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TLB-Based Temporality-Aware Classification
in CMPs with Multilevel TLBs

Albert Esteve, Alberto Ros, Marı́a E. Gómez, Antonio Robles, Member, IEEE,
and José Duato, Member, IEEE

Abstract—Recent proposals are based on classifying memory accesses into private or shared in order to process private accesses
more efficiently and reduce coherence overhead. The classification mechanisms previously proposed are either not able to adapt to
the dynamic sharing behavior of the applications or require frequent broadcast messages. Additionally, most of these classification
approaches assume single-level translation lookaside buffers (TLBs). However, deeper and more efficient TLB hierarchies, such as the
ones implemented in current commodity processors, have not been appropriately explored.
This paper analyzes accurate classification mechanisms in multilevel TLB hierarchies. In particular, we propose an efficient data
classification strategy for systems with distributed shared last-level TLBs. Our approach classifies data accounting for temporal private
accesses and constrains TLB-related traffic by issuing unicast messages on first-level TLB misses. When our classification is employed
to deactivate coherence for private data in directory-based protocols, it improves the directory efficiency and, consequently, reduces
coherence traffic to merely 53.0%, on average. Additionally, it avoids some of the overheads of previous classification approaches for
purely private TLBs, improving average execution time by nearly 9% for large-scale systems.

Index Terms—Distributed Shared TLB, Data Classification, TLB Usage Predictor, Coherence Deactivation
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1 INTRODUCTION

O VER the last years high performance processors
have evolved by doubling the core count every 18

months. This, coupled with the fact that most chip multi-
processors (CMPs) provide programmers with a shared-
memory model, turns coherence maintenance in multi-
level cache hierarchies into an increasingly critical issue.
To meet these new scalability challenges, many propos-
als focus on directory-based coherence solutions as they
tend to use less network bandwidth than their snooping-
based counterparts, thus representing the most scalable
alternative. However, as core count grows, directory-
based protocols demand larger amounts of directory
storage and energy. Due to physical and technological
constraints, the storage area dedicated to the directory
in the die must be limited. This fact definitively causes
a larger amount of directory-induced invalidations as
a result of replacements in the directory, which may
severely degrade performance [1].

An effective way to improve directory efficiency and
reduce replacements is based on classifying data as
private or shared in order to handle blocks more ef-
ficiently according to their sharing status. Considering
such a classification, Cuesta et al. propose deactivating
coherence maintenance for private [1], or more generally
non-coherent [2], blocks. The deactivation reduces the
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coherence overhead, ultimately enabling smaller or more
efficient directory designs as it eludes the tracking of
these blocks. Alternatively, Demetriades and Cho [3]
avoid the invalidation of private blocks stored in the
cache when evicting directory entries by delegating
block-discovering responsibilities to the last-level cache
(LLC) organization, and therefore reducing the number
of required directory entries while barely affecting per-
formance.

The aim of a classification mechanism is to detect as
much private data as possible without degrading the
overall system performance, minimizing its overheads.
However, data classification usually requires a large
amount of extra storage in order to track the data sharing
status. Some mechanisms cannot dynamically reclassify
data from shared to private, thus missing the detection
of temporarily-private data and limiting the potential
performance benefits of data classification. Recently, Ros
et al. [4] propose a mechanism that deals with these
drawbacks by (i) storing the sharing information in
the system translation lookaside buffers (TLBs) and (ii)
discovering the current sharers when a TLB miss takes
place by broadcasting requests to other cores’ TLBs and
reclassifying the page if necessary. The evaluation of this
proposal only assumes private, single-level TLBs.

Nevertheless, current multicore systems use multilevel
TLB structures which help to address the increasing
application memory footprints and constrain the perfor-
mance loss that comes with them. Furthermore, shared
last-level TLBs have been already explored by Bhat-
tacharjee et al. [5], and Lustig et al. [6], exhibiting a
reduction in TLB misses for parallel workloads when
compared to private last-level TLBs.
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Our proposal. In this paper we propose and evaluate
techniques to perform a TLB-based data classification for
multilevel TLBs that employ either a private or a shared
last-level TLB, and compare them with previous single-
level TLB classification approaches. The main contribu-
tions of this work are:

• We propose the first adaptive TLB-based classifica-
tion mechanism for shared TLB structures.

• We show the importance of usage prediction tech-
niques for multilevel TLBs, which make the classi-
fication insensitive to TLB size.

• We propose a usage predictor for shared TLB struc-
tures (SUP), which naturally avoids overheads over
previous predictors for private TLB structures.

• We perform an extensive evaluation considering
single and multilevel private TLBs, and multilevel
TLBs with a shared last-level TLB.

• We show how classification schemes improve sys-
tem performance in contemporary architectures
when coherence maintenance is deactivated for pri-
vate data.

Results. Through full-system simulations, we show
how execution time improves by 6.8% over a baseline
configuration with private L2 TLBs classification scheme,
and up to 8.2% with a distributed shared L2 TLB classifi-
cation scheme. Furthermore, through precise traffic anal-
ysis, we reveal how TLB-based classification mechanisms
benefit from shared TLB structures, reducing TLB and
cache traffic to only 53.0%. Finally, SUP avoids traffic
overhead for a 32-core system, ultimately reducing the
traffic issued by 30.9%, compared to the baseline.

The rest of the paper is structured as follows. Sec-
tion 2 reviews current classification mechanisms and TLB
organizations in the literature. Section 3 describes the
temporal-aware classification mechanism for multilevel
TLBs with private last-level TLBs. Section 4 describes the
proposed classification mechanism for multilevel TLBs
with shared last-level TLBs, and discusses some key
aspects for its design. Section 5 introduces the simulation
environment and methodology used to obtain the results
presented in Section 6. Finally, Section 7 draws some
conclusions.

2 BACKGROUND AND MOTIVATION

Data classification mechanisms are gaining importance
as they allow treating blocks or accesses more efficiently
depending on their sharing status. Specifically, Kim et
al. [7] avoid broadcast messages in snoopy protocols
when accessing private blocks, thus leading to a reduc-
tion of network traffic. Li et al. [8] introduce a small
buffer structure close to the TLB, namely partial sharing
buffer (PSB). When a page becomes shared it will feasi-
bly be found on the PSB upon a TLB miss, obtaining the
page translation with both lower latency and fewer stor-
age resources. Hardavellas et al. [9] and Kim et al. [10],
[11] keep private blocks on the local bank in distributed
shared caches in order to reduce access latency. Ros

and Kaxiras [12] propose an efficient and simple cache-
coherence protocol by implementing a write-back policy
for private blocks and a write-through policy for shared
blocks. End-to-End SC [13] allows instruction reordering
and out-of-order commits of private accesses from the
write-buffers, since they do not affect the consistency
model enforced by the system. Finally, Cuesta et al. [1]
propose avoiding directory storage of private blocks,
therefore deactivating coherence maintenance for those
blocks and leading to smaller and faster directories.
The evaluation of this work is built on top of this
optimization, which is explained in section 2.3.

