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Abstract. Let X(µ) be a function space related to a measure space

(Ω,Σ, µ) with χΩ ∈ X(µ) and let T : X(µ) → E be a Banach space

valued operator. It is known that if T is p-th power factorable then the

largest function space to which T can be extended preserving p-th power

factorability is given by the space Lp(mT ) of p-integrable functions with

respect to mT , where mT : Σ→ E is the vector measure associated to T

via mT (A) = T (χA). In this paper we extend this result by removing the

restriction χΩ ∈ X(µ). In this general case, by considering mT defined

on a certain δ-ring, we show that the optimal domain for T is the space

Lp(mT )∩L1(mT ). We apply the obtained results to the particular case

when T is a map between sequence spaces defined by an infinite matrix.

1. Introduction

Although the concept of p-th power factorable operator have previously been

used as a tool in operator theory, it was introduced explicitly in [19, § 5].

Given a measure space (Ω,Σ, µ) and a Banach function space X(µ) of (µ-a.e.

classes of) Σ-measurable functions such that χΩ ∈ X(µ), for 1 ≤ p < ∞, a
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Banach space valued operator T : X(µ)→ E is p-th power factorable if there

is a continuous extension of T to the 1
p -th power space X(µ)

1
p of X(µ). This

is equivalent to the existence of a constant C > 0 satisfying that

‖T (f)‖ ≤ C ‖ |f |
1
p ‖pX(µ) = C ‖f‖

X(µ)
1
p

for all f ∈ X(µ). The main characterization of this class of operators estab-

lishes that any of them can be extended to an space Lp of a vector measure

mT : Σ→ E associated to T via mT (A) = T (χA) and the extension is maxi-

mal. Note that the condition χΩ ∈ X(µ) is necessary for a correct definition

of p-th power factorable operator (i.e. X(µ) ⊂ X(µ)
1
p ) and for mT to be well

defined.

Several applications are shown also in [19, § 6-7], mainly in factorization

of operators through spaces Lq(µ) (Maurey-Rosenthal type theorems) and in

harmonic analysis (Fourier transform and convolution operators). After that,

p-th power factorable operators have turned out to be a useful tool for the

study of different problems in mathematical analysis, regarding for example

Banach space interpolation theory [6], differential equations [10], description

of maximal domains for several classes of operators [12], factorization of kernel

operators [13] or adjoint operators [11].

The requirement χΩ ∈ X(µ) excludes basic spaces as Lq(0,∞) or `q.

Although these spaces can be represented as spaces satisfying the needed

requirement (for instance Lq(0,∞) is isometrically isomorphic to Lq(e−xdx)

via the multiplication operator induced by e
x
q ), to use such a representation

provides some kind of factorization for T but not genuine extensions.

The aim of this paper is to extend the results on maximal extensions

of p-th power factorable operators to quasi-Banach spaces X(µ) which do

not necessary contain χΩ. Also we will consider p to be any positive number

removing the restriction p ≥ 1. The first problem is the definition of p-th

power factorable operator, as in general the containment X(µ) ⊂ X(µ)
1
p does

not hold. This can be solved by replacing X(µ)
1
p by the sum X(µ)

1
p +X(µ).

The second problem is the definition of the vector measure mT associated

to T . The technique to overcome this obstacle consists of considering mT

defined on the δ-ring ΣX(µ) =
{
A ∈ Σ : χA ∈ X(µ)

}
instead of the σ-

algebra Σ. We will see that actually no topology is needed on X(µ) to extend

T : X(µ) → E, it suffices an ideal structure on X(µ) and a certain property

on T which relates the µ-a.e. pointwise order of X(µ) and the weak topology

of E. This property, called order-w continuity, is the minimal condition for

mT to be a vector measure.
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The paper is organized as follows. Section 2 is devoted to establish

the notation and to state the results on ideal function spaces, quasi-Banach

function spaces and integration with respect to a vector measure defined on

a δ-ring, which will be use along this work. For the aim of completeness, we

include the proof of some relevant facts. In Section 3 we show that every

order-w continuous operator T defined on an ideal function space X(µ), can

be extended to the space L1(mT ) of integrable functions with respect to mT

and this space is the largest one to which T can be extended as an order-w

continuous operator (Theorem 3.2). Section 4 deals with operators T which

are p-th power factorable with an order-w continuous extension, that is, there

is an order-w continuous extension of T to the space X(µ)
1
p +X(µ). We prove

that the space Lp(mT )∩L1(mT ) is the optimal domain for T preserving the

property of being p-th power factorable with an order-w continuous extension

(Theorem 4.2). In Sections 5 and 6 we endow X(µ) with a topology (namely,

X(µ) will be a σ-order continuous quasi-Banach function space) and consider

T to be continuous. Results on maximal extensions analogous to the ones of

the previous sections are obtain for continuity instead of order-w continuity

(Theorems 5.1 and 6.2). Finally, as an application of our results, in the last

section we study when an infinite matrix of real numbers defines a continuous

linear operator from `p into any given sequence space.

2. Preliminaries

2.1. Ideal function spaces

Let (Ω,Σ) be a fixed measurable space. For a measure µ : Σ → [0,∞], we

denote by L0(µ) the space of all (µ-a.e. classes of) Σ-measurable real valued

functions on Ω. Given two set functions µ, λ : Σ→ [0,∞] we will write λ� µ

if µ(A) = 0 implies λ(A) = 0. We will say that µ and λ are equivalent if

λ� µ and µ� λ. In the case when µ and λ are two measures with λ� µ,

the map [i] : L0(µ) → L0(λ) which takes a µ-a.e. class in L0(µ) represented

by f into the λ-a.e. class represented by the same f , is a well defined linear

map. In order to simplify notation [i](f) will be denoted again as f . Note

that if λ and µ are equivalent then L0(µ) = L0(λ) and [i] is the identity map

i.

An ideal function space (briefly, i.f.s.) is a vector space X(µ) ⊂ L0(µ)

satisfying that if f ∈ X(µ) and g ∈ L0(µ) with |g| ≤ |f | µ-a.e. then g ∈ X(µ).

We will say that X(µ) has the σ-property if there exists (Ωn) ⊂ Σ such that
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Ω = ∪Ωn and χΩn
∈ X(µ) for all n. For instance, this happens if there is

some g ∈ X(µ) with g > 0 µ-a.e.

Lemma 2.1. Let X(µ) be an i.f.s. satisfying the σ-property. For every Σ–

measurable function f : Ω → [0,∞) there exists (fn) ⊂ X(µ) such that 0 ≤
fn ↑ f pointwise.

Proof. Let (Ωn) ⊂ Σ be the sequence given by the σ-property of X(µ) and

let f : Ω→ [0,∞) be a Σ–measurable function. Taking An = ∪nj=1Ωj ∩
{
ω ∈

Ω : f(ω) ≤ n
}

, we have that fn = fχAn
∈ X(µ), as 0 ≤ fn ≤ nχ∪n

j=1Ωj

pointwise, and that fn ↑ f pointwise. �

The sum of two i.f.s.’ X(µ) and Y (µ) is the space defined as

X(µ) + Y (µ) =
{
f ∈ L0(µ) : f = f1 + f2 µ-a.e., f1 ∈ X(µ), f2 ∈ Y (µ)

}
.

Proposition 2.2. The sum X(µ) + Y (µ) of two i.f.s.’ is an i.f.s.

