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Abstract. Let X (u) be a function space related to a measure space
(Q,%,p) with xo € X(u) and let T: X(u) — E be a Banach space
valued operator. It is known that if T" is p-th power factorable then the
largest function space to which 7" can be extended preserving p-th power
factorability is given by the space L?(mr) of p-integrable functions with
respect to mr, where mp: % — F is the vector measure associated to T'
viamp(A) = T(xa). In this paper we extend this result by removing the
restriction xyo € X (u). In this general case, by considering mr defined
on a certain §-ring, we show that the optimal domain for 7' is the space
LP(mr) N L' (mr). We apply the obtained results to the particular case

when T is a map between sequence spaces defined by an infinite matrix.

1. Introduction

Although the concept of p-th power factorable operator have previously been
used as a tool in operator theory, it was introduced explicitly in [19, §5].
Given a measure space (€2, %, 1) and a Banach function space X (u) of (u-a.e.

classes of) Y-measurable functions such that xo € X(u), for 1 < p < o0, a
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Banach space valued operator T': X (u) — F is p-th power factorable if there
is a continuous extension of T to the %—th power space X (,u)% of X (). This
is equivalent to the existence of a constant C' > 0 satisfying that

T < CN By = C Il

1
P

for all f € X(p). The main characterization of this class of operators estab-
lishes that any of them can be extended to an space LP of a vector measure
my: 3 — E associated to T' via mr(A) = T(xa) and the extension is maxi-
mal. Note that the condition xq € X (1) is necessary for a correct definition
of p-th power factorable operator (i.e. X(u) C X(u)%) and for mg to be well
defined.

Several applications are shown also in [19, § 6-7], mainly in factorization
of operators through spaces L9(u) (Maurey-Rosenthal type theorems) and in
harmonic analysis (Fourier transform and convolution operators). After that,
p-th power factorable operators have turned out to be a useful tool for the
study of different problems in mathematical analysis, regarding for example
Banach space interpolation theory [6], differential equations [10], description
of maximal domains for several classes of operators [12], factorization of kernel
operators [13] or adjoint operators [11].

The requirement xyo € X(u) excludes basic spaces as L9(0,00) or £9.
Although these spaces can be represented as spaces satisfying the needed
requirement (for instance L?(0, 00) is isometrically isomorphic to L%(e~*dx)
via the multiplication operator induced by e%), to use such a representation
provides some kind of factorization for 7" but not genuine extensions.

The aim of this paper is to extend the results on maximal extensions
of p-th power factorable operators to quasi-Banach spaces X (u) which do
not necessary contain xgq. Also we will consider p to be any positive number
removing the restriction p > 1. The first problem is the definition of p-th
power factorable operator, as in general the containment X (1) C X (,u)% does
not hold. This can be solved by replacing X(u)% by the sum X(,u)% + X ().
The second problem is the definition of the vector measure my associated
to T'. The technique to overcome this obstacle consists of considering mp
defined on the d-ring Xx(,) = {A € X xa € X(u)} instead of the o-
algebra . We will see that actually no topology is needed on X (1) to extend
T: X(u) — E, it suffices an ideal structure on X (i) and a certain property
on T which relates the u-a.e. pointwise order of X (1) and the weak topology
of E. This property, called order-w continuity, is the minimal condition for

mT to be a vector measure.
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The paper is organized as follows. Section 2 is devoted to establish
the notation and to state the results on ideal function spaces, quasi-Banach
function spaces and integration with respect to a vector measure defined on
a o-ring, which will be use along this work. For the aim of completeness, we
include the proof of some relevant facts. In Section 3 we show that every
order-w continuous operator 7" defined on an ideal function space X (i), can
be extended to the space Ll(mT) of integrable functions with respect to mp
and this space is the largest one to which 7" can be extended as an order-w
continuous operator (Theorem 3.2). Section 4 deals with operators T which
are p-th power factorable with an order-w continuous extension, that is, there
is an order-w continuous extension of T" to the space X (,u)% + X (1). We prove
that the space LP(mz) N L' (m7) is the optimal domain for T preserving the
property of being p-th power factorable with an order-w continuous extension
(Theorem 4.2). In Sections 5 and 6 we endow X (p) with a topology (namely,
X () will be a o-order continuous quasi-Banach function space) and consider
T to be continuous. Results on maximal extensions analogous to the ones of
the previous sections are obtain for continuity instead of order-w continuity
(Theorems 5.1 and 6.2). Finally, as an application of our results, in the last
section we study when an infinite matrix of real numbers defines a continuous

linear operator from /P into any given sequence space.

2. Preliminaries

2.1. Ideal function spaces

Let (£2,3) be a fixed measurable space. For a measure p: ¥ — [0, 00], we
denote by L°(u1) the space of all (u-a.e. classes of) Y-measurable real valued
functions on Q. Given two set functions p, \: ¥ — [0, co] we will write A <
if 4(A) = 0 implies A\(A) = 0. We will say that u and X\ are equivalent if
A< pand p < A In the case when p and A are two measures with A\ < p,
the map [i]: L°(u) — L°(A\) which takes a p-a.e. class in L°(u) represented
by f into the A-a.e. class represented by the same f, is a well defined linear
map. In order to simplify notation [i](f) will be denoted again as f. Note
that if X and p are equivalent then L°(u) = L°()\) and [i] is the identity map
1.

An ideal function space (briefly, i.f.s.) is a vector space X (u) C L°(p)
satisfying that if f € X (u) and g € L°(u) with |g| < |f| p-a.e. then g € X (u).
We will say that X (u) has the o-property if there exists (2,,) C ¥ such that
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Q = UQ, and xqo, € X(u) for all n. For instance, this happens if there is
some g € X (u) with g > 0 p-a.e.

Lemma 2.1. Let X(u) be an i.f.s. satisfying the o-property. For every ¥—
measurable function f: Q — [0,00) there exists (fn) C X(u) such that 0 <

fn T f pointwise.