2.1 Classification techniques
All proposals described above use classification ap-
proaches that take advantage of existing OS structures
(i.e. TLBs and page table) in order to perform the
page classification scheme. An OS-based classification
mechanism annotates the first requesting core in the
corresponding page table entry (keeper [1] or FAC —
first accessing core— [8] field) after the first TLB miss
and classifies it as private. On subsequent page table
accesses to the same page, the keeper field is compared
to the current requester. If they do not match, then the
entry is reclassified as shared. To this end, an extra-bit
field is added to the page table and replicated in the
TLB in order to fast access the sharing status. When
a reclassification occurs, the sharing information in the
keeper’s TLB must be updated accordingly to avoid
inconsistencies.

Other classification approaches have also been pro-
posed. Directory-based mechanisms [14], [15], [16], [17],
[18] suffer the important drawback that most of the data-
optimization techniques for classification schemes are
not applicable due to a late (post cache miss) discovery
of the classification. Compiler-assisted approaches [10],
[11] deal with the difficulty of knowing at compile time
(i) whether a variable is going to be accessed or not,
and (ii) in which cores the data will be scheduled and
rescheduled. Finally, approaches based on the proper-
ties of programming languages [19], [20], despite being
very accurate, are not applicable to most existing codes.
Conversely, run-time approaches perform accurate clas-
sification for any code, thus avoiding these difficulties.

2.2 TLB-based classification
The sharing status of a page may evolve through differ-
ent application phases from private to shared and back
to private. An OS-based mechanism performs a non-
adaptive classification, i.e. when a page transitions from
private to shared it remains in that state for the rest of
the execution time (or until it is evicted from the main
memory). In applications that run for a long time, most
pages may be considered shared at some point, thus
neglecting the advantages of the classification. Allow-
ing reclassification to private may significantly increase
the number of private data detected when compared
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to an OS-based mechanism, and also alleviate miss-
classification due to thread migration.

Temporality-aware classification. The goal of a TLB-
based classification mechanism [4], [21], [22] is to achieve
an adaptive classification that accounts for temporarily-
private pages and tolerates thread migration. The TLB-
based classification mechanism is based on inquiring the
other cores’ TLBs in the system (through TLB-to-TLB
requests) on every TLB miss. The other TLBs reply to the
requester indicating whether or not they are caching the
page translation. This way, the TLB suffering the cache
miss knows whether the page is shared or not.

Fast TLB-miss resolution. In TLB-based classification
mechanisms, when a TLB miss takes place, a TLB-to-TLB
request is broadcasted, in parallel with a page table walk.
The TLBs that are caching the page translation include
that information into the responses to that request as
well. When the first page translation is received, it
is stored in the requester TLB and the page walk is
canceled. This way, the TLB miss latency can be consider-
ably reduced [23], [24]. If no page translation is received
from remote TLBs, the miss is completed when the page
table walk process ends. A token-counting approach
may be employed in order to avoid the requirement for
all TLBs to reply upon every TLB-to-TLB request, which
increases traffic requirements [22].

TLB-cache inclusion policy. TLB-based classification
mechanisms rely on a strict inclusion policy between
the TLB and the local caches to the processor (e.g. the
L1 cache in this work). Hence, the absence of a valid
page translation in the TLB ensures the absence of any
valid block belonging to that page in the L1 cache.
This is the reason why probing TLBs is a sufficient
condition to guarantee that a page is private (i.e. avoids
false privates). The TLB-cache inclusion policy does not
necessarily hurt system performance, since evicted TLB
entries have probably not been recently accessed (LRU-
like policy is applied), and thus it is not common to find
blocks for the evicted page in cache.

Usage predictor. TLB-based classification is deter-
mined by the presence of page entries in TLBs, despite
the fact that they may have ceased to be accessed, thus
making classification accuracy sensitive to the TLB size.
A usage prediction mechanism for TLBs is essential to
decouple classification from TLB size [4]. This predictor
resembles the one employed in the Cache Decay ap-
proach [25] and determines whether or not a page is
going to be accessed in the near future. In particular,
the predictor uses one saturated counter per TLB entry
that it is periodically increased according to an internal
timeout and reset on every memory access to the page.
When a TLB entry is predicted not to be used (its
counter is saturated) and it is probed with a TLB-to-TLB
request, the entry is invalidated. When a TLB entry is
invalidated, all the blocks pertaining to the related page
in the local cache hierarchy are invalidated, and the core
is disqualified as a potential sharer of the page. This way,
the usage predictor effectively increases the amount of

private data detected for large or multilevel TLBs.
Forced sharing. When the usage predictor is very

aggressive, shared pages can be eagerly invalidated from
the TLBs. Premature invalidations induce more TLB
misses, which in turn induce further invalidations. It
can be seen as a positive feedback process. To prevent
this scenario, a forced-sharing request can be issued when
there is a TLB miss for an entry that is still present in the
TLB but has been eagerly invalidated [21]. The forced-
sharing request bypasses the usage predictor and avoids
invalidating disused entries in remote TLBs.

2.3 Coherence deactivation
On current CMPs, the directory cache suffers from scala-
bility issues. The directory area grows quadratically with
the number of cores. Additionally, due to its limited asso-
ciativity, it cannot simultaneously track all blocks stored
in the processors’ local caches. This causes directory
entry evictions, which usually entail the invalidation of
cached blocks. When a core accesses a block which has
been invalidated due to directory coverage constraints, it
causes a type of miss known as Coverage miss [26]. These
misses may cause severe performance degradation.

Coherence Deactivation [1] is a technique that avoids the
tracking of private (or non-coherent [2]) blocks by the
directory. Consequently, directories exploit their limited
storage capacity more efficiently, as long as the classifi-
cation mechanism that detects private or non-coherent
data is accurate.

Coherence recovery. Since coherence deactivation by-
passes the coherence protocol for non-coherent accesses,
a recovery operation is required when a page becomes
coherent again, in order to avoid inconsistencies. To
this end, the blocks of a non-coherent page that be-
comes coherent must be either evicted from the cache
(flushing-based recovery) or updated in the directory
cache (update-based recovery). Once the recovery mech-
anism has finished, the directory cache is in a coherent
state according to the new page classification. Both re-
covery strategies show negligible performance impact,
given that the recovery is triggered less than 5 times per
1000 cache misses, on average [2].

2.4 Multilevel TLBs
The organization of the TLB is becoming more and
more crucial for performance in current CMPs. TLB
misses are in the critical path of memory operations,
and they may result in a long latency penalty. On a TLB
miss, the page table is accessed in order to obtain the
page address translation. “Walking” the page table often
requires several memory accesses (e.g. up to twenty-four
memory accesses on x86-64 virtual address space [27],
or fifteen memory accesses for the recent 32-bit ARMv7
virtual address space [28], both supporting virtualized
environments).