Proof. Let f ∈ X(µ)+Y (µ) and g ∈ L0(µ) be such that |g| ≤ |f | µ–a.e. Write

f = f1 + f2 µ-a.e. with f1 ∈ X(µ) and f2 ∈ Y (µ) and denote A =
{
ω ∈ Ω :

|g(ω)| ≤ |f1(ω)|
}

. Taking h1 = |g|χA + |f1|χΩ\A and h2 = (|g| − |f1|)χΩ\A,

we have that |g| = h1 + h2 with h1 ∈ X(µ) as 0 ≤ h1 ≤ |f1| pointwise and

h2 ∈ Y (µ) as 0 ≤ h2 ≤ |f2| µ-a.e. Now, denote B =
{
ω ∈ Ω : g(ω) ≥ 0

}
and

take g1 = h1

(
χB − χΩ\B) and g2 = h2

(
χB − χΩ\B). Then, g = g1 + g2 with

g1 ∈ X(µ) as |g1| = h1 and g2 ∈ Y (µ) as |g2| = h2. So, g ∈ X(µ) +Y (µ). �

Let p ∈ (0,∞). The p-power of an i.f.s. X(µ) is the i.f.s. defined as

X(µ)p =
{
f ∈ L0(µ) : |f |p ∈ X(µ)

}
.

Lemma 2.3. Let X(µ) be an i.f.s. For s, t ∈ (0,∞) and 1
r = 1

s + 1
t , it follows

that if f ∈ X(µ)s and g ∈ X(µ)t then fg ∈ X(µ)r. In particular, if χΩ ∈
X(µ) then X(µ)q ⊂ X(µ)p for all 0 < p < q <∞.

Proof. For the first part only note that for every a, b > 0 it follows

arbr ≤ r

s
as +

r

t
bt. (2.1)

For the second part take r = p, s = q and t = pq
q−p . Then, if f ∈ X(µ)q, since

χΩ ∈ X(µ)t, we have that f = fχΩ ∈ X(µ)p. �

Recall that a quasi-norm on a real vector space X is a non-negative real

map ‖ · ‖X on X satisfying

(i) ‖x‖X = 0 if and only if x = 0,

(ii) ‖αx‖X = |α| · ‖x‖X for all α ∈ R and x ∈ X, and
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(iii) there exists a constant K ≥ 1 such that ‖x+ y‖X ≤ K(‖x‖X + ‖y‖X) for

all x, y ∈ X.

A quasi-norm ‖ · ‖X induces a metric topology on X in which a sequence

(xn) converges to x if and only if ‖x − xn‖X → 0. If X is complete under

this topology then it is called a quasi-Banach space (Banach space if K = 1).

A linear map T : X → Y between quasi-Banach spaces is continuous if and

only if there exists a constant M > 0 such that ‖T (x)‖Y ≤ M‖x‖X for all

x ∈ X. For issues related to quasi-Banach spaces see [14].

A quasi-Banach function space (quasi-B.f.s. for short) is a i.f.s. X(µ)

which is also a quasi-Banach space with a quasi-norm ‖·‖X(µ) compatible with

the µ-a.e. pointwise order, that is, if f, g ∈ X(µ) are such that |f | ≤ |g| µ-a.e.

then ‖f‖X(µ) ≤ ‖g‖X(µ). When the quasi-norm is a norm, X(µ) is called

a Banach function space (B.f.s.). Note that every quasi-B.f.s. is a quasi-

Banach lattice for the µ-a.e. pointwise order satisfying that if fn → f in

quasi-norm then there exists a subsequence fnj → f µ-a.e. Also note that

every positive linear operator between quasi-Banach lattices is continuous,

see the argument given in [16, p. 2] for Banach lattices which can be adapted

for quasi-Banach spaces. Then all “ inclusions” of the type [i] between quasi-

B.f.s.’ are continuous.

A quasi-B.f.s. X(µ) is said to be σ-order continuous if for every (fn) ⊂
X(µ) with fn ↓ 0 µ-a.e. it follows that ‖fn‖X ↓ 0.

It is routine to check that the intersection X(µ) ∩ Y (µ) of two quasi-

B.f.s.’ (B.f.s.’) X(µ) and Y (µ) is a quasi-B.f.s. (B.f.s.) endowed with the

quasi-norm (norm)

‖f‖X(µ)∩Y (µ) = max
{
‖f‖X(µ), ‖f‖Y (µ)

}
.

Moreover, if X(µ) and Y (µ) are σ-order continuous then X(µ) ∩ Y (µ) is

σ-order continuous.

Proposition 2.4. The sum X(µ) + Y (µ) of two quasi-B.f.s.’ (B.f.s.’) X(µ)

and Y (µ) is a quasi-B.f.s. (B.f.s.) endowed with the quasi-norm (norm)

‖f‖X(µ)+Y (µ) = inf
(
‖f1‖X(µ) + ‖f2‖Y (µ)

)
,

where the infimum is taken over all possible representations f = f1 + f2 µ-

a.e. with f1 ∈ X(µ) and f2 ∈ Y (µ). Moreover, if X(µ) and Y (µ) are σ-order

continuous then X(µ) + Y (µ) is also σ-order continuous.

Proof. From Proposition 2.2 we have that X(µ) +Y (µ) is a i.f.s. Even more,

looking at the proof we see that for every f ∈ X(µ) + Y (µ) and g ∈ L0(µ)

with |g| ≤ |f | µ-a.e., if f = f1 + f2 µ-a.e. with f1 ∈ X(µ) and f2 ∈ Y (µ)
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then there exist g1 ∈ X(µ) and g2 ∈ Y (µ) such that |gi| ≤ |fi| µ-a.e. and

g = g1 + g2. Then,

‖g‖X(µ)+Y (µ) ≤ ‖g1‖X(µ) + ‖g2‖Y (µ) ≤ ‖f1‖X(µ) + ‖f2‖Y (µ)

and so, taking infimum over all possible representations f = f1 + f2 µ-a.e.

with f1 ∈ X(µ) and f2 ∈ Y (µ), it follows that ‖g‖X(µ)+Y (µ) ≤ ‖f‖X(µ)+Y (µ).

Hence, ‖ · ‖X(µ)+Y (µ) is compatible with the µ-a.e. pointwise order.

The proof of the fact that ‖ · ‖X(µ)+Y (µ) is a quasi-norm for which

X(µ) + Y (µ) is complete is similar to the one given in [1, § 3, Theorem 1.3]

for compatible couples of Banach spaces.

Suppose that X(µ) and Y (µ) are σ-order continuous. Let (fn) ⊂ X(µ)+

Y (µ) be such that fn ↓ 0 µ-a.e. Consider f1 = g + h µ-a.e. with g ∈ X(µ)

and h ∈ Y (µ). We can rewrite f1 = f1
1 + f2

1 with f1
1 ∈ X(µ), f2

1 ∈ Y (µ) and

f1
1 , f

2
1 ≥ 0 µ-a.e. This can be done by taking A =

{
ω ∈ Ω : f1(ω) ≤ |g(ω)|

}
,

f1
1 = f1χA + |g|χΩ\A and f2

1 = (f1 − |g|)χΩ\A. Note that f1
1 ∈ X(µ) as

0 ≤ f1
1 ≤ |g| µ-a.e. and f2

1 ∈ Y (µ) as 0 ≤ f2
1 ≤ |h| µ-a.e. Since 0 ≤ f2 ≤ f1

µ-a.e., looking again at the proof of Proposition 2.2 we see that there exist

f1
2 ∈ X(µ) and f2

2 ∈ Y (µ) such that 0 ≤ f i2 ≤ f i1 µ-a.e. and f2 = f1
2 + f2

2

µ-a.e. By induction we construct two µ-a.e. pointwise decreasing sequences

of positive functions (f1
n) ⊂ X(µ) and (f2

n) ⊂ Y (µ) such that fn = f1
n + f2

n.

