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Abstract: 

In this work, nanocomposites of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with multi-wall 

carbon nanotubes (MWCNT) were prepared by pre-dispersed masterbatch dilution. Melt compounding on 

a twin screw extruder was followed by characterization of rheological, mechanical, thermal and 

morphological properties of the nanocomposites influenced by MWCNT concentration.  

Light-transmission- and scanning electron microscopy supported by Raman spectroscopy showed 

preferential location of MWCNT in polycarbonate. Nevertheless, relatively good dispersion in the whole 

matrix was achieved. Specific mechanical energy calculated for nanocomposite system was higher at 

lower processing temperature. Thermal stability was investigated by TGA while transition temperatures 

by DSC. Study of viscoelastic properties of PC/ABS-MWCNT showed the fluid–solid transition below 

0.5 wt.% MWCNT. Beyond this point continuous nanofiller network is formed in the matrix promoting 

the reinforcement. Addition of 0.5 wt.% MWCNT reduced ductility of PC/ABS and enhanced Young’s 

modulus by c.a. 30% and yield stress by c.a. 20%. Moreover, theoretical values of stiffness calculated 

within this work agree with the experimental data. Boosted electrical properties, showing percolation at 

2.0 wt.% MWCNT, are influenced by melt temperature during extrusion.  

These results reveal that the preparation of PC/ABS nanocomposites from masterbatch dilution is an 

excellent method to obtain well-dispersed MWCNT and a good balance of electrical and mechanical 

properties. 
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1. Introduction: 

Miscible- and multiphase polymer blends create over 36% of polymer production industry [1]. 

Development of nanocomposites based on such matrix filled with multi-walled carbon nanotubes 

(MWCNT) offer novel possibilities to produce materials with tailored properties. Both: miscible [2] and 

immiscible [3-4] blends exhibit desired performance characteristics after incorporation of MWCNT. 

Carbon nanotubes characterized by unique structure and uncommon properties have already reached an 

important position in science and technology. High aspect ratio causes the boost of electrical- and thermal 

conductivity in isolating polymers at relatively low loads [5-6]. Likewise, shape and properties of MWCNT 

allow improving mechanical properties of polymer matrix when homogeneous dispersion is achieved. 

This is related to the mechanical percolation based on interactions between carbon nanotubes and 

polymer chains [7]. Nevertheless, achieving of good dispersion of carbon nanotubes in polymers by melt-

mixing is one of the key challenges. Agglomeration level based on attractive Van der Waals forces 

between individual nanotubes appears to be tunable when twin-screw extrusion is applied [8]. Tailoring 

the key processing parameters during nanocomposite preparation and further processing [9] allows 

significant decrease of agglomeration and control of alignment in the final part [10]. Specific mechanical 

energy (SME) is recognized parameter describing energy applied to the material during melt mixing [11]. 

Proper control of the compounding process and selection of correct processing parameters, in particular 

with the design of screw profile, is a significant factor in the quality of the final nanocomposite [8]. There 

are some literature examples of melt-mixed nanocomposites of carbon nanotubes in commodity polymers, 

such as polyethylene (PE) [12], polypropylene (PP) [13] or polystyrene (PS) [14]. Materials based on 

engineering plastics such as polycarbonate (PC) have attracted considerable interest in recent years. Alig 

et al. [15] reported strong dependence between electrical conductivity, MWCNT content and processing 

parameters for nanocomposites based on polycarbonate (PC). The destruction of nanofiller network and, 

thus a decrease of electrical conductivity was reported when a high screw speed was used. Primary- and 

secondary agglomeration theory explains nanofiller bundling what is related to electrical conductivity 

reinforcement in plastics [6]. Presence of tightly packed agglomerates in the nanofiller before extrusion 

makes de-agglomeration more difficult and, thus decreases the homogeneity of MWCNT dispersion. 
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However, it is claimed that the size on carbon macro-structures can be modified with changed shear 

conditions, e.g. with ball mill treatment of nanotubes before further processing [16]. Proper parameters 

(high screw speed, low barrel temperature) guarantee better dispersion, so increased contact between the 

individual nanotubes and matrix.  

