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Multiobjective Identification of a Feedback
Synthetic Gene Circuit

Yadira Boada, Member, IEEE, Alejandro Vignoni , Member, IEEE, and Jesús Picó , Senior Member, IEEE

Abstract— Kinetic (i.e., dynamic) semimechanistic models
based on the first principles are particularly important in systems
and synthetic biology since they can explain and predict the
functional behavior that emerges from the time-varying concen-
trations in cellular components. However, gene circuit models
are nonlinear higher order ones and have a large number of
parameters. In addition, experimental measurements are often
scarce, and enough signal excitability for identification cannot
always be achieved. These characteristics render the identification
problem ill-posed, so most gene circuit models present incomplete
parameter identifiability. Thus, parameter identification of typ-
ical biological models still appears as an open problem, where
ensemble modeling approaches and multiobjective optimization
arise as natural options. We address the problem of identifying
the stochastic model of a closed-loop synthetic genetic circuit
designed to minimize the gene expression noise. The model results
from the feedback interaction between two subsystems. Besides
incomplete parameter identifiability, the closed-loop dynamics
cannot be directly identified due to the lack of enough input signal
excitability. We apply a two-stage approach. First, the open-
loop averaged time-course experimental data are used to identify
a reduced-order stochastic model of the system direct chain.
Then, closed-loop steady-state stochastic distributions are used to
identify the remaining parameters in the feedback configuration.
In both cases, multiobjective optimization is used to address
the parameter identifiability, providing sets of parameters valid
for different state-space regions. The methodology gives good
identification results, provides clear guidelines on the effect of
the parameters under different scenarios, and it is particularly
useful for easily combining time-course population averaged and
steady-state single-cell distribution experimental data.

Index Terms— Closed-loop identification, feedback synthetic
gene circuit, model reduction, multiobjective optimization,
parameter identification, synthetic biology.

I. INTRODUCTION

B IOLOGICAL circuits in synthetic biology are usually
modeled by means of systems of ordinary differential

equations (ODEs). These ODEs describe the time evolution
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of the amounts of the involved species, such as messenger
RNA (mRNA) or proteins. Starting from a set of biochemical
reactions for the circuit, dynamic balances for the biochemical
species can be obtained using well-established methods, such
as the mass–action kinetics formalism [1], [2]. Even for
small genetic circuits, the number of metabolic intermediate
biochemical species involved in the whole system dynamics
is typically much larger than the few variables of interest.
As a consequence, the resulting nonlinear dynamic models
are high dimensional, even for small circuits, and have a very
large number of unknown parameters. Most of these parame-
ters are essentially physical magnitudes reflecting stochastic
binding/unbinding reactions at the molecular level, affected
by many factors within the cell. Therefore, they are uncertain
by nature. In addition, the available measurements are usually
very scarce, being limited to a very small number of species.
Parameter identification of these models is thus infeasible in
practice. To cope with this situation, a first standard approach
consists of obtaining reduced-order dynamic models. Model
reduction of biochemical reaction systems is carried out by,
exploiting the presence of different time scales [3], [4] and
the existence of system invariant species [2], [5]. Most Often,
it is desired that the reduced model still allows for some
degree of mechanistic description of the system. Therefore,
the reduction process should yield a more amenable model
for computational analysis but avoiding excessive reduction
that would lead to a lack of biological relevance. In particular,
the species in the reduced model must not be a combination
of other species, and the resulting lumped parameters must be
easy to associate with the experimental tuning knobs available
in the lab. This is specially important in synthetic biology,
where circuit design and experimental tuning are central. Thus,
both mechanistic interpretation and easiness to translate results
to the biological lab are the desired properties that the reduced-
order models should commonly have in synthetic biology.
However, these models still inherit many of the problems
present in their parent ones.

Identification of model parameters from measurements is
an established problem in control systems technology, with
a long tradition of methods applicable to both linear and
nonlinear systems [6], [7]. Yet, parameter estimation in non-
linear dynamic models remains a very challenging inverse
problem due to its nonconvexity, ill-conditioning caused by
over-parametrization, experimental measurement errors, data
scarcity, and uncertainty [8], [9]. Moreover, for nonlinear mod-
els, the amount of information collected from an experiment
may strongly depend on the true value of the parameters [10].
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Thus, the inference of model parameters from experimental
data is ill-posed under these conditions. Lack of model iden-
tifiability due to ill-posedness of the identification problem
is a pervasive issue in biological systems causing parameter
degeneracy [11]–[14]. Standard traditional methods based on
best-fit models try to find a unique solution (i.e., only one value
for each parameter), the best fit, relying on single objective
optimization that minimizes a measure of the model perfor-
mance. Yet, for most biological models, as described earlier,
it is not possible to uniquely estimate parameter values from
experimental data that perform well under all experimental
scenarios. The best-fit solution may be good for one set of
experiments and bad for others, or it may be acceptable for
all the experiments but not really good for any one.

