
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/151050

Caballero, R.; Riesco, A.; Silva, J. (2017). A Survey of Algorithmic Debugging. ACM
Computing Surveys. 50(4):1-35. https://doi.org/10.1145/3106740

https://doi.org/10.1145/3106740

Association for Computing Machinery

"© ACM, 2017. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
ACM Computing Surveys, {50, 4, 2017} https://dl.acm.org/doi/10.1145/3106740"



A

A Survey of Algorithmic Debugging

RAFAEL CABALLERO, Universidad Complutense de Madrid
ADRIÁN RIESCO, Universidad Complutense de Madrid
JOSEP SILVA, Universitat Politècnica de València

Algorithmic debugging is a technique proposed in 1982 by E.Y. Shapiro in the context of logic programming.
This survey shows how the initial ideas have been developed to become a widespread debugging schema
fitting many different programming paradigms, and with applications out of the program debugging field.
We describe the general framework and the main issues related to the implementations in different program-
ming paradigms, and discuss several proposed improvements and optimizations. We also review the main
algorithmic debugger tools that have been implemented so far and compare their features. From this com-
parison, we elaborate a summary of desirable characteristics that should be considered when implementing
future algorithmic debuggers.

Categories and Subject Descriptors: F.3.1 [Theory of Computation]: Logics and meaning of programs—
specifying and verifying and reasoning about programs; D.3.1 [Software]: Programming Languages—formal
definitions and theory

General Terms: Languages, Theory

Additional Key Words and Phrases: algorithmic debugging, declarative debugging, software engineering

1. INTRODUCTION
In the 1980s, logic programming was a mature and well-established programming

paradigm [Kowalski 2014]. The main goal of logic programming languages such as Pro-

log [Sterling and Shapiro 1986] was, and continues to be, to allow the programmer to focus

on what the program must do, leaving the system implementation the problem of how to

achieve this.

Ehud Y. Shapiro proposed to extend this point of view from programming to debugging

in his seminal work [Shapiro 1982b], further developed as part of his PhD thesis, being the

latter selected as 1982 ACM Distinguished Dissertation [Shapiro 1982a]. In these works,

Shapiro proposed a new debugging technique called algorithmic debugging, also known later

as declarative debugging. Algorithmic debuggers allow the user to focus on the program

semantics, comparing the intended behavior of the program and the real computations.

In Shapiro’s proposal, the algorithmic debugging technique starts when some logic pro-

gramming goal produces an unexpected result. This unexpected result or initial symptom

can be either an erroneous substitution (a wrong answer in the rest of the paper) or even an

unexpected finite failure (which we call missing answer from now on). Then, the debugger

internally repeats the erroneous computation, but building at the same time a tree that

reflects the logic of the computation. In this debugging tree, the root corresponds to the ini-

Author’s addresses:
Adrián Riesco & Rafael Caballero, Departamento de Sistemas Informáticos y Computación, Universi-
dad Complutense de Madrid, C/ Profesor José García Santesmases, 9, E-28040, Madrid, Spain; email:
{rafacr,ariesco}@ucm.es.
Josep Silva, Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,
Camino de Vera s/n, E-46022, Valencia, Spain; email: jsilva@dsic.upv.es.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
c� YYYY ACM. 0360-0300/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Rafael Caballero et al.

tial computation. The descendants of every node correspond to the subcomputations that

occur in the implementation of the computation stored at the parent node. Each node has

associated to it both a result and the fragment of code used to perform the computation

that produces this result.

Once the debugging tree has been obtained, the debugger interacts with an external

oracle, usually the user, checking the validity of some tree nodes. Usually, the question is

‘Did you expect this computation to produce this result?’. If the result is expected, then the

node is marked as valid, and otherwise as invalid. Notice, however, that an invalid node does

not necessarily imply that the fragment of code associated with the node contains a bug.

It might occur that the node contains an erroneous result due to the misbehavior of some

auxiliary subcomputation, that is, due to the erroneous result at a child node, following the

‘garbage in, garbage out’ principle.

Thus, the debugger’s goal is to find a computation that has produced an erroneous result

from correct subcomputations or, in terms of the debugging tree terminology, an invalid node

with only valid children, called simply buggy node in the rest of the paper. The debugger

reports the fragment of code associated with a buggy node as erroneous to the user and the

debugging task ends.

It is worth noticing that algorithmic debuggers usually focus on finding a buggy node in

each debugging session. Once the error has been corrected, the user can run the program

again and, if a new error occurs, start the debugger once more. Thus, the debugger does

not need to ask the user about the correctness of all the nodes in the debugging tree, only

about those that lead to the location of a buggy node. The algorithm that chooses a node

to be asked about is often called navigation strategy. A possible navigation strategy is to

proceed bottom-up, asking the oracle about the validity of leaf nodes first, and then about

their ancestors. If a leaf node is invalid, then it is buggy (because it has no invalid children),

and its associated implementation is pointed out as erroneous. If it is valid, another node

is selected following a post-order traversal of the tree and the process is repeated until a

buggy node is found. This strategy was called single stepping in [Shapiro 1982a], which also

suggests a more efficient strategy called divide-and-query. Since then, many other strategies

have been proposed [Silva 2011].

It soon became apparent that Shapiro’s ideas could also be applied to other program-

ming paradigms, and that in fact they constituted a new and powerful general debugging

framework [Naish 1997a]. For this reason, in the following years, the technique influenced

the development of new debuggers in many programming paradigms, including declarative

programming, object-oriented programming, and database query languages. Moreover, the

ideas introduced by algorithmic debugging expanded to other areas such as the learning of

programming languages.

Nevertheless, the evolution of the technique has not been as successful as its properties

seemed to promise. Despite a good number of attempts to produce mature algorithmic

debugging tools, the technique still has to make the jump from academia to the industry,

and this deserves a critical analysis.

This survey reviews the theoretical and practical advances made in algorithmic debugging

since its presentation in 1982. It also discusses the impact of the technique both in debugging

and in other fields, its strengths and limitations, and, finally, it proposes possible lines of

future evolution.

The next section presents the basis of algorithmic debugging as a general framework.

Then, in Section 3 we describe how the general framework has been instantiated in different

programming paradigms, discussing the particularities of each case. Section 4 outlines dif-

ferent applications of algorithmic debugging besides debugging. The different issues related

to algorithmic debugging are discussed in Section 5. In Section 6 we describe how most of

these issues have been faced with different techniques. Together, the sections form a collec-

tion of desirable features and characteristics of an algorithmic debugger. In Section 7 we

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:3

debugger ( in it ia lSymptom ) �>

T = generate_debugging_tree ( in it ia lSymptom )

mark root (T) as i n v a l i d

while ( buggy (T) == ?)

Choose a node N 2 T with (mark (N) == unknown)

Ask the o r a c l e about the v a l i d i t y o f N

Mark T acco rd ing ly

return buggy (T)

Fig. 1. General framework describing algorithmic debugging

compare the main algorithmic debuggers proposed so far. Finally, Section 8 concludes this

survey and proposes future lines of work.

2. THE GENERAL FRAMEWORK
We start by introducing the basic principles of algorithmic debugging as an abstract general

debugging framework.

2.1. Framework components
As sketched in the introduction, algorithmic debugging can be depicted as a two-phase

process, which starts when an unexpected result is detected:

— Phase 1 automatically builds a suitable data structure representing the computation that

produces the unexpected result. This structure is usually a tree, which we denominate in

this paper as debugging tree.

— Phase 2 is often called the navigation phase. During this phase the debugger asks an

external oracle questions looking for a buggy node. The oracle must determine if the results

associated with the nodes are expected, that is, if they match the intended behavior of the

computation.

In phase 1, each debugging tree node corresponds to a computation step. Suitable com-

putation steps must have:

(1) An associated computation result.

(2) An associated fragment of code or system component, responsible for carrying out the

computation and producing the result.

(3) A notion of dependence among (sub)computations.

The definition of these components implicitly define the structure of the intended inter-

pretation of a program, which is the set containing all the possible computations with their

expected results. A node will be marked as valid when it is part of or is entailed by the

intended interpretation, and marked as invalid otherwise.

The first attempt of defining a general scheme for algorithmic debugging was defined by

Lee Naish [1997a], who also discusses some of the properties of debugging trees regardless

of the underlying language. A presentation of the general schema, following [Tamarit et al.

2016] is depicted in Figure 1. The debugger constructs the debugging tree associated to the

initial symptom as required in phase 1. Implicitly, we assume that the tree nodes are labelled

with a state, initially unknown (the default). At the beginning of the navigation phase, the

root of the tree is marked as invalid, since it corresponds to the initial symptom. During

the navigation phase, the debugger picks up unknown nodes and marks them according to

the oracle’s answers until a buggy node is found (the function buggy(T) that returns the

first invalid node with valid children found, or ? if such node does not exist yet). Finally,

the buggy node is returned. As observed in [Naish 1997a], the schema returns just the first

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Rafael Caballero et al.

debugger ( in it ia lSymptom ) �>

T = generate_debugging_tree ( in it ia lSymptom )

mark root (T) as i n v a l i d

while ( |T| 6= 1)

Choose a node N 2 T marked as unknown

Ask the o r a c l e about the v a l i d i t y o f N

I f the user i n d i c a t e s that N i s va l i d then

remove N and i t s subt ree from T

else
mark N as i n v a l i d

T = subtree rooted by N

return root (T)

Fig. 2. Improved framework for algorithmic debugging

buggy node, indicating that its associated component (usually a fragment of program code)

is incorrect. Of course, it is possible to modify the general setting to obtain all the buggy

nodes, but this is usually avoided because 1) often different buggy nodes may correspond

to the same bug, and 2) in most algorithmic debuggers the oracle is the user, and thus it

is important to decrease the number of questions. For these reasons, algorithmic debuggers

usually only look for weak completeness, which can be enunciated as follows:

Theorem 2.1. Let T be a debugging tree containing some invalid node. Then, T con-

tains at least one buggy node.

The proof uses induction on the size of the tree. Correctness, however, is not so simple

and requires the conversion of the following assumption into a formal result:

Assumption 2.2. Let T be a debugging tree and N a buggy node in T. Then, the frag-

ment of code associated with N is incorrect.

Proving this result is beyond the possibilities of the general setting. Each particular

instance must prove, or at least justify in the case of languages with complex or involved

semantics, that this assumption holds, and thus that the debugger is correct.

Figure 2 shows an alternative to the general setting of Figure 1, where the size of the

debugging tree is reduced each time the question about a new node is answered. This is useful

for lazy algorithmic debuggers, that avoid building the whole tree for efficiency reasons. In

these debuggers, removing a subtree rooted by a node N often means not constructing

the subtree associated with N , thus saving time and space. Each loop iteration singles out

a node N whose state is unknown following a navigation strategy [Silva 2011]. Then, the

debugger asks the oracle about the validity on N. If the oracle indicates that the node N

contains an expected result, N and its subtree is removed from the tree. If on the contrary

the user indicates that the result at N is unexpected, N is marked as invalid and its subtree

is chosen as the new debugging tree.

Each iteration decreases the size of the tree. Notice also that, at the beginning of every

iteration, the tree root is invalid. Then, assuming that we start with a non-empty debugging

tree, it is straightforward to prove that the debugger ends with a tree such that (|T|=1). In

order to ensure that this final node is a buggy node, we must check that the two operations:

1) remove a subtree rooted by a valid node, and 2) choose any subtree with an invalid root

as a debugging tree, are safe. This means that the new debugging tree must contain at least

one buggy node, and also that all buggy nodes found in the new debugging tree exist and

are buggy in the initial tree.

These properties are established by the following proposition:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:5

Proposition 2.3. Let T be a debugging tree with root R. Suppose that R is marked as

invalid. Then:

(1 ) Let N be an invalid node in T. Let T’ be the subtree rooted by N. Then, every buggy

node found in T’ is also buggy in T.

(2 ) Let N be a valid node in T. Let T’ be the tree obtained after removing every subtree with

root N from T. Then, T’ contains at least one buggy node N’, and every buggy node N’

in T’ occurs and is buggy in T as well.

Both properties are easy to prove, and combined with the weak completeness (Theorem

2.1) guarantee that the new framework is still weakly complete, in the sense that it always

finishes pointing out a buggy node. They also guarantee that the correctness result of

Assumption 2.2 holds, that is, that the fragment of code pointed out as incorrect is always

associated with a buggy node of the original tree.

Many variants have been proposed since the presentation of the general framework. For

instance, it is usual to allow for other answers beyond valid and invalid, such as don’t know/-

maybe [Wlodzimierz et al. 1988] to avoid answering difficult questions, or allowing for the

inadmissible answer [Pereira 1986; Naish 1997b] for calls to subprograms with unexpected

parameters (see Section 6.4 for details). Recently, one of the authors of this paper has par-

ticipated in the proposal of an extension of the general schema [Insa and Silva 2015b], but

for the sake of simplicity we maintain the original schema as presented in Figures 1 and 2.

2.2. Implementation techniques
The general framework starts representing the computation by means of a suitable debug-

ging tree. This first automatic phase requires repeating the computation that produced the

initial symptom. But, how is the debugging tree obtained while repeating the computation?

Two main alternatives have been proposed:

(1) Using a source-to-source program transformation [Pope 1998; Caballero and Rodríguez-

Artalejo 2002; Pope and Naish 2003; Chitil et al. 2003; Pope 2006; Lux 2008]. The idea

is to transform the program to be debugged, such that the code in charge of each

computation returns its associated debugging tree combined with the original result.

For instance, a function that returns a value of type T may return a value of type

(T,DebugTree) after the transformation, being DebugTree a suitable datatype defined

to represent the debugging tree.

(2) Using code instrumentation [Nilsson and Fritzson 1992; 1994; Nilsson 1998; Faddegon

and Chitil 2015], reflection [Shapiro 1982a; Lloyd 1987b; Binks 1995; Tessier and Ferrand

2000; MacLarty 2005; Riesco et al. 2012; Caballero et al. 2015], or directly modifying

the compiler [Nilsson 2001] in order to produce the debugging tree.

The advantage of the program transformation is that it can be defined with precision

regardless of the compiler/interpreter. This is also very convenient for proving properties

such as well-typedness of the transformed program, or the above mentioned algorithmic

debugging correctness. However, this approach also presents two important disadvantages:

(1) In some cases, as in lazy functional languages, a new primitive, usually called dVal or

pVal [Nilsson and Sparud 1997] needs to be introduced. This primitive produces the

representation of a term at the moment where its computation occurs. The semantics

of this primitive does not match the standard semantics of these languages, where the

execution order is not predetermined. Thus, dVal is an impure function, which worsens

reasoning about the transformed program in a purely declarative context.