Note that f in ↓ 0 µ-a.e. as 0 ≤ f in ≤ fn µ-a.e. Then, since X(µ) and Y (µ) are

σ-order continuous, we have that

‖fn‖X(µ)+Y (µ) ≤ ‖f1
n‖X(µ) + ‖f2

n‖Y (µ) → 0.

�

Let p ∈ (0,∞). The p-power X(µ)p of a quasi-B.f.s. X(µ) is a quasi-

B.f.s. endowed with the quasi-norm

‖f‖X(µ)p = ‖ |f |p ‖
1
p

X(µ).

Moreover, X(µ)p is σ-order continuous whenever X(µ) is so. Note that in the

case when X(µ) is a B.f.s. and p ≥ 1 it follows that ‖ · ‖X(µ)p is a norm and

so X(µ)p is a B.f.s. An exhaustive study of the space X(µ)p can be found

in [19, § 2.2] for the case when µ is finite and χΩ ∈ X(µ). This study can

be extended to our general case adapting the arguments with the natural

modifications (note that our p-powers here are the 1
p -th powers there).
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2.2. Integration with respect to a vector measure defined on a δ-ring

Let R be a δ-ring of subsets of a set Ω, that is, a ring closed under countable

intersections. Measurability will be considered with respect to the σ-algebra

Rloc of all subsets A of Ω such that A ∩ B ∈ R for all B ∈ R. Let us write

S(R) for the space of all R-simple functions, that is, simple functions with

support in R.

A set function m : R → E with values in a Banach space E is said to be

a vector measure if
∑
m(An) converges to m(∪An) in E for every sequence

of pairwise disjoint sets (An) ⊂ R with ∪An ∈ R.

Consider first a real measure λ : R → R. The variation of λ is the

measure |λ| : Rloc → [0,∞] defined as

|λ|(A) = sup
{∑

|λ(Aj)| : (Aj) finite disjoint sequence in R∩ 2A
}
.

Note that |λ| is finite on R. The space L1(λ) of integrable functions with

respect to λ is defined as the classical space L1(|λ|). The integral with respect

to λ of ϕ =
∑n
j=1 αjχAj

∈ S(R) over A ∈ Rloc is defined in the natural way

by
∫
A
ϕdλ =

∑n
j=1 αjλ(Aj ∩A). The space S(R) is dense in L1(λ), allowing

to define the integral of f ∈ L1(λ) over A ∈ Rloc as
∫
A
f dλ = lim

∫
A
ϕn dλ

for any sequence (ϕn) ⊂ S(R) converging to f in L1(λ).

Let now m : R → E be a vector measure. The semivariation of m is the

set function ‖m‖ : Rloc → [0,∞] defined by

‖m‖(A) = sup
x∗∈BE∗

|x∗m|(A).

Here, BE∗ is the closed unit ball of the dual space E∗ of E and |x∗m| is

the variation of the real measure x∗m given by the composition of m with

x∗. A set A ∈ Rloc is m-null if ‖m‖(A) = 0, or equivalently, if m(B) = 0

for all B ∈ R ∩ 2A. From [2, Theorem 3.2], there always exists a measure

η : Rloc → [0,∞] equivalent to ‖m‖, that is m and η have the same null sets.

Let us denote L0(m) = L0(η).

The space L1(m) of integrable functions with respect to m is defined as

the space of functions f ∈ L0(m) satisfying that

(i) f ∈ L1(x∗m) for every x∗ ∈ E∗, and

(ii) for each A ∈ Rloc there exists xA ∈ E such that

x∗(xA) =

∫
A

f dx∗m, for every x∗ ∈ E∗.

The vector xA is unique and will be denoted by
∫
A
f dm. The space L1(m)

is a σ-order continuous B.f.s. related to the measure space (Ω,Rloc, η), with
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norm

‖f‖L1(m) = sup
x∗∈BE∗

∫
Ω

|f | d|x∗m|.

Moreover S(R) is dense in L1(m). Note that
∫
A
ϕdm =

∑n
j=1 αjm(Aj ∩ A)

for every ϕ =
∑n
j=1 αjχAj

∈ S(R) and A ∈ Rloc.
The integration operator Im : L1(m) → E defined by Im(f) =

∫
Ω
f dm

is a continuous linear operator with ‖Im(f)‖E ≤ ‖f‖L1(m). Even more,

1

2
‖f‖L1(m) ≤ sup

A∈R
‖Im(fχA)‖E ≤ ‖f‖L1(m) (2.2)

for all f ∈ L1(m).

Let p ∈ (0,∞). We denote by Lp(m) the p-power of L1(m), that is,

Lp(m) =
{
f ∈ L0(m) : |f |p ∈ L1(m)

}
.

Then Lp(m) is a quasi-B.f.s. with the quasi-norm ‖f‖Lp(m) = ‖ |f |p ‖1/pL1(m).

In the case when p ≥ 1, we have that ‖ · ‖Lp(m) is a norm and so Lp(m) is a

B.f.s.

These and other issues concerning integration with respect to a vector

measure defined on a δ-ring can be found in [15], [17], [18], [7], [5] and [3].

3. Optimal domain for order-w continuous operators on a i.f.s.

Let X(µ) be a i.f.s. satisfying the σ-property (recall: Ω = ∪Ωn with χΩn
∈

X(µ) for all n) and consider the δ–ring

ΣX(µ) =
{
A ∈ Σ : χA ∈ X(µ)

}
.

The σ-property guarantees that ΣlocX(µ) = Σ. Given a Banach space valued

linear operator T : X(µ) → E, we define the finitely additive set function

mT : ΣX(µ) → E by mT (A) = T (χA).

We will say that T is order-w continuous if T (fn)→ T (f) weakly in E

whenever fn, f ∈ X(µ) are such that 0 ≤ fn ↑ f µ–a.e.

Proposition 3.1. If T is order-w continuous, then mT is a vector measure

satisfying that [i] : X(µ)→ L1(mT ) is well defined and T = ImT
◦ [i].

Proof. Let (An) ⊂ ΣX(µ) be a pairwise disjoint sequence with ∪An ∈ ΣX(µ).

Since T is order-w continuous, for any subsequence (Anj
) we have that

N∑
j=1

mT (Anj ) = T (χ∪N
j=1Anj

)→ T (χ∪Anj
) = mT (∪Anj )
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weakly in E. From the Orlicz-Pettis theorem (see [9, Corollary I.4.4]) it fol-

lows that
∑
mT (An) is unconditionally convergent in norm to mT (∪An).

Thus, mT is a vector measure.

Note that ‖mT ‖ � µ and so [i] : L0(µ)→ L0(mT ) is well defined. Also,

note that for every ϕ ∈ S(ΣX(µ)) we have that ImT
(ϕ) = T (ϕ).