PC/ABS blends filled with carbon nanotubes were studied by Xiong et al. [3] and Sun et al. [4]. In both 

cases blends were prepared by researchers form the neat components and migration or controlled location 

of MWCNT was reported. Besides, affinity of carbon nanotubes to polycarbonate component at defined 

PC-to-ABS ratio was explained showing the challenge of achieving a uniform distribution of MWCNT in 

both components when commercial PC/ABS blends are used.  

In this work we present PC/ABS-MWCNT nanocomposites prepared by pre-dispersed masterbatch 

dilution on twin-screw extruder at two temperatures. Specific mechanical energy (SME) applied to the 

material during processing is discussed. Morphology is characterized by light-transmission- (OM), 

scanning electron microscopy (SEM) and Raman spectroscopy. Thermal properties are investigated by 

thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC) while mechanical properties 

by dynamic-mechanical analysis (DMA) and tensile testing. Moreover, theoretical predictions of 

mechanical improvement are correlated with the experimental data.  

 

2. Materials and Experimental Procedure: 

Commercial blend of polycarbonate and acrylonitrile-butadiene-styrene (PC/ABS) Bayblend® T85, 

supplied by Bayer MaterialScience, contains 85 wt.% of polycarbonate. MVR is 12 cm3/10 min, Vicat 

softening temperature is 129ºC (data provided by supplier). Multi-walled carbon nanotubes (MWCNT) 

NC7000 are supplied by Nanocyl. Average diameter is 9.5 nm and average length 1.5 μm (data provided 

by supplier). 

Nanocomposites were obtained with a throughput of 1 kg h-1 on the twin-screw  

co-rotating laboratory extruder Prism Eurolab 16 (Thermo Fisher Scientific) of  

length-to-diameter ratio (L/D) 25. Screw profile was designed using Ludovic software (Sciences 

Computers Consultants). Nanocomposites are produced at 260ºC or 280ºC with screw speed 400rpm. 

Carbon nanotubes were fed to the extruder with a pneumatic feeder (Brabender Technologies) together 

with PC/ABS pellets. Final nanocomposites were subsequently formed by dilution of 5.0 wt. % MWCNT 

masterbatch (prepared in the same conditions as dilution) to concentrations between 0.5 wt. % and 3.0 wt. 
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%. PC/ABS pellets and masterbatch pellets were dried in vacuum at 100°C for 4h before each processing 

stage. Rectangular samples with dimensions of 60x10x2 mm3 following modified standard ISO 127 were 

compression molded on Collin 6300 hydraulic press at 260 ºC in order to be used for thermo-mechanical 

tests and electrical conductivity measurements. Additionally, dog-bone specimens following standard ISO 

527-3 were obtained at the same conditions for the use in evaluation of mechanical properties.  

Morphology of the nanocomposites was studied by light-transmission microscopy (OM) on Leica DMRX 

microscope and by scanning electron microscopy (SEM) on JEOL 7001F scanning electron microscope. 

Films 20-50 μm thick for OM study were heat-pressed from pellets. SEM samples were platinum-coated 

using a sputtering device Baltec SCMCS010. Raman spectroscopy measurements were done on Horiba 

XploRA with 532nm laser LCM-S-11 and CCD detector.  

Thermo-gravimetric analysis (TGA) was done on Q5000 instrument (TA Instruments). Pellets were 

heated from 50°C to 600°C at a heating rate of 20°C min-1 under nitrogen atmosphere. Differential 

scanning calorimetry (DSC) was done on Diamond (Perkin-Elmer). Each sample was heated from 40ºC to 

280ºC with a heating rate of 10ºCmin-1 to erase the thermal history. This was followed by cooling to 40ºC 

at the same conditions and second heating to 280ºC in order to determine the glass transition temperature 

and enthalpies.  