Proof. Let (€,) C ¥ be the sequence given by the o-property of X (u) and
let f: Q — [0,00) be a ¥-measurable function. Taking A4, = U}_;Q; N {w €
Q: f(w) < n}, we have that f, = fxa, € X(n), as 0 < fu < nxur_ 0
pointwise, and that f,, 1T f pointwise. O

The sum of two i.f.s.” X(u) and Y (u) is the space defined as
X(p) +Y(n {fGLO (n): f=fi+ f2a pae, fr € X(p), fQGY(/t)}.

Proposition 2.2. The sum X (u) + Y (1) of two i.f.s.” is an i.f.s.

Proof. Let f € X(u)+Y (1) and g € L°(u) be such that |g| < |f| p—a.e. Write
f=f1i+ fo pae with f1 € X(u) and fo € Y(u) and denote A = {w eN:

lg(w)] < [fi(w)]}. Taking hy = |glxa + |filxa\a and ha = (lg] — | f1])xa\a,
we have that |g| = hy + he with hy € X(u) as 0 < hy < |f1| pointwise and

ha € Y (p) as 0 < hy < |f2| p-a.e. Now, denote B = {w € Q: g(w) > 0} and

take g1 = h1(xB — xo\p) and g2 = ha(xB — Xa\5)- Then, g = g1 + g2 with
91 € X(n) as |g1| = h1 and g2 € Y(p) as [g2| = ha. So, g € X(pn) +Y (p). O

Let p € (0,00). The p-power of an i.f.s. X(u) is the i.f.s. defined as
X(uP ={feL(u: |fI" € X(u)}

Lemma 2.3. Let X (u) be an i.f.s. For s,t € (0,00) and % = % + %, it follows
that if f € X(n)® and g € X ()t then fg € X(u)". In particular, if xq €
X(p) then X(u)? C X(u)? for all 0 < p < g < co.

Proof. For the first part only note that for every a,b > 0 it follows
a’b" < + D, (2.1)
s &
For the second part take r =p, s =qand t = pq . Then, if f € X (u)9, since

xa € X (u)t, we have that f = fxq € X(p)?. O

Recall that a quasi-norm on a real vector space X is a non-negative real
map || - [|x on X satisfying
(i) ||z|lx = 0 if and only if = = 0,

(ii) |az|lx = |a] - ||z||x for all @« € R and z € X, and
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(ili) there exists a constant K > 1 such that ||z +y||x < K(||z]x + ||ly||x) for
all z,y € X.

A quasi-norm || - ||x induces a metric topology on X in which a sequence
(xy,) converges to z if and only if || — z,||x — 0. If X is complete under
this topology then it is called a quasi-Banach space (Banach space if K = 1).
A linear map T: X — Y between quasi-Banach spaces is continuous if and
only if there exists a constant M > 0 such that ||T'(x)|ly < M|z||x for all
x € X. For issues related to quasi-Banach spaces see [14].

A quasi-Banach function space (quasi-B.f.s. for short) is a i.f.s. X (u)
which is also a quasi-Banach space with a quasi-norm ||-|| x(,) compatible with
the p-a.e. pointwise order, that is, if f,g € X (u) are such that |f| < |g| p-a.e.
then || fllx) < llgllx(u)- When the quasi-norm is a norm, X (u) is called
a Banach function space (B.f.s.). Note that every quasi-B.f.s. is a quasi-
Banach lattice for the p-a.e. pointwise order satisfying that if f, — f in
quasi-norm then there exists a subsequence f,, — f p-a.e. Also note that
every positive linear operator between quasi-Banach lattices is continuous,
see the argument given in [16, p. 2] for Banach lattices which can be adapted
for quasi-Banach spaces. Then all “inclusions” of the type [i] between quasi-
B.f.s.” are continuous.

A quasi-B.f.s. X (u) is said to be o-order continuous if for every (f,) C
X (p) with f,, | 0 p-a.c. it follows that || fn||x {4 O.

It is routine to check that the intersection X () NY (i) of two quasi-
B.fs” (B.fs’) X(u) and Y(u) is a quasi-B.f.s. (B.f.s.) endowed with the

quasi-norm (norm)
1 ony oy = max {11 1x s 11 o 3-
Moreover, if X(u) and Y (u) are o-order continuous then X (u) NY () is

o-order continuous.

Proposition 2.4. The sum X(u) + Y (u) of two quasi-B.f.s.” (B.f.s.”) X (u)
and Y (p) is a quasi-B.f.s. (B.f.s.) endowed with the quasi-norm (norm)

I FlxGoy+y () = f ([[f1llx ) + 1f2lly o)

where the infimum is taken over all possible representations f = fi1 + fo u-
a.e. with f1 € X(u) and fa € Y(u). Moreover, if X(u) and Y (u) are o-order
continuous then X () + Y (p) is also o-order continuous.

Proof. From Proposition 2.2 we have that X (u) + Y (u) is a i.f.s. Even more,
looking at the proof we see that for every f € X(u) + Y (u) and g € L°(p)
with |g] < |f] prae., if f = fi + f2 prae. with f1 € X(p) and fo € Y(u)
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then there exist g1 € X(u) and g2 € Y (1) such that |g;| < |fi| p-a.e. and
9 =91+ g2. Then,

91l x w+v ) < lgrllxgn + llg2lly o < fillxg + 1f2lly o

and so, taking infimum over all possible representations f = f1 + fo p-a.e.
with f1 € X(p) and fo € Y(p), it follows that ||g]|x (u)+v ) < Ifllx(0)+y ()
Hence, || - || x(u)+v () i compatible with the -a.e. pointwise order.

The proof of the fact that || - || x(u)+v (. is a quasi-norm for which
X (p) + Y () is complete is similar to the one given in [1, § 3, Theorem 1.3]
for compatible couples of Banach spaces.

