as the number of synonymous SNPs per synony-

mous site for GRDs (Mean¼ 0.018 SNPs per site) was signif-

icantly greater than that for GRSs (Mean¼ 0.015 SNPs per

site; t-test: t¼ 6.1, P¼ 1.23 � 10�9). In summary, all three

data sets pinpoint the higher mutation rate in genome regions

containing duplicates than in those containing only

singletons.

Duplicated Genes Fall within Transcriptional Genome
Hotspots

There are a number of mechanisms that ensure low error

rates during transcription and translation in the cell, including

tRNA aminoacetylation (Ibba and Soll 1999), Watson-Crick

base pairing of codon:anticodon at the ribosome (Reynolds

et al. 2010), discrimination of the elongation factor-Tu against

misacylated aminoacyl tRNAs (LaRiviere et al. 2001), and ri-

bosomal proofreading (Zaher and Green 2009). Despite the

numerous quality control mechanisms for translation, the er-

ror of translation has been estimated to be in the order of

10% per codon in Escherichia coli (Ruan et al. 2008). Highly

expressed regions of the genome are more prone to accumu-

late errors than lowly expressed genome regions (Park et al.

2012). Higher error rates of translation would ensure a re-

duced functional redundancy between the gene copies of

duplicates, which would be followed by strong purifying se-

lection to retain both of the functionally differentiated gene

copies. We examined the distribution of gene expression hot-

spots in the genome of S. cerevisiae and compared the mean

expression of GRDs to that of GRSs (supplementary data 12,

Supplementary Material online), using the RNA sequencing

data available in Supplementary table S4, Supplementary

Material online from a previous study (Nagalakshmi et al.

2008), and RNA sequence data obtained for this study (see

Materials and Methods) as a proxy to the rate of translation.

Expression of GRDs was measured as the mean expression of

neighboring singletons (supplementary data 12,

Supplementary Material online). GRDs were more expressed

(Mean: 3.33 6 0.04) on average than GRSs (Mean:

3.17 6 0.02) (Wilcoxon rank test: P¼ 7.35 � 10�4). WGDs

are dosage sensitive (Makino et al. 2013), perhaps because

their encoded functions are required at specific levels in the

cell. We extracted the list of WGDs in S. cerevisiae (Fares et al.

2013; Keane et al. 2014) and reanalyzed the transcriptional

features of the genome regions containing them (supplemen-

tary data 13, Supplementary Material online). GRDs formed

by WGDs are more highly expressed (Mean: 3.66 6 0.04)

than GRSs (Wilcoxon test: P< 2.2 � 10�16). In contrast to

GRDs formed by WGDs, those formed by SSDs showed lower

mean expression levels (Mean: 3.04 6 0.05) than GRSs

(Wilcoxon rank test: P¼ 0.048). The question that remains

is whether the promoter architecture of duplicates is different

from that of singletons and allow duplicates their expression

divergence in regions of the genome with high transcriptional

rate.

Genome Regions with Duplicates Are Rich in Repeats-
Containing Promoters

Is the promoter architecture of GRDs different from that of

GRSs? We used the map of repeat-containing gene pro-

moters in S. cerevisiae S288C (supplementary table S2,

Supplementary Material online [Vinces et al. 2009]). This

map contained 1,974 different motifs that were repeated a

variable number of times in each of the 1,359 genes contain-

ing them, with the total number of repeated regions sum-

ming up to 5,699 repeats. A total of 1,341 GRDs (55.6% of all

GRDs in the genome) presented at least one gene with a

repeat motif in its promoter. In contrast to this, 52.3% of

GRSs contained at least one gene with promoter repeats.

The percentage of GRDs with repeat motifs in the gene pro-

moters was higher than that of GRSs (Fisher’s exact test:

F¼ 1.15, P¼ 5 � 10�3). Most of the genes with repeat re-

gions in GRDs were duplicates. Indeed, 536 duplicates (i.e.,

23.9% of all duplicated genes) contained repeats in their pro-

moters against 823 singletons (i.e., 18.7% of all singletons),

with duplicates being significantly more enriched for pro-

moter repeats than singletons (Fisher’s exact test: F¼ 1.37,

P¼ 8.35 � 10�7).