Since TLBs are usually accessed in parallel with L1
caches, the L1 TLB is commonly split into data and
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instruction TLBs. Moreover, the concept of multilevel
cache hierarchies has been extended to TLBs, allowing
private unified L2 TLBs to be present on many cur-
rent architectures (e.g. Intel Xeon [29] or ARMv7 [28]).
However, purely private TLB organizations exhibit some
deficits, as they do not completely fulfill inter-core TLB
sharing opportunities [30], leading to some avoidable
and predictable TLB misses. Particularly on parallel ap-
plications, the same page translation is likely replicated
on multiple TLBs when implementing private TLB struc-
tures, which wastes both storage resources and energy.
Also, even on sequential applications, the system may
experience TLB thrashing on some cores while other
cores’ TLBs exhibit small page footprints, provided that
each individual TLB allocates a fixed set of resources.

To overcome this, Bhattacharjee et al. [31] use inter-
core cooperative prefetchers to improve the TLB hit
ratio, emulating a distributed shared TLB. They also
propose a centralized shared L2 TLB [5], improving
translation latency in a 4-core CMP. Both approaches
have recently been explored further [6]. Nevertheless,
centralized shared L2 TLBs are not relied upon when
scaling to a large number of cores, since centralized
organizations increase end-to-end latencies as the core
count grows, which, as previously noted, will be added
to the critical path. Furthermore, centralized shared TLBs
may need a high-bandwidth interconnect to be able to
connect to all the cores of a CMP.

TLB-based classification techniques have never been
thoroughly evaluated for multilevel TLB hierarchies.
Nonetheless, as previously noted, current architectures
demand deeper and more efficient TLB structures. This
work explores how TLB-based classification schemes
perform comparatively under single and multilevel TLB
hierarchies, including a comprehensive trade-off anal-
ysis. While assuming private L2 TLBs only requires
straightforward extensions compared to single level
TLBs, the use of a shared last-level TLB leads to a
number of optimizations that decrease the overheads
over previous classification mechanisms (see section 5).

3 TLB-BASED CLASSIFICATION IN SYSTEMS
WITH PRIVATE L2 TLBS

The TLB hierarchy of contemporary architectures include
split data and instruction private L1 TLBs and unified
private L2 TLBs. Among the most common architectures
adopting this TLB hierarchy we find AMD’s K7, K8,
and K10, Intel’s i7 and Xeon, ARMv7 and ARMv8, or
the HAL SPARC64-III [28], [32], [33], [34], [35]. TLB-
based classification schemes, however, have been mostly
analyzed for single-level TLBs. This section explains the
implications of implementing a TLB-based classification
mechanism [21] for a private, two-level TLB organiza-
tion.

Fig. 1: L1/L2 TLB entry with the extra fields in gray.

3.1 Main considerations
Differently from a single-level TLB classification scheme,
in a multilevel TLB hierarchy, a L1 TLB miss does not
trigger a TLB-to-TLB request. Instead, the private L2 TLB
is consulted. On an L2 TLB hit, the page translation is
obtained and cached in the L1 TLB, thus resolving the
L1 miss. On a L2 TLB miss, the TLB-to-TLB request is
initiated along with the access to the page table.

TLB-to-TLB requests look up both the L1 and the L2
TLB looking for in-use TLB entries. If there is a hit
in any of the TLBs, the response is positive, and the
page translation is sent to the requester. This lookup
can be performed in parallel. The usage predictor is
implemented in both TLB levels. The 2-bit saturated
counter is reset on a hit to its corresponding entry.

The forced-sharing optimization (see Section 2.2) also
needs to be adapted for a multilevel TLB environment.
In this case, the forced-sharing request takes place when
accessing a present but invalid entry either in the L1
or the L2 TLB. In this case we consider that the TLB
entry has been prematurely invalidated, as it has not
been evicted yet from the TLB structure.

Figure 1 shows how TLB entries are extended for both
TLB levels. The Lock (L) bit allows blocking memory
accesses to the corresponding page while the sharing
status is uncertain (e.g. while a TLB miss request is
ongoing). The Private (P) bit tracks the page sharing
status. The 2-bit saturated counter is used for the usage
prediction mechanism, as explained in Section 2.2.

3.2 Implementation details
This section discusses the key implementation choices
made for the proposed TLB-based classification scheme
considering private two-level TLB hierarchies.

TLB inclusion policy. We employ an exclusive policy
between the L1 and the L2 TLBs, since it maximizes the
TLB capacity. Note that an increase in the number of TLB
misses can dramatically degrade system performance.
The downside of keeping exclusive TLBs is that, upon
the reception of a TLB-to-TLB request, both TLB levels
have to be accessed. We opt for performing this oper-
ation in parallel, thus incurring only the access latency
of the L2 TLB, but at the cost of increasing the energy
consumption in the case of a TLB hit. Since TLB-to-TLB
requests are not frequent, we believe that this is the most
appropriate design choice.

TLB consistency. The TLB hierarchy is shootdown-
aware. As both TLB levels implement an exclusive
policy, they can be checked in parallel. Furthermore,
this property avoids incurring wrong (outdated) page
classification, by flushing both the TLB and the cache.
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Fig. 2: Baseline architecture with a distributed shared L2
TLB organization.

4 TLB-BASED CLASSIFICATION IN SYSTEMS
WITH DISTRIBUTED SHARED L2 TLBS

Current application memory footprints demand deeper
TLB hierarchies. Using a centralized shared last-level
TLB, as an alternative to purely private TLB organiza-
tion, provides high performance improvement mainly
with parallel applications [5]. However, a centralized
structure is not scalable.

In this work, we exploit the use of a distributed shared
L2 TLB similar to the NUCA cache organization [36]
(Figure 2), with the aim of supporting data classification
while avoiding some of the overheads associated to
TLB-based mechanisms. Such a distributed organization
has been previously suggested [8], however it has not
been extensively explored. The baseline CMP considered
in this work includes per-core L1/L2 TLBs, memory
management unit (MMU), L1/L2 caches, and directory
cache.

(a) Private two-level TLB
structure.

(b) Two-level TLB structure
with a distributed shared sec-
ond level TLB.

Fig. 3: System configurations in the evaluation.

Figure 3 shows how different TLB hierarchies are
logically connected for both private (Figure 3a) and
distributed shared (Figure 3b) last-level (L2) TLBs. The
interconnect network considered is a mesh topology. By
employing a shared L2 TLB, the classification is naturally
obtained through unicast messages to the corresponding
L2 TLB bank, issued upon every L1 TLB miss. The shar-
ing status is stored in the TLB structure and accessible
for all requesting cores through the network.

Fig. 4: Block diagram of the general working scheme
under a memory operation for shared last-level TLBs.
Dashed arrows and boxes operate only under the usage
predictor.

4.1 Basic protocol

The main idea behind this work is to leverage the shared
L2 TLB in order to track the sharing information, thus
naturally classifying memory accesses into private or
shared at page granularity. To this end, a counter is
associated with each second-level entry, recording up-
to-date information about potential page sharers.

Figure 4 outlines the actions required by the proposed
classification scheme in order to resolve memory opera-
tions through the TLB hierarchy, including recovery and
reclassification operations, explained in Section 4.2 and
Section 4.3, respectively.