(2) The main problem of the program transformation is efficiency. The transformed program

is usually much slower and requires much more memory in order to record the different

parts of the debugging tree.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Rafael Caballero et al.

The inherent lack of efficiency in the program transformation approach leads many de-

signers of algorithmic debuggers to either use the reflection possibilities of the language,

instrumenting the code, or simply define an ad hoc execution mechanism that produces the

debugging trees more efficiently.

3. ALGORITHMIC DEBUGGING IN DIFFERENT PARADIGMS
In this section we review the adaptation of the principles of algorithmic debugging to dif-

ferent programming paradigms.

3.1. Logic programming
Algorithmic debuggers for programs written in logic languages based on Horn clauses

(e.g., Prolog [Lakhotia and Sterling 1991]), usually consider two different types of errors:

wrong answers, when the user obtains an unexpected computed answer for some initial goal,

and missing answers, when there is an expected answer that is not covered by the set of

computed answers.

A generic algorithmic debugger of logic programs can cover both types of errors simulta-

neously. In fact, this is desirable in the case of programs allowing for the use of negation,

since this feature may convert the missing answer of some predicate in a wrong answer

for another predicate, and the other way round [Lloyd 1987b]. However, it is conceptually

useful to consider both types of errors as two different instances of the general setting and

this is the point of view considered in this paper.

In the case of wrong answers, the computations correspond to predicate calls. Then,

the instance of the general framework described in Section 2.1 consists of the following

components:

(1) The result of a computation is a substitution of logic variables with terms. Note that

the same predicate call may allow for many different substitutions as solutions, but, in

this case, we focus on the substitution employed to obtain the wrong answer.

(2) The fragment of code associated with each node is the predicate clause employed to

solve the predicate call producing the result.

(3) Each computation depends on the computation of the predicate calls associated with

the atoms occurring in the body of the predicate clause.

If, instead of wrong answers, we consider missing answers, the computations still corre-

spond to predicate calls, but the components vary:

(1) The result of the computation is now the set of all the computed substitutions for the

given predicate call.

(2) The fragment of code associated is the whole predicate, including all its clauses.

(3) Each computation depends on the computation of the predicate calls associated with

the atoms occurring in the bodies of all the predicate clauses employed during the

computation.

In order to include the initial goal G as the root of the tree, it is usually as-

sumed that the debugger implicitly introduces a new predicate main defined by one rule

main(X1, . . . , Xn) :- G., where X1, . . . , Xn are the free variables in G.

The intended interpretation, valid for both wrong and missing answers, can be considered

as a set of ground atoms (that is, atoms containing no variables). If the program is correct,

the set of answers Sol(p(t1, . . . , tn)) = {✓1, . . . , ✓n} for a given predicate call p(t1, . . . , tn)
exactly covers the set of instances of p(t1, . . . , tn) that are true in the intended interpretation

I of the program. Formally:

Definition 3.1. Let P be a logic program. Let I be the intended interpretation of P , and

p(t1, . . . , tn) a predicate call. Let Sol(p(t1, . . . , tn)) = {✓1, . . . , ✓n} be the set of solutions

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:7

qso r t ( [X|L ] , L0) :�
pa r t i t i o n (L , X, L1 , L2 ) ,

q so r t (L1 , L3 ) , q so r t (L2 , L4 ) ,

append (L3 , [X| L4 ] , L0 ) .

q so r t ( [ ] , [ ] ) .

p a r t i t i o n ( [X|L ] , Y, L1 , [X| L2 ] ) :� pa r t i t i o n (L ,Y, L1 , L2 ) .

p a r t i t i o n ( [X|L ] , Y, [X| L1 ] , L2) :� X <= Y, p a r t i t i o n (L ,Y, L1 , L2 ) .

p a r t i t i o n ( [ ] ,X , [ ] , [ ] ) .

append ( [X| L1 ] , L2 , [X| L3 ] ) :� append (L1 , L2 , L3 ) .

append ( [ ] , L ,L ) .

Fig. 3. A logic program for quicksort

obtained for p(t1, . . . , tn) with respect to P . Then, we say that the set of solutions is expected

if, for every substitution ✓ such that ✓(p(t1, . . . , tn))

✓(p(t1, . . . , tn)) 2 I i↵

there exists a substitution µ and an index i, 1  i  n,

such that ✓(p(t1, . . . , tn)) ⌘ µ(✓i(p(t1, . . . , tn))

Otherwise, we say that:

(1) A wrong answer occurs when there is some index i, 1  i  n, and some substitution

µ such that µ(✓i(p)) /2 I.

(2) A missing answer occurs when some substitution ✓

0
exists such that ✓

0(p) 2 I, but

there is no index i, 1  i  n, and some substitution µ such that ✓

0(p) ⌘ µ(✓i(p)).

In the case of logic programs with wrong answers, the algorithmic debugger ends by

pointing to an incorrect predicate clause. In the more contrived case of missing answers,

a whole predicate is marked as incomplete by the debugger. Wrong answers are easier to

detect than missing answers, because the former focuses on a particular solution, while the

latter requires the whole solution set.

To illustrate these ideas we use the same example introduced by Shapiro in [Shapiro

1982b], which corresponds to the Prolog implementation of the Quicksort algorithm shown

in Figure 3. As usual in logic programming, upper-case identifiers represent variable symbols,

the notation [X|Y] represents a list with head (first element) X and tail (list containing the

rest of the elements) L. The empty list is represented as [ ].

The intended behavior of the predicates in the program contains ground atoms of the

form:

— qsort(l1,l2) where l2 is the result of sorting the list l1.
— partition(l,x,l1,l2) where l1 contains those elements of list l lower or equal to x,

while l2 contains the elements of l that are greater than x.
— append(l1,l2,l3) where l3 is the result of concatenating the elements on list l2 at the

end of list l1.

However, the program contains a bug: the first clause of partition lacks the condition

X > Y . For instance, the goal p ⌘ qsort([2,1],X) is expected to produce just one answer,

the result being the substitution { X / [1,2] }. However, the logic system yields just one

answer ✓1 ⌘ { X / [2,1] } showing a discrepancy between the intended behavior and the

computed result.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Rafael Caballero et al.

Fig. 4. Proof tree for the goal qsort([2,1],X) and its wrong answer { X / [2,1] }

Note that this is a case where wrong and missing answers coexist. Obviously,

{ X / [2,1] } is a wrong answer according to Definition 3.1, because for i = 1 and µ = id

(with id being the identity substitution), we have µ(✓1(p)) = qsort([2,1],[2,1]) /2 I.

But there is also a missing answer according to the same definition, because when ✓

0 ⌘
{ X / [1,2] }, ✓

0(p) = qsort([2,1],[1,2]) 2 I, but i = 1, the only solution index

possible, verifies that there is no possible substitution µ such that qsort([2,1],[1,2])⌘
µ(qsort([2,1],[2,1])). When both errors occur simultaneously, the rule of thumb is to

only report the wrong answer, since it produces simpler debugging sessions in general.

Figure 4 shows the debugging tree for the erroneous answer ✓1 applied to the goal p. The

two invalid nodes are marked in dark. The double-framed node associated with partition
is the only buggy node. It is indeed invalid, because splitting the list [1] with respect to

the pivot 2 should produce [1] and [ ], instead of [ ] and [1]. It is also easy to check that

its only child partition([],2,[],[]) is valid since the only possible split of the empty

list, regardless of the pivot, is in two empty lists. Following a top-to-bottom, left-to-right

navigation strategy the debugger finds the buggy node in two questions (the root is invalid

by default and does not require any question). The output of the debugger after these two

questions would be similar to this:

Erroneous clause found.
Clause partition.1: partition([X|L], Y, L1, [X|L2]):- partition(L,Y,L1,L2).
Erroneous instance: partition([1], 2, [], [1]):- partition([],2,[],[]).

The error indicates the predicate, the particular clause, and it can also display the instance

associated with the buggy node. This last information is really useful for locating the precise

error, which in this case is that this clause should only be applied if the first element of the

list is greater than the pivot. Therefore, adding X > Y at the beginning of the clause body

solves the problem.

It is worth noting that in the case of logic programming the debugging tree directly cor-

responds to the concept of proof tree. This is interesting because this allows us to formally

prove the correctness of the technique. The results as well as a general and detailed expla-

nation of algorithmic debugging in the field of logic programming can be found in [Lloyd

1987b].

Shapiro’s original works were soon followed by others, still in the field of logic program-

ming [Av-Ron 1984; Huntbach 1987; Ferrand 1987; Lloyd 1987b; Naish et al. 1989; Shmueli

and Tsur 1991; Naish 1992b], and extending to constraint logic programming (CLP). In al-

most all cases, the debugging tree is obtained by using a meta-interpreter, taking advantage

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:9

of the reflection possibilities of logic languages such as Prolog, and all the works include

results of soundness and completeness. A very similar approach was later applied to the

more general CLP scheme [Fromherz 1993; Tessier and Ferrand 2000], to the combination

with assertions [Wlodzimierz et al. 1988], and to multi-paradigm languages such as Gödel

or Maude [Binks 1995; Riesco et al. 2012].

Deductive Databases [Ramakrishnan and Ullman 1995] are databases based on the logic

programming paradigm. Its more conspicuous representative is Datalog [Ceri et al. 1989],

whose main differences with the logic programming language Prolog are:

(1) In Datalog, programs are defined by Horn clauses, as in Prolog, but only constant

variables and constant symbols are allowed.

(2) Programs can contain only a simplified form of negation called stratified negation [Apt

et al. 1988].

(3) Programs are evaluated bottom-up. Given an initial goal, a Datalog system returns a

set with all the ground solutions satisfying the goal with respect to the program.

The first two points ensure program termination, a property usually required by database

query languages, while the third ensures that all the database facts that correspond with a

query (the name of goals in this context) are returned.

Given its similarity with Prolog, it is natural that algorithmic debugging was proposed as

the suitable way of debugging Datalog programs. The first work considering the algorithmic

debugging of programs in Datalog is [Russo and Sancassani 1992]. This paper proposes to

use a variant of the Selective Linear Definite (SLD) [Kowalski and Kuehner 1971] clause

resolution rule to find the errors. This initial approach considers as many debugging trees

as atomic answers the query produces, which is not realistic in queries over large databases,

which can potentially return a large number of atomic results. Other authors [Arora et al.

1993; Wieland 1990] proposed to use forests of debugging trees.

However, trying to represent Datalog programs using Prolog semantics does not account

for a new type of error, which was not present in logic programs: the uncovered sets of

atoms, caused by incomplete sets of relations. Consider the following Datalog program

from [Caballero et al. 2008]:

p (V) :� q (V) .

q (V) :� p(V) .

Suppose that the intended interpretation is {p(a), q(a)}, and that we try the query

p(V). In Prolog, this goal does not terminate, but in a Datalog system such as DES [Sáenz-

Pérez 2011] it returns the empty set {}. In the theory of algorithmic debugging for logic

programming, this is considered a missing answer, and the instance p(a) a missing instance,

which implies the existence of an incomplete predicate definition. But this is not the case here

since the relation p and q can produce the values p(a), q(a) using the instance ✓={V7!a}.
Instead, we say that the set {p(a),q(a)} form an uncovered set of atoms, while the set

S={p,q} determines an incomplete set of relations. A curious consequence of this type

of errors is that debugging trees are not the suitable structure for representing Datalog

computations. Instead, debugging graphs are the suitable structure [Caballero et al. 2008;

Köhler et al. 2012]. In this new setting, the concept of buggy node remains, but it is enriched

with the new concept of buggy circuit, a graph circuit formed by invalid nodes such that all

the nodes directly connected to those of the circuit are valid. It has been proved [Caballero

et al. 2008] that a buggy circuit either contains a node corresponding to an incorrect program

rule or determines an incomplete set of predicates.

Similar ideas have been applied to debug SQL queries [Caballero et al. 2012], taking

advantage of the declarative nature of this query language.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Rafael Caballero et al.

data Nat = Z | S Nat

take Z _ = [ ]

take _ [ ] = [ ]

take (S n) (x : xs ) = x : take n xs

from n = n : from n

Fig. 5. A funcional program with a datatype and two simple functions

3.2. Functional programming
Ten years after E.Y Shapiro’s initial proposal, H. Nilsson and P. Fritzson [1992; 1994], and

independently L. Naish [1992a], proposed to apply algorithmic debugging to another main

declarative programming paradigm stream: functional programming.

Soon, an interesting difference with the logic paradigm was noticed: missing answers, the

most complicated source of errors in logic programming, can be considered as just a partic-

ular case of wrong answers in the case of functional programming. This is accomplished by

simply assuming that a failing computation returns a special value error, and generating the

corresponding debugging tree. It is worth observing that this simple idea cannot be applied

to logic languages due to their more involved execution search mechanism, which produces

much more complex trees [Naish 1992b]. In contrast, functional languages assume that any

function call will succeed for (at most) one function rule, usually the first rule in textual

order whose arguments match the calling parameters, and no backtracking mechanism is

involved in the process.

The algorithmic debuggers proposed for functional programming adapted the general

schema of Figure 1 to functional languages such as Haskell [Hutton 2016] with the following

assumptions:

(1) Computing in the functional paradigm means evaluating expressions. The computation

result is the result obtained from this evaluation. It is usually assumed that expressions

are function calls (the initial expression is implicitly the body of a main function).

(2) Thus, each computation is associated with a function in the program.

(3) The subcomputations associated with a computation of a given function call correspond

to the function calls in the body of the function rule used to evaluate the expression.

However, algorithmic debugging of functional programs introduces two new difficulties:

(1) Apparently, nodes can become very complex due to the existence of nested function

calls. This in turn would produce complex questions, difficult to answer. The obvious

solution is to evaluate the arguments of function calls in advance, reducing nested calls

to values. The evaluation of these nested function calls are considered subcomputations,

and consequently are represented as child nodes.

(2) However, the idea of evaluating the arguments in advance poses a new difficulty in the

case of lazy functional languages. In these languages potentially infinite structures are

allowed, although the actual computations only evaluate the part needed in each case.

