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Abstract

Light attenuation within suspensions of photosynthetic microorganisms has been widely described by
the Lambert-Beer equation. However, at depths where most of the light has been absorbed by the cells,
light decay deviates from the exponential behaviour and shows a lower attenuation than the corresponding
from the purely exponential fall. This discrepancy can be modelled through the Mittag-Leffler function,
extending Lambert-Beer law via a tuning parameter α that takes into account the attenuation process.

In this work, we describe a fractional Lambert-Beer law to estimate light attenuation within cultures
of model organism Synechocystis sp. PCC 6803. Indeed, we benchmark the measured light field inside
cultures of two different Synechocystis strains, namely the wild-type and the antenna mutant strain called
Olive at five different cell densities, with our in silico results. The Mittag-Leffler hyper-parameter α that
best fits the data is 0.995, close to the exponential case. One of the most striking results to emerge from
this work is that unlike prior literature on the subject, this one provides experimental evidence on the
validity of fractional calculus for determining the light field.

We show that by applying the fractional Lambert-Beer law for describing light attenuation, we are
able to properly model light decay in photosynthetic microorganisms suspensions.
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1 Introduction

Photosynthetic microorganisms are capable of absorbing light by means of a wide variety of photo-active
pigments, whose active molecules can get excited at given wavelengths. Photosynthetic pigments cover the
so called Photosynthetically Active Radiation (PAR), comprising the wavelength range of 400 to 700 nm,
which practically overlaps the visible spectrum for human beings.

Light decay in photosynthetic cultures is due to absorption and scattering phenonema [1], can be
described using inherent optical properties of the suspension [2] and by solving a self-consistency problem
between average irradiance inside the whole volume and the average PAR downward attenuation coefficient,
as both magnitudes depend on each other. In this regard, a modelling approach was recently proposed [3],
where the remaining light given as a PAR integrated irradiance value at different depths from the emission
lamp within Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) cultures was in silico
estimated.
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However, the model employs the Bouguer law, postulated in Bouguer’s Essai d’Optique in 1729 [4] and
commonly known in Optics as Lambert-Beer law, for estimating remaining irradiance up on depth and
hence it fails in the evaluation of very low light intensities. Despite light usually follows an exponential
decay that can be described by the Lambert-Beer law, it is known that at low illumination conditions, below
the so called euphotic zone, light attenuation deviates from a purely exponential behaviour inside biological
cultures. As a rule of thumb, the exponential case is valid within the interval comprised between that layer
of water from the surface down to the depth at which downward irradiance is 1% of that at the depth z = 0
[5].

This has been reported in several works on oceanic environments [6, 7] but also in photosynthetic
microorganism cultures grown in artificial conditions [8]. To overcome the poor attenuation prediction
capabilities of current models near or within the euphotic zone, the algorithms can be modified to extend
exponential attenuation to a more complex representation by means of Mittag-Leffler (ML) functions. These
are solutions of fractional order integral and fractional order differential equations and have been successfully
introduced in several applied areas for studying different problems such as rheology [9], diffusion in porous
solids [10], superdiffusive transport and Lévy motion [11], protein ligand rebinding [12], electrical networks
[13] and, in general, they are useful to study relaxation phenomena in complex physical systems [14, 15] and
in probability theory [16]. Moreover, it is remarkable that ordinary and generalised Mittag-Leffler functions
interpolate between a purely exponential law and a power-like behaviour of phenomena governed by ordinary
kinetic equations and their fractional counterparts [17, 18, 19].

Regarding optical applications with such class of mathematical functions, in [20] a ML function for the
modulation of a Gaussian beam was employed and the splitting and accelerating properties of the obtained
Mittag–Leffler–Gaussian beam described. Recently, the light attenuation modelling through a generalisation
of the exponential function via Mittag–Leffler functions was considered [21]. That generalisation of the
Lambert-Beer rises the accuracy of the predictions and explains possible deviations from the exponential
extinction law in spatially correlated media. This model was later improved by introducing a new formal
description that included Wright type functions to express light transmission probability in random media
[22]. Estimations of the deviation from the exponential law were also exposed. In this way, multi-order
fractional operators (integral and differential) in the unit disk have been also used for extending the Lambert-
Beer equation [23].