Let f ∈ X(µ) be such that f ≥ 0 µ-a.e. and take a sequence of Σ-simple

functions 0 ≤ ϕn ↑ f µ-a.e. For each n we can write ϕn =
∑m
j=1 αjχAj

with (Aj)
m
j=1 ⊂ Σ being a pairwise disjoint sequence and αj > 0 for all

j. Since χAj
≤ α−1

j ϕn ≤ α−1
j f µ-a.e., we have that χAj

∈ X(µ) and so

ϕn ∈ S(ΣX(µ)). Fix x∗ ∈ E∗. For every A ∈ Σ it follows that x∗T (ϕnχA)→
x∗T (fχA) as T is order-w continuous. Note that x∗T (ϕnχA) =

∫
A
ϕn dx

∗mT

and that 0 ≤ ϕn ↑ f x∗mT -a.e. as |x∗mT | � ‖mT ‖ � µ. From [7, Proposition

2.3], we have that f ∈ L1(x∗mT ) and∫
A

f dx∗mT = lim
n→∞

∫
A

ϕn dx
∗mT = lim

n→∞
x∗T (ϕnχA) = x∗T (fχA).

Therefore, f ∈ L1(mT ) and ImT
(f) = T (f).

For a general f ∈ X(µ), the result follows by taking the positive and

negative parts of f . �

For the case whenX(µ) is a B.f.s., Proposition 3.1 and the next Theorem

3.2 can be deduced from [8, Proposition 2.3] and [4, Proposition 4]. The proofs

given here are more direct and are valid for general i.f.s.’.

Theorem 3.2. Suppose that T is order-w continuous. Then, T factors as

X(µ)
T //

[i] $$

E

L1(mT )

ImT

<<

(3.1)

with ImT
being order-w continuous. Moreover, the factorization is optimal in

the sense:

If Z(ξ) is a i.f.s. such that ξ � µ and

X(µ)
T //

[i] ##

E

Z(ξ)

S

>>

(3.2)

with S being an order-w continuous linear

operator


=⇒

[i] : Z(ξ)→ L1(mT ) is well

defined and S = ImT
◦ [i].
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Proof. The factorization (3.1) follows from Proposition 3.1. Note that the

integration operator ImT
: L1(mT ) → E is order-w continuous, as it is con-

tinuous and L1(mT ) is σ-order continuous.

Let Z(ξ) satisfy (3.2). In particular, Z(ξ) satisfies the σ-property, as if

χA ∈ X(µ) then χA ∈ Z(ξ). From Proposition 3.1 applied to the operator

S : Z(ξ)→ E, we have that [i] : Z(ξ)→ L1(mS) is well defined and S = ImS
◦

[i]. Note that ΣX(µ) ⊂ ΣZ(ξ) and mS(A) = S(χA) = T (χA) = mT (A) for all

A ∈ ΣX(µ), that is, mT is the restriction of mS : ΣZ(ξ) → E to ΣX(µ). Then,

from [4, Lemma 3], it follows that L1(mS) = L1(mT ) and ImS
= ImT

. �

We can rewrite Theorem 3.2 in terms of optimal domain.

Corollary 3.3. Suppose that T is order-w continuous. Then L1(mT ) is the

largest i.f.s. to which T can be extended as an order-w continuous operator

still with values in E. Moreover, the extension of T to L1(mT ) is given by

the integration operator ImT
.

4. Optimal domain for p-th power factorable operators on a

i.f.s. with an order-w continuous extension

Let X(µ) be a i.f.s. satisfying the σ-property and let T : X(µ) → E be a

linear operator with values in a Banach space E.

For p ∈ (0,∞), we call T p-th power factorable with an order-w con-

tinuous extension if there is an order-w continuous linear extension of T to

X(µ)
1
p +X(µ), i.e. T factors as

X(µ)
T //

i
&&

E

X(µ)
1
p +X(µ)

S

99

with S being an order-w continuous linear operator.

Note that in the case when χΩ ∈ X(µ), from Lemma 2.3, if 1 < p we have

that X(µ) ⊂ X(µ)
1
p and so X(µ)

1
p +X(µ) = X(µ)

1
p . Similarly, if p ≤ 1 then

X(µ)
1
p +X(µ) = X(µ), but hence to say that T is p-th power factorable with

an order-w continuous extension is just to say that T is order-w continuous.

Proposition 4.1. The following statements are equivalent:

(a) T is p-th power factorable with an order-w continuous extension.

(b) T is order-w continuous and [i] : X(µ)
1
p +X(µ)→ L1(mT ) is well defined.
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(c) T is order-w continuous and [i] : X(µ)→ Lp(mT )∩L1(mT ) is well defined.

Moreover, if (a)-(c) holds, the extension of T to X(µ)
1
p + X(µ) coincides

with integration operator ImT
◦ [i].

Proof. (a) ⇒ (b) Note that T is order-w continuous as it has an order-w

continuous extension. Let S : X(µ)
1
p + X(µ) → E be an order-w continu-

ous linear operator extending T . Then, from Theorem 3.2, it follows that

[i] : X(µ)
1
p +X(µ)→ L1(mT ) is well defined and S = ImT

◦ [i].

(b)⇔ (c) Since T is is order-w continuous, by Proposition 3.1 we always

have that [i] : X(µ) → L1(mT ) is well defined. Suppose that [i] : X(µ)
1
p +

X(µ)→ L1(mT ) is well defined. If f ∈ X(µ), since |f |p ∈ X(µ)
1
p ⊂ X(µ)

1
p +

X(µ), we have that |f |p ∈ L1(mT ) and so f ∈ Lp(mT ). Then f ∈ Lp(mT ) ∩
L1(mT ). Conversely, suppose that [i] : X(µ) → Lp(mT ) ∩ L1(mT ) is well

defined. Let f ∈ X(µ)
1
p +X(µ) and write f = f1 +f2 µ-a.e. with f1 ∈ X(µ)

1
p

and f2 ∈ X(µ). Since |f1|
1
p ∈ X(µ) we have that |f1|

1
p ∈ Lp(mT )∩L1(mT ) ⊂

Lp(mT ) and so f1 ∈ L1(mT ). Then, f ∈ L1(mT ) as f2 ∈ L1(mT ).

(b)⇒ (a) From Proposition 3.1 and since [i] : X(µ)
1
p +X(µ)→ L1(mT )

is well defined, we have that the operator ImT
◦[i] extends T to X(µ)

1
p +X(µ).

Moreover, the extension ImT
◦ [i] : X(µ)

1
p +X(µ)→ E is order-w continuous

as the integration operator ImT
: L1(mT )→ E is so. �

In the case when χΩ ∈ X(µ) and T is order-w continuous, from Propo-

sition 3.1, we have that χΩ ∈ L1(mT ). So, from Lemma 2.3, if p > 1 then

Lp(mT ) ⊂ L1(mT ) and hence Lp(mT ) ∩ L1(mT ) = Lp(mT ). If p ≤ 1 then

Lp(mT ) ∩ L1(mT ) = L1(mT ), but hence, as commented before, T being p-

th power factorable with an order-w continuous extension is just T being

order-w continuous.

Theorem 4.2. Suppose that T is p-th power factorable with an order-w con-

tinuous extension. Then, T factors as

X(µ)
T //

[i]
''

E

Lp(mT ) ∩ L1(mT )

ImT

88

(4.1)

with ImT
being p-th power factorable with an order-w continuous extension.

