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Abstract

The accuracy of patient-specific biomechanical models of the breast is a

major concern for applications such as surgical simulation, surgical guidance or

cancer diagnosis. Being able to predict the localization of a lesion depends on

the realism of the chosen model. However, the elastic parameters that define the

biomechanical behavior of the breast tissues are highly variable among patients

and their estimation becomes a very di�cult task. This behavior is usually

simulated with hyperelastic biomechanical models of the breast tissues. This

paper presents an iterative search algorithm based on genetic heuristics which

is able to estimate the elastic constants of a biomechanical model proposed to

characterize the behavior of the breast tissues. Moreover, this methodology does

not depend on the chosen biomechanical model. The algorithm was validated

using breast software phantoms, compressed to mimic MRI-guided biopsies. The

biomechanical model chosen to characterize the breast tissues was an anisotropic

neo-Hookean hyperelastic model. Results from this analysis showed that the

methodology is able to find the elastic constants of the constitutive equations

of the proposed biomechanical model with a mean relative error of about 10%.
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biomechanical modeling, parameter estimation

1. Introduction1

The simulation of the mechanical behavior of the breast has become very2

relevant in the last years since it plays a main role in an important number3

of biomedical applications related to surgical simulations [1, 2, 3, 4], surgery4

guidance [5, 6] or cancer diagnosis [7, 8, 9]. These applications involve large5

deformations of the breast tissues such as mammographic compression or grav-6

ity loading deformation, which are usually modeled using the Finite Element7

Method (FEM).8

One of the main challenges when modeling the biomechanical behavior of9

organs like the breast is to create patient-specific models that improve the re-10

alism and accuracy in a reasonable computation time. This is due to the high11

variability of the behavior of the breast tissues between patients and throughout12

the breast. However, the estimation of the biomechanical properties of the living13

tissues is not straightforward. The measurement of these properties is usually14

a complex task since the behavior of the tissues is highly variable between indi-15

viduals. In the case of the breast, there are mainly three tissues whose behavior16

must be modeled, namely: skin, fat and glandular tissue. Each one of them has17

di↵erent biomechanical properties that must be estimated for each patient in18

order to build an accurate model of the whole breast.19

Elastography is a common method for the in-vivo estimation of the elasticity20

of the breast [10, 11, 12, 13, 14]. This technique measures the dynamic sti↵ness21

of a tissue by cyclically applying a load. However, classic elastography is only22

useful to estimate the behavior of the tissues when they are considered isotropic23

and linearly elastic. Despite this limitation, use of elastography in the measuring24

of the viscoelasticity and hyperelasticity of the di↵erent breast tissues have been25

reported [15, 16].26

In contrast, computational methods based on parameter optimization are27

being applied to characterize the biomechanical behavior of the in-vivo tissues.28
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Specifically, evolutionary computation has been used in this field to identify the29

elastic constants of a hyperelastic model proposed to characterize the biome-30

chanical behavior of the heart [17, 18] and also of the arterial wall [19]. In [20]31

our group presented a study of several evolutionary algorithms applied to in-vivo32

characterize the biomechanical behavior of the liver. The conclusion was that33

genetic heuristics performed better than other algorithms to estimate the elastic34

constants of an arbitrary biomechanical model proposed to simulate the liver35

behavior. The main advantages of this approach was the use of medical images36

that avoided the invasive measure of the mechanical response of the organ.37

In the case of the breast, the work presented in [21] characterized the biome-38

chanical behavior of the internal tissues of the breast in-vivo by means of an39

optimization algorithm which, using a compressed breast and measuring iter-40

atively the similarity to a simulation of that deformation, provided the elastic41

constants of the proposed model. This is the first work in which the search42

was driven by a combination of a simulated annealing algorithm and a gradi-43

ent descent algorithm in order to characterize the breast tissues. The authors44

used the Normalized Mutual Information (NMI) as a cost function to measure45

the similarity during the iterative search [22]. However, using this image-based46