Thus, the debugger must be careful to evaluate the arguments only to the point required

by the particular computation to be debugged.

The two difficulties were overcome with the definition of the Evaluation Dependence

Tree (EDT in short) in [Nilsson and Sparud 1997]. The EDT abstract the details about

the execution away, only displaying the arguments evaluated to the point required by the

computation.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:11

Fig. 6. Evaluation Dependence Tree for the evaluation of the expression take (S (S Z)) (from Z) and its
associated wrong answer Z:Z:[]

Figure 5 presents a simple example. The program defines a datatype Nat representing

the natural numbers using the Peano notation. Each number can be either zero (Z) or the

successor (S) of another natural number. The program also uses the built-in datatype list,

where the empty list is represented as in logic programming ([ ]), while non-empty lists are

represented as (x:xs) to indicate that x is the first element and xs the rest of the list. The

program also defines the functions take and from with the following intended behavior:

— take(n,l) computes the list containing the first n elements of list l.
— from(n) computes the (infinite) list containing all the consecutive natural numbers start-

ing at n.

However, the function from is erroneous because its body should be n: from (S n)
instead of n:from n. The error becomes apparent when we evaluate the expression

take (S (S Z)) (from Z), which is expected to return the list containing the two first nat-

ural numbers, that is Z:S Z:[]. However, the result returned is the wrong answer Z:Z:[ ].
An algorithmic debugger will internally build the EDT of Figure 6. In this tree, it is worth

noticing the occurrence of symbol ? to represent a part of a structure that has not been

evaluated during the computation. For instance, the node from Z = Z:Z:? indicates that

the function call from Z produced a list whose first and second elements are Z. Thus, when

occurring on the right-hand side, the symbol ? must be interpreted as an existential vari-

able, and the question about the validity of this node can be understood as “do you expect

that from Z returns Z:Z:? for some value ??”. The answer is no and thus the node is

marked as invalid. Moreover, this node is buggy, because its only child from Z = Z:? is

valid, since we indeed expect from Z to produce a list with Z as first element. In this ex-

ample, this is the only buggy node, which corresponds with function from, indicating that

this function is defined with an incorrect rule.

On the other hand, ? on the left-hand side has the implicit meaning of a universally quan-

tified variable. For instance, the question about the validity of take (S Z) (Z:?) = Z:[ ]
must be understood as “do you expect that for every list starting with Z the function call

take (S Z) (Z:?) produces the result Z:[ ]?”. This is true, and thus the node is valid.

Thus, the EDT reflects the philosophy of lazy functional computations by producing

execution tree nodes where only those expressions that are demanded are evaluated to

values.

Regarding the implementation, Nilsson and Sparud also considered the interesting ques-

tion of how this tree could be obtained, and proposed the two main alternatives discussed

in Section 2.2.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Rafael Caballero et al.

The first alternative, a source to source transformation, was later explored in detail, given

raise to Buddha [Pope 1998; 2006], an algorithmic debugger for Haskell, and also algorithmic

debuggers for multi-paradigm languages such as Toy and Curry [Caballero and Rodríguez-

Artalejo 2002; Lux 2008]. However, the lack of efficiency of these proposals when considering

large realistic programs gave rise to new proposals based on the modification of the compiler,

which solves this problem. This idea was developed in [Nilsson 2001] where a very efficient

algorithmic debugger for Haskell was presented. More recent works have followed these

ideas, either in combination with other techniques such as program slicing [Silva and Chitil

2006], or improving the debugging process by considering only those program modules that

may contain an error [Faddegon and Chitil 2015]. Recent works [Chitil et al. 2016; Faddegon

and Chitil 2016] suggest using functional traces as a simple and lightweight technique for

obtaining the execution trees.

Although the EDT solves the issue of the nested calls, which are now replaced by

their corresponding evaluations, the problem remains for partial function applications.

In [Chitil and Davie 2008] the authors show that the EDT can ask questions like

allOddC (allOddC id (Leaf 5)) (Leaf 7) True = False?. In this question, allOddC
is a function with three parameters. Thus, the inner call (allOddC id (Leaf 5)) cannot

be evaluated, since it is applied only to two parameters, that is, it is a partial function

application. Moreover, this partial application includes another one, id, which corresponds

to the identity function defined by the program rule id x = x. As the authors observe,

the number of function symbol occurrences in a function call is unbounded, and similar

questions arise frequently in higher-order functional programs, which can make algorithmic

debugging unpractical. To solve this problem, [Pope 2006; Davie and Chitil 2006a] propose

representing a functional value as a finite map from arguments to results. The new debugger

asks questions of the shape allOddC {False!False} (Leaf 5) True = False?. The new

notation simplifies the questions involving partial applications and defines a new execution

tree, the function dependency tree (FDT). The formal definition of the FDT, combined with

a proof of correctness and a comparative between FDTs and EDTs can be found in [Chitil

and Davie 2008].

3.3. Imperative programming
The first application of algorithmic debugging in the field of imperative programming is

[Kamkar et al. 1990]. This proposal combines algorithmic debugging with the technique

of program slicing [Harman and Hierons 2001] to find bugs in programs written in the

imperative language Pascal [Jensen and Wirth 1974]. The paper also faces the important

issue of how to deal with side-effects such as global variable modification, which did not

exist in the pure declarative paradigm, but it is important in imperative and object-oriented

programs. Consider for instance the Pascal function:

function f ( y : integer ) : integer ;

begin
b := b+1;

f := y ⇤2 ;

end ;

A possible call to this function is f(2), which returns 4. A first idea could be to include

the node f(2) -> 4 in the debugging tree. However, this is insufficient, because this node

does not contain the information about the modification of b, a variable defined out of the

scope of function f. In fact, this side-effect might be the source of the error, and should

be taken into account. The authors propose a program transformation that produces a

side-effect free program. Applying the same ideas to the function f we obtain:

function f ( y : integer ; var b : integer ) : integer ;

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:13

begin
b := b+1;

f := y ⇤2 ;

end ;

The reserved word var indicates that the parameter b is modified inside the function.

Note that the transformation must also modify all the calls to f in order to consider the

new extra parameter. A possible node representation might be f(2) {b!2} -> 4 {b!3}.
The debugger “remembers” that the second argument corresponds to b and extracts this

parameter creating a context that the oracle must take into account when checking the

validity of the node.

A related paper is [Shahmehri and Fritzson 1990], which also considers a subset of Pascal

and side-effects. This paper also studies other particularities of imperative languages such

as loops. The author proposes that loops should become part of the debugging tree. In order

to achieve this, the program loops are converted into new functions. The nice outcome is

that now loops can be buggy nodes, that is, a more fine-grained debugger is obtained.

However, this also poses a new problem. The new functions that replace the loops are

recursive functions, and each iteration generates a new call, and thus a new node in the

tree. In the case of loops with many iterations, this gives rise to huge debugging trees

with very lengthy branches. Another problem is that the questions associated with the new

functions are difficult to answer, because they correspond to code not programmed by the

user (i.e., code inserted by the program transformation). These problems were considered

and different solutions were proposed in [Insa et al. 2013a].

3.4. Object Oriented programming
The same ideas of imperative languages are also applicable to object-oriented languages

such as Java [Kouh and Yoo 2003; Caballero et al. 2006]. The main difference is that the

contexts tend to be more complicated, since the objects’ states must be included. One

problem introduced by objects is the fact that an object can contain itself as the value

of an attribute. This produces an infinite recursive data structure that should be suitably

displayed to the user. In this context, [Kouh and Yoo 2003] proposed a hybrid approach,

that combines algorithmic and trace debugging. This idea has been further developed in

later works [Hermanns and Kuchen 2013; Insa and Silva 2014].

The instance of algorithmic debugging applied to the object-oriented programming

paradigm is summarized as follows:

(1) It considers method calls, and often loop executions, as possible incorrect computations.

(2) The result of the computation must consider the context, including global variables and

object states.

(3) Each computation depends on the method calls and loop executions in its body.

4. OTHER APPLICATIONS OF ALGORITHMIC DEBUGGING
Beyond its usage as a program debugging method, the foundations of algorithmic debug-

ging have been applied in other contexts. We outline here some applications of algorithmic

debugging and briefly describe how this technique or its fundamentals have been used in

other fields.

— Tutoring systems. Algorithmic debugging has been used in tutoring systems [Zinn 2014;

2013]. Here, the debugger traverses the debugging tree produced by a correct program

(thus, no buggy node exists) and, by asking questions to the students, it looks for the

error in the intended interpretation, that is, a buggy answer, which corresponds to the

function that the student does not understand.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Rafael Caballero et al.

— Test case generation. In the standard software development cycle, bugs are found dur-

ing the testing phase, then debugging is applied until the implementation is considered

correct, and finally all the knowledge obtained during this phase is discarded. In order

to solve this problem, algorithmic debugging has also been used for test case generation.

The first idea is that every node in the debugging tree is a potential test case, and the

answers given by the oracle validate these test cases. A second idea is that, when a set of

test cases fail, the debugging trees of all failing test cases can be generated and combined

to (i) direct the search for a bug; but also to (2) refine the test cases that fail, producing

more specific test cases from the nodes of the generated trees.

The first approaches [Fritzson et al. 1992; Kókai et al. 1997] combined debugging with

the category-partition testing approach [Ostrand and Balcer 1988]. In this approach,

different categories are defined for the parameters (e.g., the categories for a list are its

size and the type of the elements) and test cases are generated by combining one value

from each category (one test case could take the empty and positive values from the size

and type categories respectively while other test case could take nonempty and positive);

the aim is to write test cases for all the (possibly restricted) combinations, although

the huge number of combinations makes it unfeasible in general. By combining testing

and algorithmic debugging, it is possible to prevent the debugger from asking the user

questions that are already defined in the test cases, while it is also possible to extend

the database of test cases to cover combinations that were not taken into account by the

programmer.

Modern approaches [Tamarit et al. 2016] use unit testing [Runeson 2006] in the same

way, hence integrating debugging into the software development cycle. However, other

testing approaches such as random testing [Hughes 2010] or mutation testing [Jia and

Harman 2011] remain unused; integrating these novel testing frameworks would make

algorithmic debugging more attractive for developers. On the one hand, random testing

relies on properties, usually written in first-order logic, that some functions must satisfy.

These properties can hence be also applied to the nodes of the debugging tree: if the

property fails the node would be automatically marked as wrong, while if the property

holds we can mark it as correct if this property only holds for those elements in the

intended interpretation.

1

On the other hand, using mutation testing would provide a

solid database of test cases that can be used in the same way as the unit tests described

above.

— Software Evolution Control. A common drawback of most of the debugging techniques

developed thus far is that they are not integrated into the software development cycle: for

example, although the spiral process model is often used and hence previous debugged

versions of functions are available, they are not used for debugging. An interesting ap-

proach that takes this information into account consists in the recording of the debugging

sessions and their use in future releases of the software to automatically check whether

those pieces of code that worked well or that were already fixed, still keep the same de-

sirable behavior. As outlined before, the recorded debugging sessions can be considered

as repositories of test cases that can be used to automatically test the evolved software.

This idea is very related to another approach that also records and profits the previous

debugging sessions: relative debugging [Abramson et al. 1996], a technique that has been

successfully applied to several environments [Rose et al. 2015; Dinh et al. 2014; Sosic and

Abramson 1997]. Relative debugging frameworks allow the user to establish a comparison

1Although this discussion is beyond the scope of the paper, it is easy to see the intuitive idea with an
example: a property on a sorting algorithm that only requires the elements in the resulting list to be
ordered cannot be used to mark nodes as correct; once we had the extra condition stating that the resulting
list has the same elements as the original list the property is complete and can be used to mark nodes as
correct.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:15

between the execution of two programs. This is achieved by defining a correspondence

between the two program states, and hence it is closely related to algorithmic debugging:

former results can be used as the oracle for the questions in the current session. In fact,

this approach is available in several debuggers, as shown in Section 7.

— Debugging Attribute Grammars. Instead of debugging programs, [Sugavanam 2013] pro-

poses algorithmic debugging for finding errors in the formalism known as attribute gram-

mars. In this case, the debugging tree corresponds to a dependency graph of attribute

instances, where an attribute instance is an occurrence of a grammar attribute in a

particular position of the syntax tree defined by the grammar. In order to reduce the

number of questions, the debugger considers a ranking of possible values of a property

of the grammar attributes, productions and non-terminal symbols. This information is

used to direct the questions during the navigation phase.

— Design validation and diagnosis of VLSI circuits. Algorithmic debugging has been also

applied to hardware systems. First, the work in [Naganuma et al. 1994] shows how

high-level circuit designs are translated into Prolog to apply algorithmic debugging.

Once the circuit is built, algorithmic debugging has been used to detect faulty com-

ponents [Kuchcinski et al. 1993]. In this case, we can consider that a logical circuit is

just a function where inner components are auxiliary functions. Hence, by analyzing how

these auxiliary functions behave, we can detect faulty components and either fix them

or, when it is not possible, detect weak spots and improve the production process.

5. ISSUES OF ALGORITHMIC DEBUGGING
This section provides a critical view of algorithmic debugging. In particular, we describe

the main issues of algorithmic debugging along its lifetime. We also explain why some of

them have prevented this technique to be used in the industry for a long time, and we also

identify those areas where algorithmic debugging is still missing. The solutions that have

been proposed to overcome these problems are presented in Section 6.

We have divided the main issues in three different groups: scalability problems, effective-

ness and user experience, and completeness of algorithmic debuggers. In the following, we

discuss each of them separately. Each issue has been identified with a label (e.g., Issue-1 )

so that it will be later easily referred to discuss the solutions proposed in the literature and

the existent implementations.

5.1. The scalability problem
The scalability problem has been the main reason why many algorithmic debuggers were

abandoned (this is the case, e.g., of Buddha [Pope 1998; 2006], Hat-Delta [Davie and Chitil

2006b], and DDJ [Insa and Silva 2010], among others). For this reason, scalability has also

been a hot topic, target of many researches, but we have only seen significant advances in

recent years (they will be explained in detail in Section 6).

In algorithmic debugging, the debugging time is often approximated as:

T = DTG +
NQX

i=1

DQi (1)

where DTG represents the time needed to generate the debugging tree, NQ is the number

of questions that the user must answer, and DQi represents the difficulty of question i,

which is measured by the time needed to answer the question [Silva 2007].