Moreover, the factorization is optimal in the sense:
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If Z(ξ) is a i.f.s. such that ξ � µ and

X(µ)
T //

[i] ##

E

Z(ξ)

S

>>

(4.2)

with S being a p-th power factorable lin-

ear operator with an order-w continuous

extension



=⇒
[i] : Z(ξ)→ Lp(mT ) ∩ L1(mT )

is well defined and S = ImT
◦ [i].

Proof. The factorization (4.1) follows from Propositions 3.1 and 4.1. Note

that Lp(mT ) ∩ L1(mT ) satisfies the σ-property as X(µ) does. Let us see

that the operator ImT
: Lp(mT ) ∩ L1(mT ) → E is p-th power factorable

with an order-w continuous extension by ussing Proposition 4.1.(c). This

operator is order-w continuous as the integration operator ImT
: L1(mT ) →

E is so. On other hand, since ΣX(µ) ⊂ ΣLp(mT )∩L1(mT ) and mImT
(A) =

ImT
(χA) = T (χA) = mT (A) for all A ∈ ΣX(µ) (i.e. mT is the restriction of

mImT
: ΣLp(mT )∩L1(mT ) → E to ΣX(µ)), from [4, Lemma 3], it follows that

L1(mImT
) = L1(mT ). Then,

[i] : Lp(mT ) ∩ L1(mT )→ Lp(mImT
) ∩ L1(mImT

) = Lp(mT ) ∩ L1(mT )

is well defined.

Let Z(ξ) satisfy (4.2). In particular, Z(ξ) has the σ-property. Applying

Proposition 4.1 to the operator S : Z(ξ) → E, we have that [i] : Z(ξ) →
Lp(mS) ∩ L1(mS) is well defined and S = ImS

◦ [i]. Since ΣX(µ) ⊂ ΣZ(ξ)

and mS(A) = mT (A) for all A ∈ ΣX(µ), from [4, Lemma 3], it follows that

L1(mS) = L1(mT ) and ImS
= ImT

. �

Rewriting Theorem 4.2 in terms of optimal domain we obtain the fol-

lowing conclusion.

Corollary 4.3. Suppose that T is p-th power factorable with an order-w con-

tinuous extension. Then Lp(mT ) ∩ L1(mT ) is the largest i.f.s. to which T

can be extended as a p-th power factorable operator with an order-w con-

tinuous extension, still with values in E. Moreover, the extension of T to

Lp(mT ) ∩ L1(mT ) is given by the integration operator ImT
.

5. Optimal domain for continuous operators on a quasi-B.f.s.

Let X(µ) be a quasi-B.f.s. satisfying the σ-property and let T : X(µ) → E

be a linear operator with values in a Banach space E.
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Theorem 5.1. Suppose that X(µ) is σ-order continuous and T is continuous.

Then, T factors as

X(µ)
T //

[i] $$

E

L1(mT )

ImT

<<

(5.1)

with ImT
being continuous. Moreover, the factorization is optimal in the

sense:

If Z(ξ) is a σ-order continuous quasi-B.f.s.

such that ξ � µ and

X(µ)
T //

[i] ##

E

Z(ξ)

S

>>

(5.2)

with S being a continuous linear operator


=⇒

[i] : Z(ξ)→ L1(mT ) is well

defined and S = ImT
◦ [i].

Proof. Since X(µ) is σ-order continuous and T is continuous we have that

T is order-w continuous and so the factorization (5.1) follows from Theorem

3.2. Recall that L1(mT ) is σ-order continuous and ImT
is continuous.

Let Z(ξ) satisfy (5.2). In particular S is order-w continuous. From Theo-

rem 3.2 we have that [i] : Z(ξ)→ L1(mT ) is well defined and S = ImT
◦[i]. �

Corollary 5.2. Suppose that X(µ) is σ-order continuous and T is continuous.

Then L1(mT ) is the largest σ-order continuous quasi-B.f.s. to which T can

be extended as a continuous operator still with values in E. Moreover, the

extension of T to L1(mT ) is given by the integration operator ImT
.

6. Optimal domain for p-th power factorable operators on a

quasi-B.f.s. with a continuous extension

Let X(µ) be a quasi-B.f.s. satisfying the σ-property and let T : X(µ) → E

be a linear operator with values in a Banach space E.

For p ∈ (0,∞), we call T p-th power factorable with a continuous exten-

sion if there is a continuous linear extension of T to X(µ)
1
p + X(µ), i.e. T
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factors as

X(µ)
T //

i
&&

E

X(µ)
1
p +X(µ)

S

99

with S being a continuous linear operator.

Note that in the case when χΩ ∈ X(µ) and 1 < p, from Lemma 2.3,

it follows that X(µ)
1
p + X(µ) = X(µ)

1
p . Then our definition of p-th power

factorable operator with a continuous extension coincides with the one given

in [19, Definition 5.1]. If p ≤ 1, since X(µ)
1
p + X(µ) = X(µ), to say that T

is p-th power factorable with a continuous extension is just to say that T is

continuous.

Proposition 6.1. Suppose that X(µ) is σ-order continuous. Then, the follow-

ing statements are equivalent:

(a) T is p-th power factorable with a continuous extension.

(b) T is p-th power factorable with an order-w continuous extension.

(c) T is order-w continuous and [i] : X(µ)
1
p +X(µ)→ L1(mT ) is well defined.

(d) T is order-w continuous and [i] : X(µ)→ Lp(mT )∩L1(mT ) is well defined.

(e) There exists C > 0 such that ‖T (f)‖E ≤ C ‖f‖
X(µ)

1
p +X(µ)

for all f ∈
X(µ).

Moreover, if (a)-(e) holds, the extension of T to X(µ)
1
p + X(µ) coincides

with the integration operator ImT
◦ [i].

Proof. (a)⇒ (b) Let S : X(µ)
1
p +X(µ)→ E be a continuous linear operator

extending T . From Proposition 2.4 we have that X(µ)
1
p + X(µ) is σ-order

continuous and so S is order-w continuous. Then, T is p-th power factorable

with an order-w continuous extension.

(b) ⇔ (c) ⇔ (d) and the fact that the extension of T to X(µ)
1
p +X(µ)

coincides with the integration operator ImT
◦ [i] follow from Proposition 4.1.

(c) ⇒ (e) The operator [i] : X(µ)
1
p +X(µ) → L1(mT ) is continuous as

it is positive. Then, there exists a constant C > 0 satisfying that

‖f‖L1(mT ) ≤ C ‖f‖
X(µ)

1
p +X(µ)

for all f ∈ X(µ)
1
p +X(µ). Since ImT

extends T to L1(mT ), it follows that

‖T (f)‖E = ‖ImT
(f)‖E ≤ ‖f‖L1(mT ) ≤ C ‖f‖

X(µ)
1
p +X(µ)
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for all f ∈ X(µ).

(e) ⇒ (a) Let 0 ≤ f ∈ X(µ)
1
p + X(µ). From Lemma 2.1, there exists

(fn) ⊂ X(µ) such that 0 ≤ fn ↑ f µ-a.e. Since X(µ)
1
p + X(µ) is σ-order

continuous, it follows that fn → f in the quasi-norm of X(µ)
1
p + X(µ).

Then, since

‖T (fn)− T (fm)‖E = ‖T (fn − fm)‖E ≤ C ‖fn − fm‖
X(µ)

1
p +X(µ)

,

we have that
(
T (fn)

)
converges to some element e ∈ E. Define S(f) = e.