Several methods have been proposed to tackle parameter
degeneracy in biological contexts. For instance, extended
Kalman filters have been used in [15] for parameter estimation
and model selection in biological systems with scarce noisy
measurements. Relaxation procedures providing feasible sets
of parameters, i.e., consistent with measurements, have been
used in [16]. On the other hand, ensembles of models, i.e., sets
of models with different structures and/or parameter values,
have received much attention in the last years. Ensemble mod-
els combine the output of a set of models, yielding improved
prediction as compared to a single model. Several approaches
have been proposed. In [17], a parametric representation of the
Jacobian matrix using local linear models at each point in the
parameter space was used to circumvent the lack of knowledge
about the structure of the system kinetics. Then, the authors
used the ensemble of models to elucidate the parameter
regions associated with the specific experimentally observed
dynamical behaviors. A similar approach was used in [18].
Data-driven generation of ensembles of models with different
structures and parameters values has been done in [19]. The
final ensemble prediction is obtained from a combination using
the median of the predictions of the different models. In [11],
an incremental method to generate ensemble models was used
to model the metabolic pathways. The models in the ensemble
share the same topology and only differ in their parameter
values. These models represent regions in the parameters space
with equivalent model prediction error (in the statistical sense)
and are obtained by exploring the parameter space. Most
often, current approaches use global optimization methods to
cope with nonconvexity of the objective function, e.g., genetic
algorithms [20], and evolutionary computation [21]–[23].
Evolutionary computation is becoming one of the preferred
optimization techniques for the large parameter estimation
problems arising in systems and synthetic biology [21], [23].

Although the identification problem can most often be
naturally expressed as a multiobjective problem (MOP), this
approach has seldom been used [24], [25]. The use of an
expanded space of model performance objectives in a multiob-
jective setting leads to a set of optimal solutions, the so-called
Pareto set. Sets of model parameters naturally arise, akin to
ensemble modeling. This alleviates the problem of parameter
identifiability. Formulation of the identification problem as
an MOP also allows easy integration of experimental data
of different nature requiring diverse performance indexes

Fig. 1. (a) Representation of a cell incorporating the engineered synthetic
circuit comprising cell-to-cell communication based on quorum sensing
together with intracellular feedback. (b) Schematics representing the open-
loop (NoQs/NoFb) and the closed-loop (Qs/Fb) circuits.

and fusion of information coming from different experiments
(e.g., open-loop and closed-loop ones).

We propose a methodology based on multiobjective opti-
mization design (MOOD) to perform parameter identification
leading to ensembles of nonlinear models. The methodology
uses a global multiobjective evolutionary algorithm (MOEA)
to find the best approximation to the Pareto set of model
parameters. The Pareto set together with the Pareto front
regions are correlated with the experimental scenarios using
hierarchical clustering and a multicriteria decision making
(MCDM) strategy [26]. This allows to obtain the sets of model
parameters that explain each scenario.

To show the applicability of the methodology, we performed
the multiobjective optimization-based identification on a syn-
thetic gene circuit designed to regulate noise in gene expres-
sion [27], [28]. We also show that the MOOD methodology
allows easy integration and evaluation of experimental data
of different nature. In our case, the closed-loop dynamics of
the circuit cannot be directly identified due to lack of enough
input signal excitability. Thus, we use both open-loop averaged
time-course experimental data to identify a reduced-order
model of the system direct chain and closed-loop steady-state
population distributions to identify the remaining parameters
of the stochastic model in the feedback configuration using a
two-stage identification approach.

The rest of this paper is organized as follows. In Section II,
the biological circuit is described and its reduced-order model
derived. In Section III, we describe the proposed two stages
identification methodology in detail. The results achieved
are shown in Section IV. Finally, conclusions are drawn
in Section V.

II. QS/FB GENE SYNTHETIC CIRCUIT

A. Description of the Genetic Circuit

Productivity in biotechnological processes decreases with
the heterogeneity of the cell populations [29]. This one can
be attributed to variability at the protein level caused by
gene expression noise. The gene synthetic circuit depicted
in Fig. 1(a) was designed in [27] and [28] to regulate the
mean value of the expression of a protein of interest (PoI)
while minimizing its variance. The circuit, hereafter denoted
as QS/Fb, was implemented in the bacterial host E. coli and
comprises two feedback loops.