To determine whether such repeat regions followed gene

duplication in Saccharomyces, we searched for repeat regions

in Zygosaccharomyces rouxii, a yeast species predating the

whole genome duplication and most small-scale duplications

of Saccharomyces. To this end, we used the Yeast Genome

Order Browser (Byrne and Wolfe 2005) to extract the inter-

genic regions up-stream of the singleton genes that were

orthologs to S. cerevisiae duplicates. Only 5.3% of the repeat

regions identified in S. cerevisiae were present in the orthol-

ogous intergenic regions of Z. rouxii. In most cases, however,

the number and length of the repeats were lower and shorter,

respectively, in Z. rouxii than in S. cerevisiae. Moreover, dupli-

cates containing repeat regions predating the WGD, also con-

tained other repeat regions that were absent in their Z. rouxii

orthologs.

WGDs were enriched for repeat regions compared to sin-

gletons (269 WGDs, corresponding to 24.23% of all WGDs.

Fares et al. GBE

1236 Genome Biol. Evol. 1229–1240 doi:10.1093/gbe/evx085 Advance Access publication April 27, 2017

Deleted Text: &acute;
Deleted Text: &acute;
Deleted Text: x
Deleted Text: x
Deleted Text: g
Deleted Text: f
Deleted Text: t
Deleted Text: g
Deleted Text: h
Deleted Text: -
Deleted Text: S
Deleted Text: S
Deleted Text: x
Deleted Text: -
Deleted Text: S
Deleted Text: x
Deleted Text: r
Deleted Text: d
Deleted Text: a
Deleted Text: r
Deleted Text: r
Deleted Text: c
Deleted Text: p
Deleted Text: (
Deleted Text: )
Deleted Text: 1 
Deleted Text: &acute;
Deleted Text: x
Deleted Text: x
Deleted Text: -
Deleted Text: -


Fisher’s exact test: F¼ 1.46, P¼ 3.49� 10�6). Likewise, SSDs

were more enriched for repeat regions than singletons (267

SSDs, corresponding to 22.25% of all SSDs. Fisher’s exact

test: F¼ 1.31, P¼ 9 � 10�3). Summing the number of re-

peats per promoter, we found 2,333 repeats in duplicates,

which was a higher number than expected (taking into ac-

count that duplicates are 33.7% of all S. cerevisiae genes, we

expected 0.337� 5,699¼ 1,921) by chance (Chi-square test:

v2¼ 40.01, P¼ 2.52 � 10�10). In contrast to duplicates, sin-

gletons represented a total of 3,366 repeat motifs, which was

a lower number than expected (expected¼ 3,778) by chance

(Chi-square test: v2¼ 23.79, P¼ 1.072 � 10�6).

GRDs with duplicated genes containing repeats in their

promoters may enable the expression divergence between

the gene copies of the duplicates under alternative environ-

mental conditions. The enrichment of duplicates for tandem

repeats may point to their higher transcriptional plasticity,

perhaps to guarantee the performance of their functions in

environments different to the normal ones (i.e., under stress).

That is, the presence of repeat regions in the promoter of one

of the gene copies may have allowed preserving the same

functions as the ones performed in the sister copy but in al-

ternative environments. If this were the case, one would ex-

pect that gene copies of duplicates in which at least one gene

copy bears tandem repeat regions should exhibit more similar

functions than those of duplicates without tandem repeat

regions. We used the genetic interaction map of S. cerevisiae

as a proxy to the functions of each of the genes (Costanzo

et al. 2010). This map contains roughly 6.5 million genetic

interactions and the functional chart for 75% of the S. cer-

evisiae genes. The number of genetic interactions for a par-

ticular gene is a proxy to the number of functions it performs

(Costanzo et al. 2010). Therefore, genes sharing high number

of interactions are likely to be involved in the same functions.

Likewise, duplicate gene copies sharing a high proportion

of their interactions are likely to perform more similar func-

tions than those sharing a low proportion of their genetic

interactions (Costanzo et al. 2010). We tested whether the

proportion of shared interactions between gene copies

(fig. 3a) correlates with the number or length of the repeats

they contain. Duplicates with at least one gene copy contain-

ing longer repeat motifs are also those in which both gene

copies performed more similar functions (Spearman correla-

tion: r¼ 0.54, P¼ 2.80 � 10�4, fig. 3b).

