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This work presents a new and general approach to the real dynamics of the multipactor process: the  
nonstationary  statistical  multipactor  theory.  The  nonstationary  theory  removes  the  stationarity  
assumption  of  the  classical  theory  and,  as  a  consequence,  it  is  able  to  adequately  model  electron  
exponential  growth  as  well  as  absorption  processes,  above  and  below  the  multipactor  breakdown  
level. In addition, it considers both double-surface and single-surface interactions constituting a full  
framework  for  nonresonant  polyphase  multipactor  analysis. This  work  formulates  the  new  theory  
and validates it with numerical and experimental results with excellent agreement.

I. INTRODUCTION

Multipactor1–3 is a resonant nonlinear effect that may
occur in high power microwave devices at very low pres-
sures, such as those operating in particle accelerators and
satellite subsystems. A multipactor discharge is an electron
avalanche in which electrons are accelerated by the electro-
magnetic fields, successively impacting against the device
walls in synchronism with the rf signal frequency. After each
impact electrons are released due to secondary emission on
the device walls, developing an exponential charge growth
and ultimately an electron discharge. Its effects range from
signal degradation to the complete destruction of the compo-
nent. As a consequence, the design of multipactor-free
components is a key issue for the space telecommunications
industry.

The classical multipactor theory was first developed by
Gill and Von Engel in 1948.2 Since then, the theory has
evolved in two main branches. The constant-k theory2,4,5 and
the constant-v theory.3,6 The former assumes that the emis-
sion energy of the secondary electrons is proportional to their
impact energy with the proportionality constant k. The latter
assumes that the emission energy of the secondary electrons
is independent from the impact energy. Both the theories are
restricted to single carrier continuous wave operation �the rf
signal is composed of only one sinusoid�, one-dimensional
�1D� electron motion, parallel plates geometry �homoge-
neous electrostatic field� and a deterministic energy emission
of secondary electrons.

It is known that the emission velocity of secondary elec-
trons does not depend on the primary impact energy,7 which
is contrary to the constant-k assumption. However, the sec-
ondary emission yield �SEY� parameters and the k constant
can be easily tuned to adjust the predicted breakdowns to the
experimental results.8 Therefore, the space industry has
adopted this theory for the past years and has applied it to the
current multipactor standards.9

On the other hand, although the constant-v theory fails
to provide reliable breakdown levels,8 it is aligned with the
physics of secondary emission. For this reason, the
constant-v theory has prevailed in the scientific community,
and more recent works have extended it in order to cover
single surface multipactor with magnetic transversal fields10

and dielectrics,11 more complicated resonances such as even
and hybrid modes12,13 and more complex geometries, such as
irises,14 rectangular waveguides,15 and coaxial structures.16

However, the core of these developments remains that of the
classical theory and therefore, they fail to predict experimen-
tal multipactor breakdown levels.

Recent studies on statistical multipactor describe a more
realistic scenario where the random nature of the electron
emission velocity is considered.17–19 In fact, if the velocity
spread becomes large enough, the flight time of electrons can
strongly vary from impact to impact, even intercalated with
single surface impacts, and still have an overall SEY higher
than one. This description of the multipactor phenomenon is
known as nonresonant multipactor or polyphase multipactor,
giving results which are closer to the experiments.17,20,21

This work presents a new nonstationary statistical mul-
tipactor theory for single carrier operation, based on the pre-
vious work of Vdovicheva et al.17 The nonstationary theory
accurately predicts multipactor breakdown levels and models
electron multiplication and absorption processes experienced
during the multipactor discharge. This theory is valid for
both stationary and nonstationary situations, giving a more
general and reliable theory to explain the complete multipac-
tor physical process.

First, in order to depict a general view, the status and
main limitations of the current multipactor theories are
briefly summarized in Sec. II. Then, the new nonstationary
theory is presented in Sec. III and finally verified with nu-
merical and experimental results in Secs. IV and V.



II. LIMITATIONS OF THE CURRENT THEORIES

Among the classical theories, the multipactor breakdown
levels are typically represented through the multipactor sus-
ceptibility curves, firstly introduced by Hatch and Williams.4

These curves specify the combination of applied voltage, rf
frequency �f� and separation between plates or gap �d�,
needed to start a multipactor discharge. The curves are cal-
culated using the 1D analytical equations of motion of an
electron and imposing the conditions of resonance and im-
pact energy, in order to ensure a SEY higher than one �and
thus an electron exponential growth�. The kind of resonance
is set by the multipactor order �or mode�, which specifies the
number of semiperiods �or cycles� between consecutive elec-
tron impacts. The result is a voltage versus f�d plot, where
the regions of multipactor breakdown are delimited for each
multipactor order. The susceptibility curves are specific for
each material and its respective SEY curve �the SEY depends
in turn on the electron impact energy�.