Upon a memory access on a given core, prior to
accessing the cache hierarchy, a TLB lookup is performed
to look for the virtual-to-physical address translation. If
it hits the L1 TLB, the sharing status information for that
page is retrieved. Otherwise, on an L1 TLB miss, the L2
TLB is consequently accessed. Requesting the translation
to the L2 TLB increases its sharers count. Therefore,
whether there is a miss in the L2 TLB (and thus the page
table in main memory has to be accessed), or there is a hit
and no other L1 TLB currently holds the page (i.e. there
is no other potential sharer), the page ends with a single
sharer, and is thus marked as private. Otherwise, if the
page had one or more sharers upon the reception of an
L1 TLB miss request, it ends with more than one sharer
and is marked as shared. In either case, the sharing status
is specified alongside the response message containing
the virtual-to-physical page translation to the upper TLB
hierarchy level. The translation is finally stored in both
TLB levels.

When the L2 TLB suffers an eviction, the sharing
status is lost. In this case, in order to avoid classification
inconsistencies, all L1 TLB entries holding the related
page must be evicted (invalidating the corresponding
L1 cache blocks). An inclusive policy between L1 and
L2 TLBs is therefore recommended when assuming a
shared L2 TLB. This policy brings also the advantage
of exploiting inter-core sharing patterns in parallel ap-
plications, hitting on subsequent accesses from different
cores to the L2 TLB.
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Fig. 5: L1 and L2 TLB entries, with the extra fields in
gray for shared second level TLB structures.

As commented above, the L2 TLB keeps track of
the sharing status for each page in the TLB hierarchy.
Therefore, the L2 TLB entries require some extensions,
as illustrated in Figure 5. A Private (P) bit specifies
whether the page is private (bit set) or shared (bit clear).
A sharers field counts the number of current sharers of
a page, allowing shared-to-private page reclassification.
The sharers field is updated after every miss or eviction
on L1 TLBs. This implies that L1 TLB evictions must be
notified to the L2 TLB. This is essential to accurately un-
veil reclassification opportunities when the page ceases
to have sharers. The page sharing status is updated in
the L2 TLB according to the sharers count. Finally, a
keeper field contains the identity of the holder of a private
TLB entry. The keeper field helps to avoid broadcasts
when updating the sharing state in the private TLBs
when a transition to shared occurs. The keeper is updated
every time the L2 TLB receives a request for a page and
the current number of sharers is zero. In this case, the
requester core’s TLB becomes the new keeper.

The total storage resources required by this informa-
tion is 1 + log2(N) bits for the sharers field (counting
from 0 to N sharers, both inclusive), log2(N) bits for the
keeper field, and one bit for P, where N is the number of
cores in the system. This adds up to 2+ log2(N) ∗ 2 total
bits. Since the TLB entry data field often contains some
unused bits [37] that are reserved, hardware overhead
may be avoided by taking advantage of them. Anyhow,
the shared second level TLB entry format requires only
10 bits assuming a 16-core CMP, or 22 bits for a 1024-
core CMP. Therefore, for a TLB to support our proposed
classification approach, the area overhead increases log-
arithmically with the system size, representing ∼14% or
∼23% of the L2 TLB area for a 16-core or a 1024-core
CMP respectively, according to CACTI [38].

4.2 Coherence recovery mechanism

This section reviews the coherence recovery mecha-
nism for our proposed shared TLB classification scheme,
which is required by the coherence deactivation tech-
nique that we employ as data optimization for our study
case (see section 2.3).

If a non-coherent page (i.e. private) transitions to a
coherent state (i.e. shared), coherence status needs to be
recovered in order to avoid the presence of untracked

blocks (not cached in the directory). In our case, when
an L1 TLB miss request reaches a private L2 TLB page
entry, the sharing status may evolve to shared and thus,
a coherence recovery is initiated (see Figure 4). A special
recovery request is issued to the current page keeper. If an
L1 TLB receives a recovery request, all blocks pertaining
to that page in the L1 cache are flushed to avoid incon-
sistencies. Then, after flushing all the page’s blocks in
the private cache, the sharing status in the L1 TLB is
securely set to shared and a recovery response is sent to
the corresponding L2 TLB bank. Upon the reception of
the recovery response, page sharing status is updated in
the L2 TLB, which becomes coherent (i.e. shared). Thus,
directory cache can start tracking all blocks accessed for
that page.

Fig. 6: Coherence recovery mechanism resolved to Pri-
vate. Page A in the keeper (C0) is evicted prior to
receiving the Recovery message and thus, the Recovery
is resolved to Private and the keeper is updated.

During a recovery process, a race may occur if the
keeper evicts its TLB entry due to a conflict. Therefore,
if the recovery request misses on the keeper’s L1 TLB,
a special recovery response is sent back with no further
actions required (Figure 6). Then, the requester becomes
the new keeper and the page remains as private.

4.3 Shared TLB usage predictor
The described classification mechanism is so far depen-
dent on the size or associativity of the L1 TLBs. In order
to decouple TLB size from classification accuracy, a usage
predictor is required. Unlike usage prediction for private
TLB structures, which relies on broadcast TLB-to-TLB
requests to discover the usage status of a TLB entry,
shared TLB structures send a single request to the L2 TLB
bank. As a consequence, the TLB usage predictor needs
to be reworked and tuned for the new environment.

We propose a shared TLB usage predictor (SUP),
employing a 2-bit saturated counter only for L1 TLB
entries (see Figure 5). SUP also adds a new Disused
(D) bit, which is set when the corresponding counter
saturates for the first time. Altogether, 4 additional fields
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are required per L1 TLB entry, for a total of 5 bits which
are insensible to system size. Thus, the area overhead is
only ∼4% of the L1 TLB area.

Every time the D bit is set, a disuse announcement is
sent to the L2 TLB, which decreases the sharers counter.
Therefore, we operate under the assumption that the
page is not going to be reaccessed soon from a core that
has already fallen into disuse. If an access occurs, the
counter is reset, but the D bit remains set. No more mes-
sages will be sent to the L2 TLB bank while it remains
so, even if a disused TLB entry is evicted (i.e. disused
translations evict silently), since the sharers count has
already been appropriately decreased. Therefore, the
sharers field tracks the number of pages currently in use,
unveiling early reclassification opportunities. However,
reclassification requires probing L1 TLBs as they might
have been reaccessed from the time they fell into disuse.

Reclassification process. In particular, whereas an L1
TLB miss hits in the L2 TLB bank and the sharers count
is 0, a reclassification process is triggered (see Figure 4).
First, in case the P bit remains unset (i.e. the page has
been shared), and a reclassification opportunity arises,
it starts by sending a broadcast request, excluding the
requester that initiated the reclassification. L1 TLBs reply
according to the information of their predictor counters.
On the one hand, if the counter is saturated (i.e. the page
is currently not in use) the L1 TLB invalidates the page
entry (flushing the blocks in the L1 cache) and responds
with a NACK. On the other hand, a reaccessed L1 TLB
unset its D bit and responds with an ACK. If not present,
it still has to respond with a NACK. When all responses
are collected, the sharers count is updated accordingly
to the number of positive acknowledgments received.
Finally, the miss that originated the reclassification is
resolved (which increases the sharers count once more),
setting P according to the resulting sharers count (i.e.
private if there is 1 sharer and shared otherwise).