comparison may result in inaccurate results since NMI does not consider the47

spatial distribution of the tissues but only the gray value entropy of both 3D48

images. In order to evaluate the accuracy of the given model, the cost function49

must consider the whole volume including the internal tissue distribution.50

This work presents a methodology for estimating the in-vivo elastic con-51

stants specific to individual patients, of any biomechanical model proposed for52

characterizing the mechanical behavior of the breast internal tissues. A param-53

eter optimization algorithm based on genetic heuristics and using volumetric54

comparison for evaluating the similarity was used to obtain a virtual deformed55

MRI of the breast as close as possible to a real deformed MRI. The methodology56

was validated using the software breast phantom proposed in [23] in order to57

speed up the calculations and mimic as much as possible the real breast tissue58

distribution. This methodology is easily applicable to real breast images and59
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presents a novelty for the in-vivo characterization of the breast tissue mechanical60

behavior.61

2. Materials and Methods62

The methodology proposed in this paper is based on the acquisition by an63

MRI-guided biopsy device of two 3D images of the breast in di↵erent states of64

deformation. This device takes an MRI of the uncompressed breast in prone65

position as well as an MRI of the same breast under compression. The compres-66

sion is performed by two rigid plates which hold the breast in a fixed position67

during the biopsy. The applied compression force must be known in order to68

perform the simulation of that compression. This force is provided by means of69

a force detector placed on the plates as described in [24]. From the MRI of the70

uncompressed breast, the simulation of the compression produced by the plates71

is performed using a biomechanical model proposed to emulate the behavior72

of the breast tissues. Then, an iterative search process is applied in order to73

find the elastic constants of the constitutive equations of the proposed model74

which provide the best fit between the simulated compressed MRI and the real75

compressed MRI.76

In order to prove this methodology, breast software phantoms were used for77

creating synthetic cases similar to real ones while controlling all the constraints78

as well as reducing the amount of unknown boundary conditions. Since the79

biomechanical model needs the distribution of the di↵erent tissues of the breast,80

it is assumed that this segmentation has been already performed as in [4].81

2.1. Software phantom generation82

The breast phantoms used in this work were formed by three materials:83

fat tissue, glandular tissue and skin. The e↵ect of the Cooper’s ligaments was84

modeled by the anisotropy of the proposed biomechanical model [21]. The gen-85

eration of the phantoms was carried out by recusrive partitioning using octrees86

and implemented on GPUs in order to speed up the process [25]. The breast87

phantoms consisted of a 3D raw volume simulating the distribution of fat and88
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Figure 1: Left: coronal section of a raw phantom. Right: mediolateral section of the corre-

sponding phantom. Each gray level denotes each tissue type: white pixels correspond to the

glandular tissue, light gray pixels correspond to the fat tissue, dark gray lines correspond to

the Cooper’s ligaments and mid-dark gray pixels sourrounding the phantom correspond to

the skin.

dense compartments in the breast volume separated by the Cooper’s ligaments89

and wrapped by the skin. An example of a phantom is shown in Figure 1 [23].90

2.2. Biomechanical modeling91

Although most biomechanical models of the breast do not include the ani-92

sotropy of the Cooper’s ligaments due to the di�culty of knowing their local-93

ization, some sensitivity studies considered that their influence is significant94

[26, 7, 27]. Furthermore, it must be considered that the breast is subjected95

to gravity loading in every acquisition technique due to the patient is in prone96

position. How to obtain the non-reference state of the breast, without loads,97

is something that is still under investigation [28]. Therefore, in order to model98

those influences in the behavior, the anisotropic hyperelastic model proposed99

in [21] was used in this work. The model proposed in [21] considers that the100

anisotropy due to the presence of Cooper’s ligaments as well as the e↵ect of the101

gravity force, can be modeled considering the breast as a fiber-reinforced mate-102

rial. They defined the orientation of the fibers in the chestwall-nipple direction103

which means that the breast is more likely to deform in the fiber direction. This104
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fiber reinforcement allows to simulate the initial deformation of the breast due105

to the gravity force as well as considers the internal interactions of the Cooper’s106

ligaments. The strain energy function for materials with fibers aligned in a spe-107

cific direction can be defined as Eq. (1) shows, where the isotropic component108

and the fiber anisotropy are decomposed.109

W = W
iso

(I1, I2, I3) +W
fib

(I4) (1)

