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INVOLUTIVENESS OF LINEAR COMBINATIONS OF A

QUADRATIC OR TRIPOTENT MATRIX AND AN

ARBITRARY MATRIX

XIAOJI LIU, JULIO BENÍTEZ ∗, AND MIAO ZHANG

Abstract. In this article, we characterize the involutiveness of the lin-
ear combination of the form a1A1 + a2A2 when a1, a2 are nonzero com-
plex numbers, A1 is a quadratic or tripotent matrix, and A2 is arbitrary,
under certain properties imposed on A1 and A2.
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1. Introduction and preliminary results

The symbols C and C∗ will denote the set of complex numbers and nonzero
complex numbers, respectively. Let Cn×m denote the set of all complex n×m
matrices. If A ∈ Cn×m, then A∗ denotes the conjugate transpose of A. The
identity matrix of order n will be denoted by In. For a given square complex
matrix A, the set of eigenvalues of A will be denoted by σ(A). The symbol
⊕ will denote the direct sum of matrices.

The inheritance of the idempotency, involutiveness, or tripotency by lin-
ear combinations of idempotents, involutive, or tripotents has very useful
applications in the theory of distributions of quadratic forms in normal vari-
ables (see e.g. [20, 21, 22]). The reader may find in [21] more applications of
idempotent and tripotent matrices. The sets of idempotent and involutive
matrices can be dealt by a uniform approach: a quadratic matrix.

Let us define the concept of quadratic matrix and review some properties.
Following [1], we say that a matrix A ∈ C

n×n is said to be quadratic if
there exists a second degree polynomial p : C → C such that p(A) = 0.
Thus, quadratic matrices are a wide class of matrices containing idempotent
(A2 = A), involutive (A2 = In), and several other types of matrices. The
reader is referred to [9] to consult deeper properties of quadratic matrices.

In [19, Theorem 2.1], it was established an useful expression for quadratic
matrices. Concretely, for A ∈ Cn×n and α, β ∈ C with α 6= β one has that
(A−αIn)(A−βIn) = 0 if and only if exists a nonsingular S ∈ Cn×n such that
A = S(αIp⊕βIq)S

−1, where p, q ∈ {0, 1, . . . , n}. A matrix A ∈ Cn×n is said
to be an {α, β}-quadratic matrix if (A − αIn)(A− βIn) = 0. Observe that,
in particular, an idempotent is a {0, 1}-quadratic matrix and an involutive
matrix is a {−1, 1}-quadratic matrix.

∗Corresponding author.
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The linear combination of the form

(1.1) A = a1A1 + a2A2, A1, A2 ∈ C
n×n, a1, a2 ∈ C

∗

was investigated by many researchers and many useful results was obtained
(see e.g. [2, 3, 4, 6, 7, 13, 15, 17, 19, 20, 22] and references therein).

The purpose of this paper is to investigate the necessary and sufficient
conditions for A = a1A1 + a2A2 to be involutive matrix, where A1 is a qua-
dratic or tripotent matrix and A2 is arbitrary under some certain conditions.

2. Main results

We begin the study of the linear combination (1.1) when A1 is a quadratic
matrix and A1, A2 satisfy certain condition.

Theorem 2.1. Let A1, A2 ∈ C

n×n \ {0} and α, β ∈ C with 0 6= α 6= β.
Moreover, let A be a linear combination of the form (1.1) with a1, a2 ∈ C∗.
If A1 is a {α, β}-quadratic and A1A2A1 = A2A1, then A2 = In if and only
if there is a nonsingular matrix V ∈ Cn×n such that

(2.1) A1 = V

(

αIp 0
0 βIn−p

)

V −1

and A2 satisfies one of the following cases.
(i) β 6= 1

(2.2) A2 = V











1−a1α
a2

Iq 0 0 L

0 −1−a1α
a2

Ip−q M 0

0 0 1−a1β
a2

Ir 0

0 0 0 −1−a1β
a2

In−p−r











V −1,

being L ∈ Cq×(n−p−r) and M ∈ C(p−q)×r arbitrary.
(ii) β = 1, αa1 = 1.

(2.3) A2 = V





0 0 0
0 α−1

αa2
Ir 0

S 0 −α+1
αa2

In−r−p



V −1,

being S ∈ C(n−r−p)×p arbitrary.
(iii) β = 1, αa1 = −1.

(2.4) A2 = V





0 0 0
R α+1

αa2
Ir 0

0 0 1−α
αa2

In−r−p



V −1,

being R ∈ Cr×p arbitrary.

Proof. Since A1 is an {α, β}-quadratic matrix, there exist p ∈ {0, 1, . . . , n}
and a nonsingular matrix U ∈ Cn×n such that A1 = U(αIp⊕βIn−p)U

−1. Let
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us write A2 = U
(

X1 X2

X3 X4

)

U−1, where X1 ∈ C

p×p. Since A1A2A1 = A2A1

and α 6= 0, we conclude that

(2.5) αX1 = X1, αβX2 = βX2, βX3 = X3, β2X4 = βX4.