Issue-1: Time needed to generate the debugging tree [DTG in (1)]. Generating the debugging tree

always implies executing the program. The record of an execution contains a huge amount

of information and, unfortunately, storing all this information and producing the debugging

tree is often a slow process. In some languages, this problem is implicit to the current

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Rafael Caballero et al.

technology and it cannot be solved with accurate implementations or efficient methods

to store the execution trace. For instance, several different algorithmic debuggers exist

for Java [Schildt 2014], such as JavaDD [Girgis and Jayaraman 2006] and DDJ [Insa and

Silva 2010], that use the Java Platform Debugger Architecture (JPDA) [Liang 1999]. This

platform can be used to monitor and control the execution of a program in the standard

Java Virtual Machine. Nevertheless, JPDA suffers from time scalability problems and, thus,

all debuggers that use it are also affected by the same problems.

Issue-2: Memory needed to store the debugging tree. The size of a debugging tree of a large

computation may be even gigabytes, which means that it often does not fit in main mem-

ory. Therefore, a mechanism to store it efficiently in secondary memory is needed. This

applies not only to the main memory, but also to the graphic memory, which can also be

overflowed when the debugger tries to draw a huge debugging tree. The debugger should

implement some technique to dynamically control the amount of information sent to the

graphic memory.

5.2. User experience and effectiveness
One of the main complaints of algorithmic debugger users is that the tools and interfaces

provided to the user need to be improved. In particular, users complain about the lack of

control they have over the debugging session, the number and difficulty of the questions,

the need of integration with other tools, and the granularity level of the errors.

Issue-3: Amount and difficulty of the questions [NQ and DQi in (1)]. An algorithmic debugger can

generate a large number of questions before it finds the bug. Clearly, the number of questions

directly depends on the navigation strategy used during the debugging tree traversal. If the

strategy only uses structural information (i.e., it is limited to a search in the tree) then the

number of questions is bound by the optimal strategy (D&Q), whose query complexity is

O(N · log N). This limit is still too large for real computations.

Moreover, questions can be very difficult for the user. For instance, while debugging a

compiler, the Mercury’s algorithmic debugger [MacLarty 2005] asked a question of more

than 1400 lines. Clearly, a modern algorithmic debugger should allow the user to skip

questions, and should provide a mechanism to choose the easiest questions first. It is also

desirable that those questions that are semantically related are asked consecutively. This

can help to speed up the debugging session because the user already has the context of the

question in mind (i.e., the knowledge acquired in the first question can be used to answer

the second question when they refer to the same subcomputation or routine).

Issue-4: Rigidity and loss of control during the navigation phase. Navigation strategies always

select the node that they consider will lead to finding the error quickly. But of course, to

make this decision, they do not handle the user’s intuitions about what computations are

more likely to be wrong. Therefore, a rigid strategy that does not provide the user with the

ability to redirect the search for the bug can be frustrating (i.e., answering questions that

the user may know a priori that will not lead to the bug). Basic features such as the undo

option, or the possibility to store the debugging session in order to continue later, are often

disregarded in academic prototypes, but are important to improve the user’s experience and

thus the tool’s success.

Even though many algorithmic debuggers allow the user to start the computation from a

particular routine call (with provided inputs), in most of them, once the debugging session

has started, the user cannot tell the debugger to concentrate on a particular suspicious call.

A possible solution to this issue is to allow the user to freely explore the debugging tree.

Not having the possibility to explore the debugging tree (unfortunately, most debuggers are

just console-based) prevents the user from inspecting the computation.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:17

Issue-5: integration with other debugging tools. Another issue is the fact that most algorithmic

debuggers completely ignore the debugging tools of the development environment (e.g.,

(conditional) breakpoints, debug perspective, variable inspector panels, etc.). Moreover,

they are often offered as a separate tool, and the user must switch from their traditional

debugger in order to start algorithmic debuggers. We think that, on the contrary, algorithmic

debuggers should aim to integrate with existing debuggers, for instance allowing the user

to switch from a trace debugger to the algorithmic debugger easily, while maintaining the

same environment and appearance.

Issue-6: Bug granularity. By definition, the algorithmic debugging technique reports a whole

routine as buggy, and thus, the granularity of errors is a whole routine. Hence, the user

is forced to manually continue the search for the bug inside the reported buggy routine.

Note that, although algorithmic debugging is a dynamic analysis technique (i.e., it needs

to run the program), the answer of the debugger is usually static (i.e., it points out a set

of lines of source code as buggy without considering the concrete buggy execution). Even if

the algorithmic debugger does not point to a complete function but just a part of it (e.g., a

loop), it still may contain some lines of code that were not executed in the call identified as

buggy. A modern algorithmic debugger should implement some dynamic analysis technique

to further reduce the code reported as buggy.

5.3. Completeness
An important drawback of algorithmic debuggers is the existence of untreated features, in

particular:

Issue-7: Termination. We are not aware of any algorithmic debugging technique that faces

non-termination. A modern debugger should (at least) allow the user to stop an infinite

computation and debug the part of the debugging tree generated so far.

Issue-8: Concurrency. Concurrency is missing in almost all algorithmic debuggers. The rea-

son is the difficulty of storing concurrent computations (the standard debugging tree is not

prepared for that), and the difficulty of asking the user about the behavior of a concur-

rent computation. To the best of our knowledge, EDD [Caballero et al. 2015] is the only

algorithmic debugger able to debug concurrent programs.

Issue-9: I/O. In general, programs that access the file system, a database, or any other

external source, are not treated by algorithmic debuggers. The reason is that it is difficult

for a debugger (often impossible) to store the state of the external source when it was

accessed and, in general, this state is needed for the user to answer the question.

Example 5.1 (Accessing a database). Consider the function call:

getFromDataBasePeopleOlderThan(42)
Clearly, the user needs the database before and after this call to know if the result of the

call and the final state of the database—it should remain unchanged—are correct.

Even in the case that the debugger is able to store/access the external source, it still has

the problem of how to show it to the user. Although some solutions have been provided in

the case of declarative languages [Lux 2008], the general question remains unsolved.

6. OPTIMIZATION AND USABILITY FEATURES OF ALGORITHMIC DEBUGGERS
In this section, we describe the current state of the art concerning the optimization and

usability features of algorithmic debuggers. Hence, this section can be seen as a requirements

specification for algorithmic debugger implementers. Moreover, because all the proposed

features have been contextualized along the history of algorithmic debugging, this list is

also a report about the solutions proposed so far to the issues described in Section 5.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Rafael Caballero et al.

Besides the description of the modern features of algorithmic debuggers, we propose several

ideas on how to overcome some of the untreated issues. The list of desirable features of an

algorithmic debugger is the following:

6.1. Scalability [deals with Issue-1 and Issue-2 ]
Nowadays, scalability is still one of the main problems of algorithmic debugging. In an

industrial context, the debugging trees generated are huge (i.e., gigabytes) and, thus, they

cannot be stored in main memory (Issue-2 ).

Unfortunately, many debuggers were designed to store the whole debugging tree in main

memory and, hence, they crash at runtime (producing a “memory overflow” exception)

when debugging real-size programs. There are solutions to this problem that have been

implemented in several algorithmic debuggers. One solution implemented for declarative

languages is to produce the debugging tree on demand [Nilsson 1998; MacLarty 2005]. A

second solution is to store the debugging tree in secondary memory [Davie and Chitil 2006b].

It is desirable to combine both approaches, thus keeping the speed gained when storing

the tree in main memory while keeping the scalability provided by secondary memory. This

is achieved by the approach in [Insa and Silva 2011c], which keeps the whole debugging tree

in secondary memory and caches a part of it in main memory. In this solution the debugger

only stores a cluster of nodes in main memory. This cluster is explored until a new cluster

is needed (i.e., required by the navigation strategy used).

Another interesting approach has been integrated into the debugger B.i.O. [Braßel and

Siegel 2008]. B.i.O. avoids the space problem by not storing the debugging tree. This is

done by reexecuting the program again and again to generate every single question during

the debugging session. They also implement a mechanism to speed up the generation of

questions. Because B.i.O. debugs Curry, which is a lazy language, the first time they execute

the program, information on how much the subcomputations have been evaluated is recorded

in a file. In the next executions, this file is used to execute the program again, but this time

eagerly, to obtain the questions as they are required.

The solution of using a cache memory system has been also used for the graphical memory

(Issue-2 ). The idea is to restrict the number of levels in the debugging tree shown in

the graphical interface. For this, the technique proposed in [Insa and Silva 2011c] uses a

presentation cache that can be parameterized to restrict the memory used in the GUI for

the debugging tree.

In order to avoid the problem of waiting until the debugging tree has been completely

generated before starting the debugging session (Issue-1 ), some debuggers implement the

notion of virtual debugging tree (VDT) [Insa and Silva 2011c]. Roughly, a VDT is an in-

complete debugging tree (i.e., only some parts of the debugging tree have been executed,

and thus some nodes are still empty). The idea is to allow the user to debug the program

without having to wait until the debugging tree is complete. For this, the debugger uses

two parallel threads. The first focuses on generating the debugging tree while the second

on traversing it to find buggy nodes in the already generated part.

6.2. Trusting modules, routines, and arguments [deals with Issue-1, Issue-2, and Issue-3 ]
When programming, it is quite usual to reuse code (e.g., external routines). Hence, when

we are debugging a program, this reused code should normally be trusted. The users should

be able to trust external code, but also parts of their own code. Ideally, the debugger should

allow them to trust modules, routines, and arguments. And trusting should be able to be

done:

Statically. At compiling time, using anotations or flags. This allows the debugger to

avoid the generation of nodes associated with trusted code, thus saving time (Issue-1 )

and space (Issue-2 ).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:19

Dynamically. During debugging time, when the oracle uses the answer “Trusted”. Then

all the nodes corresponding to the same predicate/atom/function/procedure/method

are automatically marked as valid (Issue-3 ).

6.3. Multiple Navigation Strategies [deals with issue 3 ]
The time required to find the bug is possibly the most important metric that can be used to

measure the performance of any kind of debugger. In the case of an algorithmic debugger,

this time strongly depends on the time spent by the oracle to check the validity of the nodes,

which is related to the total number of questions, see Equation (1). Since the first papers

on algorithmic debugging, different navigation strategies have been proposed to reduce

the number and complexity of the questions. The most important strategies proposed are

(chronologically):

— Single Stepping [Shapiro 1982a]

— Divide & Query [Shapiro 1982a]

— Top-Down Search [Lloyd 1987a]

— Top-Down Zooming [Maeji and Kanamori 1987]

— Hirunkitti’s Divide & Query [Hirunkitti and Hogger 1993]

— Heaviest First [Binks 1995]

— Biased Weighting Divide & Query [MacLarty 2005]

— Subterm Dependency Tracking [MacLarty 2005]

— Hat Delta [Davie and Chitil 2006b]

— Less YES First [Silva 2006]

— Divide by YES & Query [Silva 2006]

— Dynamic Weighting Search [Silva 2006]

— Optimal Divide & Query [Insa and Silva 2011a]

— Speculative Divide & Query [Insa and Silva 2011b]

— Coverage-Based Search [Hermanns and Kuchen 2013]

Other strategies exist, but they are mostly variants of those in the list above. A deep

explanation and analysis of the strategies with a theoretical and empirical comparative of

them can be found in [Silva 2007] and [Silva 2011].

In general, all the strategies focus on three objectives:

(1) Reducing the number of questions (i.e., reducing NQ in Equation (1)). This is done by

pruning the debugging tree (e.g., the strategy divide-and-query [Shapiro 1982a] tries to

reduce the size of the tree by nearly a half after each answer).

(2) Reducing the time spent to answer the questions (i.e., reducing DQi in Equation (1)).

This is done by avoiding difficult (i.e., complex or very verbose) questions or by consec-

utively asking questions that refer to related parts of the computation (i.e., consecutive

questions are related to the same fragments of code). For instance, Top-Down Zoom-

ing [Maeji and Kanamori 1987] first considers nodes associated to the same recursive

(sub)computation.

(3) Giving the user control over the search for the bug. For instance, the Subterm De-

pendency Tracking strategy [MacLarty 2005] gives the user the possibility of marking

arguments, results, or even subexpressions as suspicious. This information redirects the

debugger to the nodes useful for tracking the suspicious terms.

Unfortunately, many old debuggers only implement one strategy, thus the programmer must

follow a predefined and rigid order of questions. Fortunately, there has been a significant

effort to solve this problem, and modern debuggers not only include many strategies but

they also implement hybrid and dynamic strategies (the strategy selected changes as the

debugging tree does).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Rafael Caballero et al.

6.4. Accepted Answers [deals with Issue-3 ]
Algorithmic debugging strategies use the information provided by the oracle to prune the

debugging tree following the schema of Figure 2. When the debugger selects a node N in

the debugging tree, and it asks the question associated with this node, the oracle should be

able to answer with at least the following options:

— “Yes” when the node is valid (i.e., correct). This answer removes the subtree rooted by

N (see Proposition 2.3.2).

— “No” to indicate that the node is invalid (i.e., wrong). Then, the subtree with root N

becomes the new debugging tree (see Proposition 2.3.1).

— “Inadmissible” [Pereira 1986] to indicate that some argument in the predicate/atom or

function/procedure/method call associated with the question is wrong or suspicious (e.g.,

this computation should not take place because it does not satisfy the preconditions

of the predicate/atom/function/procedure/method). For instance, if while debugging a

program that computes the factorial of positive natural numbers we find a node of the

form fib(-45)!-37 we should mark this node as inadmissible. Note that answering “No”

to this question makes the debugger continue the search inside the subtree of the node

associated to this question. Contrarily, if we answer “Inadmissible” to the same question

the search is redirected outside the subtree of this question (it searches for those nodes

that can potentially influence the inadmissible argument) [Silva and Chitil 2006].

— “I don’t know” to delay or skip a question (in general, because it is too difficult, or because

the user knows that it may not lead to the bug). These questions are avoided during the

rest of the debugging session, and only considered if there is no other choice, since they

introduce non-completeness.

— “Trusted” to inform the debugger that this question can be considered correct (e.g., be-

cause it has been already proved correct, or because it belongs to a module that has

not been recoded). The user should be able to trust modules, arguments, and function-

s/predicates/methods/procedures. The nodes corresponding to computations associated

with trusted modules, arguments or function/predicate/method/procedure should also

be considered correct (i.e., trusted) automatically.