Following the indications in [21], a neo-Hookean hyperelastic model was110

chosen in order to reduce the number of variables of the model to be predicted.111

Eq. (2) shows the final energy function of the model used in this work.112

W
iso

(I1, I2, I3) =
µ

2
(I1 � 3) +

1

d
(J � 1)2

W
fib

(I4) =
⌘

2
(I4 � 1)2 (2)

where µ stands for the initial shear modulus of the material, d stands for113

the incompressibility parameter of the material and ⌘ stands for a parameter114

controlling the strength of the fibers.115

Both µ and d parameters can be determined from other two elastic param-

eters, the Young’s modulus E and the Poisson’s ratio ⌫ shown in Eq. (3).

µ =
E

2(1 + ⌫)

d =
2

k
(3)

k =
E

3(1� 2⌫)

The skin was considered isotropic with only one parameter to estimate,116

E
skin

. Assuming that all the tissues are incompressible (⌫ = 0.49), hE
fat

,117

⌘
fat

, E
glandular

, ⌘
glandular

, E
skin

i is the set of parameters to be estimated by118

the search algorithm.119
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Figure 2: Simulation of the mammographic compression of a breast phantom.

2.3. Boundary conditions and contact120

The mesh of the breast phantom was placed between two rigid plates, thus121

simulating the breast compression in an MRI biopsy device (Figure 2). Ad-122

ditionally, the corresponding nodes belonging to the chest wall were restricted123

in the chestwall-nipple direction (Z) and some nodes already in contact with124

the plates were also restricted in the vertical direction (X) to avoid rigid body125

displacement during the simulation. A force was applied to the moving plate126

in the Y direction while the other plate was completely fixed. To reduce the127

variability of the experiment and the number of variables a↵ecting the whole128

simulation, the contact between the plates and the breast surface was modeled129

as a non-friction contact.130

2.4. Finite element mesh131

The finite element method was chosen to simulate the biomechanical behav-132

ior of the breast tissues under compression due to its ability to model complex133

geometries and boundary conditions. Usually, the finite element meshes that134
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draw the boundary of the di↵erent tissues that forms an organ present conver-135

gence problems in the simulation of large deformations like the mammographic136

compression. This is mainly due to the bad quality of the generated elements.137

In order to avoid this problem, the approach presented by our group in [29]138

was adopted to generate the FE meshes. In this approach, the meshes were139

generated with elements of similar size and shape, thus creating a more stable140

mesh which performs better under large deformations. The meshing algorithm141

is blind to the internal tissue distribution and generates a regular mesh with142

only one material. After the homogeneous mesh creation, each tetrahedron is143

assigned to the corresponding tissue: fat, glandular or skin. For that, gray values144

of the phantom at the tetrahedron vertices and at the centroid coordinates are145

extracted. Finally, each tetrahedron is assigned to the most common material146

from these 5 points.147

2.5. Volumetric similarity148

In order to evaluate the similarity of each virtual deformed breast with the149

real one accurately, the Geometric Similarity Function (GSF) [20, 30] was used150

in this work. This function is a combination of the Jaccard Coe�cient [31] and151

the Modified Hausdor↵ Distance [32].152

Jaccard Coe�cient JC measures the overlap between two volumes as Eq.153

(4) shows, where V1 and V2 stand for the volumes to be compared. JC provides154

values between 0 and 1, where 0 means no overlap and 1 means a total overlap.155

JC =
V1 \ V2

V1 [ V2
(4)

Modified Hausdor↵ Distance MHD is defined in Eq. (5), MHD measures156

the average distance between the voxel i of a volume V1 and the closest voxel157

of the other volume V2.158

MHD = max(d
V1(i), dV2(i)) (5)

GSF is defined by the combination of JC and MHD as it is shown in Eq.159
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Figure 3: Flowchart of the optimization process using genetic algorithm.