Figure 1 shows an example of multipactor susceptibility
curves for silver of Ref. 9 whose SEY curve is shown in Fig.
2. The susceptibility curves are similar for the constant-k and
constant-v theories, but they considerably differ for the upper
voltage limit of the multipactor zones. The experimental
breakdown levels of report8 are superimposed on the suscep-
tibility curves. Whereas breakdown levels are well predicted
for multipactor order n=1 �first three experimental points�,
for higher orders, breakdown levels are underestimated.
Therefore, although the constant-v theory is widely accepted
as the real physical explanation of multipactor phenomenon,
it does not provide accurate multipactor susceptibility
curves. This is not the case for the constant-k theory, since
the aforementioned parameter fitting allows for indepen-
dently shifting each multipactor order region in order to per-
fectly match experimental results.8

However, even if the constant-k theory is able to match
the experimental results through the parameter fitting, it has
been severely criticized by some authors,11 due to its appar-
ently lack of physical basis. Moreover, it seems rather con-

tradictory that a prediction method relies on previous experi-
mental results.

In addition to this, the classical theory models the elec-
tron growth for a specific multipactor order as

N�t� = N0��fd,V0�2ft/n, �1�

where N0, ��fd ,V0�, and n are the initial number of elec-
trons, the SEY and the multipactor order, respectively, for a
specific f�d product and applied voltage V0.

In Fig. 3, a band structure of the SEY values can be
observed. This implies that there are some regions where the
value of the SEY is much higher than one at the breakdown
boundary. For instance, for a f�d=2 GHz mm, the SEY
value at the breakdown boundary would be close to 2. Ac-
cording to Eq. �1�, this leads to a sudden and discontinuous
change in the behavior of the electron growth in the neigh-
borhood of the boundary. This seems quite unrealistic since
one would expect a SEY equal to one at the boundaries �nei-
ther growth nor absorption� and a progressive increment of it
as the boundary is exceeded. Furthermore, whilst the experi-

FIG. 1. �Color online� Comparison of constant-k and constant-v plots
for k=5, electron emission energy W0=1.5 eV, and first and second cross-
over energies �energy at which the SEY is equal to 1� W1=30 eV and
W2=2000, respectively. Experimental results for silver coating �Ref. 8� are
included.

FIG. 2. SEY curve of silver with parameters W1=30 eV, Wm=165 eV,
�m=2.22, and �0=0.5, where eW= 1

2mev2 and v is the electron impact ve-
locity. It uses the parametric model of Vaughan �Ref. 22� modified by
Vicente �Ref. 23�.

FIG. 3. Constant-v multipactor chart for the first eleven modes and energies
W0=1.5 eV, W1=30 eV, and W2=2000 eV. The dotted lines represent the
contour plot for the different values of the SEY according to the electron
impact energies.



mental measurements show a smooth variation of voltage
versus f�d, constant-v curves �also constant-k ones but in a
lesser extent� present discontinuities between regions of dif-
ferent multipactor modes. This effect is even higher if the
stability condition is also considered, which restricts the mul-
tipactor regions to the stable phases where the phase-
focusing mechanism is enabled.3,24 Different explanations
have arisen for this mismatching. One of those claims that
the presence of hybrid modes “fill” the discontinuities be-
tween the main modes.12,25

Later, Vdovicheva et al.17 proposed a new statistical
theory for multipactor which is also restricted to single car-
rier and parallel plates. However, for the first time, this
theory models the random nature of the emission energy of
secondary electrons. Through the statistical theory, the au-
thors justify the broadening, overlapping and suppression of
the multipactor regions, and the differences between the clas-
sical theory and the experimental results. Subsequently, the
statistical theory was extended to study the influence of an-
gular anisotropy electron emission velocity18 and then par-
ticularized for the electromagnetic field distribution of a rect-
angular waveguide.19