Viscoelastic properties of nanocomposites were investigated on AR G2 rotational rheometer (TA 

Instruments) with parallel plate geometry (diameter 25mm) at 280ºC. Strain was set to 1% according to 

the results of strain sweep. Dynamic mechanical analysis (DMA) was done on DMA-2980 (TA 

Instruments) with dual cantilever clamp at vibration frequency 1 Hz, temperature range from 35°C and 

200°C and scan rate of 3°Cmin-1. Tensile testing was performed according to ASTM D-638 on an Instron 

Universal Machine 3343 with 5kN load cell and 5mm min-1 extension velocity. Experiments were done at 

constant conditions: 50±5% HR and 24±2ºC.  

Electrical resistivity was measured by twp-point contact configuration following ISO 3915 standard on 

Keithley 2000 Multimeter source/meter. Silver electrodes were painted on the samples in order to 

improve contact with measuring electrodes.  

 

3. Results and Discussion: 

3.1. Morphology 
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Morphology of nanocomposite obtained by melt mixing immiscible PC/ABS blend with carbon 

nanotubes is present on OM images in Figure 1. Relatively good dispersion of MWCNT with minor 

agglomeration is achieved for all applied processing conditions showing little difference between low and 

high barrels temperature. Nanocomposites prepared at 260 ºC show more homogeneous morphology than 

those produced at 280ºC. This difference is clear at higher MWCNT loads. Moreover, at 260 ºC the 

reduction of agglomerates quantity per controlled area appears along with the increase of agglomerate 

size with the change of nanofiller load from 1.0 wt.% to 3.0 wt.%. Such agglomeration behavior can be 

correlated with specific mechanical energy (SME) curves shown in Figure 2 and calculated with Equation 

(1). This important parameter characterizing process by showing effectivity of the selected conditions 

includes εP as the effective power of motor, τ representing torque and Q - throughput. Input data contains 

also screw speed ratio between the applied (νproc) and the maximum (νmax) value. Throughput Q was 

constant for all experiments in order to facilitate results analyses. However, reports regarding influence of 

that parameter exist in the literature [11]. Therefore, SME understood as a relation between various 

mutually correlated parameters is directly proportional to torque (influenced by melt viscosity) and to 

screw speed [17]. Clear dependence of SME on melt temperature and MWCNT load is present in Figure 2. 

Higher values of shear applied at lower temperature show clear increase of SME. This behavior can be 

derived from higher viscosity at lower temperatures and higher MWCNT loads. Sufficient mixing energy 

gives possibility to obtain relatively good dispersion of carbon nanotubes [11].  

Previous reports on PC/ABS investigation allows to define the immiscible phases in SEM micrographs 

[18]. Morphology of nanocomposites studied on SEM micrographs shows preferential location of carbon 

nanotubes in polycarbonate, appearing as  

a smooth surface, rather than in ABS (Figure 3). This situation does not change with an increase of 

MWCNT load or at various processing conditions. These conclusions can be correlated with the 

calculations of surface energies and wetting coefficient between MWCNT and matrix components [19-20]. 

The interfacial tension obtained from partial surface tensions between the defined phases of the blend 

show that carbon nanotubes have significantly higher affinity to PC, what agrees with the observations. 

Moreover, agglomeration behavior expected at higher carbon nanotubes loads is present in SEM 

micrographs. Figure 3b shows entangled and individual MWCNT, while for lower nanofiller 

concentration mainly well-dispersed structures are present.  
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Vibrational spectra of PC/ABS present in Figure 4 shows the characteristic pattern between 600 cm-1 and 

2000 cm-1. The Raman bands at 1880 cm-1, 1112 cm-1 and 885 cm-1 are representing C-H in-plane and 

out-of-plane wagging modes. Broad band between 1200 cm-1 and 600 cm-1 are related to C-O stretching 

and C-H deformation [21]. Characteristic bands for pristine multi-walled carbon nanotubes appear at 1340 

cm-1 and 1575 cm-1 for D-band and G-band, respectively [21]. For nanocomposites the bands are shifted 

towards the higher wave-number (blue shift) showing the positions at c.a. 1347 cm-1 and c.a. 1599 cm-1 

for D- and G-band, respectively. This effect is explained as results of MWCNT disentanglement and has 

been reported earlier [22]. Besides the band at c.a. 1500 cm-1 overlaps with the G-band of multi-walled 

carbon nanotubes, what makes the intensities ratio of characteristic bands (D/G) more effective 

parameter. In this regard the decrease of D/G was observed from 0.99±0.01 for MWCNT to 0.95±0.01 for 

PC/ABS with 1.0 wt.% MWCNT. This can be related to the local stress between MWCNT and the 

polymer [23-24] represented by the mechanical compression transferred from the matrix to MWCNT [25].  