(6). The lower the GSF values, the better similarity between volumes.160

GSF = log((1� JC)MHD) (6)

2.6. Estimation of the Biomechanical Model161

A diagram of the iterative search algorithm is shown in Figure 3. First, the162

breast compression is simulated using the target set of parameters Xt. This163

simulation is used as a ground truth to evaluate the similarity of each candidate164

simulation during the iterative search.165

Iterative search algorithms are often used to optimize a fit function f(X),166
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changing the input parameters X and using the output of the function to min-167

imize or maximize its value.168

X̂ = argmin f(X) whereX = {x1, x2, · · · , xn

} (7)

However, in many applications, f(X) usually has local minima that makes169

the simplest algorithms to get stuck, thus not being able to discover the global170

minimum of the function. For these cases, more complex algorithms like simu-171

lated annealing, scatter search or genetic algorithms must be implemented.172

In [20], the capability of several evolutionary algorithms to estimate the elas-173

tic constants of the biomechanical models proposed for the liver was compared.174

As commented previously, the conclusion was that an iterative search based175

on genetic heuristics performed better for the estimation of these parameters.176

Therefore, in order to estimate the parameters of the considered breast tissues,177

a genetic algorithm was implemented in this work.178

The outline of the implemented methodology is the following:179

1. Initialize: a random population of samples X0 is created. It is common to set180

an interval for each parameter to be found in order to help the algorithm to181

search in the area where the global minimum of the function may be located.182

2. New population generation: iteratively, the algorithm creates a new candidate183

set of parameters X
i+1 by means of the following steps:184

a) The algorithm computes f(x) for each individual in the current set X
i

.185

b) Those individuals with the best score are selected as parents.186

c) Parents with the best score are tagged as elite and pass directly to the187

next population.188

d) Non-elite parents are used to generate new children both by mutation189

(randomly changing a parent) and by crossover (combination of several190

parents).191

e) The next candidate population X

i+1 is created by joining elite and chil-192

dren.193
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3. Termination: step 2 is repeated until a stop condition is reached. This194

can be a specific number of generations, a timer, or when the function does195

not change within a tolerance range. Finally, the set of parameters that196

minimized the function is designated as ˆ

Xt.197

In each generation i of the algorithm, the candidate sets of parameters X

i

198

are applied to the model to simulate the breast compression. Both the target199

deformation and the candidate simulation are used to deform the 3D software200

phantom, thus having a target phantom and a candidate phantom. The creation201

of the deformed software phantoms was carried out on the GPU, considering202

the undeformed phantom as a 3D texture and using a linear interpolation of203

the gray levels over each deformed element of the mesh. The comparison was204

carried out only using the glandular tissue compartments with the GSF as fit205

function. The larger size of fat tissue with regard to glandular tissue could206

cause the average values of GSF to be less significant. Additionally, the main207

di↵erences were located in the neighborhood of glandular tissue compartments.208

Therefore the focus was made on those areas.209

Finally, the stop condition is evaluated. In the case of not achieving a low210

enough value of GSF, the genetic algorithm takes over the task of generating211

a new set of parameters X

i+1 and the iterative process starts again until an212

optimum value of the GSF is obtained.213

The iterative search was developed in a MATLAB script using the genetic214

algorithm implemented in this software and accessible using the function ga215

[33]. Taking advantage of the independent simulations of the genetic algorithm216