Suppose that X (u) and Y (u) are o-order continuous. Let (f,,) C X (u)+
Y (u) be such that f,, | 0 p-a.e. Consider f; = g + h p-a.e. with g € X (u)
and h € Y (u1). We can rewrite fi = fI + f? with fl € X(u), f2 € Y(u) and
fi, f? > 0 p-a.e. This can be done by taking A = {wEQ filw) < g(w |}
fI = fixa + lglxana and f7 = (f1 — |g])xa\a. Note that fl € X(u) a
0 < fi <|g| p-ae. and f2 € Y(u) as 0 < f2 < |h| p-a.e. Since 0 < fo < f1
p-a.e., looking again at the proof of Proposition 2.2 we see that there exist
f3 € X(u) and f2 € Y(u) such that 0 < fi < fi p-ae. and fo = f1 + f3
p-a.e. By induction we construct two p-a.e. pointwise decreasing sequences
of positive functions (f!) C X (u) and (f2) C Y (u) such that f, = f} + f2.
Note that f¢ | 0 p-a.e. as 0 < fi < f,, p-a.e. Then, since X (x) and Y (u) are
o-order continuous, we have that

1 follx (v ) < Wfallx ) + I3l () — 0.

O

Let p € (0,00). The p-power X (u)P of a quasi-B.f.s. X (u) is a quasi-

B.f.s. endowed with the quasi-norm

1
1A xGoye = NP 15 -

Moreover, X (u)? is o-order continuous whenever X () is so. Note that in the
case when X (u) is a B.f:s. and p > 1 it follows that || - || x(u)» is a norm and
so X ()P is a B.f.s. An exhaustive study of the space X (u)P can be found
in [19, §2.2] for the case when p is finite and xo € X (u). This study can
be extended to our general case adapting the arguments with the natural

modifications (note that our p-powers here are the %—th powers there).
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2.2. Integration with respect to a vector measure defined on a )-ring

Let R be a §-ring of subsets of a set €2, that is, a ring closed under countable
intersections. Measurability will be considered with respect to the o-algebra
RI9¢ of all subsets A of € such that AN B € R for all B € R. Let us write
S(R) for the space of all R-simple functions, that is, simple functions with
support in R.

A set function m: R — FE with values in a Banach space F is said to be
a vector measure if Y m(A,) converges to m(UA,) in E for every sequence
of pairwise disjoint sets (A4,) C R with UA,, € R.

Consider first a real measure A: R — R. The wvariation of X\ is the
measure |A|: R!°¢ — [0, 00] defined as

[A|(A) = sup { Z IA(4;)| : (A,) finite disjoint sequence in R N 2’4}.

Note that || is finite on R. The space L'(\) of integrable functions with
respect to \ is defined as the classical space L' (|A|). The integral with respect
to A of p = Z;;l ajxa, € S(R) over A € R is defined in the natural way
by [4dA=3"7_) a;A(A; N A). The space S(R) is dense in L'(}), allowing
to define the integral of f € L*(X) over A € R as [, fd\ = lim [, ¢ dX
for any sequence (p,) C S(R) converging to f in L1()).

Let now m: R — E be a vector measure. The semivariation of m is the
set function ||m||: R'¢ — [0, 00] defined by

Iml(4) = sup [e*ml(A).

z*EBp~
Here, B+ is the closed unit ball of the dual space E* of E and |z*m| is
the variation of the real measure x*m given by the composition of m with
x*. A set A € R is m-null if |m||(A) = 0, or equivalently, if m(B) = 0
for all B € RN 24. From [2, Theorem 3.2], there always exists a measure
n: R¢ — [0, 0] equivalent to ||m||, that is m and 7 have the same null sets.
Let us denote L°(m) = L°(n).

The space L' (m) of integrable functions with respect to m is defined as

the space of functions f € L°(m) satisfying that
(i) f € L'(x*m) for every z* € E*, and

(ii) for each A € R!°° there exists 24 € E such that
x*(xa) = / fdx*m, for every z* € E*.
A

The vector x4 is unique and will be denoted by [ 4 J dm. The space LY(m)

is a o-order continuous B.f.s. related to the measure space (2, Rloc, 1), with
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norm

1fli = sup / \fldlz™m).

©* €Bpx
Moreover S(R) is dense in L*(m). Note that [, ¢dm = 37, a;m(4; N A)
for every ¢ = 37 ajxa; € S(R) and A € Rloe,
The integration operator I,,,: L'(m) — E defined by I,,,(f) = fQ fdm
is a continuous linear operator with ||1,,(f)||z < ||f]|1(m)- Even more,

1
S fllzremy < sup [ILm(fxa)le < £l om) (2.2)
A€R

for all f € L*(m).
Let p € (0,00). We denote by LP(m) the p-power of L'(m), that is,

LP(m) = {f € L%m) : |f? € L'(m)}.

Then L?(m) is a quasi-B.£s. with the quasi-norm [|f]zom) = [ 1/17 4%,
In the case when p > 1, we have that || - [|z» () is @ norm and so LP(m) is a
B.fs.

These and other issues concerning integration with respect to a vector
measure defined on a é-ring can be found in [15], [17], [18], [7], [5] and [3].

3. Optimal domain for order-w continuous operators on a i.f.s.

Let X (u) be a if.s. satisfying the o-property (recall: Q = UQ,, with xq, €
X () for all n) and consider the §—ring

Sxuy={A€X: xa€X(u)}

The o-property guarantees that Ef,?fu) = Y. Given a Banach space valued
linear operator T: X (u) — FE, we define the finitely additive set function
mr: Xx () — £ by mr(A4) =T(xa).

We will say that T is order-w continuous if T(f,) — T(f) weakly in E
whenever f,, f € X(u) are such that 0 < f,, 1 f p—a.e.

Proposition 3.1. If T is order-w continuous, then my is a vector measure
satisfying that [i]: X (pn) — LY(mr) is well defined and T = I,,,,. o [i].

Proof. Let (Ay) C ¥x(,) be a pairwise disjoint sequence with UA,, € Xx ).
Since T is order-w continuous, for any subsequence (4,,) we have that

j=17""5

N
ZmT(Anj) = T(XUN A, )~ T(XUA,,LJ) = mT(UAnj>
j=1
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weakly in E. From the Orlicz-Pettis theorem (see [9, Corollary 1.4.4]) it fol-
lows that > mqy(A4,) is unconditionally convergent in norm to mq(UA,).
Thus, mp is a vector measure.