 

3.2. Thermal properties 

Figure 5 shows thermal degradation behavior of pristine PC/ABS and selected nanocomposites measured 

by TGA. Both components of the matrix can be distinguished by two-step decomposition. Moreover, the 

initial part of the curve (c.a. 400ºC-475ºC) representing degradation of ABS shows slight increase of 

thermal stability after the incorporation of carbon nanotubes. Even though polycarbonate seems to show 

no significant change after the formation of nanocomposite, results present in Table 1 show similar trend 

for both blend components. Furthermore, only slight increase of thermal stability for polycarbonate was 

observed with an increase of carbon nanotubes load. This behavior of decreased thermal stability with an 

incorporation of carbon nanotubes to polymer matrix, has been reported earlier [26]. Impurities in 

nanofiller (e.g. metal ions) can act as Lewis acids weakening radicals and causing easier thermal 

degradation.  

Table 1 shows the DSC results: glass transition temperature (Tg) and change of heat capacity at glass 

transition temperature (ΔCp) for investigated nanocomposites. The trend is opposite for both PC/ABS 

phases. Chain mobility basing on interactions between well-dispersed individual carbon nanotubes and 

polymer chains can be investigated rather with the heat capacity [27]. The network of carbon nanotubes 

reduces freedom degree of polymer chains, what should cause the decrease of ΔCp. This effect occurs for 

ABS phase with only reduced amount of MWCNT. However, with the increase of carbon nanotube load, 
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morphology evolution can occur locating more nanofiller in ABS. This was described by Xiong et al. [3] 

as an effect related to processing conditions. Nevertheless, such phenomenon can also be related to the 

increase of carbon nanotubes content. On the contrary, agglomeration in PC increasing at higher 

nanofiller load provides higher mobility of polymer chains what affects the change of heat capacity at 

glass transition temperature.  

 

3.3. Rheology 

Rheology of PC/ABS-MWCNT nanocomposites in Figure 6 shows clear dependence of carbon nanotubes 

load. An increase of storage modulus (G’) with the increase of MWCNT load is observed. Moreover, all 

investigated nanocomposites show solid-like behavior with rubber plateau at high angular frequency. 

Such plateau is more obvious at higher nanofiller loads and can be observed above defined molecular 

carbon nanotube-polymer chain entanglement [7]. The transition between liquid- and solid-like behavior is 

also related to molecular weight of polymer chains that are clearly reduced after processing and is 

expected below 0.5 wt.% [28]. Such rheological percolation is believed to base on combined nanotubes-

polymer network rather than exclusively on MWCNT network (as it appears for electrical percolation 

threshold) [7]. Disentanglement of such structure is more difficult than disentanglement of polymer-

polymer network at low frequencies. Substantial influence of carbon nanotubes on the polymer relaxation 

dynamics is explanation of material behavior observed on linear viscoelastic properties at low MWCNT 

loads and low frequencies [29]. On the other hand, higher MWCNT loads provide better interconnection 

between polymeric chains resulting with aforementioned rubber plateau.  

 

3.4. Mechanical Properties 

Tan δ, defined as the ratio of loss modulus to storage modulus, is a measure of inherent material damping 

(energy dissipation). Figure 7 shows the value of the Tan δ (maximum peak) according to the 

incorporation of the MWCNT into PC/ABS matrix. An increase of tan δ with increase of carbon nanotube 

load is observed for both matrix components. Nevertheless, the improvement is higher in the mayor phase 

(PC) than minor phase (ABS) Increase of the transition temperature in both phases indicates improvement 

of mechanical properties. The above observations can be correlated with these results regarding tan δ as 

cross-linking sensitive parameter. Higher carbon nanotubes concentrations create more entanglements 
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between polymer chains that can be understood as a formation of such network influencing energy 

absorption.  