Conversely, when a reclassification process starts for a
private page (the sharers count is 0 and the P bit is set),
only the keeper needs to be probed with a unicast re-
quest. Therefore, a reclassification process might be used
in order to keep the classification as private for longer.
As in a broadcast reclassification, the keeper responds
with a positive or negative acknowledgement depending
on its usage prediction. Finally, the sharers count in the
L2 TLB is either kept as 0 (and the page is brought as
private for the requester, which becomes the new keeper
and the only sharer that is accounted for), or restored to
1 (and the page subsequently transitions to shared).

In addition, the forced-sharing optimization can be also
adapted in the context of a shared L2 TLB, although
we expect that premature invalidations are not going to
hurt system performance under this configuration. The
reason is that disused entries are only invalidated when
the L2 TLB considers that a reclassification probe should
take place, naturally acting as a filter for premature
invalidations. Nonetheless, L1 TLBs send a forced-sharing
request to the L2 TLB when the page is accessed and

their corresponding entry is found present but invalid.
If the miss triggers a reclassification, the probes issued
to L1 TLBs just unset the D bits rather than invalidating
the translations (independently from the status of the
saturated counter). Thus, the page is kept as shared and
can be securely reaccessed without incurring extra L1
TLB misses due to predictor-induced invalidations.

4.4 Classification status
The sharing status of a page is managed by the L2 TLB
through the P bit and the sharers count. This status is
updated as a consequence of L1 TLB miss requests, evic-
tions, or disuse announcements, and L2 TLB evictions.
Figure 7 depicts the state-transition diagram.

Pages in the L2 TLB can be in four states: (i) not
present; (ii) present but not in use in any L1 TLB
(sharers = 0); (iii) present and private with only one
L1 TLB holding the entry (P = 1 and sharers = 1);
and (iv) present and shared with one or several L1 TLBs
currently holding the entry (P = 0 and sharers > 0).

Fig. 7: L2 TLB classification state diagram with SUP.

If the page translation is Not Present in the L2 TLB and
a miss request is received, the page transitions to Private
after “walking” the page table. Then, if a different L1
TLB misses while the page is in Private state, a recovery
mechanism is initiated and the page transitions to Shared.
Note, thought, that classification might transition back
to Private if a race condition occurs, as explained in
Section 4.2. On the other hand, receiving an eviction
or a disuse announcement for a Private page causes a
transition to Present No Sharers. In this state, the L2 TLB
acts as a victim TLB for the next missing L1 TLB. When
the miss occurs, disused entries might have silently
reaccessed the page translation and the classification
coherence must be assured by means of a Reclassification
request. If the reclassification ends up with no sharers,
the miss is resolved to Private. Otherwise, the miss is
resolved to Shared and the sharers count is updated.
Finally, further L1 TLB miss requests for a Shared page
leave the page in the same state, just increasing the shar-
ers count. Receiving evictions or disuse announcements
for a Shared page decreases the sharers count. Finally, the
page transitions to Present No Sharers only if the count
reaches 0.

5 SIMULATION ENVIRONMENT
We evaluate the classification schemes described in this
work through full-system simulations using Virtutech
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TABLE 1: System parameters for the baseline system.

Memory Parameters
Processor frequency 2.8GHz
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split instr & data L1 caches 64KB, 4-way (256 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 1MB/tile, 8-way (2048 sets)
L2 cache hit time 2 (tag) and 6 (tag+data) cycles
Directory cache 256 sets, 4 ways (same as L1)
Directory cache hit time 1 cycle
Memory access time 160 cycles
Split instr & data L1 TLBs 32 sets, 16-way (512 entries)
L1 TLB hit time 1 cycle
Unified L2 TLB 128 sets, 16-way (2048 entries)
L2 TLB hit time 3 cycles
Prediction timeouts 250K, 50K, 10K, and 2K cycles
Page size 4KB (64 blocks)

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

Simics [39], along with the Wisconsin GEMS toolset [40],
which enables detailed simulation of multiprocessor sys-
tems. The interconnection network has been modeled
using the GARNET simulator [41]. We simulate a 16-
tile CMP architecture that implements directory-based
cache coherence and employs the parameters shown in
Table 1. The TLB sizes are the same whether it is a
purely private two-levels TLB hierarchy or it implements
a shared second-level TLB. The L2 TLB miss latency
considers four memory references to walk the page table,
as in the 48-bit x86-64 virtual address space. Cache and
TLB latencies have been calculated using the CACTI
tool [38] assuming a 32nm process technology. Predictor
timeout values in the evaluation are based in the inter-
access study in [21]. Every predictor value evaluated cor-
responds to the number of cycles required to increase the
predictor counter field. Thus, four timeouts are required
for the field to saturate and the translation entry to fall
into disuse.

The evaluation is performed with a wide variety
of parallel workloads from several benchmarks suites,
covering different sharing patterns and sharing degrees.
Barnes (8192 bodies, 4 time steps), Cholesky (tk15.O),
FFT (64K complex doubles), Ocean (258 × 258 ocean),
Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Raytrace
(teapot), Volrend (head), and Water-NSQ (512 molecules,
4 time steps) are from the SPLASH-2 benchmark suite
[42]. Tomcatv (256 points, 5 time steps) and Unstructured
(Mesh.2K, 5 time steps) are two scientific benchmarks.
FaceRec (script), MPGdec (525 tens 040.m2v), MPGenc
(output of MPGdec), and SpeechRec (script) belong to the
ALPBenchs suite [43]. Blackscholes (simmedium), Swap-
tions (simmedium), and x264 (simsmall) come from PAR-
SEC [44]. Finally, Apache (1000 HTTP transactions), and
SPEC-JBB (1600 transactions) are two commercial work-
loads [45]. All reported experimental results correspond
to the parallel phase of the benchmarks.
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Fig. 8: TLB misses ending up as page table accesses per
1000 instructions. No classification.

6 EVALUATION RESULTS

In this section, we first analyze how the aforementioned
TLB hierarchies behave prior to applying a classification
mechanism. Next, we evaluate how TLB-based classifi-
cation schemes behave on multilevel TLB hierarchies,
assuming both a private L2 TLB, which is a common
design nowadays, and a distributed shared L2 TLB
of the same size. Specifically, we evaluate our shared
TLB usage predictor (SUP) and compare it to previous
approaches in order to highlight how the classification is
improved, and most of the flaws of the private predictor
design are avoided. As a consequence, the scalability of
the classification scheme is substantially improved.

6.1 TLB architecture analysis
This section shows how different TLB configurations
behave prior to the application of any classification
mechanism and the coherence deactivation technique
that benefits from it. Specifically, we compare: (i) a sys-
tem with a single-level TLB with TLB-to-TLB transfers
used to accelerate TLB misses but without classification
purposes (TLB); (ii) a system with per-core private L2
TLBs and, again, TLB-to-TLB transfers to accelerate L2
TLB misses (P2TLB); and (iii) a system with private L1
TLBs and distributed shared L2 TLBs (S2TLB).