6.5. Tracing Subexpressions [deals with Issue-3 and Issue-4 ]
When the user knows what part of a question is wrong, answering “No” or “Inadmissible”

becomes imprecise. In this case, they should be able to indicate that a subexpression is

incorrect (instead of the whole question). This can help the debugger focus on the nodes

related to this subexpression. As an example, Mercury’s debugger [MacLarty 2005] uses

information from the subexpressions to enhance the search for the bug.

The advantage of including this feature is twofold. First, the search space is reduced

(Issue-3 ) because the debugger only explores those parts of the debugging tree that are

actually related to the wrong subexpressions. Second, the debugging process becomes more

understandable, because the user has more control over the search for the bug (Issue-4 ).

6.6. Debugging tree transformations [deals with Issue-3, and Issue-6 ]
Much of the work done in algorithmic debugging has focused on reducing the number of

questions of a debugging session (Issue-3 ). In the early stages of algorithmic debugging,

the efforts were concentrated on traversing the debugging tree efficiently (i.e., producing

better traversing algorithms that visit less nodes before finding a buggy node). The result

is a wide range of ideas and algorithms to traverse the debugging tree, often known as

navigation strategies (see Section 6.3).

In 1990, Nahid Shahmehri and Peter Fritzson [Shahmehri and Fritzson 1990] noted that

transforming the source code before generating the debugging tree can produce a better

structure where it is easier to find a bug. It was not until 2006 that Thomas Davie and Olaf

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:21

Chitil [Davie and Chitil 2006b] proposed another way of reducing the number of questions:

transforming the own debugging tree before the strategies traverse it. Later, David Insa and

Josep Silva proposed a taxonomy [Insa and Silva 2015b] that classifies the transformations

into three groups: (A) source code transformations, (B) execution transformations, and

(C) debugging tree transformations. We describe in the following the main transformations

proposed so far.

— Loop expansion [Shahmehri and Fritzson 1990] (A) relies on the observation that, in algo-

rithmic debugging, deep debugging trees are easier to debug than wide debugging trees.

Therefore, since iterative loops produce wide debugging trees and recursive functions pro-

duce deep debugging trees, recursion is better for algorithmic debugging than iteration.

Hence, to produce debugging trees that can be debugged with less questions (Issue-3 ), a

source code transformation from iterative loops to recursive functions was proposed . The

term loop expansion was proposed in [Insa et al. 2013b], where the authors proposed an

algorithm to control when to expand iterations. For this, they proposed a more general

transformation from iteration to recursion that also considers labels, exceptions, nested

recursion, etc. [Insa and Silva 2015a].

Loop expansion has another advantage: it reduces the granularity level of errors (Issue-

6 ). The reason is that an iterative loop is represented with one node in the debugging

tree. Contrarily, the recursive counterpart represents the loop with several nodes (often

one for each iteration). Therefore, while the iterative version of a debugging tree only

allows us to identify a whole loop as buggy, the recursive version allows us to identify

buggy iterations.

— Tree compression [Davie and Chitil 2006b] (C) removes redundant nodes from the debug-

ging tree preserving completeness. We illustrate this technique by showing a debugging

tree and its compressed version. Let us consider the function definition of append shown

in Fig. 7. If we consider the call “append [1,2,3,4] [5,6]”, then the debugging tree

produced is the one in Fig. 8 (left). In this example append recursively calls the second

rule four times, and finally uses the first rule (the base case). Hence, only two rules can be

buggy and we can compress the debugging tree producing the new tree shown in Fig. 8

(right). In the compressed debugging tree, no matter what navigation strategy we use,

the debugger asks a maximum of two questions.

(1) append [] y = y
(2) append (x:xs) y = x:append xs y

Fig. 7. The append function.

2 2 2 2 1 2 1

Fig. 8. Debugging tree of append [1,2,3,4] [5,6] (left) and its associated compressed tree (right),
from [Davie and Chitil 2006b]

Later, in [Insa et al. 2013b], it was noted that tree compression should not be used in-

discriminately. In some cases, compressing the tree increases the number of questions.

They shown that, in general, the optimal debugging tree from the point of view of tree

compression is one where some parts have been compressed and other parts remain un-

changed (although they could be compressed). And, moreover, this optimal solution also

depends on the navigation strategy used. As a consequence, they proposed an algorithm

that can be used to dynamically transform the debugging tree during the debugging

session, and this transformation is parameterized with the navigation strategy used.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Rafael Caballero et al.

Tree compression should be implemented by all the debuggers, and it should be applied

after the debugging tree is produced, because it removes unnecessary questions before

starting the debugging session at no cost.

— Node simplification [Caballero et al. 2011] (C). In line with the observations in [Nilsson

2001] regarding the functional nature of algorithmic debugging, specific evaluation strate-

gies (e.g., laziness) should be abstracted and not interfere with the debugging tree. For

this reason, node simplification abstracts the execution details in proof trees by relating

transformations applied on the same subexpression, so they can be put together later

without affecting the completeness and correctness results. It deals with (Issue-3 ).

— Tree balancing [Insa et al. 2013a] (C). The objective of this transformation is twofold.

On the one hand, it tries to transform the debugging tree into a binomial tree because in

these trees navigation strategies can find a bug in logarithmic time. On the other hand,

it tries to group nodes so that a single answer can answer several questions at a time.

Both objectives deal with Issue-3.

These objectives are achieved with the use of the so-called projection and collapse nodes.

A projection node is a node that represents the combined execution of several sibling

nodes, and it is inserted as their parent. For instance, in Fig. 9 (left) we see a debugging

tree whose root has four children. On the right, we see a balanced version, which contains

two projection nodes (in grey). When all the children of a projection node refer to the

same rule of the program, then they all can be removed (if the projection node is buggy,

it does not matter what children are buggy, because the buggy code is necessarily their

associated rule). In this case, the projection node is called collapse node.

1

2 3 4 5

1

2 3 4 5

Pr. Pr.

Fig. 9. Debugging tree (left) and its completely balanced version (right). The grey nodes are projection
nodes.

Note a fundamental difference between tree compression and tree balancing: while tree

compression always removes nodes from the tree, tree balancing can increase the number of

nodes with a projection, as in Figure 9. On the other hand, collapsed nodes can be actually

seen as a tree compression.

6.7. Memoization [deals with Issue-3 and Issue-5 ]
When the oracle answers a question, this question should not be asked again. This can be

achieved by simply storing the oracle answers. Memoization can be intra-session or inter-

session. The latter, however, must be done carefully, since different routines with the same

name might produce unexpected results. One possibility is to store the user’s information in

the form of Unit test-cases, a well-known formalism. As noticed in [Tamarit et al. 2016], this

approach not only decreases the number of questions that the user needs to consider during

a debugging session (Issue-3); it also integrates the debugger with the testing framework

(Issue-5). This is because a tester tool can now use the tests obtained from algorithmic

debugging, and the debugger can employ all the available tests to avoid questions during

the debugging sessions.

6.8. Debugging tree exploration [deals with Issue-4 ]
Some algorithmic debuggers limit the debugging session to an interview: the debugger gen-

erates questions and the user only answers these questions. This process is usually too rigid

and sometimes frustrating. For instance, if the user has an intuition about the location of

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:23

the bug in the debugging tree, then the debugger should allow the user to freely explore the

tree. This way, the user has more control over the debugging tree exploration, and he/she

can direct the search for the bug, or just select a part of the tree where the debugger should

focus the questions on.

Furthermore, a GUI can speed up a debugging session, because it allows the user to freely

explore the debugging tree and mark nodes regardless of (or in parallel with) the running

strategy. Graphical features such as collapsing subcomputations of the debugging tree can

be very useful.

6.9. Undo Capabilities [deals with Issue-4 ]
Users can make mistakes when they program, and they can also make mistakes when they

debug. Thus, they should be allowed to rectify. In this respect, one desirable functionality

is allowing users to undo their actions, and particularly, their answers. It is quite surprising

that most algorithmic debuggers do not provide this feature and, thus, users are forced to

restart the whole debugging session when they answer a question incorrectly.

It is worth mentioning that some debuggers (e.g. Freja [Nilsson 2001]) implement a feature

that is complementary to the undo command. It allows the user to answer maybe yes and

maybe no (besides yes and no). These answers produce the same behavior as yes and no,

but the debugger records that no definitive answer has been given. Hence, later on, if the

bug cannot be found with the answers provided, the debugger can return and ask those

questions answered with maybe again.

6.10. Communication with an IDE [deals with Issue-5 and Issue-6 ]
Modern algorithmic debuggers have been integrated into an Integrated Development Envi-

ronment (IDE). Notable cases are JHyde [Hermanns and Kuchen 2013] and HDJ [Insa and

Silva 2014]. The IDE allows them to take advantage of the panels, tools, perspectives, and

other features such as variable watching, code coloring, etc. Moreover, interfacing the IDE

allows these debuggers to communicate with other debuggers, producing hybrid approaches

that increase usability (Issue-5 ). Hybrid approaches have the advantage that, once the

buggy function has been identified, the debugger can continue the search inside this func-

tion and, thus, the granularity of errors is potentially reduced to lines or expressions, instead

of functions (Issue-6 ).

6.11. Different levels of errors [deals with Issue-6 ]
The pieces of code pointed out as buggy by algorithmic debuggers can be too big. It is useful

to know that a particular Java method is wrong but the programmer still needs to look for

the concrete bug inside the method. Some debuggers, like [Caballero et al. 2015], give the

programmer the possibility of going deeper, assuming that inner components of the piece

of code such as loops or branch statements have their own intended behavior.

6.12. Program Slicing [deals with Issue-6 ]
Another way of increasing the granularity level of the error is by using program slicing [Tip

1995]. This method allows the debugger to extract the exact portion of code that actually

participated in the buggy execution (thus, discarding the code that cannot be the cause of

the bug) [Silva and Chitil 2006].

6.13. Conclusions
Summarizing, we present in Table 6.13 the relation between the issues discussed in Section 5

and the features presented in this section. The mark X indicates that the feature solves the

problem, while 7 indicates that the feature worsens it.

Clearly, reducing the number and difficulty of questions (Issue-3 ) has received more

attention, especially in the early implementations and techniques developed for algorithmic

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Rafael Caballero et al.