It is evident that if A1 is represented as in (2.1) and A2 is represented
as in (2.2), (2.3), or (2.4), and the scalars a1, α, β satisfy the corresponding
conditions, then A2 = In.

Let us assume A2 = In. We split the proof in several cases.
Case I: β 6= 1. From the third equality of (2.5), we get X3 = 0. So,

(2.6) A2 = U

(

X1 X2

0 X4

)

U−1.

Hence,

A = a1A1 + a2A2 = U

(

a1αIp + a2X1 a2X2

0 a1βIn−p + a2X4

)

U−1

and

A2 = U

(

(a1αIp + a2X1)
2 a1a2(α+ β)X2 + a22X1X2 + a22X2X4

0 (a1βIn−p + a2X4)
2

)

U−1.

From A2 = In, we conclude that

(2.7) (a1αIp + a2X1)
2 = Ip,

(2.8) (a1βIn−p + a2X4)
2 = In−p,

and

(2.9) a1a2(α+ β)X2 + a22X1X2 + a22X2X4 = 0.

By (2.7), there exist q ∈ {0, . . . , p} and a nonsingular matrix V1 ∈ C
p×p such

that

a1αIp + a2X1 = V1

(

Iq 0
0 −Ip−q

)

V −1
1 ,

which implies

(2.10) X1 = V1

( 1−a1α
a2

Iq 0

0 −1−a1α
a2

Ip−q

)

V −1
1 .

From (2.8), there exist r ∈ {0, . . . , n − p} and a nonsingular matrix V2 ∈

C

(n−p)×(n−p) such that

a1βIn−p + a2X4 = V2

(

Ir 0
0 −In−p−r

)

V −1
2 ,

that is,

(2.11) X4 = V2

(

1−a1β
a2

Ir 0

0 −1−a1β
a2

In−p−r

)

V −1
2 .
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Let X2 be written as X2 = V1

(

K L
M N

)

V −1
2 , where K ∈ C

q×r. By (2.9),
(2.10), and (2.11), we get

a1a2(α+ β)X2 + a22(X1X2 +X2X4) = V1

(

2a2K 0
0 −2a2N

)

V −1
2 = 0.

Thus, K = 0 and N = 0. Now, X2 reduces to

(2.12) X2 = V1

(

0 L
M 0

)

V −1
2 .

Let us define V = U(V1 ⊕ V2). We obtain

A1 = U

(

αIp 0
0 βIr

)

U−1

= U(V1 ⊕ V2)

(

V −1

1
0

0 V −1

2

)(

αIp 0
0 βIn−p

)(

V1 0
0 V2

)

(V −1

1
⊕ V −1

2
)U−1

= V

(

αIp 0
0 βIn−p

)

V −1.

By (2.6), (2.10), (2.11), and (2.12), we obtain

A2 = U

(

X1 X2

0 X4

)

U−1

= U











V1

(

1−a1α
a2

Iq 0

0 −1−a1α
a2

Ip−q

)

V −1

1
V1

(

0 L
M 0

)

V −1

2

0 V2

(

1−a1β

a2

Ir 0

0 −1−a1β

a2

In−p−r

)

V −1

2











U−1

= U(V1 ⊕ V2)











1−a1α
a2

Iq 0 0 L

0 −1−a1α
a2

Ip−q M 0

0 0 1−a1β

a2

Ir 0

0 0 0 −1−a1β
a2

In−p−r











(V −1

1
⊕ V −1

2
)U−1.

Thus, A2 can be written as in (2.2).
Case II: β = 1. Since α 6= β, we have α 6= 1. Hence from (2.5), we get

X1 = 0 and X2 = 0. Then

A = a1A1 + a2A2 = U

(

αa1Ip 0
a2X3 a1In−p + a2X4

)

U−1.

Since A2 = In, we conclude that
(2.13)
(αa1)

2 = 1, (a1In−p + a2X4)
2 = In−p, (1 + α)a1a2X3 + a22X4X3 = 0.

By the second equality of (2.13), there exist r ∈ {0, . . . , n − p} and a

nonsingular matrix T ∈ C

(n−p)×(n−p) such that a1In−p + a2X4 = T (Ir ⊕
−In−p−r)T

−1, a simple computation shows that

(2.14) X4 = T

( 1−a1
a2

Ir 0

0 −1−a1
a2

In−r−p

)

T−1.
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By the first equality of (2.13), we get a1 = 1/α or a1 = −1/α. (we can use
the first equality of (2.13) because if p = 0, then (2.1) would yield A1 = βIn,
which is not possible in view that A1 is {α, β}-quadratic matrix). Let us
write X3 as X3 = T

(

R
S

)

, where R ∈ Cr×p. Then

(1 + α)a1a2X3 + a22X4X3 = T

(

(αa1a2 + a2)R
(αa1a2 − a2)S

)

.