However, the main limitation of the statistical theory is
the assumption of stationarity.17 Stationarity implies that
only the electrons being emitted with a certain emission
phase distribution experience an exponential growth. As a
consequence, as time increases, such distribution is favored
over the others, the statistics of the multipactor process con-
verging to a stationary solution. Therefore, the statistics of
such a situation can be studied within one single period of
the rf signal. Unfortunately, the stationarity assumption lim-
its the validity of the results to the regions in which there is
electron exponential growth �above the multipactor break-
down level�. Hence, the current statistical theory does not
model the electron absorption process which occurs below
the multipactor breakdown level. This can be of great interest
in some applications in which the rf signal presents a non-
stationary behavior, such as multicarrier operation,26 or
modulated signal transmission.27 Moreover, the stationary
theory is only able to delimit the multipactor breakdown re-
gions but does not provide information on the rate of elec-
tron growth in time.

Finally, the stationary theory only takes into account
double surface interaction. It completely neglects single sur-
face impacts, which indeed may represent a high fraction of
the total impacts in the multipactor discharge for increasing
voltages above the breakdown level. As a consequence, the
stationary theory does not provide a full framework for
polyphase multipactor.

III. NONSTATIONARY STATISTICAL MULTIPACTOR

The nonstationary statistical theory presented in the fol-
lowing covers the multipactor phenomenon for 1D, parallel
plates, electrostatic problems. It is based on the previous
and original work on statistical multipactor by Vdovicheva
et al.17

The key point in the statistical theory �stationary and
nonstationary� is to assume that the initial velocity of sec-

ondary electrons is a random variable, instead of the deter-
ministic value of the classical theory. This simple difference
implies a change of paradigm. In the classical theory, an
electron in resonance with the electric field would always
start with the same phase relative to the field. It would reach
the opposite plate in the same transit time, and would be
released again with the same starting phase, repeating the
trajectory indefinitely in time. On the contrary, if the emis-
sion velocity is a random variable, each time an electron is
released, its velocity and corresponding transit time will be
different, according to its probability density function.

Therefore, within the statistical theory it makes no sense
to talk about absolute �and deterministic� resonant phases,
multipactor orders, or impact energies, but rather about prob-
abilities: The probability of an electron to be emitted at a
certain phase, probability of an electron to reach the opposite
plate in a certain transit time or probability to impact with a
certain energy.

The main difference between the stationary and this new
nonstationary theory is that the latter does not impose sta-
tionarity and, therefore, overcomes the current limitations of
the former. As a result, the nonstationary theory is valid for
all multipactor regions �exponential growth and absorption�
and models both double and single-surface impacts.

A. Equations of motion

First, we start from the 1D equations of motion of the
classical theory. Let us consider the motion of an electron
with charge −e and mass me between two infinite parallel
plates located at x=0 and x=d. The sinusoidal electric field
of rf frequency f is E=−E0 sin��t�, where �=2�f . Notice
that, for notation purposes, a negative sign has been added to
the electric field expression in order to have a positive accel-
eration. This yields a 1D problem where the electron is ac-
celerated by the Lorentz force, which is equal to −eE. The
electron maximum speed is considered to be low enough to
neglect relativistic effects and, therefore, the acceleration ex-
erted on the electron is given by

meẍ = eE0 sin��t� , �2�

where the rf voltage V0 can be expressed as V0=E0d.
The initial conditions at starting time t= ts are x �t=ts=0

and ẋ �t=ts=v0. From Eq. �2�, the rest of the equations of mo-
tion can be derived. Concretely, the position of the electron is

x = �v0 + v� cos��ts���t − ts� +
v�

�
�sin��ts� − sin��t�� ,

�3�

where v�=eVo / �me�d�.
In order to work with dimensionless variables, Eq. �3� is

normalized dividing by v� /�. The following notation is
used:

� = �x/v�, � = �t, �s = �ts,

�4�
�i = �ti, u = v0/v�, � = �d/v�,

yielding



���,�s,u� = �u + cos �s��� − �s� + sin �s − sin � . �5�

The phase �i=�ti at which the electron impacts with the
opposite side is the least root of Eq. �5� setting the normal-
ized electron position equal to the normalized gap, i.e.,
�=�. This yields

� = �u + cos �s���i − �s� + sin �s − sin �i. �6�

Note that Eq. �6� is derived from the classical constant-v
theory and establishes the condition for an electron to reach
the opposite plate, �=� at impacting phase �i, with starting
phase �s, and initial velocity u.