Table I. Relation between issues and solutions

`````````Feature
Issue 1 2 3 4 5 6 7 8 9

Navigation strategy X
Answers X

Trac. subexp. X X
DT transf. X X

Memoization X X
DT exploration X

Undo X
Trusting X X X

Scalability X X
Levels of errors 7 X
Program slicing X

IDE X X

debugging. In contrast, unfortunately, completeness issues still remain unsolved. This global

view of the state of the art reveals that there is much room for research, and it provides

directions and trends for that research. Finally, it is interesting to note that solving some

problems (improving the granularity when locating bugs) worsens others (the complexity

and number of questions), so we must consider the choices of our implementations carefully

and probably allow the users to choose those that they want.

7. CURRENT STATE-OF-THE-ART ALGORITHMIC DEBUGGERS
In this section we compare all mature algorithmic debuggers. This comparison, which

includes both chronological information and their functional features, provides a roadmap

of the evolution of algorithmic debugging. Hence, it allows us to study how and when

algorithmic debugging has been expanded to other paradigms and languages, and also

which of the techniques presented in the previous section have actually been implemented,

and if so, when were they integrated into a real debugger. In the first part of our study we

selected a collection of algorithmic debuggers. After checking the latest implementations

and discussing with the implementors, we found 14 algorithmic debuggers. Our goal is

not to compare techniques for algorithmic debugging, but to compare mature and usable

implementations. Hence, in our study, we have evaluated the last implementation of the

debuggers, not their last thesis/article/report description. The debugging tools included in

this study are the following (sorted by paradigm):

Logic paradigm

— NUDE (NU-Prolog Debugging Environment) [Naish et al. 1989], first released in 1987,

implements a set of debugging tools for NU-Prolog programs. It introduced an integration

with static analysis, testing, and editing. Moreover, unreleased experimental versions had

other features such as assertions and a flexible oracle.

Functional paradigm

— Freja [Chitil et al. 2001], first released in 1997 (although some prototypes were available

from 1992), is a debugger for a subset of Haskell. Freja introduced piecemeal trace gen-

eration, which allowed for saving memory (which was quite slow at the time), a transfor-

mation for abstracting lazy evaluation, and support for list comprehensions, higher-order

functions, and closures. It also introduced the answers Maybe Yes and Maybe No.

— Hat (the Haskell tracer) [Chitil et al. 2001], first released in 2000, consists of a number

of tools that include Hat-Detect, an algorithmic debugger for Haskell. The algorithmic

debugger Hat-Delta evolved from Hat-Detect, and it includes features such as tree com-

pression and improved strategies to explore the ET.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:25

— Buddha [Pope 2006], first released in 2003, was designed to debug Haskell 98 programs.

It introduced support for higher-order functions in extensional style and debugging of

I/O computations.

— EDD (Erlang Declarative Debugger) [Caballero et al. 2015], first released in 2013, is an

algorithmic debugger that supports both sequential and concurrent Erlang programs. It

introduced zoom-debugging, a way to inspect the code of a function previously detected

as buggy, and a technique for combining unit tests and algorithmic debugging.

Functional-Logic paradigm

— Münster Curry Debugger, first released in 2002, is an algorithmic debugger integrated

into the Münster Curry Compiler [Lux 2006].

— DDT [Caballero 2005], first released in 2002, belongs to the standard distribution of the

multiparadigm language TOY [López-Fraguas and Sánchez-Hernández 1999].

— Mercury’s debugger, first released in 2005, integrates both a procedural debugger and

an algorithmic debugger [MacLarty 2005] for Mercury [Henderson et al. 2014].

— B.i.O. (Believe in Oracles) [Braßel and Siegel 2008], first released in 2008, is a debugger

integrated into the Curry compiler KICS, and can work as an algorithmic debugger. This

algorithmic debugger has the peculiarity that it does not need to store the debugging

tree, but information on the execution, which allows B.i.O. to generate the questions

on-the-fly and save memory, as explained in Section 6.1.

Declarative paradigm

— DES [Caballero et al. 2012], first released in 2007, is an algorithmic debugger for debug-

ging SQL [Beaulieu 2005] views. It introduced slicing oriented to databases to minimize

the number of tuples displayed to the user.

— MDD (Maude Declarative Debugger) [Riesco et al. 2012], first released in 2008, is an al-

gorithmic debugger for Maude [Clavel et al. 2007] with support for functional and system

modules. It introduced balancing techniques (introducing new nodes) for enhancing the

divide-and-query strategy and debugging and trusting of sorts and normal forms (used

when debugging missing answers).

Imperative paradigm

— DDJ [Insa and Silva 2010], first released in 2009, is a declarative debugger that supports

all Java features. Its implementation, including an external database for storing the

debugging tree, and its support for depicting objects makes DDJ the first complete

algorithmic debugger for an imperative language.

— JHyde [Hermanns and Kuchen 2013], first released in 2011, is a hybrid debugger for

Java that integrates algorithmic debugging and omniscient debugging. It was the first

hybrid debugger including algorithmic debugging.

— HDJ (Hybrid Debugger for Java) [Insa and Silva 2014], first released in 2013, is an

Eclipse plugin that combines trace debugging, algorithmic debugging, and omniscient

debugging for debugging Java programs. Since HDJ integrates most of the features from

all other algorithmic debuggers, it is integrated into a real IDE, and combines other

debugging techniques, it makes algorithmic debugging an alternative for traditional de-

bugging techniques for the first time.

Tables II and III summarize the features provided by the studied algorithmic debuggers.

Each column corresponds to one algorithmic debugger. The rows have the following meaning:

— Target Language: It is the language targeted by the debugger.

— Imp. Language: It is the language used in the debugger implementation.

— Strategies: It is a list of the navigation strategies implemented by the debugger: Top

Down (TD), Divide & Query (DQ), Hat-Delta’s Heuristics (HD), Biased Weighting Di-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Rafael Caballero et al.

vide & Query (BW), Single Stepping (SS), Coverage-based navigation (CB), and Subterm

Dependency Tracking (SD).

— DataBase/Memoization: It indicates whether a database is used to memoize answers

for future debugging sessions (inter-session memoization). It also indicates whether the

answers are remembered during the same session (intra-session memoization).

— Debugging Tree: It indicates whether the debugging tree is saved as a file, or on the

contrary it is stored in main memory (during the debugging session). In addition, it

indicates whether the debugger produces the DT on demand.

— Accepted Answers: Yes (YES), No (NO), Don’t Know (DK), Inadmissible (IN), Maybe

Yes (MY), Maybe Not (MN), and Trusted (TR).

— Tracing Subexpressions: It indicates whether the user can mark a subexpression as

incorrect.

— Granularity: Is it possible to find different levels of errors (e.g., inside buggy functions)?

— DT Exploration: It indicates whether the DT can be explored freely.

— Transformations: It indicates whether the debugger implements transformation tech-

niques to simplify the debugging tree. These techniques include Tree Compression (TC),

Tree Balancing (TB), Loop Expansion (LE), for lazy evaluation (LZY), and for list com-

prehensions (LST).

— Early start: Is it possible to start the debugging process while the tree is being com-

puted?

— Undo: Is it possible to undo an answer?

— Trusting: Is it possible to trust modules (Mod), functions (Fun), and/or arguments

(Arg)?

— External oracle: Is it possible to use an external oracle to answer the questions?

— GUI: Does the debugger have a graphical user interface?

— Version: The version of the debugger that has been evaluated.

Summarizing, most of the debuggers have been developed for declarative languages that

are not widely used beyond academia. Only in the last years debuggers for more used

languages (Java and Erlang) have been developed. Some of these debuggers (JHyde and

HDJ) have an Eclipse plugin, which greatly eases its usage. Regarding memory, most of

the debuggers store the debugging tree in main memory. Storing the tree in an external

database (which is only done by three debuggers) improves the scalability, since it allows

for storing huge trees. Hence, only these three debuggers can deal with real (industrial)

situations without running out of memory. However, if the traversal starts after the complete

tree has been computed it might require much time. For this reason, a complementary

feature that saves time and space is the capability of starting the debugging process with

an incomplete debugging tree; despite its importance, only four debuggers implement this

feature. Similarly, only three debuggers can use an external oracle, and only EDD allows for

test cases as oracles (the two others just allow the possibility of replacing the user answer by

the result obtained using a previous, trusted version of the same program). Since testing is

an established practice in software engineering, it would be worth to expand this practice to

other tools. On the other hand, we also note that (probably due to their temporal evolution)

the tree transformations are missing in most of the debuggers. As a general requirement, all

debuggers should implement the tree transformations, because they produce simpler and

smaller trees at almost no cost. We also find that some features have improved from the

early days of algorithm debugging: in general, debuggers provide a graphical user interface

(eight tools), have different levels of granularity (eight tools), and allow for freely navigating

the tree (seven tools); we expect that future tools will include these features. On the bright

side, most of the tools have some kind of trusting mechanism (twelve tools), implement at

least two navigation strategies (thirteen tools), have some kind of memoization (thirteen

tools), and have implemented an undo command (ten tools).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:27

T
a
b
l
e

I
I
.
C
o
m

p
a
r
i
s
o
n

o
f
a
l
g
o
r
i
t
h
m

i
c

d
e
b
u
g
g
e
r
s

I

h
h
h

h
h
h

h
h
h

h
h

Fe
at

ur
e

D
eb

ug
ge

r
N

U
D

E
Fr

ej
a

H
at

-D
el

ta
B

ud
dh

a
E
D

D
M

ün
st

er
C

ur
ry

D
eb

ug
ge

r

D
D

T

T
ar

ge
t

la
ng

ua
ge

N
U

-P
ro

lo
g

H
as

ke
ll

su
bs

et
H

as
ke

ll
98

H
as

ke
ll

E
rl

an
g

C
ur

ry
T
oy

Im
p.

la
ng

ua
ge

N
U

-P
ro

lo
g

H
as

ke
ll

H
as

ke
ll

H
as

ke
ll

E
rl

an
g

H
as

ke
ll

(f
ro

nt
-e

nd
)

C
ur

ry
(b

ac
k-

en
d)

P
ro

lo
g

St
ra

te
gi

es
T

D
T

D
T

D
H

D
T

D
T

D
D

Q
T

D
D

Q
T

D
D

Q
D

at
aB

as
e

/
M

em
oi

za
ti

on
Y

E
S/

Y
E

S
N

O
/N

O
N

O
/Y

E
S

N
O

/Y
E

S
Y

E
S/

Y
E

S
N

O
/Y

E
S

Y
E

S/
Y

E
S

D
eb

ug
gi

ng
tr

ee
M

ai
n

m
em

or
y

on
de

m
an

d
M

ai
n

m
em

or
y

F
ile

M
ai

n
m

em
or

y
on

de
m

an
d

M
ai

n
m

em
or

y
M

ai
n

m
em

or
y

M
ai

n
m

em
or

y

A
cc

ep
te

d
an

sw
er

s
Y

E
S

N
O

T
R

Y
E

S
N

O
M

Y
M

N
Y

E
S

N
O

D
K

Y
E

S
N

O
D

K
IN

T
R

Y
E

S
N

O
D

K
IN

T
R

Y
E

S
N

O
Y

E
S

N
O

T
R

D
K

T
ra

ci
ng

su
b
ex

pr
es

si
on

s?
N

O
N

O
N

O
N

O
Y

E
S

N
O

N
O

G
ra

nu
la

ri
ty

N
O

N
O

Y
E

S
N

O
Y

E
S

N
O

Y
E

S
D

T
ex

pl
or

at
io

n
N

O
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
T
ra

ns
fo

rm
at

io
ns

-
L
ZY

L
ST

T
C

-
-

-
-

E
ar

ly
st

ar
t

N
O

N
O

N
O

N
O

N
O

N
O

N
O

U
nd

o
Y

E
S

Y
E

S
Y

E
S

N
O

Y
E

S
Y

E
S

Y
E

S
T
ru

st
in

g
Fu

n
M

od
Fu

n
M

od
M

od
Fu

n
Fu

n
M

od
Fu

n
Fu

n
E
xt

er
na

l
or

ac
le

N
O

N
O

N
O

N
O

Y
E

S
N

O
Y

E
S

G
U

I
N

O
N

O
Y

E
S

N
O

Y
E

S
N

O
Y

E
S

V
er

si
on

N
U

-P
ro

lo
g

1.
6.

9
(1

99
5)

M
ar

ch
20

00
H

at
2.

9
(J

ul
y

20
16

)
B

ud
dh

a
1.

2.
1

(0
1.

12
.2

00
6)

N
ov

em
be

r
20

15
M

C
C

0.
9.

11
(J

un
e

20
07

)
D

D
T

2.
0

(2
00

4)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 Rafael Caballero et al.

T
a
b
l
e

I
I
I
.
C
o
m

p
a
r
i
s
o
n

o
f
a
l
g
o
r
i
t
h
m

i
c

d
e
b
u
g
g
e
r
s

I
I

h
h

h
h
h

h
h

h
h
h
h

Feature
D

ebugger
M

ercury
D

ebugger
B

.i.O
.

D
E
S

M
D

D
D

D
J

JH
yde

H
D

J

T
arget

language
M

ercury
C

urry
D

atalog
SQ

L
M

aude
Java

Java
Java

Im
p.

language
M

ercury
/

C
C

C
urry

H
askell

P
ro-

log

P
rolog

M
aude

Java
Java

Java
Java

Strategies
T

D
D

Q
B

W
SD

T
D

D
Q

SS
T

D
D

Q
T

D
D

Q
SS

T
D

D
Q

SS
H

D
T

D
D

Q
C

B
T

D
D

Q
SS

H
D

D
ataB

ase
/

M
em

oization
Y

E
S/Y

E
S

N
O

/N
O

N
O

/Y
E

S
N

O
/Y

E
S

N
O

/Y
E

S
N

O
/N

O
N

O
/Y

E
S

D
ebugging

tree
M

ain
m

em
ory

on
dem

and
O

nly
oracle

stored
E

xternal
database

M
ain

m
em

ory
on

dem
and

M
ain

m
em

ory
on

dem
and

E
xternal

D
atabase

M
ain

m
em

ory
M

ain
m

em
ory

on
dem

and
E

xternal
D

atabase
A

ccepted
answ

ers
Y

E
S

N
O

D
K

IN
T

R
Y

E
S

N
O

T
R

D
K

Y
E

S
N

O
T

R
D

K
Y

E
S

N
O

D
K

IN
T

R
Y

E
S

N
O

T
R

D
K

Y
E

S
N

O
T

R
Y

E
S

N
O

T
R

D
K

T
racing

sub
expressions?

Y
E

S
N

O
N

O
N

O
N

O
N

O
N

O

G
ranularity

N
O

Y
E

S
Y

E
S

N
O

Y
E

S
Y

E
S

Y
E

S
D

T
exploration

N
O

N
O

N
O

Y
E

S
Y

E
S

Y
E

S
Y

E
S

T
ransform

ations
-

-
-

T
B

T
C

T
B

L
E

-
T

C
T

B
E
arly

start
Y

E
S

Y
E

S
N

O
Y

E
S

Y
E

S
N

O
Y

E
S

U
ndo

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
N

O
Y

E
S

T
rusting

M
od

Fun
Fun

M
od

M
od

Fun
M

od
M

od
Fun

M
od

E
xternal

oracle
N

O
N

O
N

O
Y

E
S

N
O

N
O

N
O

G
U

I
N

O
N

O
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

V
ersion

M
ercury

14.01.1
(2014)

K
ics

0.81893
(M

ay
2008)

D
E

S
4.1

(A
pril2016)

M
D

D
2.1

(February
2013)

D
D

J
2.6

(A
pril2012)

JH
yde

1.0
(2011)

H
D

J
1.1

(O
c-

tober
2014)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:29

8. CONCLUSIONS
At the moment of writing these lines, 35 years have passed since E.Y. Shapiro introduced

algorithmic debugging in the context of logic programming. In these years, Shapiro’s ideas