Note that ||mz| < p and so [i]: LO(u) — L°(mr) is well defined. Also,
note that for every ¢ € S(Xx(,)) we have that I,,,(p) = T(¢).

Let f € X(u) be such that f > 0 p-a.e. and take a sequence of X-simple
functions 0 < ¢, T f p-a.e. For each n we can write ¢, = E;’;l QXA

7., C X being a pairwise disjoint sequence and a; > 0 for all

J. Since xa; < a;lcpn < a;lf p-a.e., we have that x4, € X(u) and so
on € S(Xx (). Fix 2* € E*. For every A € ¥ it follows that z*T'(¢nxa) —
2*T(fxa) as T is order-w continuous. Note that *T(¢nxa) = [, ¢n dz*mr
and that 0 < ¢, 1 f *mr-a.e. as [z*mr| < ||mp| < p. From [7, Proposition
2.3], we have that f € L'(z*m7) and

/fd:z:*mT = lim / ondx*mp = lim 2*T(ppxa) =T (fxa).
A n— o0 A n— 00

Therefore, f € L'(mr) and L. (f) = T(f).
For a general f € X(u), the result follows by taking the positive and
negative parts of f. ([l

For the case when X (1) is a B.f.s., Proposition 3.1 and the next Theorem
3.2 can be deduced from [8, Proposition 2.3] and [4, Proposition 4]. The proofs
given here are more direct and are valid for general i.f.s.’.

Theorem 3.2. Suppose that T is order-w continuous. Then, T factors as

(3.1)
L'(mr)

with Iy, being order-w continuous. Moreover, the factorization is optimal in

the sense:

If Z(€) is a i.f.s. such that £ < p and

(3.2) T . [i]: Z(&) — L' (mq) is well
s defined and S = I,,,,. o [i].

with S being an order-w continuous linear

operator
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Proof. The factorization (3.1) follows from Proposition 3.1. Note that the
integration operator I,,,.: L'(mr) — E is order-w continuous, as it is con-
tinuous and L!(mr7) is o-order continuous.

Let Z(&) satisfy (3.2). In particular, Z(&) satisfies the o-property, as if
Xa € X(n) then xa € Z(§). From Proposition 3.1 applied to the operator
S: Z(¢) — E, we have that [i]: Z(£) — L'(mg) is well defined and S = I, o
[Z] Note that EX(M) C 22(5) and mg(A) = S(xa) = T(xa) = mr(A) for all
A € ¥x (), that is, mr is the restriction of mg: ¥z¢) — E to Lx(,). Then,
from [4, Lemma 3], it follows that L'(mg) = L'(mr) and L = Ln,. O

We can rewrite Theorem 3.2 in terms of optimal domain.

Corollary 3.3. Suppose that T is order-w continuous. Then L'(mr) is the
largest i.f.s. to which T can be extended as an order-w continuous operator
still with values in E. Moreover, the extension of T to L'(mr) is given by

the integration operator L, .

4. Optimal domain for p-th power factorable operators on a
i.f.s. with an order-w continuous extension

Let X (u) be a i.fs. satisfying the o-property and let T: X(u) — E be a
linear operator with values in a Banach space F.

For p € (0,00), we call T p-th power factorable with an order-w con-
tinuous extension if there is an order-w continuous linear extension of T' to
X(,u)% + X (p), i.e. T factors as

X(p) - E

1
X(p)? + X(n)
with S being an order-w continuous linear operator.

Note that in the case when yo € X (1), from Lemma 2.3, if 1 < p we have
that X (u) C X(u)% and so X(u)% +X(p) = X(u)%. Similarly, if p < 1 then
X(,u)% + X (1) = X (1), but hence to say that T is p-th power factorable with

an order-w continuous extension is just to say that T is order-w continuous.

Proposition 4.1. The following statements are equivalent:

(a) T is p-th power factorable with an order-w continuous extension.

(b) T is order-w continuous and [i]: X(u)% + X (p) — LY (mr) is well defined.
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(c) T is order-w continuous and [i]: X (1) — LP(mr)N LY (mr) is well defined.

Moreover, if (a)-(c) holds, the extension of T to X(u)% + X (p) coincides

with integration operator Ly, o [i].

Proof. (a) = (b) Note that T is order-w continuous as it has an order-w
continuous extension. Let S: X (,u)% + X(p) — E be an order-w continu-
ous linear operator extending 7. Then, from Theorem 3.2, it follows that
[i]: X ()7 + X (1) — L(my) is well defined and S = I,,,,. o [i].

(b) & (c¢) Since T is is order-w continuous, by Proposition 3.1 we always
have that [i]: X (u) — L'(mr) is well defined. Suppose that [i]: X(u)% +
X(p) — LY(mr) is well defined. If f € X (p), since |f|P € X(,u)% C X(u)% +
X (u), we have that |f|P € L'(m7) and so f € LP(mr). Then f € LP(mz) N
L'(m7). Conversely, suppose that [i]: X(u) — LP(mz) N LY(mr) is well
defined. Let f € X (u)7 + X (1) and write f = f1 + fo p-ae. with f; € X (u)7
and fo € X (p). Since |f1|1% € X (u) we have that |f1|% € LP(mr)NLY(mr) C
LP(mr) and so fi € L*(mr). Then, f € LY(m7) as fo € L'(mr).

(b) = (a) From Proposition 3.1 and since [4]: X(u)% +X(p) — LY (mr)
is well defined, we have that the operator I, o[i] extends T to X(,u)% +X ().
Moreover, the extension I, o[i]: X (u)% + X (u) — FE is order-w continuous
as the integration operator I, : L*(mr) — E is so. O

In the case when yq € X (1) and T is order-w continuous, from Propo-
sition 3.1, we have that xq € L!'(mr). So, from Lemma 2.3, if p > 1 then
LP(mr) C L*(mr) and hence LP(mr) N LY(mg) = LP(m7). If p < 1 then
LP(m7) N LY(mz) = L*(mr), but hence, as commented before, T' being p-
th power factorable with an order-w continuous extension is just 7" being

order-w continuous.