Carbon nanotubes content influence on Young’s modulus is shown in Figure 8. Significant improvement 

of stiffness is achieved after introduction of 0.5 wt.% MWCNT. Further increase of nanofiller 

concentration gives rather minor change of Young’s modulus. Nevertheless, Table 2 shows an increase of 

yield stress and a decrease of elongation at break at higher carbon nanotube loads. This behavior is 

expected and has been observed by other authors [30]. Different trend in Young’s modulus below and 

above 0.5 wt.% can be related to higher agglomeration at higher loads. In this regard, change of load 

transfer mechanism can be considered to explain such decrease of ductility at elevated carbon nanotube 

loads.  

Comparison of experimental data of PC/ABS nanocomposites with theoretical model based on Halpin-

Tsai equations [31] is shown in Figure 8. Reported modifications of this method, originally related to 

micro-fillers, broaden its application range to nanocomposites [32-34]. Theoretical values of Young’s 

modulus calculated with Equation (2) agree with experimental data in the whole MWCNT concentration 

range. Factor η described by Equation (3) defines the efficiency of the nanofiller while ζ, Equation (4), is 

related to the geometry and the boundary conditions of the reinforcement of the individual nanotube. 

Young’s modulus of nanofiller (Ef) and PC/ABS (Em) are 980 GPa and 1.2 GPa respectively. MWCNT 

load is defined by volume fraction (Vf). However, rather poor agreement between theoretical and 

experimental data is achieved with classic Halpin-Tsai model. Correct orientation factor α, experimental 

kA factor and waviness coefficient Kω need to be selected to improve this, especially for higher carbon 

nanotube loads. According to the literature α value 0.17 represents randomly oriented MWCNT, so the 

situation expected in this study [32]. Waviness coefficient ranges usually between 0 and 1, and represents 

the share of force transferred by MWCNT along the central axis. Even though non-modified calculation 

method does not fit the experimental data independently on waviness coefficient, non-modified method 

seems to agree with nanocomposite below 0.5 wt.% MWCNT when higher share of long axes of the 

nanotubes is considered (Kω 0.2). Besides, correct experimental curves fitting with theory occurs when 

non-linear dependence between carbon nanotubes load and mechanical performance is defined.  

 

3.5. Electrical properties 
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Figure 9 shows electrical conductivity of nanocomposites obtained at various temperatures. Conductivity 

of neat PC/ABS, e-15 Scm-1, is boosted c.a. fourteen orders of magnitude with the load of 1.0 wt.% 

MWCNT. Rapid improvement of electrical properties with an increase of nanofiller content occurs above 

2.0 wt.% marking percolation threshold. However, only minor difference can be observed with the 

change of melt temperature (between 260ºC and 280ºC). In both cases electrical percolation (Φe) is 

present at almost exactly equal concentration. Besides, mechanical percolation observed in flow curves 

occurs at clearly lower loads than conductive network is formed. This can be related to different character 

of both networks, regarding polymer chains-nanotubes network in the latter case [7,28-29]. Electrical 

conductivity demands nanotube-nanotube direct contacts or very little distances to provide charge path 

between the electrodes. Furthermore, immiscible blends show double percolation phenomenon based on 

the continuity of conductive filler-rich phase in the other phase of the matrix. Furthermore, electrical 

conductivity varies almost an order of magnitude between 2.0 wt.% and 3.0 wt.%, what is rather 

uncommon behavior after percolation point.  