Note that if (gn) ⊂ X(µ) is another sequence such that 0 ≤ gn ↑ f µ-a.e.,

then

‖T (fn)− T (gn)‖E ≤ C ‖fn − gn‖
X(µ)

1
p +X(µ)

≤ CK
(
‖fn − f‖

X(µ)
1
p +X(µ)

+ ‖f − gn‖
X(µ)

1
p +X(µ)

)
,

where K is the constant satisfying the property (iii) of the quasi-norm ‖ ·
‖
X(µ)

1
p +X(µ)

, and so S is well defined. Also note that

‖S(f)‖E ≤ ‖S(f)− T (fn)‖E + ‖T (fn)‖E
≤ ‖S(f)− T (fn)‖E + C ‖fn‖

X(µ)
1
p +X(µ)

≤ ‖S(f)− T (fn)‖E + C ‖f‖
X(µ)

1
p +X(µ)

for all n ≥ 1, and thus ‖S(f)‖E ≤ C ‖f‖
X(µ)

1
p +X(µ)

.

For a general f ∈ X(µ)
1
p + X(µ), define S(f) = S(f+)− S(f−) where

f+ and f− are the positive and negative parts of f respectively. It follows

that S is linear and S(f) = T (f) for all f ∈ X(µ). Moreover, for every

f ∈ X(µ)
1
p +X(µ) we have that

‖S(f)‖E ≤ ‖S(f+)‖E + ‖S(f−)‖E
≤ C ‖f+‖

X(µ)
1
p +X(µ)

+ C ‖f−‖
X(µ)

1
p +X(µ)

≤ 2C ‖f‖
X(µ)

1
p +X(µ)

.

an so S is continuous. Hence, T is p-th power factorable with a continuous

extension. �

In the case when µ is finite, χΩ ∈ X(µ) and p ≥ 1, the equivalences (a)

⇔ (c) ⇔ (d) ⇔ (e) of Proposition 6.1 are proved in [19, Theorem 5.7]. Here

we have included a more detailed proof for the general case.
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Theorem 6.2. Suppose that X(µ) is σ-order continuous and T is p-th power

factorable with a continuous extension. Then, T factors as

X(µ)
T //

[i]
''

E

Lp(mT ) ∩ L1(mT )

ImT

88

(6.1)

with ImT
being p-th power factorable with a continuous extension. Moreover,

the factorization is optimal in the sense:

If Z(ξ) is a σ-order continuous quasi-

B.f.s. such that ξ � µ and

X(µ)
T //

[i] ##

E

Z(ξ)

S

>>

(6.2)

with S being a p-th power factorable lin-

ear operator with a continuous extension



=⇒
[i] : Z(ξ)→ Lp(mT ) ∩ L1(mT )

is well defined and S = ImT
◦ [i].

Proof. From Proposition 6.1 we have that T is p-th power factorable with

an order-w continuous extension. Then, from Theorem 4.2, the factorization

(6.1) holds and ImT
: Lp(mT ) ∩ L1(mT ) → E is p-th power factorable with

an order-w continuous extension. Noting that the space Lp(mT )∩L1(mT ) is

σ-order continuous (as L1(mT ) is so) and satisfies the σ-property (as X(µ)

does), from Proposition 6.1 it follows that ImT
: Lp(mT ) ∩ L1(mT ) → E is

p-th power factorable with a continuous extension.

Let Z(ξ) satisfy (6.2), in particular it satisfies the σ-property. Again

Proposition 6.1 gives that S is p-th power factorable with an order-w contin-

uous extension. So, from Theorem 4.2, it follows that [i] : Z(ξ)→ Lp(mT ) ∩
L1(mT ) is well defined and S = ImT

◦ [i]. �

Corollary 6.3. Suppose that X(µ) is σ-order continuous and T is p-th power

factorable with a continuous extension. Then Lp(mT )∩L1(mT ) is the largest

σ-order continuous quasi-B.f.s. to which T can be extended as a p-th power

factorable operator with a continuous extension, still with values in E. More-

over, the extension of T to Lp(mT ) ∩ L1(mT ) is given by the integration

operator ImT
.

In the case when µ is finite, χΩ ∈ X(µ) and p ≥ 1, Corollary 6.3 is

proved in [19, Theorem 5.11].
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7. Application: extension for operators defined on `1

Consider the measure space (N,P(N), c) where c is the counting measure on

N. Note that a property holds c-a.e. if and only if it holds pointwise and that

the space L0(c) coincides with the space `0 of all real sequences. Consider the

space `1 = L1(c), which is σ-order continuous and has the σ-property. The

δ-ring P(N)`1 is just the set PF (N) of all finite subsets of N.

Let T : `1 → E be a continuous linear operator with values in a Banach

space E. Denote en = χ{n} and assume that T (en) 6= 0 for all n. This

assumption seems to be natural since if T (en) = 0 then the n-th coordinate

is not involved in the action of T . Hence, the vector measure mT : PF (N)→ E

associated to T by mT (A) = T (χA) is equivalent to c and so L1(mT ) ⊂ `0.

We will write `1(mT ) = L1(mT ).

Remark 7.1. By Theorem 5.1 we have that T can be extended as

`1
T //

i
""

E

`1(mT )

ImT

<<

and `1(mT ) is the largest σ-order continuous quasi-B.f.s. to which T can be

extended as a continuous operator.

Let p > 1. We have that T is 1
p -th power factorable with a continuous

extension if there is an extension S as

`1
T //

i
��

E

`p
S

??

with S being a continuous linear operator. Note that p ≤ 1 is not considered

as in this case `p ⊂ `1 and so the extension of T to the sum `p + `1 is just

the same operator T . Applying Proposition 6.1 in the context of this section

we obtain the following result.

Proposition 7.2. The following statements are equivalent:

(a) T is 1
p -th power factorable with a continuous extension.

(b) `p ⊂ `1(mT ).

(c) `1 ⊂ `
1
p (mT ) ∩ `1(mT ).
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(d) There exists C > 0 such that∥∥∥ ∑
j∈M

xjT (ej)
∥∥∥
E
≤ C

( ∑
j∈M

xpj

) 1
p

for all M ∈ PF (N) and (xj)j∈M ⊂ [0,∞).

Proof. From Proposition 6.1, we only have to prove that condition (d) is

equivalent to the following condition:

(d’) There exists C > 0 such that ‖T (x)‖E ≤ C ‖x‖`p for all x ∈ `1.

If (d’) holds, we obtain (d) by taking in (d’) the element x =
∑
j∈M xjej ∈

`1 for every M ∈ PF (N) and (xj)j∈M ⊂ [0,∞).

Suppose that (d) holds. Let 0 ≤ x = (xn) ∈ `1 and take yk =
∑k
j=1 xjej .

Since yk ↑ x pointwise, `1 is σ-order continuous and T is continuous, we have

that

‖T (x)‖E = lim ‖T (yk)‖E = lim
∥∥∥ k∑
j=1

xjT (ej)
∥∥∥
E
≤ C lim

( k∑
j=1

xpj

) 1
p

= C ‖x‖`p .

For a general x ∈ `1, (d’) follows by taking the positive and negative parts

of x. �

Remark 7.3. Note that if T is 1
p -th power factorable with a continuous exten-

sion then the integration operator ImT
extends T to `p and, from Theorem

6.2, T factors optimally as

`1
T //

i
&&

E

`
1
p (mT ) ∩ `1(mT )

ImT

88

with ImT
being 1

p -th power factorable with a continuous extension.