within the same generation, the process was parallelized in the di↵erent cores217

of the computer thus accelerating the search.218

3. Results219

Ten phantoms with glandular density between 7% and 35%, with a volume220

of 450ml and identical shape were generated. For all of them, the size of the221

uncompressed phantoms was 17cm in vertical direction, 10cm in lateral direction222
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and 5cm in chestwall-nipple direction. Resolution of the phantom voxel was set223

to be 200µm, which was small enough to detect the slightest di↵erences between224

candidate and target deformations.225

A uniformly distributed force of 100N was applied on the movable plate.226

This value was chosen as the average value of the forces applied to perform227

mammographic compression to real patients during X-ray mammography [4].228

The experiment considered three di↵erent sets of target parameters. For229

a first validation of the methodology, in the two first experiments, X

1
t and230

X

2
t , the skin tissue was not considered and was treated as fat tissue. These two231

experiments allowed to simplify the model. A third experiment was then carried232

out, this time taking into account the skin, thus having a complete model of the233

breast X3
t .234

Target and predicted parameters for each one of the phantoms are shown in235

Tables 1, 2 and 3. It is important to notice that although GSF is very useful to236

discriminate good and bad volume similarity, there is no natural interpretation237

of its values. Therefore, the tables show the values of both JC and MHD for238

interpretation purposes.239

Considering the variability of the biomechanical behavior of glandular and240

fat tissues estimated by [21], the search space of the iterative algorithm was241

defined by the following initial intervals:242

E
fat

2 [5000� 20000] Pa

⌘
fat

2 [50000� 200000]

E
glandular

2 [5000� 80000] Pa

⌘
glandular

2 [50000� 200000]

E
skin

2 [200000� 3000000] Pa

The genetic algorithm configuration was set up as follows: the population243

size for each iteration was set to 84 in order to paralellize the process among the244

12 cores of the computer. The crossover fraction was set to 0.8, this meant that245
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Table 1: Parameters for the target deformation X1
t and estimated parameters for the model

without skin.

E
fat ⌘

fat

E
glandular ⌘

glandular

JC
MHD

(Pa) (Pa) (vox)

X

1
t 10 000 100 000 40 000 150 000 1 0

ˆ

X

1
t Phantom 1 9746 107 720 49 812 119 410 0.947 0.689

ˆ

X

1
t Phantom 2 10 036 104 840 40 049 126 520 0.988 0.20

ˆ

X

1
t Phantom 3 9766 119 430 47 541 114 900 0.944 0.788

ˆ

X

1
t Phantom 4 10 086 113 560 37 552 110 840 0.978 0.422

ˆ

X

1
t Phantom 5 10 303 91 353 40 256 60 956 0.913 0.90

Avg. ˆ

X

1
t 9987 107 381 43 042 106 525 - -

Std. Dev. 234 10 569 5314 26 130 - -

Error 1.83% 10.84% 10.05% 28.98% - -

the 80% of the children were generated by mutation and the 20% by crossover;246

the elite count was set to 2, these are default values in MATLAB. Finally,247

the number of generations was set to 15, ensuring enough exploration of the248

search space in a reasonable computation time. This configuration provided249

good results previously [20]. These parameters can be tuned for each problem250

and the results may improve, a specific study for each patient could be performed251

in order to know the best configuration for the genetic algorithm.252

The commercial FE package ANSYS R� was used to simulate the target de-253

formation as well as each candidate simulation. The glandular compartments254

of the candidate compressed phantoms were compared with the same compart-255

ments of the target compressed phantom using GSF in a parallelized MATLAB256

script. The number of simulations needed to achieve the final values varied be-257

tween phantoms and was about 1000 simulations in 48h of computation time.258

The used computer was an Intel Xeon X5650 @2.66 GHz (12 cores) with 64GB259

of RAM.260

Figure 4 shows one section of the same phantom deformed using the target261

parameters (left) and the estimated parameters (middle). Additionally, the right262

image shows their absolute di↵erences, white pixels denote the non matching263
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Table 2: Parameters for the target deformation X2
t and estimated parameters for the model

without skin.