B. Definitions and conventions

Contrarily to the stationary counterpart, the nonstation-
ary theory is not restricted to the study of the probabilities
over a period of the rf signal, but rather extends the time
window from t=0 to infinity. It imposes initial conditions
and calculates the time evolution of the different probabili-
ties indefinitely in time. Let as denote each plate as D and U
for the boundary conditions �=0 �down� and �=� �up�, re-
spectively. Thus two kinds of interactions are considered:
double surface �D-U or U-D trajectories� and single surface
�D-D and U-U trajectories�. All their related parameters are
properly labelled as ds and ss, respectively. Figure 4 depicts
these concepts.

Table I introduces the most relevant definitions of the
nonstationary theory which constitute the basis of its devel-
opment. In Sec. III C, we will derive the analytical expres-
sions for all of them.

C. Statistical development

The joint probability density G�	 ��s ;�� is defined by
Vdovicheva et al.17 as the probability that an electron re-
leased at phase �s impacts with the opposite wall, separated
by �, in a transit phase 	.

In order to construct G�	 ��s ;�� one departs from the
known probability density function of the electron emission
velocity u, namely, fu�u�. According to the theorem of trans-
formation of univariate random variables of the statistical
theory G�	 ��s ;�� can be written as

G�	��s;�� = �dg�	��s;��
d	

� fu�g�	��s;��� , �7�

where u=g�	 ��s ;�� must be a monotonic function which
expresses u as a function of 	.

From Eq. �6�, u can be easily worked out, obtaining a
candidate function g0�	 ��s ;��

u = g0�	��s;�� =
� − sin �s + sin��s + 	�

	
− cos �s, �8�

being 	=�i−�s.
By definition, g must be monotonic with 	. However,

unfortunately, the candidate g0 is a nonmonotonic function
due to its sinusoidal behavior. The nonmonotonicity of g0
denotes many solutions of 	 for a single release velocity u.
This implies that the trajectory of an electron crosses the
boundary �=� more than once, which is physically impos-
sible �each crossing implies an impact and there cannot be
more than one for a trajectory�. Therefore, the nonmonoto-
nicity of g0 can �and must� be removed to obtain g and solve
�7�. This forces G�	 ��s ;�� to be 0 in the nonmonotonic in-
tervals of g0. In addition, g must be greater than a minimum
starting velocity �greater than 0� to reach the opposite plate.
Vdovicheva et al.17 gives a detailed derivation of G�	 ��s ;��
and such minimum velocity.

The function G�	 ��s ;�� is the basis of the statistical
theory. From it, Vdovicheva et al.17 formulate the problem
by imposing stationarity and find the multipactor breakdown
boundaries by solving a homogeneous Fredholm integral
equation of the second kind.

The nonstationary theory presented in this work also
starts from G�	 ��s ;��, but follows a different approach,
which is detailed next. First, we introduce another definition.
G�	 ��s ;0� is the probability that an electron released at
phase �s impacts back to the emission surface in a transit
time 	 �single surface impact�. It is constructed in a similar
way to Eq. �7�

G�	��s;0� = �dg�	��s;0�
d	

� fu�g�	��s;0�� , �9�

where u=g�	 ��s ;0� is derived applying �=0 at impact time
�i=�ti to Eq. �5�, and working out the velocity u. This yields
the candidate function

FIG. 4. Nonstationary definitions and conventions. Some possible electron
trajectories are depicted and labelled with the corresponding type of inter-
action, double surface �dd� and single surface �ss�.

TABLE I. Nonstationary theory definitions.

Impact rate �electrons/radian� in plate U /D at phase � IU/D���
Emission rate �electrons/radian� in plate U /D at phase � CU/D���
Number of electrons at time � N���
Probability density that an electron starting at plate U /D,
with starting phase �, experiences a double/single
surface impact in a transit phase 	 Gds/ss,U/D�	 ���
SEY of an electron starting at plate U /D, with starting
phase � which experiences a double/single surface
impact in a transit phase 	 �ds/ss,U/D�	 ���



u = g0�	��s;0� =
− sin �s + sin��s + 	�

	
− cos �s. �10�

The g�	 ��s ;0� function can be obtained removing the non-
monotonic intervals of Eq. �10�. The minimum ejection ve-
locity for double surface is equal to the maximum ejection
velocity for single surface, i.e., min�uds�=max�uss�, where
uds�g�	 ��s ;�� and uss�g�	 ��s ;0�.