Under our hypothesis, gene copies with promoter repeat

motifs should be transcriptionally plastic such that variations in

the number or frequency of their repeat motif should influ-

ence their expression. If the gene copy without promoter re-

peats is the one that is functional in constant environments,

we should expect that gene copies with promoter repeat mo-

tifs should accumulate more mutations than their paralogs in

such environments where they are not required. These muta-

tions can allow the emergence of gene copy variants preadap-

tive to other environments. We examined the distribution of

SNPs that emerged during the experimental evolution under

strong genetic drift and constant rich environment of the five

S. cerevisiae populations. We found that 175 out of the 536

duplicates with repeat regions (32.6% of the duplicates with

tandem repeats) contained SNPs in their promoter regions

(600 nucleotides upstream the coding gene), while 423 of

the 1,679 genes (25.1%) with no repeat motifs accumulated

SNPs. Duplicates with repeats accumulated more promoter

SNPs than genes without repeats (Fisher’s exact test:

F¼ 1.44, P¼ 9.61 � 10�4).

Shared interactions = 5 
Interactions of paralog 1 = 8 
Interactions of paralog 2 = 7 
Proportion of shared interactions = 2(5)/(8+7) = 0.66
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FIG. 3.—Duplicates in which one gene copy bears tandem repeat

regions (trr) in its promoter share more functions than those without trr.

(a) To determine the number and kind of functions of each gene copy of a

duplicate (gene copies are presented as black and gray circles) we found

the significant genetic interactions of that gene (symbolized as color

squares) based on the functional chart of S. cerevisiae from a previous

study (Costanzo et al. 2010). The number of shared functions between the

two gene copies of a duplicate was calculated as twice the number of

shared interactions divided by the sum of total genetic interactions of both

of the gene copies. (b) We plotted the length of the repeat units in the

promoter of duplicated genes against the percentage of shared interac-

tions (GI) of the gene copies of a duplicate. Linear and curvilinear trend

adjustments are shown as red and clue lines, respectively. Pearson corre-

lation (q) and its probability are shown.
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Duplicates Provide Transcriptional Plasticity under Stress

To determine the transcriptional plasticity of duplicates, we

compared the alteration in the transcriptional levels of dupli-

cates and singletons in S. cerevisiae after growing it in 13

different stress conditions (see Materials and Methods). If du-

plicates provide plasticity to adapt to stress conditions, the

number of altered genes under stress should be greater

among duplicates than singletons. The number of duplicated

genes with significantly increased expression levels was higher

than that of singleton genes in all 13 conditions of stress (fig.

4a). Examination of the duplicates that contained one gene

copy with and one without tandem repeats in their promoters

revealed that the gene copy with tandem repeats systemati-

cally incremented more its expression under the 13 stress

conditions examined than the gene copy without repeats

(Mean of the differences: 25.74, Paired t-test: t¼ 8.51,

d.f.¼ 12, P¼ 1.99 � 10�6; fig. 4b). In conclusion, the high

transcriptional plasticity of certain genome regions allowed

trapping duplicates with particular promoter architecture.

This architecture involved enrichment for repetitive motifs

that allowed the expression divergence of the gene copies

and their increased transcriptional plasticity, increasing the

adaptability of S. cerevisiae to stress.

Discussion

In this study, we present evidence that support a higher per-

sistence of duplicates in genome regions with high mutation

rates and transcription levels. This persistence seems to be the

result of a quick divergence in the functions and expressions

of the gene copies of duplicates after duplication, followed by

purifying selection to maintain both of the gene copies. An

alternative explanation to this is that duplicate provides a se-

lective advantage because of the masking effect of deleteri-

ous mutations of the gene copies, a phenomenon that is

more important in genome regions with high mutation rates.

However, the number of scenarios that render the mutational

masking effects of duplicates selectively advantageous is lim-

ited. Fisher realized that in an idealized population with infi-

nite size, two genes with identical functions can only be

mutually maintained by the masking of deleterious mutations

if both bear identical mutation rates to defective alleles (Fisher

1935). In finite populations, the duplicate is effectively neutral

and vulnerable to eventual loss by genetic drift (Clark 1994;

Lynch 2007; Lynch et al. 2001; O’Hely 2006). This prediction is

in agreement with the loss of 92% of all Saccharomyces

cerevisiae WGDs (Wolfe and Shields 1997). Therefore, it is

more likely that the higher persistence of duplicates in ge-

nome regions with high mutation and translation rates is

the result of faster divergence between the gene copies,

thereby increasing the strength of purifying selection on

each gene copy.