Thus, from the last equality of (2.13) we have that

(2.15) (αa1a2 + a2)R = 0 and (αa1a2 − a2)S = 0.

Case II.a: αa1 = 1. Equalities (2.14) and (2.15) reduce to

(2.16) X4 = T

( α−1
αa2

Ir 0

0 −α+1
αa2

In−r−p

)

T−1 and R = 0.

We have

A1 = U(αIp ⊕ In−p)U
−1 = U(Ip ⊕ T )(αIp ⊕ In−p)(Ip ⊕ T−1)U−1

and

A2 = U

(

0 0
X3 X4

)

U−1

= U





0 0

T

(

0
S

)

T

( α−1
αa2

Ir 0

0 −α+1
αa2

In−r−p

)

T−1



U−1

= U(Ip ⊕ T )





0 0 0
0 α−1

αa2
Ir 0

S 0 −α+1
αa2

In−r−p



 (Ip ⊕ T−1)U−1.

It is enough to define V = U(Ip ⊕ T ) to get the expression of this case.
Case II.b: αa1 = −1. The proof of this case is quite similar to the previous

one. �

Example 2.2. Let us solve in this example the following problem. Let

A1 =





2 −1 1
0 1 0
0 0 1



 , A2 =





−1 1 0
−1 0 −1
0 −1 −1



 .

Find all numbers a1, a2 ∈ C
∗ such that a1A1 + a2A2 is involutive.

Observe that A1 is a {2, 1}-quadratic matrix and A1A2A1 = A2A1. Fur-
thermore, a simple computation shows that σ(A2) = {0,−1}. Following the
notation of the previous result, we can assume α = 2 and β = 1. By the pre-
vious result, we must consider two alternatives: a1 = 1/2 or a1 = −1/2. For
the first alternative, by (2.3), we obtain σ(A2) ⊂ {0, 1/(2a2),−3/(2a2)}, and
thus, −1 ∈ {1/(2a2),−3/(2a2)}, so we have two possibilities for a2, namely
a2 = −1/2 or a2 = 3/2. For the second alternative, by (2.4), we obtain
σ(A2) ⊂ {0, 3/(2a2),−1/(2a2)}, and thus, −1 ∈ {3/(2a2),−1/(2a2)}, so we
have now two possibilities for a2, namely a2 = −3/2 or a2 = 1/2.
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Observe that we have four possibilities:

(a1, a2) ∈ {(1/2,−1/2), (1/2, 3/2), (−1/2, 1/2), (−1/2,−3/2)}.

It is enough now to check if a1A1 + a2A2 is involutive. None of the above
four possibilites yield to the involutiveness of a1A1+a2A2. Thus, we do not
find a1, a2 ∈ C

∗ such that a1A1 + a2A2 is involutive. �

Example 2.3. Let A1 be as in the previous example. We shall find all
matrices A2 ∈ C

3×3 and a1 ∈ C

∗ that A1A2A1 = A2A1 and a1A1 + A2 is
involutive.

By following the notation of the previous result, we can assume α = 2,
β = 1. Obviously, we have a2 = 1. Only cases (ii) and (iii) of the previous
result can be satisfied, and thus, a1 = ±1/α = ±1/2. By a diagonalization
of A1, the expression (2.1) in this example is

A1 = V





2 0 0
0 1 0
0 0 1



V −1, V =





1 1 −1
0 1 0
0 0 1



 , p = 1.

If case (ii) of the previous result holds, then a1 = 1/2. Now, A2 must be of
the form (2.3). Since r ∈ {0, . . . , n − p} = {0, 1, 2}, then depending on the
value of r, some blocks of A2 dissapear, yielding to the following possibilities
for V −1A2V (respectively for r = 0, 1, 2):




0 0 0
x −3/2 0
y 0 −3/2



 ,





0 0 0
0 1/2 0
z 0 −3/2



 ,





0 0 0
0 1/2 0
0 0 1/2



 ,

being x, y, z ∈ C arbitrary. The case (iii) can be dealt by a similar way. We
omit the details. �

Remark 2.4. Observe that under the hypothesis of Theorem 2.1, σ(A2) is
localized with no effort, because (2.2), (2.3), and (2.4) prove that A2 is
similar to certain triangular matrices.

Remark 2.5. We shall show how to manage the condition A1A2A1 = A1A2

with no effort. LetM be an {α, β}-quadratic matrix. It is evident thatM∗ is
a {α, β}-quadratic matrix. Thus, if A1, A2 ∈ C

n×n are such that a1A1+a2A2

is involutive, A1 is {α, β}-quadratic matrix, and A1A2A1 = A1A2, we can
apply Theorem 2.1 to A∗

1 and A∗

2.

As an example of the wide applicability of this result we shall prove two
corollaries.