Figure 5 shows an example of uds and uss. For this spe-
cific case, min�uds�=max�uss�=0.55. Therefore, if the emis-
sion velocity u is higher than 0.55 there will be a double
surface impact. For lower emission velocities, the electron
will suffer a single surface impact.

The G�	 ��� functions of Table I are defined as

Gds,D�	��� = G�	��s;����s=mod��;2��
�=� ,

Gds,U�	��� = G�	��s;����s=mod��+�;2��
�=� ,

�11�
Gss,D�	��� = G�	��s;����s=mod��;2��

�=0 ,

Gss,U�	��� = G�	��s;����s=mod��+�;2��
�=0 .

The G�	 ��� functions are periodic with respect to � with a
period of 2�. Note that the direction of the electron normal
emission is reversed for opposite plates, and that the rf field
changes sign every � radian. Therefore, the G functions for
the U and D plates are related by a relative shift of � radians.

The double surface interactions imply that the electron
crosses the gap, and therefore �=�, whereas single surface
interactions means that the electron impacts back to the
emission surface, �=0. Therefore the subscripts ds or ss in-
dicate that the solution of G�	 ��s ;�� is particular for �=� or
�=0, respectively.

The Gds and Gss functions corresponding to the example
of Fig. 5 are presented in Fig. 6. In this case, a Maxwellian
distribution for the initial velocity is taken

fu =
uv�

2

vt
2 exp	− u2v�

2

2vt
2 
 , �12�

where vt is the velocity thermal spread. A value of
Wt=1.5 eV has been taken for this work, where Wt

= �me /2e�vt
2 is the thermal emission energy spread. The pos-

sible electron transit times are restricted to the regions where
the Gds and Gss are not zero. For this specific example, the
Gss plot �bottom� shows that the transit time for a single
surface impact must lie somewhere in between �approxi-
mately� 	=� and 	=7� /4. In contrast, all double surface
impacts �top� have a transit time higher than 	=3� /2. There
is a small overlap of both functions in the interval �3� /2
−7� /4�, which means that the electrons impacting with such
a transit time could have suffered either a double surface
interaction or a single surface one, with different probability.

The noticeable difference in amplitude comes from the
fact that each function obeys

�
0




Gds�	���d	 = Pds��� and �
0




Gss�	���d	 = Pss��� ,

where Pds��� and Pss��� are the probability that an electron
emitted at � suffers a double or single surface impact, re-
spectively. Note that Pds���+Pss���=1.

Once the G�	 ��� functions are obtained, the rest of the
definitions given in Table I can be derived in the following

FIG. 5. �Color online� Example of uds and uss for V0=120 V,
f=1.64 GHz, d=1 mm, and �s=122°.

FIG. 6. Example of Gds and Gss probability functions for V0=120 V,
f=1.64 GHz, d=1 mm, �s=122°, and the emission velocity function of
Eq. �12�. The detailed window of the lower plot shows the superposition of
both functions for the first three half-periods of the transit time.



manner. Let us take the rate of emission at the plate U,
CU���. At a certain �, the number of impacting electrons is
the result of two contributions: the electrons released from
the opposite plate, D, that followed a double surface interac-
tion, and those emitted from the same plate, U, which suf-
fered a single surface interaction �see Fig. 7�.

The emission rate at phase � due to double surface in-
teraction of an electron emitted at phase �� from the plate D,
where ���� is

CD����Gds,D�� − �������ds,D�� − ������ ,

CD being the rate of emission at the plate D.
On the other hand, the emission rate at phase � due to

single surface interaction of an electron emitted at phase ��
from the plate U, where ���� is

CU����Gss,U�� − �������ss,U�� − ������ .

Therefore, the total rate of emission at the top plate and
instant � is the integration of the previous quantities from the
initial instant ��=0 to the current time ��=�, yielding

CU��� = �
0

�

CD����Gds,D�� − �������ds,D

��� − ������d�� + �
0

�

CU����Gss,U

��� − �������ss,U�� − ������d�� + �U��� ,

�13�

where �U��� is the external source of electrons from the
plate U.