have evolved into a general and fruitful debugging technique. As we have seen in Sections 1-3,

functional, multi-paradigm, imperative, object oriented, and even database query languages

have developed their own versions of the general schema. All of them present their specific

particularities, but at the same time they share the same common debugging principles.

Moreover, we shown in Section 4 that similar ideas have been applied in other contexts,

including tutoring systems, software evolution control, design validation of VLSI circuits,

attribute grammars, and test case generation. Thus, it can be claimed that algorithmic

debugging has been, and still it is, a very successful programming technique.

However, a critical analysis must also point out that, in spite of the many developed

tools, algorithmic debugging has not reached the mainstream. Today, like 35 years ago,

programmers spend most of their working time struggling with trace-based debuggers, while

almost none of them has even heard about algorithmic debugging. For this reason, we

have devoted Sections 5-7 to discuss the main issues that affect algorithmic debugging and

possible solutions. We have also reviewed the systems developed during these years and

their main characteristics.

Regarding the problems presented in Section 5, the scalability problems suffered by the

first algorithmic debuggers have been solved. Now, there exist sophisticated mechanisms to

store the debugging tree in disk and load clusters of it on demand. The user experience has

also been improved, although there are still some open issues. Even though the new naviga-

tion strategies greatly reduce the number and difficulty of the questions asked to the oracle,

most of the available debuggers correspond to prototypes developed for academic research,

with several limitations in the language features supported, lack of graphical support, and a

very restricted set of user options. We think that the future of this technique depends on the

development of mature and scalable algorithmic debuggers that focus on the completeness

with respect to the supported language and on the user experience, including features such

as the free manual navigation of the debugging tree, possibility of trusting functions and/or

modules, and loading and saving debugging sessions. Finally, the completeness problems

remain open; we have presented some ways to solve them if algorithmic debugging is com-

bined with other debugging techniques, so we hope future algorithmic debuggers will solve

these problems.

Algorithmic debugging has been historically applied to declarative languages for a number

of reasons: their philosophy follows that of algorithmic debugging (i.e., abstracting evalua-

tion details), they are pure and avoid low level features (such as pointers), and they are good

for prototyping and testing new formalisms. However, the problems that posed the absence

of these features in imperative languages have been progressively solved and nowadays the

most mature algorithmic debuggers are those for Java. In fact, once these problems could be

solved, commercial languages such as Java or C became the most appropriate languages for

implementation, since they have several libraries that ease tasks such as program analysis

and development of graphical interfaces. Moreover, they have interactive development envi-

ronments that include other debugging techniques (e.g. trace debugging), hence providing

a good basis for integration.

Debugging is a formidable task, and future debugging systems will look for the cooper-

ation of different tools. Moreover, new technologies such as Big Data [Chen et al. 2014] or

streaming [Silva et al. 2013] pose new challenges that are not solved by traditional debuggers

and require more powerful debugging tools. For example, in the case of algorithmic debug-

gers for Big Data, an important difficulty is that queries can involve very large datasets. In

these cases, the debugger should allow the user to point out a particular erroneous row or

document in the query output. This information could be used by the debugger to focus on

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 Rafael Caballero et al.

the (hopefully small) subset responsible for the particular error using lineage techniques,

in the line of the SQL debugger of [Caballero et al. 2015]. For streaming technologies, an

algorithmic debugger might first distinguish whether the error is due to the batch compu-

tations or to the sequential treatment, and then focus of the functions responsible for the

error. Thus, we suggest that, instead of designing algorithmic debuggers as alternatives to

traditional debuggers, future tools should aim for the integration with already existing trace

debuggers, and in general with coordinated debugging and testing frameworks. In fact, this

integration would solve some of the open issues above. A combination of breakpoints and

algorithmic debugging would solve (at least partially) the issue of termination: the debug-

ging tree would be built for the functions called up to the breakpoint and, if no buggy node

is found, the process would continue until the next breakpoint. Regarding concurrency, this

is a difficult issue that can benefit in many different ways: assertions might stop the exe-

cution as soon as the program starts to fail, while static analysis techniques might reduce

the number of questions posed to the user; finally, once the problem has been reduced, a

graphical interface would greatly help to understand how different processes/threads inter-

act, hence allowing the user to direct the debugging process in the most appropriate way.

Lastly, we explained that algorithmic debugging did not deal with I/O problems due to

the impossibility in general of storing the complete state when dealing with external files,

such as databases; perhaps combining algorithmic debugging with slicing [Tip 1995], which

narrows down the parts of the program/memory related to some variables of interest (in

our case those producing the wrong result) might greatly reduce the size of the data, hence

allowing us to ask about these external files.

In this way, we think that algorithmic debuggers will reach a broader public, and that

they will play an important role in future debugging systems.

9. ACKNOWLEDGEMENTS
The authors greatly thank Bernd Braßel, Olaf Chitil, Sebastian Fisher, Herbert Küchen,

David Insa, Wolfgang Lux, Ian MacCarty, Lee Naish, Henrik Nilsson, Bernie Pope, and Sal-

vador Tamarit for providing detailed and useful information about their debuggers. We also

thank David Insa for their careful reading of our manuscript and his insightful comments,

to Ashley J. Naveso Cranford for a detailed English revision, and to the anonymous referees

for their constructive criticism and suggestions.

This work has been partially supported by the EU (FEDER) and the Spanish Ministerio

de Economía y Competitividad under grant TIN2013-44742-C4-1-R, TIN2016-76843-C4-

1-R, StrongSoft (TIN2012-39391-C04-04) and TRACES (TIN2015-67522-C3-3-R), by the

Generalitat Valenciana under grant PROMETEO-II/2015/013 (SmartLogic), and by the

Comunidad de Madrid project N-Greens Software-CM (S2013/ICE-2731).

REFERENCES
D. Abramson, I. Foster, J. Michalakes, and R. Sosič. 1996. Relative Debugging: A New Method-

ology for Debugging Scientific Applications. Commun. ACM 39, 11 (Nov. 1996), 69–77.
DOI:http://dx.doi.org/10.1145/240455.240475

K. R. Apt, H. A. Blair, and A. Walker. 1988. Towards a Theory of Declarative Knowledge. In Foundations
of Deductive Databases and Logic Programming, J. Minker (Ed.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 89–148.

T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and D. Srivastava. 1993. Explaining Program Execu-
tion in Deductive Systems. In Deductive and Object-Oriented Databases (Lecture Notes in Computer
Science), Vol. 760. Springer-Verlag, Berlin Heidelberg, 101–119.

E. Av-Ron. 1984. Top-Down Diagnosis of Prolog Programs. Ph.D. Dissertation. Weizmann Institute.
A. Beaulieu. 2005. Learning SQL. O’Reilly, Farnham, UK.
D. Binks. 1995. Declarative Debugging in Gödel. Ph.D. Dissertation. University of Bristol.
B. Braßel and H. Siegel. 2008. Debugging Lazy Functional Programs by Asking the Oracle. Springer-Verlag,

Berlin Heidelberg, 183–200. DOI:http://dx.doi.org/10.1007/978-3-540-85373-2_11

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:31

R. Caballero. 2005. A Declarative Debugger of Incorrect Answers for Constraint Functional-Logic Pro-
grams. In Proc. of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic Programming
(WCFLP’05). ACM Press, New York, NY, USA, 8–13. DOI:http://dx.doi.org/10.1145/1085099.1085102

R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez. 2008. A Theoretical Framework for the Declarative
Debugging of Datalog Programs. In International Workshop on Semantics in Data and Knowledge
Bases SDKB 2008 (Lecture Notes in Computer Science.), Vol. 4925. Springer-Verlag, Berlin Heidelberg,
143–159.

R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez. 2012. Declarative Debugging of Wrong and
Missing Answers for SQL Views. In Proceedings of the 11th International Symposium on
Functional and Logic Programming, FLOPS 2012 (Lecture Notes in Computer Science), Tom
Schrijvers and Peter Thiemann (Eds.), Vol. 7294. Springer-Verlag, Berlin Heidelberg, 73–87.
DOI:http://dx.doi.org/10.1007/978-3-642-29822-6_9

R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez. 2015. Debugging of Wrong and Missing Answers for
Datalog Programs with Constraint Handling Rules. In Proceedings of the 17th International Symposium
on Principles and Practice of Declarative Programming (PPDP ’15). ACM, New York, NY, USA, 55–
66. DOI:http://dx.doi.org/10.1145/2790449.2790522

R. Caballero, C. Hermmans, and H. Kuchen. 2006. Algorithmic Debugging of Java Programs. In Proc. of
the 2006 Workshop on Functional Logic Programming, WFLP 2006 (Electronic Notes in Theoretical
Computer Science). Elsevier, North-Holland, 63–76.

R. Caballero, E. Martin-Martin, A. Riesco, and S. Tamarit. 2015. A Zoom-declarative Debugger
for Sequential Erlang programs. Science of Computer Programming 110 (2015), 104 – 118.
DOI:http://dx.doi.org/10.1016/j.scico.2015.06.011

R. Caballero, A. Riesco, A. Verdejo, and N. Martí-Oliet. 2011. Simplifying Questions in Maude Declara-
tive Debugger by Transforming Proof Trees. In 21st International Symposium Logic-Based Program
Synthesis and Transformation (LOPSTR 2011) (Lecture Notes in Computer Science), Germán Vidal
(Ed.), Vol. 7225. Springer-Verlag, Berlin Heidelberg, 73–89.

R. Caballero and M. Rodríguez-Artalejo. 2002. A Declarative Debugging System for Lazy Functional Logic
Programs. Electronic Notes in Theoretical Computer Science 64 (2002), 113–175.

S. Ceri, G. Gottlob, and L. Tanca. 1989. What You Always Wanted to Know About Datalog (And Never
Dared to Ask). IEEE Trans. on Knowl. and Data Eng. 1, 1 (March 1989), 146–166.

M. Chen, S. Mao, and Y. Liu. 2014. Big Data: A Survey. Mob. Netw. Appl. 19, 2 (April 2014), 171–209.
DOI:http://dx.doi.org/10.1007/s11036-013-0489-0

O. Chitil and T. Davie. 2008. Comprehending Finite Maps for Algorithmic Debugging of Higher-order
Functional Programs. In Proceedings of the 10th International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP ’08). ACM, New York, NY, USA, 205–216.
DOI:http://dx.doi.org/10.1145/1389449.1389475

O. Chitil, M. Faddegon, and C. Runciman. 2016. A Lightweight Hat: Simple Type-Preserving Instrumenta-
tion for Self-Tracing Lazy Functional Programs. In Proceedings of the 28th Symposium on the Imple-
mentation and Application of Functional Programming Languages (IFL 2016). ACM, New York, NY,
USA, Article 10, 14 pages. DOI:http://dx.doi.org/10.1145/3064899.3064904

O. Chitil, C. Runciman, and M. Wallace. 2001. Freja, Hat and Hood - A Comparative Evaluation of Three
Systems for Tracing and Debugging Lazy Functional Programs. Springer Berlin Heidelberg, Berlin,
Heidelberg, 176–193.

O. Chitil, C. Runciman, and Malcolm Wallace. 2003. Transforming Haskell for Tracing. Springer-Verlag,
Berlin Heidelberg, 165–181. DOI:http://dx.doi.org/10.1007/3-540-44854-3_11

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. 2007. All About Maude:
A High-Performance Logical Framework. Lecture Notes in Computer Science, Vol. 4350. Springer, Berlin
Heidelberg.

T. Davie and O. Chitil. 2006a. Display of Functional Values for Debugging. In Draft Proceedings of the 18th
International Symposium on Implementation and Application of Functional Languages, IFL 2006.
Eotvos Lorand University, Budapest, Hungary, 326–337. http://kar.kent.ac.uk/14413/

T. Davie and O. Chitil. 2006b. Hat-delta: One Right Does Make a Wrong. In 7th Symposium on Trends in
Functional Programming, TFP 06 (Trends in Functional Programming). Intellect, Bristol, UK, 1–9.

M. Ngoc Dinh, D. Abramson, and C. Jin. 2014. Scalable Relative Debugging. IEEE Trans. Parallel Distrib.
Syst. 25, 3 (2014), 740–749. DOI:http://dx.doi.org/10.1109/TPDS.2013.86

M. Faddegon and O. Chitil. 2015. Algorithmic Debugging of Real-world Haskell Programs: Deriving De-
pendencies from the Cost Centre Stack. SIGPLAN Not. 50, 6 (June 2015), 33–42.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 Rafael Caballero et al.

M. Faddegon and O. Chitil. 2016. Lightweight Computation Tree Tracing for Lazy Functional Languages.
In 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016. ACM Press, New York, NY, USA, 114–128.

G. Ferrand. 1987. Error Diagnosis in Logic Programming an Adaptation of E.Y. Shapiro’s Method. The
Journal of Logic Programming 4, 3 (1987), 177 – 198.

P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimóthy. 1992. Generalized Algorithmic Debugging and
Testing. LOPLAS 1, 4 (1992), 303–322.

M. P. J. Fromherz. 1993. Towards Declarative Debugging of Concurrent Constraint Programs. In 1st In-
ternational Workshop on Automated and Algorithmic Debugging (AADEBUG ’93). Springer-Verlag,
Berlin Heidelberg, 88–100.

H. Girgis and B. Jayaraman. March 2006. JavaDD: a Declarative Debugger for Java. Technical Report
2006-07. University at Buffalo.

M. Harman and R.M. Hierons. 2001. An Overview of Program Slicing. Software Focus 2, 3 (2001), 85–92.
F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte, S. Taylor, C. Speirs, T. Dowd, R. Becket,

M. Brown, and P. Wang. 2014. The Mercury Language Reference Manual (Version 14.01.1). The
University of Melbourne.

C. Hermanns and H. Kuchen. 2013. Hybrid Debugging of Java Programs. Springer-Verlag, Berlin Heidelberg,
91–107. DOI:http://dx.doi.org/10.1007/978-3-642-36177-7_6