Corollary 2.6. Let A1, A2 ∈ C

n×n be two nonzero linearly independent
idempotent matrices such that A1A2A1 = A2A1. Moreover, let A be a linear
combination of the form (1.1) with a1, a2 ∈ C∗. Then A2 = In if and only
if one of the following conditions holds.

(i) (a1, a2) ∈ {(−1, 2), (1,−2)} and A1 = In.
(ii) (a1, a2) ∈ {(2,−1), (−2, 1)} and A2 = In.
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(iii) (a1, a2) ∈ {(1, 1), (−1,−1)} and A1A2 = A2A1 = 0, A1 +A2 = In.
(iv) (a1, a2) ∈ {(1,−1), (−1, 1)} and A1 +A2 = A1A2 + In, A2A1 = 0.

Proof. It is straightforward that any characteristic (i)–(iv) leads to A2 = In.
Assume that A2 = In. Since A1 is a nonzero idempotent, we have two

possibilities: A1 = In or A1 is a {1, 0}-quadratic matrix. For the first of the
above possibilites, by writting A2 = W (Ix ⊕ 0)W−1, being x = rank(A2)
with 0 6= x 6= n we easily obtain the characteristic (i) of the Theorem.

Now, we assume that A1 is a {1, 0}-quadratic matrix. From Theorem
2.1, there exist a nonsingular matrix V ∈ C

n×n, p ∈ {1, . . . , n − 1}, q ∈
{0, 1, . . . , p}, and r ∈ {0, 1, . . . , n− p} such that A1 = V (Ip ⊕ 0)V −1 and

(2.17) A2 = V











1−a1
a2

Iq 0 0 L

0 −1+a1
a2

Ip−q M 0

0 0 1
a2
Ir 0

0 0 0 − 1
a2
In−r−p











V −1.

We shall denote λ = 1−a1
a2

, µ = −1+a1
a2

, ρ = 1/a2 and σ = −1/a2.

Since A2
2 = A2, we get

(

λIq 0
0 µIp−q

)2

=

(

λIq 0
0 µIp−q

)

,

(

ρIr 0
0 σIn−r−p

)2

=

(

ρIr 0
0 σIn−r−p

)

.

We shall split the proof to the following cases according to the values of q.

(I) If q = 0, then µ ∈ {0, 1}. Hence a1 = −1 or a1 + a2 = −1.
(II) If q = p, then λ ∈ {0, 1}. Hence a1 = 1 or a1 + a2 = 1.
(III) If 0 < q < p, then (a1, a2) = (−1, 2) or (a1, a2) = (1,−2).

Again we split the proof to the following cases according the value of r.

(A) If r = 0, then σ2 = σ. Since σ 6= 0, then we obtain a2 = −1.
(B) If r = n− p, then ρ2 = ρ. Thus, a2 = 1.
(C) If 0 < r < n− p we arrive at a contradiction.

We now combine cases (I), (II), (III) with (A), (B). The combinations (III-A)
and (III-B) are clearly unfeasible.

(I-A): We have q = r = 0 and a1 = a2 = −1. From (2.17), we
have A2 = V (0 ⊕ In−p)V

−1. This situation leads to the part of the
characteristic (iii) of the theorem.

(II-A): We have q = p, r = 0, and (a1, a2) ∈ {(1,−1), (2,−1)}. From
(2.17), we have

A2 = V

(

λIp L
0 σIn−p

)

V −1.

Since A2
2 = A2, we get (λ + σ − 1)L = 0. If (a1, a2) = (1,−1),

then A2 = V
(

0 L
0 In−p

)

V −1 and this situation leads to the part of
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the characteristic (iv). If (a1, a2) = (2,−1), then λ = σ = 1, and
therefore, (λ + σ − 1)L = 0 leads to L = 0. So, we have A2 = In.
This is the part of the characteristic (ii).

(I-B): We have q = 0, r = n−p, and (a1, a2) ∈ {(−1, 1), (−2, 1)}. From

(2.17), we have A2 = V
(

µIp M
0 ρIn−p

)

V −1. Since A2
2 = A2, we get

(µ + ρ− 1)M = 0. If (a1, a2) = (−1, 1), then A2 = V
(

0 M
0 In−p

)

V −1

and this situation leads to the part of the characteristic (iv). If
(a1, a2) = (−2, 1), then (µ + ρ − 1)M = 0 leads to M = 0 and
A2 = In, and this is the part of the characteristic (ii).

(II-B): We have q = p, r = n − p, and a1 = a2 = 1. From (2.17),
we get A2 = V (0 ⊕ In−p)V

−1. This situation leads to a part of the
characteristic (iii).

The proof is finished. �

Corollary 2.7. Let A1, A2 ∈ C

n×n \ {0} be two linearly independent ma-
trices such that A2

1 = In, A
2
2 = A2, A1A2A1 = A2A1 and let A be a linear

combination of the form (1.1) with a1, a2 ∈ C∗. Then A2 = In if and only
if (a1, a2) ∈ {(−1, 2), (1,−2)} and A1A2 = A2A1 = A2.