E
fat ⌘

fat

E
glandular ⌘

glandular

JC
MHD

(Pa) (Pa) (vox)

X

2
t 7500 75 000 30 000 112 500 1 0

ˆ

X

2
t Phantom 6 7538 73 112 29 826 121 820 0.991 0.226

ˆ

X

2
t Phantom 7 6785 96 682 31 488 154 810 0.926 0.667

ˆ

X

2
t Phantom 8 7523 95 324 28 292 74 674 0.953 0.652

ˆ

X

2
t Phantom 9 6520 75 593 34 445 180 770 0.923 0.850

ˆ

X

2
t Phantom 10 7532 71 527 29 717 99 797 0.988 0.258

Avg. ˆ

X

2
t 7180 82 448 30 754 126 374 - -

Std. Dev. 490 12 468 2353 42 330 - -

Error 4.77% 12.79% 5.40% 30.30% - -

Table 3: Parameters for the target deformation X3
t and estimated parameters for the model

considering the skin.

E
fat ⌘

fat

E
glandular ⌘

glandular

E
skin JC

MHD
(Pa) (Pa) (Pa) (vox)

X

3
t 10 000 100 000 40 000 150 000 1 600 000 1 0

ˆ

X

3
t Ph. 1 10 086 101 290 37 390 160 110 1 577 800 0.933 0.72

ˆ

X

3
t Ph. 2 10 116 102 534 69 040 159 300 1 492 338 0.91 2.29

ˆ

X

3
t Ph. 3 9886 84 556 40 958 87 594 1 637 200 0.961 1.71

ˆ

X

3
t Ph. 4 11 372 87 682 30 150 165 830 1 502 500 0.949 1.18

ˆ

X

3
t Ph. 5 11 452 77 835 40 307 191 230 1 499 500 0.90 1.29

Avg. ˆ

X

3
t 10 369 92 845 37 817 155 159 1 572 020 - -

Std. Dev. 1029 14 076 4503 39 549 69 689 - -

Error 7.95 % 12.82 % 7.00 % 20.08 % 4.56 % - -
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Figure 4: Left: Coronal section of the deformed phantom using the target parameters X1
t .

Middle: Coronal section of the deformed phantom with the estimated parameters. Right:

Di↵erence between target and estimated deformed phantoms. In the right image, white pixels

correspond to mismatching voxels.

15



pixels between the target and estimated deformed phantom.264

4. Discussion265

The first two experiments achieved a mean relative error of 1.83% and 4.77%266

for E
fat

, 10.05% and 5.40% for E
glandular

and 10.84% and 12.79% for ⌘
fat

.267

These errors are relatively low and the estimation of these parameters with the268

presented methodology can be considered successful. Regarding the parameter269

controlling the fiber strength for the glandular tissue, ⌘
glandular

, its estimation270

was not so accurate.271

To analyze this result, a sensibility analysis was performed in order to know272

the influence of this parameter in the model. To perform this, all the parameters273

except ⌘
glandular

were fixed to their target values. Then, ⌘
glandular

was iterated274

separately over the search interval [50000� 200000] and the deformed phantom275

obtained with this set of parameters was compared to the target phantom.276

Figure 5 shows a graph with the tendency of JC and MHD when varying277

⌘
glandular

over the initial search interval. Values of JC > 0.93 and MHD < 1278

voxels in the whole range proved the low influence of this parameter in the279

model.280

The ⌘ parameters take into account two e↵ects: gravity force and influence281

of Cooper’s ligaments. On one hand, the breast is subjected to initial strains-282

stresses due to the gravity force in both states, compressed and uncompressed.283