The rate of emitted electrons at the plate D, CD���, can
be derived in a similar way yielding

CD��� = �
0

�

CD����Gss,D�� − �������ss,D�� − ������d��

+ �
0

�

CU����Gds,U�� − �������ds,U

��� − ������d�� + �D��� . �14�

Equations �13� and �14� constitute a system of Volterra inte-
gral equations of the second kind with difference kernel. This
system has a nontrivial solution only when �U���+�D���

0 and �U����0, �D����0 �see chapter 9.3 of Ref. 28�.
These functions set the initial conditions of the problem.
From a physical point of view this implies that electron
emission is only possible when there is an external source of
electrons, which makes sense, since electrons cannot appear
“spontaneously.”

Analogously to �13�, the remaining definitions of Table I
can be expressed as follows:

IU��� = �
0

�

CD����Gds,D�� − ������d��

+ �
0

�

CU����Gss,U�� − ������d��, �15�

and

ID��� = �
0

�

CD����Gss,D�� − ������d��

+ �
0

�

CU����Gds,U�� − ������d��. �16�

Finally, the number of electrons at time � is the integration
over time of all emitted electrons minus the impacting elec-
trons for both U and D plates, i.e.,

N��� = �
0

�

CU���� + CD���� − IU���� − ID����d��. �17�

D. Theoretical analysis

For a given gap, d, signal parameters E and f , SEY
function � �characterizing the material�, and seeding func-
tion ����, it is possible to compute all above functions.
First, d, E and f are substituted in the equations of motion
given in Eqs. �4� and �5�. The Gds�	 ��� and Gss�	 ��� func-
tions are computed using Eqs. �8�, �7�, �10�, and �9�. Later,
the system of Volterra integral equations constituted by Eqs.
�13� and �14� is solved �in most cases with standard numeri-
cal techniques29� finding the electron emission functions CU

and CD. Then, IU and ID are obtained by simple integration
of Eqs. �15� and �16� and finally, N is given by Eq. �17�.

Figure 8 shows an example for the Maxwellian emission
velocity distribution given in Eq. �12�. The SEY model is
taken from paper,26 with the SEY parameters of silver given
in Ref. 9: �0=0.5, �m=2.22, W1=30 eV, and Wm=165 eV
�see Fig. 2�. The external seeding has been set to

FIG. 7. Dependence of CU��� on the previous instants ��. There are two
contributions to CU���, electrons emitted from the plate D�CD�����, follow-
ing a double surface interaction, and electrons emitted from plate
U �CU�����, which experience a single surface interaction.



�U��� = �D��� = 1
2���� ,

where ���� is the Dirac delta function. This means that seed-
ing electrons are only injected at �=0.

In both cases, a repetitive pattern can be appreciated.
Notice how, after a transitory interval at the beginning, the
curves associated to the U and D plates evolve to adopt a
similar shape but shifted in time �exactly � radians�. The
electron population, N�t�, is altered whenever there is an im-
pact in any of the plates. Therefore, the variation of the elec-
tron population curve perfectly agrees with the peaks of the
emission and impact curves �CU and CD for the former and
IU and ID for the latter�.

This can be better appreciated in the V0=120 V case
�Fig. 8 �left�� where the rf voltage is above the breakdown
level. In general, the rate of electron emission is higher than
the electron impact �or absorption�, and therefore there is an
overall increase of charge with time, following an exponen-
tial trend.

The V0=10 V case �Fig. 8 �right�� shows a situation
where the rf voltage is below the breakdown level. In this
case the impact curves are always higher than the emission
ones and therefore there is an overall destruction of charges.
Hence, the electron population decreases in time.

It may be also useful to define SEY and multipactor
order parameters equivalently to the classical Theory. The
instantaneous SEY is the ratio between the total emission
rate divided by the total impact rate, thus

�i��� =
C���

I���
, �18�

where C���=CU���+CD��� and I���= IU���+ ID���. On the
other hand, the instantaneous order is computed as the sta-
tistical expectation of the flight time for all kind of interac-
tions divided by the total impact rate

ni��� =
1

�I�����0
�

�� − ���CD����Gds,D�� − ������d��

+ �
0

�

�� − ���CU����Gds,U�� − ������d��

+ �
0

�

�� − ���CD����Gss,D�� − ������d��

+ �
0

�

�� − ���CU����Gss,U�� − ������d��
 .
�19�

Finally, in an interval ��, average quantities are defined as

�av��� =
��

�+���i����I����d��

��
�+��I����d��

, �20�

and

nav��� =
��

�+��ni����I����d��

��
�+��I����d��

, �21�

for the SEY and multipactor order, respectively. These two
parameters characterize the electron growth, since, although
the exact solution can be found integrating Eq. �17�, an
easier and faster approximation for an interval �t=�� /� is
given by