Theorem 4.2. Suppose that T is p-th power factorable with an order-w con-

tinuous extension. Then, T factors as

X(u) - E

[7;']‘ e
A

Lp(mT) n Ll(mT)

with Iy, being p-th power factorable with an order-w continuous extension.

Moreover, the factorization is optimal in the sense:
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If Z(€) is a i.f.s. such that £ < p and

X(w) g E

@, s . 0:.2(8) = Lr(mr) 0 L ()
A, is well defined and S = I, o [i].
with S being a p-th power factorable lin-

ear operator with an order-w continuous

extension
Proof. The factorization (4.1) follows from Propositions 3.1 and 4.1. Note
that LP(mg) N L'(mr) satisfies the o-property as X(u) does. Let us see
that the operator I, : LP(mz) N L*(mr) — E is p-th power factorable
with an order-w continuous extension by ussing Proposition 4.1.(c). This
operator is order-w continuous as the integration operator I,,,.: L*(mz) —
E is so. On other hand, since ¥x () C Ere(mp)nrt(my) and mr,,. (4) =
Ly (xa) = T(xa) = mp(A) for all A € ¥x(,) (i.e. mr is the restriction of
M1, ¢ SLe(mr)nLi(me) — £ t0 Xx(y), from [4, Lemma 3], it follows that
Ll(mlmT) = L'(mr). Then,

[Z] Lp(mT) n Ll(mT) — Lp(m[mT) N Ll(m]mT) = Lp(mT) NnL! (mT)

is well defined.

Let Z (&) satisfy (4.2). In particular, Z(£) has the o-property. Applying
Proposition 4.1 to the operator S: Z(§) — E, we have that [i]: Z(§) —
LP(mg) N L*(mg) is well defined and S = I o [i]. Since Lx(,) C Bz
and mg(A) = mr(A) for all A € ¥x(,), from [4, Lemma 3], it follows that
LY(mg) = LY(mr) and L,y = L, O

Rewriting Theorem 4.2 in terms of optimal domain we obtain the fol-

lowing conclusion.

Corollary 4.3. Suppose that T is p-th power factorable with an order-w con-
tinuous extension. Then LP(mr) N LY(mr) is the largest i.f.s. to which T
can be extended as a p-th power factorable operator with an order-w con-
tinuous extension, still with values in E. Moreover, the extension of T to

LP(m7) N LY (mr) is given by the integration operator I,,,..

5. Optimal domain for continuous operators on a quasi-B.f.s.

Let X(u) be a quasi-B.f.s. satisfying the o-property and let T: X (u) — E

be a linear operator with values in a Banach space FE.
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Theorem 5.1. Suppose that X (u) is o-order continuous and T is continuous.
Then, T factors as

| (5.1)
LY (mr)

with Ip,, being continuous. Moreover, the factorization is optimal in the

Sense:

If Z(€) is a o-order continuous quasi-B.f.s.
such that £ < p and

X(w) E [i]: Z(€) = L*(my) is well

(5.2) defined and S = I, o [i].

with S being a continuous linear operator

Proof. Since X (u) is o-order continuous and T is continuous we have that
T is order-w continuous and so the factorization (5.1) follows from Theorem
3.2. Recall that L!(m7) is o-order continuous and I,,,. is continuous.

Let Z(€) satisfy (5.2). In particular S is order-w continuous. From Theo-
rem 3.2 we have that [i]: Z(£) — L'(mr) is well defined and S = I,,,.0[i]. O

Corollary 5.2. Suppose that X (u) is o-order continuous and T is continuous.
Then L*(mr) is the largest o-order continuous quasi-B.f.s. to which T can
be extended as a continuous operator still with values in E. Moreover, the

extension of T to L*(mr) is given by the integration operator I,,.,..

6. Optimal domain for p-th power factorable operators on a
quasi-B.f.s. with a continuous extension

Let X (u) be a quasi-B.f.s. satisfying the o-property and let T: X (u) — E
be a linear operator with values in a Banach space FE.
For p € (0, 00), we call T' p-th power factorable with a continuous exten-

sion if there is a continuous linear extension of 1" to X(u)% + X(u), ie. T
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factors as

X(p) E

N -
X(w)7 + X (p)
with S being a continuous linear operator.

Note that in the case when xyq € X () and 1 < p, from Lemma 2.3,
it follows that X(,u)% + X(p) = X(,u)%. Then our definition of p-th power
factorable operator with a continuous extension coincides with the one given
n [19, Definition 5.1]. If p < 1, since X (u)7 + X (1) = X (), to say that T
is p-th power factorable with a continuous extension is just to say that T is

continuous.

Proposition 6.1. Suppose that X (u) is o-order continuous. Then, the follow-
ing statements are equivalent:

(a) T is p-th power factorable with a continuous extension.
(b

T is p-th power factorable with an order-w continuous extension.

(
(d) T is order-w continuous and [i]: X (1) — LP(mr)N LY (mr) is well defined.

)
)
¢) T is order-w continuous and [i]: X(M)E + X (p) = LY (mr) is well defined.
)
(e)

There exists C' > 0 such that |T(f)||lg < C||fHX( ' x(0 for all f €
1P +X (p

X(p)-
Moreover, if (a)-(e) holds, the extension of T' to X(u)% + X(p) coincides
with the integration operator I, o [i].

Proof. (a) = (b) Let S: X(u)% + X (u) — E be a continuous linear operator
extending T'. From Proposition 2.4 we have that X(,u)% + X (u) is o-order
continuous and so S is order-w continuous. Then, T is p-th power factorable
with an order-w continuous extension.

(b) & (c¢) & (d) and the fact that the extension of T to X(u)% + X ()
coincides with the integration operator I, o [i] follow from Proposition 4.1.