Now a natural question arises: When `
1
p (mT ) ∩ `1(mT ) is equal to

`
1
p (mT ) or `1(mT )? For asking this question we introduce the following class

of operators.

Let 0 < r < ∞. We say that T is r-power dominated if there exists

C > 0 such that∥∥∥ ∑
j∈M

xrj T (ej)
∥∥∥ 1

r

E
≤ C sup

N⊂M

∥∥∥∑
j∈N

xjT (ej)
∥∥∥
E
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for every M ∈ PF (N) and (xj)j∈M ∈ [0,∞). Note that in the case when E

is a Banach lattice and T is positive we have that

sup
N⊂M

∥∥∥∑
j∈N

xjT (ej)
∥∥∥
E

=
∥∥∥ ∑
j∈M

xjT (ej)
∥∥∥
E
.

Lemma 7.4. The containment `1(mT ) ⊂ `r(mT ) holds if and only if T is

r-power dominated.

Proof. Suppose that `1(mT ) ⊂ `r(mT ). Since the containment is continuous

(as it is positive), there exists C > 0 such that ‖x‖`r(mT ) ≤ C ‖x‖`1(mT ) for

all x ∈ `1(mT ). For every M ∈ PF (N) and (xj)j∈M ∈ [0,∞), we consider

x =
∑
j∈M xjej ∈ `1. Noting that xr =

∑
j∈M xrjej ∈ `1, it follows that∥∥∥ ∑

j∈M
xrj T (ej)

∥∥∥ 1
r

E
= ‖T (xr)‖

1
r

E = ‖ImT
(xr)‖

1
r

E ≤ ‖x
r‖

1
r

`1(mT ) = ‖x‖`r(mT )

≤ C ‖x‖`1(mT ) ≤ 2C sup
A∈PF (N)

‖ImT
(xχA)‖E ,

where in the last inequality we have used (2.2). For every A ∈ PF (N)

we have that xχA =
∑
j∈A∩M xjej ∈ `1 and so ImT

(xχA) = T (xχA) =∑
j∈A∩M xjT (ej). Then,∥∥∥ ∑

j∈M
xrj T (ej)

∥∥∥ 1
r

E
≤ 2C sup

A∈PF (N)

∥∥∥ ∑
j∈A∩M

xjT (ej)
∥∥∥
E

= 2C sup
N⊂M

∥∥∥∑
j∈N

xjT (ej)
∥∥∥
E
.

Conversely, suppose that T is r-power dominated and let x = (xn) ∈
`1(mT ). Taking yk =

∑k
j=1 |xj |rej ∈ `1, for every k > k̃ and A ∈ PF (N), we

have that (yk − yk̃)χA =
∑
j∈A∩{k̃+1,...,k} |xj |rej and so∥∥T ((yk − yk̃)χA

)∥∥
E

=
∥∥∥ ∑
j∈A∩{k̃+1,...,k}

|xj |r T (ej)
∥∥∥
E

≤ C r sup
N⊂A∩{k̃+1,...,k}

∥∥∥∑
j∈N
|xj |T (ej)

∥∥∥r
E

= C r sup
N⊂A∩{k̃+1,...,k}

∥∥∥ ImT

(∑
j∈N
|xj |ej

)∥∥∥r
E

≤ C r sup
N⊂A∩{k̃+1,...,k}

∥∥∥∑
j∈N
|xj |ej

∥∥∥r
`1(mT )

≤ C r
∥∥(yk)

1
r − (yk̃)

1
r

∥∥r
`1(mT )

.
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For the last inequality note that (yk)
1
r =

∑k
j=1 |xj |ej and so

∑
j∈N
|xj |ej ≤

k∑
j=k̃+1

|xj |ej = (yk)
1
r − (yk̃)

1
r

for every N ⊂ A ∩ {k̃ + 1, ..., k}. Then, by using (2.2), we have that∥∥yk − yk̃∥∥
`1(mT )

≤ 2 sup
A∈PF (N)

∥∥ImT

(
(yk − yk̃)χA

)∥∥
E

= 2 sup
A∈PF (N)

∥∥T ((yk − yk̃)χA
)∥∥
E

≤ 2C r
∥∥(yk)

1
r − (yk̃)

1
r

∥∥r
`1(mT )

→ 0

as k, k̃ → ∞ since (yk)
1
r ↑ |x| pointwise and `1(mT ) is σ-order continu-

ous. Hence, yk → z in `1(mT ) for some z ∈ `1(mT ). In particular, yk → z

pointwise and so |x|r = z ∈ `1(mT ) as yk ↑ |x|r pointwise. Therefore

x ∈ `r(mT ). �

Lemma 7.5. Let p > 1. If T is 1
p -power dominated then it is 1

p -th power

factorable with a continuous extension.

Proof. Let us use Proposition 7.2.(d). Given M ∈ PF (N) and (xj)j∈M ⊂
[0,∞), denoting by K the continuity constant of T , we have that∥∥∥ ∑
j∈M

xjT (ej)
∥∥∥
E

=
∥∥∥ ∑
j∈M

(xpj )
1
pT (ej)

∥∥∥
E
≤ C

1
p sup
N⊂M

∥∥∥∑
j∈N

xpj T (ej)
∥∥∥ 1

p

E

= C
1
p sup
N⊂M

∥∥∥T(∑
j∈N

xpjej

)∥∥∥ 1
p

E
≤ C

1
pK

1
p sup
N⊂M

∥∥∥∑
j∈N

xpjej

∥∥∥ 1
p

`1

= C
1
pK

1
p sup
N⊂M

(∑
j∈N

xpj

) 1
p ≤ C

1
pK

1
p

( ∑
j∈M

xpj

) 1
p

.

�

As a consequence of Remark 7.3, Lemma 7.4 and Lemma 7.5, we obtain

the following conclusion.

Corollary 7.6. For p > 1 we have that:

(a) If T is p-power dominated and 1
p -th power factorable with a continuous

extension, then T factors optimally as

`1
T //

i
""

E

`
1
p (mT )

ImT

<<
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with ImT
being 1

p -th power factorable with a continuous extension.

(b) If T is 1
p -power dominated, then T factors optimally as

`1
T //

i

""

E

`1(mT )

ImT

<<

with ImT
being 1

p -th power factorable with a continuous extension.

Consider now the case when E = `(c) is a B.f.s. related to c such

that `1 ⊂ `(c) ⊂ `0. Then `(c) is a Köthe function space in the sense of

Lindenstrauss and Tzafriri, see [16, p. 28-30]. For instance, `(c) could be an

`q space with 1 ≤ q ≤ ∞, or a Lorentz sequence space `q,r with 1 ≤ r ≤ q ≤ ∞
or an Orlicz sequence space `ϕ with ϕ being an Orlicz function.

Let us recall some facts about the Köthe dual of an space `(c). Denote

the scalar product of two sequences x = (xn), y = (yn) ∈ `0 by(
x, y
)

=
∑

xnyn

provided the sum exists. The Köthe dual of `(c) is given by

`(c)′ =
{
y ∈ `0 :

(
|x|, |y|

)
<∞ for all x ∈ `(c)

}
.

Note that χA ∈ `(c)′ for all A ∈ PF (N). The space `(c)′ endowed with the

norm

‖y‖`(c)′ = sup
x∈B`(c)

(
|x|, |y|

)
is a B.f.s. in the sense of Lindenstrauss and Tzafriri. The map j : `(c)′ → `(c)∗

defined by 〈j(y), x〉 =
(
x, y
)

for all y ∈ `(c)′ and x ∈ `(c), is a linear isometry.