Proof. It is evident that if A1A2 = A2A1 = A2, then (A1 − 2A2)
2 = (−A1 +

2A2)
2 = In.

Now, assume that A2 = In. Since A
2
1 = In, we have three possibilities for

A1: A1 = In or A1 = −In, or A1 is a {−1, 1}-quadratic matrix. If A1 = In,
then by writing A2 = R(Ix ⊕ 0)R−1, where x = rank(A2) ∈ {1, . . . , n − 1},
we get (a1, a2) ∈ {(1,−2), (−1, 2)}, which is the part (i) of Corollary 2.1.
If A1 = −In, then by A1A2A1 = A2A1, we obtain A2 = 0 which is not
possible . If A1 is a {−1, 1}-quadratic matrix, then by Theorem 2.1, there
exist a nonsingular matrix V and p ∈ {1, . . . , n−1} such that A1 = V (−Ip⊕
In−p)V

−1 and A2 is written as in (2.3) or (2.4). Case (ii) of Theorem 2.1
and A2

2 = A2 lead to (a1, a2) = (−1, 2) and A2 = V (0⊕ Ir ⊕ 0)V −1, whereas
case (iii) and A2

2 = A2 lead to (a1, a2) = (1,−2) and A2 = V (0 ⊕ 0 ⊕
In−r−p)V

−1. �

A square matrix A is called group invertible if there exists a matrix X
such that AXA = A, XAX = X, and AX = XA. It can be proved that
this matrix X is unique (if it exists) and it is customarily written as A# (see
[5, Section 4.4]). It is easy to see that any diagonalizable matrix is group
invertible. This generalized inverse is necessary to define the sharp ordering:

Let A,B ∈ Cn×n be two group invertible matrices. We write A
#
≤ B when

AA# = BA# and A#A = A#B (see [18, Chapter 4]). If A is nonsingular

and A
#
≤ B, then obviously A = B. Thus, if we assume in addition that

A is an {α, β}-quadratic matrix and we want to deal with non-trivial linear
combinations aA+ bB, where a, b ∈ C∗, we can assume that α or β are zero.
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Theorem 2.8. Let A1 ∈ Cn×n be an {α, 0}-quadratic matrix, A2 ∈ Cn×n,
α ∈ C∗, and A be a linear combination of the form (1.1) with a1, a2 ∈ C∗.

Assume that A1 and A2 are linearly independent matrices and A1

#
≤ A2.

Then

A2 = In ⇔ a22(A2 −A1)
2 = In − α−1A1, 1 = [α(a1 + a2)]

2 .

Proof. Since A1 is an {α, 0}-quadratic matrix, then there exists a nonsin-
gular matrix U such that A1 = U(αIp ⊕ 0)U−1, where p ∈ {1, . . . , n − 1}.
Let us write A2 = U

(

X Y
Z T

)

U−1, where X ∈ Cp×p. By employing the two

conditions of the sharp ordering, we get that A2 = U(αIp ⊕ T )U−1.
⇒: Since A2 = In, we get that 1 = [α(a1 + a2)]

2 and (a2T )
2 = In−p.

Therefore,

a22(A2 −A1)
2 = a22U(0⊕ T 2)U−1 = U(0⊕ In−p)U

−1 = In − α−1A1.

⇐: The condition a22(A2 − A1)
2 = In − α−1A1 leads to a22T

2 = In−p.
Hence a1A1 + a2A2 = U((a1 + a2)αIp ⊕ a2T )U

−1 clearly is involutive. �

Remark 2.9. Let A1, A2 ∈ Cn×n satisfy the hypotheses of the former theo-
rem. If we want check the existence of a1, a2 ∈ C∗ such that a1A1 + a2A2

is involutive (and in this case, find such a1, a2), then the above result
gives us a procedure. First, find the spectrum of A1, or equivalenty, find
α ∈ σ(A1)\{0}. Second, check if (A2−A1)

2 is a scalar multiple of In−α−1A1.
If not, the problem has not solution. If yes, from a22(A2−A1)

2 = In−α−1A1,
we can find the feasible values of a2 and from 1 = [α(a1 + a2)]

2, we can find
the feasible values of a1.

Let us deal now with another condition that was appeared in [16], namely

A2A
#
1 A1 = A1. We will assume that A1 is singular (if otherwise, then

A2A
#
1 A1 = A1 reduces to A1 = A2). Observe that A2A

#
1 A1 = A1 ⇔

A2A
#
1 = A1A

#
1 . Hence A2A

#
1 A1 = A1 implies A1

#
≤ A2.

Let us observe that if A1, A2 satisfy A2A
#
1 = A1A

#
1 and A1A2 = A2A1,

then by writing A1 = U(K ⊕ 0)U−1, where U and K are nonsingular (this
is possible because A1 is group invertible), we have that A2 can be writen

as A2 = U(K ⊕ T )U−1 for some matrix T . Hence A#
1 A1 = A#

1 A2; which

leads to A1

#
≤ A2. Therefore, in next theorem we will assume the condition

A1A2 6= A2A1, since otherwise, we can apply Theorem 2.8.