Figure 8 shows the number of accesses to the page ta-
ble per kilo instructions, i.e. TLB misses that are resolved
in the page table (TLB-MPKI). When the fast TLB-to-TLB
transfer miss resolution mechanism is implemented, TLB
misses are only resolved by accessing the page table if
no other TLB is currently holding the translation. Notice
that the y axis is plotted on a logarithmic scale in order to
discern the different magnitudes of each application. As
can be expected, including a second level TLB (P2TLB
or S2TLB) reduces the average number of accesses to
the page table, compared to a single-level TLB structure
(TLB) with fast TLB miss resolution through broadcast
TLB transfers. However, in some cases, S2TLB can be
observed effectively exploiting the size of the L2 TLB
over the private TLBs approach. For instance, SpeechRec
or Apache, among others, reduce the number of accesses
to the page table to a greater extent, showing how a
shared TLB configuration helps preventing redundant
page translation copies. Finally, the number of TLB-
MPKI is remarkably low, less than 0.07 misses on av-
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Fig. 9: Normalized execution time. No classification.
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Fig. 10: Normalized traffic attributable to the TLB. No
classification.

erage using a two-level TLB structure. Differently, using
a single-level TLB retains TLB-MPKI slightly over 0.15
misses on average, despite implementing TLB-to-TLB
transfers.

Accessing the page table in the main memory af-
ter a TLB miss implies performing an expensive page
walk operation. Therefore, when the page table access
is avoided, execution time is improved. Figure 9 shows
how S2TLB slightly improves execution time by only
1% on average compared to P2TLB with the same total
size, and up to 4.4% compared to the TLB scheme.
Despite the fact that the shared L2 TLB reduces the
number of accesses to the page table, the improvement
is comparatively low as a result of the small absolute
amount of TLB misses reported in Figure 8. In the case
of SPEC-JBB or Apache, where the MPKI reported is
greater, the improvement over the TLB scheme is more
noticeable. Differently, in some benchmarks, as Barnes
or SPEC-JBB, a private L2 TLB slightly outperforms a
distributed shared L2 TLB scheme. The performance
shrinkage occurs on account of the additional latency of
accessing a shared L2 TLB, which needs to traverse the
network in order to reach the home TLB slice. Therefore,
on benchmarks with high L2 TLB hit ratio or accessing
a great amount of private data, a greater access latency
may hurt system performance, overmatching the poten-
tial benefits of inter-core sharing patterns exploitation.
On the contrary, as FFT has more accesses to shared
pages, S2TLB execution time improved.

Finally, TLB-to-TLB transfers significantly increase
TLB traffic, since every TLB miss induces a broad-
cast message and many responses, potentially includ-
ing many replicated translations. Figure 10 shows all
network flits (the flow control unit in which network

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

P
ro

p
o

rt
io

n
 o

f 
a

c
c
e

s
s
e

d
 p

a
g

e
s

Private
Reclassified
Shared

1. P2TLB
2. UP_250K

3. UP_50K
4. UP_10K

5. UP_2K
 

Fig. 11: Private/Shared page classification with private
TLBs.

packets are divided —see Table 1) transmitted across the
network, normalized to TLB. Essentially, P2TLB reduces
the TLB traffic by 48.0% compared to TLB, as it first
relies in the L2 TLB to resolve L1 TLB misses. Therefore,
the broadcast TLB miss resolution mechanism is only
invoked after an L2 TLB miss. In contrast, L1 TLB misses
with a shared L2 TLB are resolved through unicast
messages. As a consequence, TLB network traffic with
S2TLB is reduced to barely 6.5% compared to TLB.

6.2 TLB-based classification mechanisms
So far, different TLB hierarchies have been analyzed,
without any classification scheme whatsoever. This sec-
tion analyzes how temporal-aware TLB-based classifica-
tion techniques work assuming systems with two-level
TLBs, and evaluating their potential when applied to
coherence deactivation for private data. First, using a
private L2 TLB; then the classification scheme proposed
in this paper for distributed shared L2 TLBs.

6.2.1 Private second level TLB
This section analyzes how a system with a purely private
two-level TLB hierarchy behaves alongside the TLB-
based classification scheme, as explained in Section 3.
The quality of the classification scheme is tested by
applying it to deactivate coherence maintenance.

Classification accuracy. A good, first, general metric to
determine the effectiveness of TLB-based classification
is the amount of private data detected, provided they
do not allow false private classification (see Section 2.2).
Figure 11 shows the amount of pages classified as private
or shared, both with and without a TLB usage predictor
(UP), including several predictor timeout values ranging
from 250,000 to 2,000 cycles. The characterization is
extended to discern the amount of shared pages that are
reclassified to private at least once (Reclassified). By dif-
ferentiating reclassified data we offer more insight into
the potential benefits of a temporal-aware classification.
Note that for a page to be considered private in the
figure, it must remain so for the entire execution time.

Particularly, P2TLB classifies slightly above 50% of all
accessed pages as Private, and 15.7% of shared pages
are Reclassified. However, when a usage predictor is
employed, classification accuracy depends on the page
access patterns, decoupling it from the size and asso-
ciativity of the TLB. As a consequence, the amount of
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Fig. 12: Normalized network traffic under coherence
deactivation. Classification with private TLBs.
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Fig. 13: Average amount of directory entries under co-
herence deactivation. Classification with private TLBs.

Private pages is increased with UP 2K up to 76.6% on
average. Private data detection with UP is improved
even over Private and Reclassified pages combined in
P2TLB. Moreover, UP 2K still reclassifies nearly 10% of
pages.

Coherence deactivation. Figure 12 shows the total nor-
malized amount of network flits transmitted through the
interconnection network, classified into cache- and TLB-
related traffic. Applying the classification to deactivate
the coherence maintenance reduces cache traffic directly
proportional to the amount of private data detected. The
baseline system has the same overall configuration but
without employing a classification scheme. Specifically,
P2TLB reduces cache traffic to just 68.46%, on average,
when compared to Base. Moreover, applying TLB usage
predictor further follows this progression, requiring on
average just 58.0% of Base cache traffic when employing
the lowest predictor value. On the contrary, since TLB
miss rate is increased due to some additional predictor-
induced TLB invalidations, TLB traffic is increased as
the predictor value decreases. Particularly, TLB traffic
represents 10.4% of the total network traffic for UP 2K.
Furthermore, TLB traffic overhead for TLB-based clas-
sification will not presumably scale horizontally with
the system as broadcast cost greatly increases with the
number of cores.

As the classification becomes more accurate, the pres-
sure in the cache directory is alleviated, as blocks that
pertain to private pages are not stored for non-coherent
data (i.e. private) under coherence deactivation. Fig-
ure 13 shows how, as expected, P2TLB reduces the
average number of directory entries required per cycle
by 30.8% compared to the baseline system. Moreover,
when employing a usage predictor for TLBs, directory
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Fig. 14: Normalized execution time under coherence
deactivation. Classification with private TLBs.

usage is further reduced, by up to 52.5% on average for
the lowest predictor timeout.