Nevertheless, in none of these works experimental data were assessed. In summary, we have considered
the fractional generalisation of the Lambert-Beer law and modelled light attenuation within cultures of
model organism Synechocystis sp. PCC 6803. An interesting outcome of this research is that all experimental
measurements are properly modelled by just fitting the hyper-parameter α of the ML functions. Indeed, just
one value is needed for both studied Synechocystis strains, namely the wild-type and the antenna mutant
strain called Olive at all, i.e. five different, cell densities. These results back the use of fractional calculus
for describing light attenuation in photobioreactors (PBRs).

2 Methodology

Mittag-Leffler (ML) functions, introduced by the homonym Swedish mathematician Gösta Mittag-Leffler,
belong to a family of special functions characterised by two complex parameters α and β. When the real
part of α is strictly positive, they can be defined by means of the following convergent series:

Eα(z) =

∞∑
k=0

zk

Γ(1 + αk)
, α ∈ C, <(α) > 0, z ∈ C, (1)

or in its more general form by

Eα,β(z) =

∞∑
k=0

zk

Γ(β + αk)
, α, β ∈ C, <(α) > 0, <(β) > 0, z ∈ C. (2)
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The positivity of the real parts of α and β yields that they become entire functions. Here, Γ(·) stands for
the Gamma function of Euler, that generalises the factorial, since Γ(n) := (n− 1)! for every natural number
n ∈ N. For every z ∈ C with <(z) > 0, this function can be defined by the following convergent improper
integral

Γ(z) :=

∫ ∞
0

tz−1e−tdt, (3)

ML functions generalise the exponential functions. In particular, if α = β = 1, we get the series of the
exponential function. They arise as solutions of the following abstract Cauchy problem{

( d
dx)αf(x) = −λf(x), x > 0

f(0) ∈ R given.
(4)

where ( d
dx)α stands for the Caputo fractional derivative of real order α respect to x. As an easy way

to understand what is a fractional derivative, one can think that ( d
dx)

1
2 will be the operator whose square

coincides with the usual derivative, i.e. (( d
dx)

1
2 )2(f) = fx. Furthermore, there are several ways of introducing

the fractional derivative, such as Riemann–Liouville or Caputo fractional derivatives. See also [24] for the
recent Atangana-Baleanu derivative and related properties [25]. In contrast to Riemann–Liouville’s, Caputo
fractional derivative allows the resolution of differential equations without having fractional initial conditions.
Further information on fractional calculus can be found in [26, 27, 28, 29, 30].

3 Fractional calculus in optics

Lambert-Beer law states that the evolution of the downward irradiance at the depth x at any wavelength
λ, namely Id(x, λ), can be described by{

d
dxId(λ, x) = K̄d(λ)Id(λ, x), x > 0

Id(λ, 0) ∈ R+
(5)

being K̄d(λ) the corresponding spectrally related downward irradiance attenuation coefficient, which can in
turn be obtained by calculating inherent optical properties of each organism [31], i. e. measuring chlorophyll-
specific absorption and scattering spectra at different mean acclimation irradiance values, when we deal with
photosynthetic microorganism cultures.