(¢) = (e) The operator [i]: X(u)% + X(u) — L'(mr) is continuous as
it is positive. Then, there exists a constant C' > 0 satisfying that

1 <C
HfHL (mr) = ||f||X(u)%+X(u)

for all f e X(u)% + X (p). Since I, extends T to L'(mr), it follows that

1Tz = Woe (Dl < 1 rmmy < Ml 2 v
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for all f € X ().

(e) = (a) Let 0 < f € X(u)% + X (u). From Lemma 2.1, there exists
(fn) € X(u) such that 0 < f, 1 f p-a.e. Since X(u)% + X(p) is o-order
continuous, it follows that f, — f in the quasi-norm of X (,u)% + X ().
Then, since

1T(fn) = T(fm)llz = IT(fn = fu)lle < Cllfn = funll

X ()P +X ()’

we have that (T'(f,)) converges to some element e € E. Define S(f) = e.
Note that if (g,) C X(u) is another sequence such that 0 < g,, 1 f p-a.e.,
then

N

T n *T n >~ C n - Yn 1
IT(fn) = T(9n)llE Ifn — g Hx(u)p+xw)

CK (|l fo = 11

IN

+ — In
7 =gl

X () +X (1 m%w(u))’

where K is the constant satisfying the property (iii) of the quasi-norm || -
and so S is well defined. Also note that

”X(u)%+X(u)’
I1SHIle < 1S() =T(fu)lle + 1T (fn)lle
< IS =Tl +Cloallg 3 o
< S =T(f)lle + Clf

X (1) P +X (1)

for all n > 1, and thus |S(f)||g < C ||f||X(u)%+X(#).

For a general f € X(,u)% + X (), define S(f) = S(f*) — S(f~) where
fT and f~ are the positive and negative parts of f respectively. It follows
that S is linear and S(f) = T(f) for all f € X(u). Moreover, for every
fe X(u)% + X (p) we have that

1SNHIle < ISUEe+1ISE)e
< C|f* 1 cClf~ 1
o If ||X(M)5+X(u)Jr If ”X(H)E-FX(H)
< 20| 1l

X(u)%+X(u)'

an so S is continuous. Hence, T is p-th power factorable with a continuous

extension. O

In the case when p is finite, yo € X (u) and p > 1, the equivalences (a)
< (¢) & (d) © (e) of Proposition 6.1 are proved in [19, Theorem 5.7]. Here

we have included a more detailed proof for the general case.
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Theorem 6.2. Suppose that X (u) is o-order continuous and T is p-th power

factorable with a continuous extension. Then, T factors as

X(n) - - E

7

W T S (6.1)
" =

Lp(mT) n Ll(mT)

with I, being p-th power factorable with a continuous extension. Moreover,

the factorization is optimal in the sense:

If Z(€) is a o-order continuous quasi-
B.f.s. such that £ < p and

A [i]: Z(&) — LP(mq) N L (my)
—

(6.2) , .
G-y S is well defined and S = I,,,,. o [i].

with S being a p-th power factorable lin-

ear operator with a continuous extension

Proof. From Proposition 6.1 we have that T is p-th power factorable with
an order-w continuous extension. Then, from Theorem 4.2, the factorization
(6.1) holds and I,,,,.: LP(mr) N L*(mr) — E is p-th power factorable with
an order-w continuous extension. Noting that the space LP(mr) N L (m7) is
o-order continuous (as L!(m7) is so) and satisfies the o-property (as X ()
does), from Proposition 6.1 it follows that I,,,: LP(mr) N LY(mr) — E is
p-th power factorable with a continuous extension.

Let Z(&) satisfy (6.2), in particular it satisfies the o-property. Again
Proposition 6.1 gives that S is p-th power factorable with an order-w contin-
uous extension. So, from Theorem 4.2, it follows that [i]: Z(§) — LP(mg) N
LY(mr) is well defined and S = I,,,,. o [i]. O

Corollary 6.3. Suppose that X () is o-order continuous and T is p-th power
factorable with a continuous extension. Then LP(mz)N LY (m7) is the largest
o-order continuous quasi-B.f.s. to which T can be extended as a p-th power
factorable operator with a continuous extension, still with values in E. More-
over, the extension of T to LP(mg) N L'(mg) is given by the integration

operator I, .

In the case when p is finite, xo € X(u) and p > 1, Corollary 6.3 is
proved in [19, Theorem 5.11].
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7. Application: extension for operators defined on ¢!

Consider the measure space (N, P(N), ¢) where ¢ is the counting measure on
N. Note that a property holds c-a.e. if and only if it holds pointwise and that
the space L%(c) coincides with the space £° of all real sequences. Consider the
space /1 = L1(c), which is g-order continuous and has the o-property. The
0-ring P(N)p is just the set Pr(N) of all finite subsets of N.

Let T: /' — E be a continuous linear operator with values in a Banach
space E. Denote e, = x(n} and assume that T'(e,) # 0 for all n. This
assumption seems to be natural since if T(e,) = 0 then the n-th coordinate
is not involved in the action of T'. Hence, the vector measure my: Pp(N) — E
associated to T by mp(A) = T(x4) is equivalent to ¢ and so L*(mg) C ¢°.
We will write ¢1(mr) = L*(mr).

Remark 7.1. By Theorem 5.1 we have that T can be extended as

0" r E

(L(mr)

and ¢*(mr) is the largest o-order continuous quasi-B.f.s. to which T can be

extended as a continuous operator.

Let p > 1. We have that T is %—th power factorable with a continuous

extension if there is an extension S as

T

gl

with S being a continuous linear operator. Note that p < 1 is not considered
as in this case 7 C ¢! and so the extension of T to the sum P + ¢! is just
the same operator T'. Applying Proposition 6.1 in the context of this section

we obtain the following result.

Proposition 7.2. The following statements are equivalent:
(a) T is %-th power factorable with a continuous extension.
(b) 7 C (X (mr7).