Theorem 2.10. Let A1 ∈ C

n×n be {α, 0}-quadratic, A2 ∈ C

n×n, α ∈ C∗,
and A be a linear combination of the form (1.1) with a1, a2 ∈ C

∗. As-
sume that A1 and A2 are linearly independent matrices, A1A2 6= A2A1, and

A2A
#
1 A1 = A1. Then A2 = In if and only if there exist a nonsingular

matrix V ∈ C

n×n, p ∈ {1, . . . , n − 1}, and q ∈ {0, . . . , n − p} such that
A1 = V (αIp ⊕ 0)V −1 and it is satisfied one of the following cases:

(i) α(a1 + a2) = 1.
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(i.1) A2 = V
(

αIp Y

0 −
1

a2
In−p

)

V −1 being Y 6= 0 an arbitrary matrix in

C

p×(n−p).

(i.2) A2 = V

(

αIp 0 Y

0 1

a2
Iq 0

0 0 −
1

a2
In−p−q

)

V −1 being Y 6= 0 an arbitrary

matrix in Cp×q.
(ii) α(a1 + a2) = −1.

(ii.1) A2 = V
(

αIp Y

0 1

a2
In−p

)

V −1 being Y 6= 0 an arbitrary matrix in

C

p×(n−p).

(ii.2) A2 = V

(

αIp Y 0

0 1

a2
Iq 0

0 0 −
1

a2
In−p−q

)

V −1 being Y 6= 0 an arbitrary

matrix in Cp×(n−p−q).

Proof. The ‘if’ part is evident. We will prove the reciprocal: There exist a
nonsingular matrix U ∈ Cn×n and p ∈ {1, . . . , n − 1} such that

(2.18) A1 = U(αIp ⊕ 0)U−1, A2 = U

(

X Y
Z T

)

U−1, X ∈ Cp×p.

By employing A2A
#
1 A1 = A1, we get X = αIp and Z = 0. Let us observe

that since 0 6= p 6= n, then all blocks in (2.18) for A1 and A2 appear. Since
A1A2 6= A2A1, then Y 6= 0. By using A2 = In, we get

(2.19) α(a1+a2) ∈ {−1, 1}, α(a1+a2)Y +a2Y T = 0, a22T
2 = In−p.

The last equality of (2.19) implies the existence of a nonsingular matrix
U1 ∈ C

(n−p)×(n−p) such that a2T = U1(Iq ⊕ −In−p−q)U
−1
1 for some q ∈

{0, . . . , n − p}. Let us write Y = ( Y1 Y2 )U−1
1 for Y1 ∈ C

p×q. From the
second equality of (2.19), we get

(2.20) [α(a1 + a2) + 1]Y1 = 0 and [α(a1 + a2)− 1]Y2 = 0.

We have the following possibilities:

(a) If q = 0, in view of the decompositions of T and Y , we get T =
− 1

a2
In−p and Y = Y2U

−1
1 . Since Y 6= 0, then Y2 6= 0, hence (2.20)

leads to α(a1 + a2) = 1. Setting V = U allows us to prove the case
(i.1).

(b) If q = n − p, in view of the decompositions of T and Y , we get
T = 1

a2
In−p and Y = Y1U

−1
1 . Since Y 6= 0, then Y1 6= 0, hence (2.20)

leads to α(a1+a2) = −1. Setting V = U allows us to prove the case
(ii.1).

(c) If 0 6= q 6= n− p, since Y 6= 0, then Y1 6= 0 or Y2 6= 0.
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(c.i) If Y1 6= 0, then (2.20) implies α(a1+a2) = −1 and Y2 = 0. Also
we have

A2 = U

(

αIp (Y1 0)U−1
1

0 a−1
2 U1(Iq ⊕−In−p−q)U

−1
1

)

U−1

= U

(

Ip 0
0 U1

)(

αIp (Y1 0)

0 a−1
2 (Iq ⊕−In−p−q)

)(

Ip 0

0 U−1
1

)

U−1.

Setting V = U(Ip ⊕ U1) and renaming Y = Y1 permit obtain
the case (ii.2).

(c.ii) If Y2 6= 0, then again (2.20) yields α(a1 + a2) = 1 and Y1 = 0.
As before, we have

A2 = U

(

αIp (0 Y2)U
−1
1

0 a−1
2 U1(Iq ⊕−In−p−q)U

−1
1

)

U−1

= U

(

Ip 0
0 U1

)(

αIp (0 Y2)
0 a−1

2 (Iq ⊕−In−p−q)

)(

Ip 0
0 U−1

1

)

U−1.

Setting V = U(Ip ⊕ U1) and renaming Y = Y2 permit obtain
the case (i.2).