Ideally, the deformation caused by the gravity force must be considered sepa-284

rately of the tissue deformation model. Unfortunately, knowing the non-strain285

state of the breast is something that is still being investigated [28]. On the other286

hand, the influence of the Cooper’s ligaments was modeled only in one direction287

as stated in [6]. Since they have an unknown e↵ect on the model the e↵ect288

of these ligaments could be modeled in the three directions of the space. This289

would involve that new parameters should be added to the model. Nevertheless,290

they could also be estimated with the proposed methodology.291

Regarding the anisotropic parameter for the fat tissue, ⌘
fat

, its estimation292

was more accurate with an error lower than 13%. This discrepancy with the293
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estimation of ⌘
glandular

can be explained due to the higher presence of fat tissue294

in the breast as well as the higher influence of the Cooper’s ligaments in this295

region. This results in a higher e↵ect of ⌘
fat

on the model compared to the296

e↵ect of ⌘
glandular

.297

It is important to highlight the importance of JC and MHD which indicate298

how much accurate the estimation was. The best estimated set of parameters299

were for Phantoms #2 and #6, which JC values were about 0.99 and MHD300

was 0.2 voxels (1 vox = 200 µm). These are good indicators of the accuracy301

of the parameter estimation which, especially in these cases, were estimated302

very close to the target parameters with errors lower than 1% for E and lower303

than 5% for ⌘
fat

. Other phantoms with worse values of these coe�cients were304

estimated less accurately. However, modifying the initial setup of the genetic305

algorithm could improve those values.306

As for the estimation of the whole model of the breast, including the skin, the307

accuracy of the elastic parameters showed errors lower than 8%. The addition308

of the skin to the model did not decrease the performance of the methodology.309

In this case, the estimated elasticity for the skin was achieved with a 4.56%310

of relative mean error which indicates a high influence in the breast model as311

reported in [4]. In contrast, the estimation of the ⌘ parameters showed an312

accuracy in consonance with the first two experiments, where ⌘
glandular

did not313

induce much variability within the search range.314

The number of elements of the biomechanical model also influenced the315

search algorithm. Increasing the element density would impact highly the time316

needed to solve the contact problem but would also increase the accuracy of the317

search. Furthermore, reducing the search intervals would cause the algorithm318

to converge faster by reducing the search space. In this paper, those intervals319

were set particularly wide in order to prove the suitability of the methodology320

in case of barely knowing the elastic parameters of the di↵erent tissues. In-321

creasing the complexity of the problem by using a biomechanical model with322

more parameters would cause the algorithm to converge slower. Nevertheless,323

the methodology could still be applied since genetic heuristics are very e�cient324
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Figure 5: Sensitivity test over the glandular tissue. JC and MHD in terms of ⌘glandular.

The dotted line is the corresponding value to the target phantom.

when having a problem with many variables to optimize [20].325

The application of the methodology to real breasts is straightforward. De-326

spite the higher complexity of the internal distribution of the breast tissues, the327

MRI can be segmented and the comparison between the real compressed MRI328

and each candidate biomechanical model can follow the same procedure.329

5. Conclusion330

The methodology described in this paper allows to in-vivo estimate the331

patient-specific biomechanical properties of the breast tissues. The di↵erent332

tissues of the breast were this way characterized, providing the elastic constants333

of an anisotropic hyperelastic model for the fat and glandular tissues and for an334

isotropic elastic model in the case of the skin. The genetic algorithm was able335

to find a set of elastic parameters almost identical to the target ones without336

knowing anything about the original behavior and in a wide search space. The337

performance of the methodology was proved with breast phantoms achieving an338

estimation error of less than 10%. This methodology can be easily applied to339

characterize the biomechanical model for real breasts.340

Our ongoing research is the application of the proposed methodology to real341

breasts. Future works will include the characterization of a complete model for342

the breast able to simulate the deformation that the breast undergoes during343

X-ray mammography and the tuning of the initial setup of the genetic algorithm344

for each patient.345
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