(c) X C 0% (my) N (my).
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(d) There exists C > 0 such that

1

|32 wiren],<e(3 =)’

jeM jeM
for all M € Pp(N) and (x;)jem C [0,00).

Proof. From Proposition 6.1, we only have to prove that condition (d) is

equivalent to the following condition:
(d’) There exists C' > 0 such that [|T(z)||g < C ||zl for all x € 1.
If (d’) holds, we obtain (d) by taking in (d’) the element z = 3, \, wje; €
¢t for every M € Pr(N) and (z;)jem C [0, 00).
Suppose that (d) holds. Let 0 < z = (z,,) € ¢* and take y* = Z?Zl xje;.
Since y* 1 x pointwise, ¢! is o-order continuous and 7T is continuous, we have
that

S

k
xi;) = O ||z]|¢»-
=1

k
IT@)ll = lim |7 ") 1 = tim | a7 (e)]| | < € tim
Jj=1 J

For a general x € ¢!, (d’) follows by taking the positive and negative parts
of x. O

Remark 7.3. Note that if T' is %—th power factorable with a continuous exten-
sion then the integration operator I, extends T to ¢? and, from Theorem

6.2, T factors optimally as

0 - E

s L

0% (my) N6 (mr)

with I, being %—th power factorable with a continuous extension.

Now a natural question arises: When E%(mT) N 1 (mr) is equal to
I (mr) or £*(mr)? For asking this question we introduce the following class
of operators.

Let 0 < r < oco. We say that T is r-power dominated if there exists
C > 0 such that

|5 e, <0 gy | S,

jeM NCM JEN
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for every M € Pp(N) and (z;)jem € [0,00). Note that in the case when E
is a Banach lattice and T is positive we have that

sup H Z ij(ej)H = H Z ij(ej)H .
NCM T jen B Ve L
Lemma 7.4. The containment (*(mg) C "(mr) holds if and only if T is

r-power dominated.

Proof. Suppose that ¢!(mz) C £"(mr). Since the containment is continuous
(as it is positive), there exists C' > 0 such that ||z ¢,y < C ||2]le1 () for
all x € ¢*(mr). For every M € Pr(N) and (z;);em € [0,00), we consider
T =) cmTiej € ¢, Noting that 2" = D jem Tj€5 € 21, it follows that

H Z z7 T(e )

jeEM

— T @) = g (27)]

: L
E PRk H[l(mT) = ||37H£T(mT)

IN

Cllzlle gy <2C sup |y (2x4)l 5
AePr(N)

where in the last inequality we have used (2.2). For every A € Pp(N)
we have that xxa = 3 ;canpy @je; € €' and so Iy, (zxa) = T(zxa) =
ZjeAﬁM z;T(e;). Then,

1
“Zac;T(ej) o < 2C sup H Z ij(ej)HE
jeM A€PrN) T jeanm
= 2C sup H ijT(ej)H .
NeMm ey E

Conversely, suppose that T' is r-power dominated and let z = (x,) €
Y (mr). Taking y* = Z?zl |z;]"e; € €, for every k > k and A € Pr(N), we

have that (y* —y*)xa = ZjeAﬂ{fc+1,...,k} |zj|"e; and so

7@ -l = || X wlTE)|,
jeAN{k+1,....k}
< Cr sup Z|$j|T(ej)HE

NCAN{k+1,...k} " jeN

= C" sup ImT(Z \:z:j|ej)HE

NCAN{k+1,....k} JEN
T
< Cr sup Z |z |e; ”
NCAN{k+1,..k} " jen (mr)
1 byl
< O = @) -
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For the last inequality note that (y*)+ = Z?:l |z;|e; and so

k
1 1
d lwgle; < Y lwiley = (%) - (WF)7
JEN j=k+1

for every N € AN {k+1,...,k}. Then, by using (2.2), we have that

ko k ; ko yk
Hy ) Hfl(mT) < 2[4;;;}?( HImT((y -y )XA)HE

2 sup | T((6" —v")xa) |
AePr(N)

207 ||(y*)

IN

); Hll(mT) - 0

as k,k — oo since (y*)7 1 || pointwise and ¢!(mr) is o-order continu-
ous. Hence, y* — z in £} (mz) for some z € £'(m7). In particular, y* — 2
pointwise and so |z|" = z € ¢(mr) as y* 1 |z|" pointwise. Therefore
x € L"(mp). O

Lemma 7.5. Let p > 1. If T s %-power dominated then it is %-th power
factorable with a continuous extension.

Proof. Let us use Proposition 7.2.(d). Given M € Pp(N) and (z;)jem C
[0, 00), denoting by K the continuity constant of T', we have that

| 3 2rte) | S i, <ct HprTea

‘E
jeM NcM

1 » 11 »
= (7 sup T( E x’?ej)‘z < CrK?r sup ‘ E 2Pe;||”
NcM / E NCM Tl
JEN jEN
1 1
1 1 D 1 1 D
= C?»K? sup (Zx?)P SCEK;(ZUL’?)F-
NCM \* :
JEN JEM

O

As a consequence of Remark 7.3, Lemma 7.4 and Lemma 7.5, we obtain
the following conclusion.
Corollary 7.6. For p > 1 we have that:

(a) If T is p-power dominated and %—th power factorable with a continuous

extension, then T factors optimally as

o E
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with Ip,, being %-th power factorable with a continuous extension.

(b) If T is %—power dominated, then T factors optimally as

I r E

i ) ; ”[m
A i

A (mT.)

T

with Ip,, being %-th power factorable with a continuous extension.

Consider now the case when EF = /(c) is a B.f:s. related to ¢ such
that ¢ C f(c) C £°. Then {(c) is a Kdthe function space in the sense of
Lindenstrauss and Tzafriri, see [16, p.28-30]. For instance, ¢(c) could be an
£ space with 1 < ¢ < o0, or a Lorentz sequence space %" with 1 <r < ¢ < 00
or an Orlicz sequence space £, with ¢ being an Orlicz function.