The proof is finished. �

Remark 2.11. Observe that under the hypothesis of the above theorem,
finding the spectrum of A2 is simple since A2 is a triangular matrix.

Example 2.12. Let

A1 =

(

1 1
1 1

)

, A2 =

(

1 1
0 2

)

.

We will find all a1, a2 ∈ C∗ such that a1A1 + a2A2 is involutive.
First of all, we check that A1 and A2 satisfy the hypotheses of Theorem

2.10. It is simple to see that A2
1 = 2A1; and therefore A1 is a {2, 0}-quadratic

matrix and A#
1 = 1

4A1. Now, checking A2A
#
1 A1 = A1 and A1A2 6= A2A1 is

straightforward.
A1 is a {2, 0}-quadratic matrix. Hence a1 + a2 ∈ {−1/2, 1/2}. The

matrix A2 is a triangular matrix; so, it is clear that σ(A2) = {1, 2}. Then
characteristics (i.2) and (ii.2) of Theorem 2.10 are impossible. Characteristic
(i.1) leads to −1/a2 = 1 and a1+a2 = 1/2; which yields (a1, a2) = (3/2,−1).
Characteristic (ii.1) implies (a1, a2) = (−3/2, 1). Both of these lead to
A2 = I2. Observe that this reasoning is idependent on the size of the involved
matrices (we have choosen 2× 2 matrices for the sake of the readability). �

Example 2.13. Let A1 be as in the previous example. We will find all

matrices A2 ∈ C
2×2 and a1 ∈ C

∗ such that A2A
#
1 A1 = A1 and a1A1 +A2 is

involutive.
We have

A1 = V diag(2, 0)V −1, V =

(

1 −1
1 1

)

.
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If A2A1 = A1A2, then by the proof of Theorem 2.8, we obtain A2 =
V diag(2, t)V −1 with t ∈ {−1, 1}. Also, Theorem 2.8 implies 1 = [2(a1+1)]2,
that is to say a1 ∈ {−1/2,−3/2}.

If A2A1 6= A1A2, then by Theorem 2.10 there exists y ∈ C

∗ such that
2(a1 + 1) = 1, A2 = V

(

2 y
0 −1

)

V −1 or 2(a1 + 1) = −1, A2 = V
(

2 y
0 1

)

V −1.
I.e.,

a1 = −
1

2
, A2 =

1

2

(

1− y 3 + y
3− y 1 + y

)

,

or

a1 = −
3

2
, A2 =

1

2

(

3− y 1 + y
1− y 3 + y

)

. �

Next results concern with linear combinations of the form (1.1), when
A1 is tripotent (i.e. A3

1 = A1). If A1 is tripotent, then Theorem 2.1 of [6]
implies the existence of a nonsingular U ∈ Cn×n such that

(2.21) A1 = U(Is ⊕−It ⊕ 0)U−1,

where s, t ∈ {0, 1, . . . , n} and s + t = rank(A1). It is evident that if t = 0,
then A1 is idempotent. Also, it would be clear that if s = 0, then −A1

is idempotent. In next result we impose the hypothesis A2
1 6= ±A1 since

A2
1 6= ±A1 were covered in Theorem 2.1.

Theorem 2.14. Let A1, A2 ∈ C

n×n be two linearly independent matrices
such that A3

1 = A1, A2
1 6= ±A1, A1A2A1 = A2A1 and let A be a linear

combination of the form (1.1) with a1, a2 ∈ C∗. Then A2 = In if and only
if there exists a nonsingular matrix V ∈ Cn×n such that

(2.22) A1 = V (Ik ⊕ Il ⊕−Im ⊕−Ij ⊕ 0⊕ 0)V −1

and one of the following conditions holds.

(i) a1 = 1 and

(2.23) A2 = V

















0 0 Y1 Y2
−a2
2 (Y1Z1 + Y2Z2) W2

0 − 2
a2
Il 0 0 W3 0

0 0 0 0 Z1 0
0 0 0 0 Z2 0
0 0 0 0 1

a2
Ie 0

0 0 0 0 0 − 1
a2
If

















V −1,

where Y1 ∈ Ck×m, Y2 ∈ Ck×j , Z1 ∈ Cm×e, Z3 ∈ Cj×e, W2 ∈ Ck×f ,
W3 ∈ C

l×e and k, l, m, j, e, f are nonnegative integers;
(ii) a1 = −1 and

(2.24) A2 = V

















2
a2
Ik 0 0 0 0 W2

0 0 Y1 Y2 W3
a2
2 (Y1Z1 + Y2Z2)

0 0 0 0 0 Z1

0 0 0 0 0 Z2

0 0 0 0 1
a2
Ie 0

0 0 0 0 0 − 1
a2
If

















V −1,
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where Y1 ∈ Cl×m, Y2 ∈ Cl×j , Z1 ∈ Cm×f , Z2 ∈ Cj×f , W2 ∈ Ck×f ,
W3 ∈ C

l×e and k, l, m, j, e, f are nonnegative integers.