In particular, convergence in norm of `(c) implies pointwise convergence,

as en ∈ `(c)′ for all n. Note that `(c) ⊂ `(c)′′. The equality `(c) = `(c)′′

holds with equal norms if and only if `(c) has the Fatou property, that is, if

(xk) ⊂ `(c) is such that 0 ≤ xk ↑ x pointwise and sup ‖xk‖`(c) < ∞ then

x ∈ `(c) and ‖xk‖`(c) ↑ ‖x‖`(c).
Let M = (aij) be an infinite matrix of real numbers and denote by Cj

the j-th column of M . Assume Cj 6= 0 for all j. Note that

Mx =
(∑

j

aijxj

)
i

for any x ∈ `0 for which it is meaningful to do so.
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Proposition 7.7. Suppose that `(c) has the Fatou property. Then, the following

statements are equivalent:

(a) M defines a continuous linear operator M : `1 → `(c).

(b) Cj ∈ `(c) for all j and supj ‖Cj‖`(c) <∞.

Proof. (a) ⇒ (b) Let K > 0 be such that ‖Mx‖`(c) ≤ K‖x‖`1 for all x ∈ `1.

For every j we have that Cj = Mej ∈ `(c). Moreover,

sup
j
‖Cj‖`(c) = sup

j
‖Mej‖`(c) ≤ K sup

j
‖ej‖`1 = K.

(b)⇒ (c) Since `(c) has the Fatou property then `(c) = `(c)′′ with equal

norms. Let x ∈ `1. First note that for every i we have that∑
j

|aijxj | =
∑
j

(
|Cj |, ei

)
|xj | ≤

∑
j

‖Cj‖`(c)‖ei‖`(c)′ |xj |

≤ ‖ei‖`(c)′‖x‖`1 sup
j
‖Cj‖`(c)

and so Mx ∈ `0. Given y ∈ `(c)′ it follows that(
|y|, |Mx|

)
=

∑
i

|yi|
∣∣∣∑
j

aijxj

∣∣∣ ≤∑
i

∑
j

|aijxjyi| =
∑
j

|xj |
∑
i

|aijyi|

=
∑
j

|xj |
(
|Cj |, |y|

)
≤
∑
j

|xj | ‖Cj‖`(c)‖y‖`(c)′

≤ ‖y‖`(c)′‖x‖`1 sup
j
‖Cj‖`(c).

Then Mx ∈ `(c)′′ = `(c) and

‖Mx‖`(c) = sup
y∈B`(c)′

(
|y|, |Mx|

)
≤ ‖x‖`1 sup

j
‖Cj‖`(c).

�

In what follows assume that `(c) has the Fatou property, Cj ∈ `(c) for

all j and supj ‖Cj‖`(c) < ∞. Then, M defines a continuous linear operator

M : `1 → `(c) and so, by Remark 7.1 we have that M can be extended as

`1
M //

i
""

`(c)

`1(mM )

ImM

;;

and `1(mM ) is the largest σ-order continuous quasi-B.f.s. to which M can be

extended as a continuous operator.
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Remark 7.8. For every x ∈ `1(mM ) it follows that ImM
(x) = Mx and so

M defines a continuous linear operator M : `1(mM ) → `(c). Indeed, take

0 ≤ x = (xn) ∈ `1(mM ) and xk =
∑k
j=1 xjej ∈ `1. Since xk ↑ x pointwise

and `1(mM ) is σ-order continuous it follows that xk → x in `1(mM ). Then,

since M = ImM
on `1, we have that Mxk = ImM

(xk)→ ImM
(x) in `(c) and

so pointwise. Hence, the i-th coordinate
∑k
j=1 aijxj of Mxk converges to the

i-th coordinate of ImM
(x) and thus Mx = ImM

(x) ∈ `(c). For a general

x ∈ `1(mM ), we only have to take the positive and negative parts of x.

From Proposition 7.2 applied to M : `1 → `(c) and Remark 7.8 we

obtain the following conclusion.

Proposition 7.9. The following statements are equivalent:

(a) M defines a continuous linear operator M : `p → `(c).

(b) M is 1
p -th power factorable with a continuous extension.

(c) `p ⊂ `1(mM ).

(d) `1 ⊂ `
1
p (mM ) ∩ `1(mM ).

(e) There exists C > 0 such that∥∥∥ ∑
j∈M

xjCj

∥∥∥
`(c)
≤ C

( ∑
j∈M

xpj

) 1
p

for all M ∈ PF (N) and (xj)j∈M ⊂ [0,∞).

Proof. The equivalence among statements (b), (c), (d), (e) is given by Propo-

sition 7.2. The statement (a) implies (b) obviously. From Remark 7.8 we have

that M defines a continuous linear operator M : `1(mM ) → `(c), so (c) im-

plies (a). �

Let us give two conditions guaranteeing that M defines a continuous

linear operator M : `p → `(c):

(I) If p′ is the conjugate exponent of p and
∑
‖Cj‖p

′

`(c) < ∞, then (e) in

Proposition 7.9 holds. Indeed, for every M ∈ PF (N) and (xj)j∈M ⊂ [0,∞)

we have that∥∥∥ ∑
j∈M

xjCj

∥∥∥
`(c)

≤
∑
j∈M

xj‖Cj‖`(c) ≤
( ∑
j∈M

xpj

) 1
p
( ∑
j∈M
‖Cj‖p

′

`(c)

) 1
p′

≤
(∑

‖Cj‖p
′

`(c)

) 1
p′
( ∑
j∈M

xpj

) 1
p

.
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(II) If M is 1
p -power dominated, that is, there exists C > 0 such that∥∥∥ ∑

j∈M
x

1
p

j Cj

∥∥∥p
`(c)
≤ C sup

N⊂M

∥∥∥∑
j∈N

xjCj

∥∥∥
`(c)

for every M ∈ PF (N) and (xj)j∈M ∈ [0,∞), then (b) in Proposition 7.9

holds by Lemma 7.5.

For instance, in the case when `(c) = `q and aij ≥ 0 for all i, j, condition

(II) is satisfied if Fi ∈ `1 for all i and
∑
‖Fi‖q`1 < ∞, where Fi denotes the

i-th file of M . Indeed, for every M ∈ PF (N) and (xj)j∈M ∈ [0,∞), applying

Hölder’s inequality twice for p and its conjugate exponent p′, we have that∥∥∥ ∑
j∈M

x
1
p

j Cj

∥∥∥p
`q

=
(∑

i

( ∑
j∈M

x
1
p

j aij

)q) p
q

=
(∑

i

( ∑
j∈M

x
1
p

j a
1
p

ija
1− 1

p

ij

)q) p
q

≤
(∑

i

( ∑
j∈M

xj aij

) q
p
( ∑
j∈M

aij

) q
p′
) p

q

≤
(∑

i

( ∑
j∈M

xj aij

)q) 1
q ·
(∑

i

( ∑
j∈M

aij

)q) p
qp′

≤
∥∥∥ ∑
j∈M

xj Cj

∥∥∥
`q

(∑
i

‖Fi‖q`1
) p

qp′
.

Note that supN⊂M

∥∥∥∑j∈N xjCj

∥∥∥
`q

=
∥∥∥∑j∈M xj Cj

∥∥∥
`q

as aij ≥ 0 for all i, j.
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