V. Hirunkitti and C. J. Hogger. 1993. A Generalised Query Minimisation for Program Debugging.. In Proc.
of International Workshop of Automated and Algorithmic Debugging (AADEBUG’93) (LNCS), Vol.
749. Springer-Verlag, Berlin Heidelberg, 153–170.

J. Hughes. 2010. Software Testing with QuickCheck. In Proceedings of the 3rd summer school conference on
Central European functional programming school, CEFP 2009, Z. Horváth, R. Plasmeijer, and V. Zsók
(Eds.), Vol. 6299. Springer-Verlag, Berlin Heidelberg, 183–223.

M. H. Huntbach. 1987. Algorithmic PARLOG Debugging. In Proc. 1987 Symp. Logic Programming. IEEE
Comput. Soc. Press, New York, NY, USA, 288–297.

G. Hutton. 2016. Programming in Haskell. Cambridge University Press, Cambridge, UK.
D. Insa and J. Silva. 2010. An Algorithmic Debugger for Java. In Proceedings of the 26th IEEE International

Conference on Software Maintenance, ICSM 2010, Michele Lanza and Andrian Marcus (Eds.). IEEE
Computer Society, New York, NY, USA, 1–6.

D. Insa and J. Silva. 2011a. Optimal Divide and Query. In Progress in Artificial Intelligence, 15th Por-
tuguese Conference on Artificial Intelligence, EPIA 2011, Lisbon, Portugal, October 10-13, 2011. Pro-
ceedings (Lecture Notes in Computer Science), Vol. 7026. Springer-Verlag, Berlin Heidelberg, 224–238.
DOI:http://dx.doi.org/10.1007/978-3-642-24769-9_17

D. Insa and J. Silva. 2011b. An Optimal Strategy for Algorithmic Debugging. In 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, November
6-10, 2011. IEEE, New York, NY, USA, 203–212. DOI:http://dx.doi.org/10.1109/ASE.2011.6100055

D. Insa and J. Silva. 2011c. Scaling Up Algorithmic Debugging with Virtual Execution Trees. Springer-
Verlag, Berlin Heidelberg, 149–163. DOI:http://dx.doi.org/10.1007/978-3-642-20551-4_10

D. Insa and J. Silva. 2014. A New Hybrid Debugging Architecture for Eclipse. In Proceedings of the 23rd
International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2013, Re-
vised Selected Papers (Lecture Notes in Computer Science), Gopal Gupta and Ricardo Peña (Eds.),
Vol. 8901. Springer-Verlag, Berlin Heidelberg, 183–201.

D. Insa and J. Silva. 2015a. Automatic Transformation of Iterative Loops into Recursive Methods. Infor-
mation & Software Technology 58 (2015), 95–109. DOI:http://dx.doi.org/10.1016/j.infsof.2014.10.001

D. Insa and J. Silva. 2015b. A Generalized Model for Algorithmic Debugging. In Logic-Based Program
Synthesis and Transformation: 25th International Symposium, LOPSTR 2015. Revised Selected Papers
(Lectures Notes in Computer Science), Moreno Falaschi (Ed.). Springer-Verlag, Berlin Heidelberg, 261–
276.

D. Insa, J. Silva, and A. Riesco. 2013a. Speeding Up Algorithmic Debugging Using Balanced Execution
Trees. In 7th International Conference on Tests and Proofs, TAP 2013 (Lecture Notes in Computer
Science), Vol. 7942. Springer-Verlag, Berlin Heidelberg, 133–151.

D. Insa, J. Silva, and C. Tomás. 2013b. Enhancing Declarative Debugging with Loop Expansion and Tree
Compression. Lecture Notes in Computer Science, Vol. 7844. Springer-Verlag, Berlin Heidelberg, 71–88.
DOI:http://dx.doi.org/10.1007/978-3-642-38197-3_6

K. Jensen and N. Wirth. 1974. PASCAL User Manual and Report. Springer-Verlag, Berlin Heidelberg.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:33

Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of Muta-
tion Testing. IEEE Transactions on Software Engineering 37, 5 (Sept. 2011), 649–678.
DOI:http://dx.doi.org/10.1109/TSE.2010.62

M. Kamkar, N. Shahmehri, and P. Fritzson. 1990. Bug Localization by Algorithmic Debugging and Program
Slicing. In Proc. of 2nd International Workshop on Programming Language Implementation and Logic
Programming, PLILP 1990 (Lecture Notes in Computer Science), Vol. 456. Springer-Verlag, Berlin
Heidelberg, 60–74.

S. Köhler, B. Ludäscher, and Y. Smaragdakis. 2012. Declarative Datalog Debugging for Mere Mortals.
Springer-Verlag, Berlin Heidelberg, 111–122.

G. Kókai, L. Harmath, and T. Gyimóthy. 1997. Algorithmic Debugging and Testing of Prolog Programs.
(1997).

H. Kouh and W. Yoo. 2003. The Efficient Debugging System for Locating Logical Errors in Java Programs.
In Proceedings of the 2003 International Conference on Computational Science and Its Applications:
PartI (ICCSA’03). Springer-Verlag, Berlin Heidelberg, 684–693.

R. Kowalski. 2014. Logic Programming. In Handbook of the History of Logic, Volume 9 — Computational
Logic, Dov M. Gabbay, Jörg H. Siekmann, and John Woods (Eds.). Elsevier, North Holland, 215–254.
DOI:http://dx.doi.org/10.1016/B978-0-444-51624-4.50005-8

R. Kowalski and D. Kuehner. 1971. Linear Resolution with Selection Function. Artificial Intelligence 2, 3-4
(Dec. 1971), 227–260. DOI:http://dx.doi.org/10.1016/0004-3702(71)90012-9

K. Kuchcinski, W. Drabent, and J. Maluszynski. 1993. Automatic Diagnosis of VLSI Dig-
ital Circuits using Algorithmic Debugging. Springer-Verlag, Berlin Heidelberg, 350–367.
DOI:http://dx.doi.org/10.1007/BFb0019419

A. Lakhotia and L. Sterling. 1991. ProMiX: A Prolog Partial Evaluation System. In The Practice of Prolog,
L. Sterling (Ed.). The MIT Press, Cambridge, MA, Cambridge, MA, Chapter 5, 137–179.

S. Liang. 1999. Java Native Interface: Programmer’s Guide and Reference (1st ed.). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

J. W. Lloyd. 1987a. Declarative Error Diagnosis. New Gen. Comput. 5, 2 (1987), 133–154.
J. W. Lloyd. 1987b. Foundations of Logic Programming. Springer-Verlag, Berlin Heidelberg. Second edition.
F. López-Fraguas and J. Sánchez-Hernández. 1999. TOY: A Multiparadigm Declarative System. In Proc. of

the 10th Int’l Conf. on Rewriting Techniques and Applications (RTA’99) (Lecture Notes in Computer
Science), Vol. 1631. Springer-Verlag, Berlin Heidelberg, 244–247.

W. Lux. 2006. Münster Curry User’s guide (Release 0.9.10 of May 10, 2006). Available at:
http://danae.uni-muenster.de/⇠lux/curry/user.pdf. (2006).

W. Lux. 2008. Declarative Debugging Meets the World. Electronic Notes in Theoretical Computer Science
216 (2008), 65–77.

I. MacLarty. 2005. Practical Declarative Debugging of Mercury Programs. Ph.D. Dissertation. Department
of Computer Science and Software Engineering, The University of Melbourne.

M. Maeji and T. Kanamori. 1987. Top-Down Zooming Diagnosis of Logic Programs. Technical Report
TR-290. ICOT, Japan.

J. Naganuma, T. Ogura, and T. Hoshino. 1994. High-Level Design Validation Using Algorithmic Debugging.
In Proceedings of the European Conference on Design Automation, EDAC, and the European Test
Conference, ETC — The European Event in ASIC Design, EUROASIC 94, Robert Werner (Ed.). IEEE
Computer Society, New York, NY, USA, 474–480. DOI:http://dx.doi.org/10.1109/EDTC.1994.326833

L. Naish. 1992a. Declarative Debugging of Lazy Functional Programs. In Proc. of Workshop on Logic
Programming Environments. Case Western Reserver University, Cleveland, 29–34. citeseer.ist.psu.edu/
naish92declarative.html

L. Naish. 1992b. Declarative Diagnosis of Missing Answers. New Gen. Comput. 10, 3 (June 1992), 255–285.
L. Naish. 1997a. A Declarative Debugging Scheme. Journal of Functional and Logic Programming 1997, 3

(1997), 1–27. citeseer.ist.psu.edu/article/naish97declarative.html
L. Naish. 1997b. A Three-Valued Declarative Debugging Scheme. In Proc. of Workshop on Logic Pro-

gramming Environments (LPE’97). The MIT Press, Cambridge, MA, 1–12. citeseer.ist.psu.edu/
naish97threevalued.html

L. Naish, P. W. Dart, and J. Zobel. June 1989. The NU-Prolog Debugging Environment. Technical Report
88/31. Department of Computer Science, University of Melbourne, Lisboa, Portugal. 521–536 pages.

H. Nilsson. 1998. Declarative Debugging for Lazy Functional Languages. Ph.D. Dissertation. Linköping,
Sweden.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 Rafael Caballero et al.

H. Nilsson. 2001. How to Look Busy While Being as Lazy as Ever: the Implemen-
tation of a Lazy Functional Debugger. J. Funct. Program. 11, 6 (2001), 629–671.
DOI:http://dx.doi.org/10.1017/S095679680100418X

H. Nilsson and P. Fritzson. 1992. Algorithmic Debugging for Lazy Functional Languages. In Programming
Language Implementation and Logic Programming: 4th International Symposium, PLILP’92 Leuven,
Belgium, August 26–28, 1992 Proceedings, Maurice Bruynooghe and Martin Wirsing (Eds.). Springer-
Verlag, Berlin Heidelberg, 385–399.

H. Nilsson and P. Fritzson. 1994. Algorithmic Debugging for Lazy Functional Languages. Journal of Func-
tional Programming 4, 3 (1994), 337–370.

H. Nilsson and J. Sparud. 1997. The Evaluation Dependence Tree as a Basis for Lazy Functional Debugging.
Automated Software Engineering 4, 2 (1997), 121–150.

T. J. Ostrand and M. J. Balcer. 1988. The Category-partition Method for Specifying and Generating Fuc-
tional Tests. Commun. ACM 31, 6 (June 1988), 676–686. DOI:http://dx.doi.org/10.1145/62959.62964

L. M. Pereira. 1986. Rational Debugging in Logic Programming. In Proc. on Third International Confer-
ence on Logic Programming (Lecture Notes in Computer Science), Vol. 225. Springer-Verlag, Berlin
Heidelberg, 203–210.

B. Pope. 1998. Buddha: A Declarative Debugger for Haskell. (1998). citeseer.ist.psu.edu/pope98buddha.html
B. Pope. 2006. A Declarative Debugger for Haskell. Ph.D. Dissertation. The University of Melbourne,

Australia.
B. Pope and L. Naish. 2003. A Program Transformation for Debugging Haskell 98. In Proc. of 26th Aus-

tralasian Computer Science Conference (ACSC’03) (Conferences in Research and Practice in Infor-
mation Technology), Vol. 16. ACS, Darlinghurst, Australia, 227–236.

R. Ramakrishnan and J. D. Ullman. 1995. A Survey of Deductive Database Systems. The Journal of Logic
Programming 23, 2 (1995), 125 – 149.

A. Riesco, A. Verdejo, N. Martí-Oliet, and R. Caballero. 2012. Declarative Debugging of Rewriting Logic
Specifications. Journal of Logic and Algebraic Programming 81, 7-8 (2012), 851–897.

L. De Rose, A. Gontarek, A. Vose, R. Moench, D. Abramson, M. Ngoc Dinh, and C. Jin. 2015. Relative
Debugging for a Highly Parallel Hybrid Computer System. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC 2015, J. Kern and J. S.
Vetter (Eds.). ACM, New York, NY, USA, 63:1–63:12. DOI:http://dx.doi.org/10.1145/2807591.2807605

P. Runeson. 2006. A Survey of Unit Testing Practices. IEEE Softw. 23, 4 (July 2006), 22–29.
DOI:http://dx.doi.org/10.1109/MS.2006.91

F. Russo and M. Sancassani. 1992. A Declarative Debugging Environment for DATALOG. In Proceedings
of the First Russian Conference on Logic Programming. Springer-Verlag, Berlin Heidelberg, 433–441.

F. Sáenz-Pérez. 2011. DES: A Deductive Database System. Electron. Notes Theor. Comput. Sci. 271 (March
2011), 63–78.

Herbert Schildt. 2014. Java: The Complete Reference, 9th Edition. McGraw-Hill Education, New York, NY,
USA.

N. Shahmehri and P. Fritzson. 1990. Algorithmic Debugging for Imperative Languages with Side-effects. In
International Workshop on Compiler Construction. Springer-Verlag, Berlin Heidelberg, 226–227.

E.Y. Shapiro. 1982a. Algorithmic Program Debugging. MIT Press, Cambridge, MA.
E.Y. Shapiro. 1982b. Algorithmic Program Diagnosis. In Proceedings of the 9th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL 1982). ACM, New York, NY, USA, 299–
308.

O. Shmueli and S. Tsur. 1991. Logical Diagnosis of LDL Programs. New Generation Computing 9, 3 (1991),
277.

J. Silva. 2006. Three New Algorithmic Debugging Strategies. (2006).
J. Silva. 2007. A Comparative Study of Algorithmic Debugging Strategies. In Proc. of the International

Symposium on Logic-based Program Synthesis and Transformation (LOPSTR 2006) (Lecture Notes in
Computer Science), Vol. 4407. Springer-Verlag, Berlin Heidelberg, 143–159.

J. Silva. 2011. A Survey on Algorithmic Debugging Strategies. Advances in Engineering Software 42, 11
(2011), 976–991.

J. Silva and O. Chitil. 2006. Combining Algorithmic Debugging and Program Slicing. In Proc. of 8th
ACM-SIGPLAN International Symposium on Principles and Practice of Declarative Programming
(PPDP’06). ACM Press, New York, NY, USA, 157–166.

J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. de Carvalho, and J. Gama.
2013. Data Stream Clustering: A Survey. Comput. Surveys 46, 1, Article 13 (July 2013), 31 pages.
DOI:http://dx.doi.org/10.1145/2522968.2522981

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Algorithmic Debugging A:35

R. Sosic and D. Abramson. 1997. Guard: A Relative Debugger. Softw., Pract. Exper. 27, 2 (1997), 185–206.
DOI:http://dx.doi.org/10.1002/(SICI)1097-024X(199702)27:2<185::AID-SPE79>3.0.CO;2-D

L. Sterling and E. Shapiro. 1986. The Art of Prolog: Advanced Programming Techniques. The MIT Press,
Cambridge, MA, USA.

P. Kambam Sugavanam. 2013. Debugging Framework for Attribute Grammars. Ph.D. Dissertation. Univer-
sity of Minnesota.

S. Tamarit, A. Riesco, E. Martin-Martin, and R. Caballero. 2016. Debugging Meets Testing in Erlang.
In Proceedings of the 10th International Conference on Tests and Proofs, TAP 2016 (Lecture Notes
in Computer Science), Bernhard K. Aichernig and Carlo A. Furia (Eds.), Vol. 9762. Springer-Verlag,
Berlin Heidelberg, 171–180.

A. Tessier and G. Ferrand. 2000. Declarative Diagnosis in the CLP Scheme. In Analysis and Visualization
Tools for Constraint Programming: Constraint Debugging, Pierre Deransart, Manuel V. Hermenegildo,
and Jan Maluszynski (Eds.). Springer-Verlag, Berlin Heidelberg, 151–174.

F. Tip. 1995. A Survey of Program Slicing Techniques. Journal of Programming Languages 3 (1995), 121–
189.

C. Wieland. 1990. Two Explanation Facilities for the Deductive Database Management System DeDEx.. In
Proceedings of the 9th International Conference on Entity-Relationship Approach, ER 1990. Eidgenös-
sische Technische Hochschule Zürich, Zürich, 189–203.

D. Wlodzimierz, S. Nadjm-Tehrani, and J. Maluszynski. 1988. The Use of Assertions in Algorithmic De-
bugging. In Proceedings of the 1988 International Conference on Fifth Generation Computer Systems.
MIT Press Cambridge, MA, USA, 573–581.

C. Zinn. 2013. Algorithmic Debugging for Intelligent Tutoring: How to Use Multiple Models and Improve
Diagnosis. In Proceedings of the 37th Annual German Conference on Advances in Artificial Intelligence,
KI 2013 (Lecture Notes in Computer Science), Vol. 8077. Springer-Verlag, Berlin Heidelberg, 272–283.
DOI:http://dx.doi.org/10.1007/978-3-642-40942-4_24

C. Zinn. 2014. Algorithmic Debugging and Literate Programming to Generate Feedback in Intelligent Tu-
toring Systems. In Proceedings of the 37th Annual German Conference on Advances in Artificial In-
telligence, KI 2014 (Lecture Notes in Computer Science), C. Lutz and M. Thielscher (Eds.), Vol. 8736.
Springer-Verlag, Berlin Heidelberg, 37–48. DOI:http://dx.doi.org/10.1007/978-3-319-11206-0_4

Received Month Year; revised Month Year; accepted Month Year

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.