N�t + �t� � N�t��av
2f�t/nav. �22�

IV. NUMERICAL SIMULATIONS

The numerical results have been obtained with the full-
wave electromagnetic solver tool FEST3D,23,30 which also in-
corporates a three-dimensional �3D� particle-in-cell �PIC�
multipactor module. FEST3D is able to simulate arbitrary 3D
structures with inhomogeneous electromagnetic field distri-
butions. However, in order to compare the results with the
present theory, the simulations have been restricted to 1D
electron motion and homogeneous electric field. The FEST3D

multipactor module computes the electron trajectories, deter-

FIG. 8. �Color online� Time evolution of the electron population and emission and impact rates for both plates for V0=120 V �left� and V0=10 V �right�, with
f=1.64 GHz and d=1 mm.



mines all electron impacts �both single and double surface�
and records the associated flight time and SEY for each one.
The simulations have been done for a number of 50 000
initial particles, to have enough samples for a good statistical
analysis. During the simulation, the particles can be created
or destroyed depending on the impact energy. The results
have been normalized to have one initial electron, in order to
compare with the analytical results.

The numerical equivalent SEY is the average SEY for all
impacts

�eq =
�i=1

i=Nt�i

Nt
, �23�

where Nt is the total number of impacts, and �i is the SEY at
impact i, respectively. The numerical equivalent multipactor
order is defined as the average travel time, divided by half
period of the rf signal

neq = 2f
�i=1

i=Ntti
Nt

, �24�

where ti is the flight time for impact i.

V. RESULTS

All the simulations and analytical results have been car-
ried out assuming the Maxwellian distribution of Eq. �12�
for the electron initial velocity and Wt=1.5 eV. The
SEY model is that of Ref. 31. The SEY parameters are for
the silver given in paper,9 i.e., �m=2.22, W1=30 eV, and
Wm=165 eV with �0=0.5 �see Fig. 2�.

Figure 9 shows the time evolution of a multipactor dis-
charge. Two different scenarios are considered. First, a case
with a voltage above the breakdown level in which there is
an electron exponential growth �left�; and a nonresonant,
nonstationary situation below breakdown, in which there is
an overall electron absorption �right�. The analytical evolu-
tion in time of the electron population N, total rate of impact
I and total rate of electron emission C, given by Eq. �17� and
Eqs. �13�–�16�, respectively, are plotted and compared with
numerical simulations, with identical initial conditions. Be-
sides the inherent numerical noise of the simulator due to the
limited number of samples �electrons�, it can be observed an
excellent agreement between numerical simulations and the
nonstationary theory.

The instantaneous SEY and order defined by Eqs. �18�
and �19� have been also compared with numerical simula-
tions in Fig. 10. Again, a very good agreement between

FIG. 9. �Color online� Time evolution of electron population and emission and absorption rates for V0=120 V �left� and V0=10 V �right�, with
f=1.64 GHz and d=1 mm.

FIG. 10. �Color online� Electron population and instantaneous SEY and order or V0=120 V �left� and V0=10 V �right�, with f=1.64 GHz, d=1 mm, and
�s=122°.



theory and numerical results is observed. Here, the station-
arity of the above-breakdown case is evidenced �left�. After
an initial transitory, both the SEY and order evolve towards a
periodic structure. Nevertheless, in the below-breakdown
situation �right�, although the SEY keeps constant �due to the
low impact energy of the electrons�, the multipactor order
diverges and indefinitely increases in time, which implies a
clear nonstationary condition. This occurs because electrons
with higher emission energy impact earlier and get quickly
absorbed. Therefore, as time increases, the surviving elec-
trons are those with lower emission energies and higher tran-
sit times, which implies an increasing multipactor order with
time. The current stationary theory cannot model this situa-
tion, whereas the new nonstationary one matches the numeri-
cal simulations with extremely good agreement. Notice that
the random dispersion on the numerical simulations for in-
creasing time is due to the fact that a large amount of elec-
trons have been already absorbed and therefore there are less
samples available to produce smooth averages.