Let us recall some facts about the Kothe dual of an space £(¢). Denote

the scalar product of two sequences = = (x,,),y = (yn) € £° by

(2,9) = @nn

provided the sum exists. The Kdthe dual of £(c) is given by
le) = {y €% (Jz|,|y|) < oo forall z € E(C)}.

Note that x4 € ¢(c)’ for all A € Pr(N). The space £(c)’ endowed with the

norm

IWlleey = sup (|, lyl)

ZE€By(e)
is a B.f.s. in the sense of Lindenstrauss and Tzafriri. The map j: £(c)’ — £(c)*
defined by (j(y),z) = (z,y) for ally € £(c)’ and = € {(c), is a linear isometry.
In particular, convergence in norm of ¢(c¢) implies pointwise convergence,
as e, € {(c) for all n. Note that ¢(c) C £(c)”. The equality ¢(c) = £(c)"”
holds with equal norms if and only if ¢(c) has the Fatou property, that is, if
(z%) C €(c) is such that 0 < z* 1 x pointwise and sup [|z*||s) < co then
@ € {(c) and [|2*]leee) T [|2[lee)-

Let M = (a;;) be an infinite matrix of real numbers and denote by C;
the j-th column of M. Assume C; # 0 for all j. Note that

Mzx = (Zaijmj)‘
j 7

for any = € ¢° for which it is meaningful to do so.
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Proposition 7.7. Suppose that £(c) has the Fatou property. Then, the following
statements are equivalent:

(a) M defines a continuous linear operator M : £* — {(c).
(b) Cj € L(c) for all j and sup; ||Cjllgc) < 0.

Proof. (a) = (b) Let K > 0 be such that [|[Mz|y) < Kllz|p for all z € ¢*.
For every j we have that C; = Me; € ¢(c). Moreover,

sup [|Cjlleey = sup [[Mejllge) < Ksup [ej][n = K.
J J J

(b) = (c) Since #(c) has the Fatou property then ¢(c) = £(c)” with equal
norms. Let x € ¢'. First note that for every ¢ we have that

> laijaj] > (1G5 e) i <D NG e lleillecey 1]
- . :

J J

IN

leillecey [l ller sup [|Cjllece)
J

and so Mz € (9. Given y € £(c)’ it follows that

(gl (M) = 1wl D agaes| <D0 lagayl =Dl Y laivil
i i 7 7 5

DIzl (ICs1 ) < D 1zl 1G5 ey 19 ey
i i

yllecey 1zl ex sup 1C5llece)-
J

IN

Then Mz € £(c)” = £(c) and

[Mllgey = sup  (|yl, |Mz]) < [lz]le sup [|[C;llee)-
YEBy ¢y J

O

In what follows assume that £(c) has the Fatou property, C; € ¢(c) for
all j and sup; [|Cjllg) < oo. Then, M defines a continuous linear operator
M: ' — {(c) and so, by Remark 7.1 we have that M can be extended as

el

0 (mar)
and ¢! (myy) is the largest o-order continuous quasi-B.f.s. to which M can be

extended as a continuous operator.
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Remark 7.8. For every x € (*(myy) it follows that I,,,, () = Mz and so
M defines a continuous linear operator M: ¢!(my;) — £(c). Indeed, take
0<z=(z,) € L*(myp) and z* = 25:1 zje; € 1. Since z* 1 z pointwise
and ¢'(mjy) is o-order continuous it follows that z¥ — x in £*(mys). Then,
since M = I,,,,, on ', we have that Mz* = I,,,,, (z¥) — I,,,,(x) in £(c) and
so pointwise. Hence, the i-th coordinate Z?Zl ai;x; of M x* converges to the
i-th coordinate of I,,,(x) and thus Mz = I,,,,(x) € ¢(c). For a general

x € (1(myy), we only have to take the positive and negative parts of x.

From Proposition 7.2 applied to M: ¢! — /¢(c) and Remark 7.8 we

obtain the following conclusion.
Proposition 7.9. The following statements are equivalent:
(a) M defines a continuous linear operator M : ¢P — {(c).
(b) M is %-th power factorable with a continuous extension.
(c) €7 C £ (may).
(d) * C £¥ (mag) N0 (mag).

)

(e

There exists C' > 0 such that

| X wci]|,, <e(X =)
JEM JjeEM

for all M € Pp(N) and (z;)jem C [0,00).

o=

Proof. The equivalence among statements (b), (c), (d), (e) is given by Propo-
sition 7.2. The statement (a) implies (b) obviously. From Remark 7.8 we have
that M defines a continuous linear operator M: ¢!(my;) — £(c), so (c) im-
plies (a). O

Let us give two conditions guaranteeing that M defines a continuous
linear operator M : (P — £(c):
(I) If p’ is the conjugate exponent of p and > HCJHZC) < o0, then (e) in
Proposition 7.9 holds. Indeed, for every M € Pr(N) and (z;),jenm C [0, 00)
we have that

=

S Gl < (X a) (S I614,)7

| X =, <
jeM 4e) jeM jeM jeM
1 1
< (Xhoslig)” (X =)

JjEM
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(II) If M is %—power dominated, that is, there exists C' > 0 such that

|3 < o, >
z} CjH < C sup H ij’jH
jem £(c) Nem IS £(c)
for every M € Pp(N) and (z;)jem € [0,00), then (b) in Proposition 7.9
holds by Lemma 7.5.

For instance, in the case when ¢(c) = ¢9 and a;; > 0 for all ¢, j, condition
(IT) is satisfied if F; € ¢! for all i and ) ||F;||% < oo, where F; denotes the
i-th file of M. Indeed, for every M € Pp(N) and (z;)cm € [0,00), applying
Holder’s inequality twice for p and its conjugate exponent p’, we have that

P

Il = (C(gee)) = (S (g o))’
< (S(gam) (Ze))
< (Z(Zow))  (E(Zm))?

|5 o, (Simi)®
JEM 7

Note that supyc s H dien ijjHe = H > jem T OjHe as a;; > 0 forallé,j.
q q
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