Coherence deactivation also entails an improvement
in execution time, since reducing the directory storage
requirements contributes to a significant reduction of
coverage misses (induced by directory evictions) in the
cache structure. Additionally, P2TLB effectively reduces
L2 TLB miss penalty by means of TLB-to-TLB transfers.
Figure 14 shows how P2TLB improves execution time
by 6.8% compared to the baseline. TLB usage predictor
does not contribute into a system performance reduc-
tion (even damaging it to some extent). This is due
to the fact that directory ceases being a performance
bottleneck (i.e. almost all coverage misses are prevented)
with plain P2TLB, whereas prediction implies some extra
overheads. Nonetheless, this factor is mostly on account
of the optimization chosen to test the different classifica-
tion approaches (i.e. coherence deactivation). Of course,
alternative (or additional) data optimization could be
applied, ultimately offsetting prediction overheads with
the potential benefits of a more accurate classification.

Conclusion. To sum up, employing the classification
mechanism for private two-level TLBs reveals how a TLB
usage predictor (UP) is required to perform an accurate
private classification. The TLB usage predictor timeouts
considered in the analysis increase classification accuracy
as its value decreases, and consequently, directory usage
and cache traffic are improved when the classification
is applied to coherence deactivation. However, TLB-
based classification comes with some overheads, as it in-
creases TLB traffic due to the TLB-to-TLB miss resolution
mechanism, and incurs some performance degradation.
Despite the fact that this does not completely discourage
the use of a low predictor timeout over its potential ben-
efits, it evidences the flaws of a TLB-based classification
scheme for private TLB structures. Finally, TLB-to-TLB
transfers are not supposed to scale with the number of
cores in the system.

6.2.2 Distributed shared second level TLB
This section evaluates a TLB-based classification for
distributed shared L2 TLBs using the shared TLB usage
predictor presented in section 4.3.

Classification accuracy. Figure 15 depicts how pages
are classified into private and shared for different clas-
sification mechanisms in a scenario with a distributed
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Fig. 15: Private/Shared page classification with dis-
tributed shared last-level TLB.
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Fig. 16: Total flits injected under coherence deactivation.
Classification with distributed shared L2 TLB.

shared L2 TLB. The evaluation is focused in our clas-
sification mechanism detailed in Section 4 (S2TLB), and
different predictor timeouts for a shared TLB usage pre-
dictor (SUP). On the one hand, S2TLB classifies 59.4% of
pages as Private, and 14.6% as Reclassified, showing how
it performs a precise and adaptive classification at page
level. On the other hand, SUP increases the proportion
of Private pages up to a 78.1%, but reduces Reclassified
pages to merely a 2% of all accessed pages for a 2,000
cycles timeout. However, SUP accuracy for private data
detection beats even UP for private TLB structures, as
can be seen comparing with Figure 11. Note that SUP
relies on the shared L2 TLB as a filter for short-term
reclassifications. Our proposal for shared TLB structures
initiates a reclassification process only when the home
L2 TLB tile is accessed and found in a Present No Sharers
state (see Section 4.4). Even so, a reclassification process
may still fail to transition to private again if a core
reaccesses a disused page. Conversely, a TLB predictor
for purely private TLB structures is more dynamic and
forceful, which favors short-term reclassifications, albeit
possibly hurting system performance.

Coherence deactivation. Figure 16 shows the total nor-
malized network usage and its classification into cache
or TLB messages when the classification is applied to
coherence deactivation. Base is our baseline system with
the same overall configuration, including a distributed
shared second level TLB, but without data classification
nor coherence deactivation. Classification mechanisms
for shared TLB structures reduce the network traffic
since they avoid the costly TLB-to-TLB broadcast trans-
fers. S2TLB TLB traffic represents only 1.8% of the to-
tal. Furthermore, SUP prevents the TLB traffic increase
attributed to lower predictor timeouts, keeping it to as
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Fig. 17: Average directory usage under coherence deac-
tivation. Classification with distributed shared L2 TLB.
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Fig. 18: Execution time under coherence deactivation.
Classification with distributed shared L2 TLB.

much as 2.3% of the total traffic for the lowest considered
timeout, while the cache traffic is halved. All in all,
SUP improves classification accuracy while significantly
reducing traffic overhead by avoiding unnecessary TLB
invalidations. Therefore, fewer TLB misses are induced
by the predictor, which represents a far more scalable
approach in terms of traffic.

Figure 17 shows the average number of required direc-
tory entries, in this case normalized to the baseline sys-
tem with a distributed shared last-level TLB. Particularly,
S2TLB prevents the storage of 39.3% of directory entries
per cycle on average. Furthermore, when applying our
shared TLB usage predictor, directory storage require-
ments are reduced to merely 51.7% with a low predictor
timeout value, obtaining similar figures compared to
those of a purely private TLB structure, as seen in
Figure 13 (roughly 1% difference).

Finally, Figure 18 shows the execution time of differ-
ent applications employing our TLB-based classification
for shared TLB structures under coherence deactiva-
tion. S2TLB reduces execution time by 6.8% compared
to a baseline system without coherence deactivation.
Additionally, SUP further contributes to better system
performance, reducing execution time up to 8.2%, even
using a 2,000 cycles predictor timeout.

Conclusion. The classification scheme introduced in
this paper for shared TLB structures benefits system
performance as expected when applied to coherence
deactivation. Moreover, our shared TLB usage predictor
(SUP) enhances private detection without performance
degradation.
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Fig. 19: Classification overhead analysis.

6.3 Private against shared TLB classification
This section offers a comparative analysis of how the
classification mechanisms behave for both private and
shared TLB structures when applied to coherence deacti-
vation, focusing on the usage predictors herein detailed.

Overhead analysis. We show results for the TLB-
based classification mechanisms with a single level and
two private level TLB structures (UP TLB and UP 2TLB,
respectively), and the shared TLB classification mech-
anism (SUP). All results presented in Figure 19 are
normalized to a baseline with a single TLB level without
coherence deactivation, which employs broadcast TLB-
to-TLB transfers for TLB miss resolution purposes.

Figure 19a shows the total traffic for the different TLB
structures. We observe how, in this case, both purely
private TLB structures behave similarly, reducing traf-
fic over 30% compared to the baseline. As TLB usage
predictor decouples the page lifetimes from TLB size
or associativity, including a private second TLB level
hardly contributes to reduce network traffic. If a TLB
entry is invalidated, either in the first or the second
TLB level, accessing that page would result in a miss
in the TLB hierarchy, thus invoking the broadcast TLB-
to-TLB resolution mechanism that is causing the traffic
overhead. Conversely, SUP reduces both TLB and cache
traffic over the approach for private TLB structures. SUP
efficiently avoids premature cache flushes and reduces
TLB invalidation frequency even with low predictor
values, provided that the distributed shared second TLB
level acts as a filter for premature invalidations. More-
over, TLB misses are resolved through unicast messages,
which represent a far more scalable solution. Particularly,
SUP reduces total traffic to just 55.1% with a 2,000 cycles
predictor timeout.