Furthermore, in [32] deduction of the Lambert-Beer law was explained by means of stochastic approach
and linked with Poisson statistics. Later a generalised Lambert-Beer law through fractional calculus was
postulated [21]. These results could have been first interpreted as local analysis [33], however it was shown
that the domain of validity is broader [34]. In fact, the same result can be obtained when replacing the
ordinary derivative by the fractional derivative in Beer–Lambert law (5), that is{

( d
dx)αId(λ, x) = K̄d(λ)Id(λ, x), x > 0

Id(λ, 0) ∈ R+ given,
(6)

whose solution is given by
Id(λ, x) = Eα(K̄d(λ)xα)Id(λ, 0) (7)

In this way, a nonlocal analysis is introduced in the Lambert-Beer law, incorporating a tuning parameter
α > 0 that represents the memory in x of the model, which is absent in equation (5). Observe that
for mathematical consistence we must restrict the value of α between 0 and 1, due to the number (= 1)
of the initial conditions given in (5). In our approach, we have used expression (6) to properly model
light attenuation in biological suspensions. To do so, Synechocystis experimental attenuation profiles for
different light sources have been estimated by fitting the parameter α of the Mittag-Leffler function. It is
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critical to note that Mittag-Leffler functions do own the necessary properties to correctly predict remaining
irradiance within the biological culture as they display power-law decay at further distances but alternatively
coincide with the exponential function at closer ones. Though one could expect a two parameters function
perform better than a single one, yet other two parameters functions such as the Gamma family do not
fulfil the mentioned requirements and hence fail to satisfactorily model the data. This fact together with
the mathematical justification of the generalised Lambert-Beer law through Mittag-Leffler functions [21],
supports ML functions as the right candidate for modelling light fields within photosynthetic microorganism
cultures and equivalent physical systems.

3.1 Data for modelling assessment

The data set to be benchmarked with computational results corresponds to Synechocystis cultures exposed
to light kept inside a cylindrical vessel. This container has radiometric sensors every 11 mm to measure
PAR downward irradiance within the biological suspension. In this regard, the Synechocystis attenuation
data set [8] is composed of light intensity values at increasing depths for the strains here studied (wild-type
and Olive) plus two extra antenna mutants (not assessed in this manuscript as we do not own inherent
optical properties of those strains), all of them exposed to white LED light at 5 different cell-densities. Such
concentrations are given as optical density values (OD) at 750 nm, namely these OD750 values correspond
to 0.1, 0.5, 1.0, 2.5 and 5.0 units.

Moreover, in order to benchmark modelling predictions with the described experimental data, the PAR
downward attenuation coefficient K̄d(PAR) needs to be first calculated from the spectrally dependent one
K̄d(λ). To this purpose, measured inherent optical properties altogether with the depth of the photobiore-
actor, the cell-density and also the intensity and emission spectrum of the light source have to be taken
into account. Following this strategy, classical Lambert-Beer law predictions are available as described in a
previous modelling work [3]. In the present manuscript, such modelling framework has been upgraded with
Mittag-Leffler functions to improve its predictability capacity.

4 Results

In Figure 1, the light field as PAR irradiance value vs. the distance to the illumination source in wild-type
(WT) cultures is plotted. It can be seen that in WT for optical densities equal or greater than 1.0, the light
field starts to deviate from the pure exponential case, whereas in Olive this happens for optical densities of
at least 2.5 (Figure 2). The lowest measured light intensity from the original source within the WT cultures
was 1.24 µmol photons ·m−2 · s−1 at 3.3 mm, whereas for Olive cultures it was 1.60 at 4.4 mm (both at the
most concentrated cell-density). For these points, light attenuation is far from Lambert-Beer law prediction
(a line in the semi-logarithmic plot). Indeed, the obtained values for exponential decay are just 8.1% (0.1
µmol photons ·m−2 · s−1) and 19% (0.3 µmol photons ·m−2 · s−1) of the respectively experimental values in
each strain, which leads to the conclusion that in culture regions where practically all the light has been
captured by the cells, the Lambert-Beer law does not satisfactorily represent the remaining light field, at
least in terms of PAR range integrated values (dashed lines). In fact, this happens in both strains below
the euphotic zone, which in our case roughly corresponds to data below 20 µmol photons ·m−2 · s−1.

Alternatively, Mittag-Leffler model (solid lines) is able to correctly predict the remaining downward
radiance in both strains at any cell density by fitting the ML α parameter to 0.995.