An intriguing result derived from our analyses is that WGDs

but not SSDs have been maintained in mutational and tran-

scriptional genomic hotspots. WGDs are more enriched than

SSDs for dosage-sensitive genes as well as for genes encoding

A B

FIG. 4.—Duplicates exhibit high transcriptional plasticity under stress. (a) We compared the transcriptional plasticity of duplicates to singletons of S.

cerevisiae growing under one of a set of 13 different stress conditions. RNA sequence data of eight of the conditions (Acidic stress, Alkaline, Wine

fermentation, Heat stress, Lithium stress, Manganese stress, Osmotic stress, and Glucose limitation) were extracted from previously published data and

which are available from the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/download-data/expression; last accessed May 4, 2017).

RNA sequence data for five of the conditions (Ethanol stress, Lactic stress, Glycerol stress, Oxidative stress, and Oxidative stress with glucose) were obtained in

the laboratory after growing populations of the yeast under these conditions. We calculated the increments in the expression levels (DEi�j) by comparing the

normalized RNA sequence counts in normal conditions (i) versus those for stress conditions (j). Increments of expression were calculated as DEi�j ¼ Ei�Ejj j
.

Ei

.

We considered identified genes with significant increments in expression and with at least 20% increments from the normal to the stress conditions. The

proportion of genes with significant increments for Duplicates (D) and singletons (S) were estimated (color coded in the figure) and these were compared

using a Fisher’s exact test (Probability plot). (b) For each of the 23 stress conditions, we calculated the percentage of cases in which the duplicated gene copy

with repeats in its promoter regions (Drep) exhibited a larger increment in expression (DEi�j) than its paralog with no repeats in its promoter (black portions of

the columns), and viceversa (D) (gray portions of the columns).
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protein complexes that require keeping a stoichiometric bal-

ance and previous reports have shown stronger evidence for

functional and transcriptional subfunctionalization in WGDs

than SSDs (Fares et al. 2013; Keane et al. 2014). The enrich-

ment of genome mutational hotspots for WGDs may there-

fore be due to stronger selective constraints against the loss of

one gene copy in order to preserve the stoichiometric balance

and the set of ancestral functions in the cell.

It has been shown that the birth-death dynamics of dupli-

cated genes depend on the functional features of the dupli-

cates, however such dependency relaxes with regards to

WGDs (Guan et al. 2007; Wapinski et al. 2007). Since

WGDs were particularly preserved in genome mutational hot-

spots, we expect such pattern to be independent of the func-

tional features of duplicates. Importantly, these authors also

highlighted that the regulatory divergence after gene dupli-

cation may play a more important role in the origin of adap-

tations than the biochemical divergence, well in support of

our observations.

The enrichment of genome mutational and transcriptional

hotspots for duplicated genes has important implication for

the origin of evolutionary innovations and adaptations. The

persistence of duplicates in genome error hotspots can allow

the fixation of polymorphisms in the population at both the

regulatory and coding levels and the eventual emergence of

exaptations, preadaptations to conditions never before en-

countered by the organism. In support of this scenario,

GRDs are enriched for duplicates with promoter repetitive

elements more so than expected by chance and they bear

more SNPs in their promoters than GRSs and then expected

by chance. Duplicates with repeat regions are known to allow

both the transcriptional plasticity of these regions (Vinces et al.

2009) and transcriptional reprogramming of the gene copy

when its sister copy is silenced (Kafri et al. 2005). This tran-

scriptional plasticity has been proposed to be key to the origin

of adaptations to stress in S. cerevisiae and certainly the

source of biological innovations (Fares 2015). Accordingly,

we show that duplicates with repeats in their promoters are

transcriptionally more plastic than those without repeats. This

plasticity may be correlated with the ability of yeast to grow

under stress conditions (Mattenberger et al. 2017a, b). Taken

together, our results strongly pinpoint the role of the genome

context on the fate of duplicated genes and on the origin of

evolutionary adaptations.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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