Proof. Since A3
1 = A1, and A2

1 6= ±A1, there exist a nonsingular matrix
U ∈ C

n×n and s, t ∈ {1, . . . , n − 1} such that A1 is written as in (2.21).

Let us write A2 as A2 = U

(

X11 X12 X13

X21 X22 X23

X31 X32 X33

)

U−1, where X11 ∈ C

s×s and

X22 ∈ C

t×t. Since A1A2A1 = A2A1, we get X21 = 0, X22 = 0, X31 = 0,

X32 = 0 which imply A2 = U

(

X11 X12 X13

0 0 X23

0 0 X33

)

U−1. Hence,

A = a1A1 + a2A2 = U





a1Is + a2X11 a2X12 a2X13

0 −a1It a2X23

0 0 a2X33



U−1.

Since A2 = In, we conclude that

(2.25) (a1Is + a2X11)
2 = Is,

(2.26) a21It = It,

(2.27) (a2X33)
2 = In−s−t,

(2.28) X11X12 = 0,

(2.29) − a1X23 + a2X23X33 = 0,

(2.30) a1X13 + a2X11X13 + a2X12X23 + a2X13X33 = 0.

Since t > 0, by (2.26), we have a1 = 1 or a1 = −1.
If a1 = 1, by (2.25), there exists a nonsingular matrix V1 ∈ C

s×s such
that Is + a2X11 = V1(Ik ⊕−Il)V

−1
1 , hence,

(2.31) X11 = V1

(

0 0
0 − 2

a2
Il

)

V −1
1 .

By (2.27), there exists a nonsingular V3 ∈ C
(n−s−t)×(n−s−t) such that a2X33 =

V3(Ie ⊕−If )V
−1
3 , hence,

(2.32) X33 = V3

( 1
a2
Ie 0

0 − 1
a2
If

)

V −1
3 .

Let us write X12 and X23 as follows

(2.33) X12 = V1

(

P
Q

)

and X23 =
(

R S
)

V −1
3 ,
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where P ∈ Ck×t and R ∈ Ct×e. By (2.28), (2.31), and the first equality of
(2.33), we get Q = 0. By (2.29), (2.32), and the second equality of (2.33),
we get S = 0. Hence X12 and X23 can be rewritten as

(2.34) X12 = V1

(

Y1 Y2

0 0

)

V −1
2 and X23 = V2

(

Z1 0
Z2 0

)

V −1
3 ,

where Y1 ∈ C

k×m, Y2 ∈ C

k×j, Z1 ∈ C

m×e, Z2 ∈ C

j×e. Let us write

X13 = V1

(

W1 W2

W3 W4

)

V −1
3 , where W1 ∈ C

k×e. By (2.30), we have W1 =
−a2
2 (Y1Z1 + Y2Z2) and W4 = 0, so

(2.35) X13 = V1

(

−a2
2 (Y1Z1 + Y2Z2) W2

W3 0

)

V −1
3 .

From (2.31), (2.32), (2.34), and (2.35), it follows that A1 can be writen as
in (2.22) and A2 as in (2.23) where V = U(V1 ⊕ It ⊕ V3).

If a1 = −1, using the same method, it is easy to verify that A1 can be
written as in (2.22) and A2 as in (2.24). �

Next result deal with another condition.

Theorem 2.15. Let A1, A2 ∈ Cn×n be linearly independent matrices. More-
over, let A be a linear combination of the form (1.1) with a1, a2 ∈ C

∗. If

A3
1 = A1 and A1

#
≤ A2, then A2 = In if and only if there exist a nonsingular

matrix V ∈ C

n×n, p, q ∈ {0, . . . , n}, and r ∈ {0, . . . , n − p − q} such that
a1 + a2 ∈ {−1, 1},

A1 = V (Ip ⊕−Iq ⊕ 0⊕ 0)V −1,

and

A2 = V

(

Ip ⊕−Iq ⊕
1

a2
Ir ⊕−

1

a2
In−r−p−q

)

V −1.

Proof. The ‘if’ part is evident. We shall prove the ‘only’ part: Since A1

#
≤

A2, then A1A
#
1 = A2A

#
1 and A#

1 A1 = A#
1 A2, which by pre and postmul-

tiplying by A2
1, we get A1A2 = A2A1 = A2

1. Since A3
1 = A1, there exists a

unitary matrix U such that A1 = U(P ⊕ 0)U−1, where P = Ip ⊕ −Iq and
p, q ∈ {0, . . . , n}. Observe that p+ q 6= 0, since otherwise A1 = 0. By using

A1A2 = A2A1 = A2
1, we deduce the existence of T ∈ C(n−p−q)×(n−p−q) such

that A2 = U(P ⊕ T )U−1. Since A2 = In, we get that 1 = (a1 + a2)
2 and

(a2T )
2 = In−p−q. The proof finishes as in the proof of Theorem 2.8. �
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