It is also remarkable that for the case of cultures exposed to a lamp spectrum with a very narrow emission
band, the attenuation is purely exponential in the measured conditions (data not shown [8]). This is due to
the fact that monochromatic light is taken up by cells at a constant rate given by the attenuation coefficient
value at the peak wavelength of the LED emission spectrum (Gaussian-shaped), whereas in the case of white
LED light exposure, attenuation varies gradually: cells mainly absorb light at wavelengths close to the peaks
corresponding to the pigments present in them. This selective absorption leads to irradiance diminution of
the primarily absorbed wavelengths while the less absorbed ones contribute to the remaining light field at
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Figure 1: Light attenuation profiles of Synechocystis WT strain cultures exposed to 2000
µmol photons ·m−2 · s−1 of white LED light at five different OD750 concentrations (0.1, 0.5, 1.0, 2.5 and
5.0) are depicted. Dots are the original source samples [8] and lines the modelling outcome (dashed lines
Lambert-Beer law, solid lines Mittag-Leffler function). Darker colours correspond to denser suspensions.

deeper distances. In the case of Synechocystis cells, likewise many cyanobacteria which do not possess any
photo-active pigment capable of capturing green radiation, the green components of the spectrum are less
absorbed, thus light gradually changes from white at the surface to a greener colour at the furthest depth.
This leads to a progressively lower attenuation, as cells can hardly capture green light, which explains why
a purely exponential decay is not valid in such selectively absorbing media.

5 Conclusions

In this work we propose a new scheme to model light attenuation within photosynthetic cultures based
on the use of Mittag-Leffler functions. Our scheme is able to substantially improve the estimation of how
light intensity decreases at culture depths near or within the euphotic zone, where intensity has already
decreased substantially and its spectrum has considerably changed due to selective absorption in the medium.
Remarkably, the value of the fitting parameter α = 0.995 that allows for a proper description of light
attenuation within the cultures is exactly the same for both experimental sets corresponding to two different
Synechocystis strains. This is not a surprising outcome as both strains have almost the same size, display
similar pigment concentration and internal arrangement, except for the missing phycocyanin chromophore
in the mutant strain. In view of our results, it may be hypothesised that properly tuned Mittag-Leffler
functions are able to represent the long range effects due to selective absorption phenomena in photosynthetic
cultures. Indeed, this is the first work where experimental data corresponding to a system with a slower-
than-exponential light decay have been benchmarked with in silico results. By updating the previous
exponential-type published model [3] with Mittag-Leffler functions, accurate results are obtained. In fact,
this framework generalisation allows the estimation of the light field at any cell density and optical depth
inside a PBR for photosynthetic microorganism cultures acclimated to a given irradiance.

As a further work it would be interesting to test our scheme with other cyanobacterial or micro-algal
species and to explain, via an analytic estimation, the value of the hyper-parameter taking into account
PBR, light, media, and culture characteristics. Furthermore it would be useful to work with a model that
can represent the behaviour of the fractional Lambert-Beer law in the case that the parameter varies between
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Figure 2: Light attenuation profiles of Synechocystis Olive strain cultures exposed to 2000
µmol photons ·m−2 · s−1 of white LED light at five different OD750 concentrations (0.1, 0.5, 1.0, 2.5 and
5.0) are depicted. Dots are the original source samples [8] and lines the modelling outcome (dashed lines
Lambert-Beer law, solid lines Mittag-Leffler function). Darker colours correspond to denser suspensions.

1 and 2 in a different biological phenomenon. This corresponds to the situation where there are two initial
conditions instead of only one as in the classical model (5).
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[10] S. F. Zaman, D. Baleanu, and I. Petráš, “Measurement of para-xylene diffusivity in zeolites and
analyzing desorption curves using the mittag-leffler function,” Fractional Calculus and Applied Analysis,
vol. 19, no. 2, pp. 551–560, 2016.

[11] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics
approach,” Physics Reports, vol. 339, no. 1, pp. 1–77, 2000.
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