Similarly, Figure 19b shows the average execution
time evolution for the different predictor timeout values
considered. We observe how applying the shared TLB
usage predictor (SUP) reduces execution time as the
predictor timeout decreases, a reduction of up to 12.23%
over baseline with a 2,000 cycles timeout. Differently,
even though UP 2TLB predictor also improves the classi-
fication accuracy, it moderately increases execution time
compared to not employing a predictor, dropping its
performance gainings to just 8.8% with a 2K predictor
timeout. In other words, the performance divergence
with SUP reaches 3.5%. UP TLB follows a similar trend
as UP 2TLB, but with lower performance gainings over
baseline. This is due to the predictor induced inval-
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Fig. 20: Scalability analysis.

idations, which result in higher TLB miss rates and,
ultimately, into performance shrinkage.

Scalability analysis. This section shows how the dif-
ferent classification schemes scale when deactivating
coherence maintenance. Due to the slow pace of the
simulation tools, this study is only performed using
SPLASH 2 benchmarks and scientific application. All the
results in Figure 20 are normalized to a system of the
same core count, with a purely private TLB structure
that does not perform data classification; therefore, co-
herence maintenance is not deactivated. Lower predictor
timeouts have not been included in this study to favor
better figure readability, although they follow a similar
trend.

The page classification mechanisms based on purely
private TLB structures evaluated in this paper aim for
small- or medium-scale systems. As can be seen in Fig-
ure 20a, broadcast messages issued after every TLB miss
do not scale for larger systems. Particularly, when em-
ploying a usage predictor for TLBs, which induces extra
TLB misses, up to 50.7% more traffic is issued compared
to P2TLB for a 50,000 cycles predictor timeout, ultimately
offsetting the benefits of deactivating coherence for a
32-core CMP. Conversely, our classification mechanism
for shared TLB hierarchies completely avoids broadcast
requests, relying solely on unicast messages after miss-
ing on the first TLB level. As a consequence, SUP not
only avoids traffic overhead for larger systems, it even
reduces traffic by 30.9% compared to the baseline for
SUP-50K.

Consequently, leveraging a shared last-level TLB for
page classification improves global system performance
over its competitors, specially with SUP, which improves
private data detection, avoids the overheads of the pre-
diction scheme for private TLB structures, and exploits
inter-core sharing patterns. Therefore, SUP contributes
to reduce execution time by 17.8% for a 50,000 cycles
timeout with a 32-core CMP (Figure 20b), nearly 9%
better performance than UP with the same predictor
timeout.

Conclusion. Employing SUP on a system with shared
last-level TLBs has proved to squeeze coherence deacti-
vation potential to its maximum, providing a better clas-
sification while avoiding the majority of its overheads,
specially for low predictor timeout values, ultimately
representing the best-suited classification scheme for
large-scale CMPs.
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7 CONCLUSIONS

In this paper we have evaluated different approaches to
the classification of data into private or shared at page
level in CMPs with different TLB hierarchies. We revisit
TLB-based classification for purely private multi-level
TLB structures, which get similar figures to previous
works. Furthermore, we propose a TLB-based classifica-
tion approach which leverages the use of a distributed
shared last-level TLB. A shared last-level TLB structure
allows to naturally discover the sharing access pattern
through the L1 TLB misses received from different cores
to the home L2 TLB tile. Additionally, we show the
interest of employing a usage predictor for TLBs in
order to achieve an accurate classification independent
from TLB size, and propose a predictor for systems with
distributed shared last-level TLBs (SUP).

Our proposal improves classification accuracy while
avoiding some of its overheads. Specifically, SUP im-
proves the classification of private pages up to 78.1% on
average. As a consequence, execution time is improved
by 12.2% and traffic is reduced to only 55.1% over a
single level baseline system when SUP is applied to
coherence deactivation. Conversely, a TLB-based classifi-
cation for a private two-level TLB structure slightly hurts
execution time as long as the predictor timeout value is
reduced, progressively hurting system performance up
to 3.5% over SUP.
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[4] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and J. Duato,
“Temporal-aware mechanism to detect private data in chip mul-
tiprocessor,” in 42th Int’l Conf. on Parallel Processing (ICPP), Oct.
2013.

[5] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-
level tlbs for chip multiprocessors,” in 17th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2011, pp. 62–73.

[6] D. Lustig, A. Bhattacharjee, and M. Martonosi, “Tlb improve-
ments for chip multiprocessors: Inter-core cooperative prefetchers
and shared last-level tlbs,” in ACM Transactions on Architecture and
Code Optimization (TACO), Jan. 2013.

[7] D. Kim, J. A. J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in 19th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Sep. 2010,
pp. 111–122.

[8] Y. Li, R. Melhem, and A. Jones, “PS-TLB: Leveraging Page Classi-
fication Information for Fast, Scalable and Efficient Translation for
Future CMPs,” in 8th Int’l Conf. on High-Performance and Embedded
Architectures and Compilers (HiPEAC), Jan. 2013.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Re-
active NUCA: Near-optimal block placement and replication in
distributed caches,” in 36th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2009, pp. 184–195.

[10] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-
assisted data distribution for chip multiprocessors,” in 19th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Sep. 2010, pp. 501–512.

[11] Y. Li, R. G. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classifi-
cation,” in 21st Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2012, pp. 231–240.

[12] A. Ros and S. Kaxiras, “Complexity-effective multicore coher-
ence,” in 21st Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2012, pp. 241–252.

[13] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musu-
vathi, “End-to-end sequential consistency,” in 39th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2012, pp. 524–535.

[14] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“SWEL: Hardware cache coherence protocols to map shared data
onto shared caches,” in 19th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2010, pp. 465–476.

[15] H. Hossain, S. Dwarkadas, and M. C. Huang, “POPS: Coher-
ence protocol optimization for both private and shared data,” in
20th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2011, pp. 45–55.

[16] M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec. 2012,
pp. 341–350.

[17] J. Zebchuck, B. Falsafi, and A. Moshovos, “Multi-Grain Coherence
Directory,” in 46th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), Dec. 2013.

[18] M. Davari, A. Ros, E. Hagersten, and S. Kaxiras, “An efficient, self-
contained, on-chip, directory: DIR1-SISD,” in 24th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2015,
pp. 317–330.

[19] A. Ros and A. Jimborean, “A dual-consistency cache coherence
protocol,” in 29th Int’l Parallel and Distributed Processing Symp.
(IPDPS), May 2015, pp. 1119–1128.

[20] ——, “A hybrid static-dynamic classification for dual-consistency
cache coherence,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. PP, no. 99, Feb. 2016.
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Politècnica de València in 1996 where she is
currently an Associate Professor of Computer
Architecture and Technology. She has published
more than 50 conference and journal papers.
She has served on program committees for sev-
eral major conferences. Her research interests

are in the field of interconnection networks, network-on-chips and cache
coherence protocols.

Antonio Robles received the MS degree in
physics (electricity and electronics) from the Uni-
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de València. He has taught several courses on
computer organization and architecture. His re-
search interests include high-performance inter-
connection networks for multiprocessor systems

and clusters and scalable cache coherence protocols for SMP and CMP.
He has published more than 70 refereed conference and journal papers.
He has served on program committees for several major conferences.
He is a member of the IEEE Computer Society.
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