The multipactor boundaries calculated with stationary
�reproducing the formulation of Ref. 17� and nonstationary
theories together with numerical simulations are plotted in
Fig. 11. The analytical boundaries are delimited by �av=1,
given by Eq. �21�. The numerical ones are set by �eq=1
�Eq. �23��.

The nonstationary theory curve shows a better agree-
ment with numerical simulations than the stationary one,
concretely for the upper boundary regions and high f�d
product, where the influence of single surface impacts is
higher. The three curves are coincident for the regions close
to the breakdown level. The experimental breakdown levels
from report8 are also plotted, showing an excellent agree-
ment with the theory. This evidences the capability of the
statistical theories to predict the multipactor breakdown level
in the whole f�d range, in contrast with the classical theo-
ries which are restricted to the first multipactor order.

SEY contour plots can be represented in Voltage versus
f�d maps using Eq. �20�. The isoline of �=1 represent the
multipactor breakdown boundary. Figure 12 shows such

representation for a �
1 �top� and ��1 �bottom�. The iso-
lines are plotted with a 0.2 and 0.1 step, respectively, starting
from 1.

In Fig. 12 �bottom�, while the results for the region be-
low the breakdown boundary perfectly agrees with numerical
results, the regions above show a dissimilar trend. This is due
probably to the numerical noise of the simulations for very
high fields, and the limited number of time samples in the
electron trajectory computation.

These multipactor maps, coming from the nonstationary
statistical theory, show a different structure of the SEY com-
pared with the classical theory �see Fig. 3�. In contrast to the
discontinuous band structure of the classical theory, the
nonstationary theory shows a constant SEY value of 1 at
the breakdown boundary which varies smoothly with the
rf voltage. This is successfully contrasted with numerical
simulations.

Finally, the contour plot for the equivalent order of the
nonstationary theory �21� is shown in Fig. 13. The nonsta-
tionary theory is valid for any kind of material, provided that
its SEY parameters are available. In this case, a custom ma-
terial with SEY parameters �0=0.5, �m=2.12, W1=25 eV,
and Wm=364 eV is used. The contour lines are plotted for
odd integer values starting from 1. In the multiplication re-
gion, the traditional band structure is observed, whereas for
the region below breakdown the lines deflect to almost get
vertically aligned with the plot. This is because for decreas-

FIG. 11. �Color online� Analytical and numerical Multipactor breakdown
boundaries for silver. Experimental results are included.

FIG. 12. �Color online� Analytical equivalent SEY calculated with Eq. �21�
for silver and numerical simulations with FEST3D for �
1 �top� and ��1
�bottom�.



ing voltages, the transition time depends almost exclusively
on the gap d and the thermal spread vt, and thus, the depen-
dence on f�d is broken. The theory and numerical results
match quite well in the multiplication region. Below that, the
definition of a multipactor order is not valid anymore, be-
cause the process is then not stationary and the instantaneous
multipactor order indefinitely increases in time.

VI. CONCLUSIONS

A new nonstationary statistical multipactor theory has
been presented. It is based on previous works on statistical
multipactor but overcoming some of its limitations. Specifi-
cally, the stationarity assumption has been removed and
single surface interactions have been incorporated to the
model. In consequence, this new theory is able to accurately
predict the time evolution of the most relevant parameters
characterizing the multipactor process.

This theory provides realistic multipactor susceptibility
charts including SEY and order contour plots for the whole V
versus f�d region, characterizing the dynamics of the dis-
charge. These plots reveal a different SEY structure than the
one predicted by the classical theory. Instead of a discontinu-
ous sharp band structure, the SEY shows a smooth transition
at the breakdown boundaries, where it has a value of 1. This
result is radically different from the one given by the classi-
cal theory and depicts a progressive and continuous change
in the electron growth as the boundary is exceeded. This
constitutes a much more realistic scenario of the electron
dynamics.

The theory has been verified with numerical results com-
ing from a PIC multipactor simulator and experimental re-
sults available in literature. The agreement between the
theory, the numerical and the experimental results is excel-
lent.

To the knowledge of the authors, this is the first theory
which provides a framework for the study of a full polyphase
electron interaction for both an exponential electron growth
and a nonstationary electron absorption �when multipactor
conditions are not met�. This is of particular importance

in nonstationary multipactor processes such as multicarrier
operation and signal modulation. Therefore, this theory may
constitute the basis for further study of multipactor in more
complicated geometries and signals.
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