 

4. Conclusions 

In this work we present result of characterization of PC/ABS-MWCNT nanocomposite processed by 

melt-mixing. Specific mechanical energy is found to show clear difference favoring lower processing 

temperatures. Commercial, immiscible blend forms nanocomposites of good morphology with majority of 

nanofiller located in polycarbonate. This agrees with the literature calculations basing on surface energies 

of blend components. The dilution of pre-dispersed masterbatch on twin-screw extruder result with the 

improvement of thermal-, mechanical- and electrical properties. Thermal properties are related to the 

dispersion of MWCNT in polymer matrix. Change of heat capacity at glass transition temperature 

indicates the increase of carbon nanotube content in ABS phase at elevated loads. Besides, mechanical 

percolation estimated on storage modulus (G’) curves appears to be significantly lower than electrical 

percolation, indicating relative difficulty in achievement of conductive path in commercial PC/ABS and 

the presence of MWCNT-rich phase. Mechanical properties improved with MWCNT load shows 

acceptable fitting with theoretical values calculated with modified Halpin-Tsai method.  

Balance between mechanical- and electrical- properties observed during this work creates an attractive 

opportunity for automotive- and electronic industries. Applicability of these nanocomposites by injection 

molding of PC/ABS-MWCNT nanocomposites will be presented in a future work.  
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Figure captions 

Figure 1: Light-transmission microscopy images of PC/ABS-MWCNT nanocomposite processed at 

260ºC: a) 1.0 wt. %, b) 3.0 wt. %, and 280ºC: c) 1.0 wt. %, d) 3.0 wt. %. 

Figure 2: Specific mechanical energy of PC/ABS-MWCNT nanocomposites extruded at various 

temperatures.  

Figure 3: SEM micrographs of PC/ABS-MWCNT nanocomposite processed at 260ºC: a) 1.5 wt. %, b) 

3.0 wt. % with circled agglomerate.  

Figure 4: Raman spectra of PC/ABS, MWCNT and resulting nanocomposite  

(1.0 wt.%).  

Figure 5: Thermal degradation curves for pristine matrix and two selected nanocomposites.  

Figure 6: Storage modulus of neat and processed PC/ABS and of its selected nanocomposites with 

MWCNT.  

Figure 7: Dynamic mechanical analyses results for PC/ABS and its nanocomposites with MWCNT.  

Figure 8: Young’s modulus dependence of MWCNT load in PC/ABS-MWCNT nanocomposites 

compared with theoretical data.  

Figure 9: Electrical conductivity of PC/ABS processed at different barrels temperature.  

 

Table captions 

Table 1: Thermal properties of PC/ABS nanocomposites processed at 260 ºC . 

Table 2: Mechanical properties of PC/ABS nanocomposites processed at 260 ºC. 
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Figure 8. 

 

 

Figure 9. 

 

Tables: 

Table 1. 

MWCNT 

[wt. %] 

ABS PC 

Tg(1)  

[ºC] 

ΔCp(2)  

[Jg-1deg-1] 

w.d.(3)  

[ºC] 

Tg(1)  

[ºC] 

ΔCp(2)  

[Jg-1deg-1] 

w.d.(3)  

[ºC] 

0.0 119.2 0.082 452.2 141.0 0.115 514.0 

0.5 114.8 0.062 454.6 142.0 0.118 515.1 

1.0 114.6 0.058 457.7 142.6 0.139 516.3 



 20 

2.0 114.2 0.048 457.9 143.0 0.159 517.5 

3.0 113.9 0.043 458.2 143.4 0.165 518.3 
(1) Glass transition temperature; (2) Change of heat capacity at glass transition; (3) Peak maximum of 

weight derivative obtained by TGA 

 

Table 2. 

MWCNT 

[wt. %] 

Mechanical properties 

σy(1) [MPa] εb(2) [%] En(3) [J] 

0.0 44.8 (±1.0) 10.0 (±0.1) 806.0 (±12) 

0.5 52.5 (±1.1) 9.3 (±0.5) 628.5 (±29) 

1.0 56.1 (±1.3) 8.7 (±0.5) 440.5 (±32) 

2.0 56.6 (±1.2) 7.5 (±0.6) 381.2 (±30) 

3.0 57.0 (±1.4) 6.3 (±0.8) 344.7 (±25) 

5.0 57.9 (±1.3) 4.6 (±0.6) 260.0 (±32) 
(1) Stress at yield point; (2) Elongation at break; (3) Elastic strain energy 