On the one hand, the circuit uses the synthetic repressible
promoter PluxR designed in [30] to control transcription of
the gene luxI coexpressing the PoI and the protein LuxI. The
promoter PluxR is repressed by the transcription factor (LuxR ·
AHL)2. The protein LuxR is expressed by the gene luxR under
control of the constitutive (i.e., constant) promoter Pc. The
small signaling autoinducer molecule N-acyl-L-homoserine
lactone (AHL) [31], [32] is synthesized by the LuxI protein.
Proteins LuxR and AHL bind, forming the heterodimer (LuxR
· AHL), which subsequently dimerizes as the heterotetramer
(LuxR · AHL)2. This way, an intracellular negative feedback
control is effectively implemented on the expression of LuxI.

On the other hand, the signaling molecule AHL
induces a cell-to-cell communication mechanism via quorum
sensing [33]. This molecule passively diffuses across the cel-
lular membrane. Therefore, a continuous flow of AHL across
the cell membrane appears as a function of the intracellular
an extracellular AHL concentrations. Since production of PoI
and LuxI are linked, cells producing less PoI than the average
production of the cell population will have a positive inflow
of extracellular AHL and the other way round. In this way,
an external feedback loop inducing consensus at the cell
population level is implemented.

If the gene luxI is removed, AHL it is not produced. This
results in the open-loop circuit NoQS/NoFb that only imple-
ments the constitutive expression of LuxR and a repressible
expression of the PoI [see Fig. 1(b)]. In this case, the level
of PoI expression can be repressed at different levels by
adding varying concentrations of external AHL into the culture
medium.

In Section II-D, we derive a stochastic reduced model for
the closed-loop QS/Fb circuit. This model can be used to
represent also the open loop (NoQs/NoFb) by setting the
AHL synthesis rate to 0, which represents the absence of
the luxI gene. First, we derive a deterministic model from
the set of relevant biochemical reactions. We will obtain a
reduced-order model applying the quasisteady-state (QSS)
approximation and considering invariant species. From this
reduced-order model, we will obtain an equivalent set of
biochemical pseudoreactions that will eventually be used to
derive a stochastic model using the chemical Langevin equa-
tion (CLE) formalism.

B. Deterministic Model

For the above-mentioned circuit, we consider the main
biochemical reactions: transcription and translation of the
genes involved, the hetero- and homodimerization reactions,
and the diffusion of the inducer through the cell membrane. A
set of reactions is obtained under the following assumptions:

1) We consider the cell contains enough resources (free
RNA polymerase and ribosomes). This way, there is
no need to consider the binding/unbinding reactions of
RNA polymerase and ribosomes to DNA and mRNA,
respectively.

2) Transcription of genes luxI and luxR is irreversible.
3) For the repressible promoter PluxR, we consider promoter

leakiness (i.e., transcription even in saturating presence
of the repressor). The effective maximum transcription

rate of luxI (without repression) is keI , and its basal
transcription (leakage) is αkeI with α < 1.

4) There may be several copies of both genes luxI and luxR
in the cell, e.g., by introducing them in separate plasmids
with different plasmid copy numbers [34].

5) Translation is not a simple process [34]. We model it
as an irreversible reaction with an average transcription
rate accounting for the fact that binding of ribosomes to
the ribosome binding site (RBS) is indeed reversible,
and several ribosomes may translate a single mRNA
molecule simultaneously.

6) Binding of LuxR and AHL, and their dimerization to
form (LuxR · AHL)2 are both reversible reactions.

7) The diffusion process of the intracellular (AHL) and
extracellular (AHLext) inducer across the cell membrane
is modeled as a pseudoreaction.

CR−→ mRNAluxR

DNA
keI→ DNA + mRNAluxI

mRNAluxR
pR−→ mRNAluxR + LuxR

mRNAluxI
pI−→ mRNAluxI + LuxI

LuxI
kA−→ AHL + LuxI

LuxR + AHL
k−1/kd1
�
k−1

LuxR · AHL

2(LuxR · AHL)
k−2/kd2
�
k−2

(LuxR · AHL)2

(LuxR · AHL)2 + DNA
klux/kdlux
�
klux

DNA(LuxR · AHL)2

DNA(LuxR · AHL)2
αkeI−→ DNA(LuxR · AHL)2

+ mRNAluxI

AHL
D
�

D/Vc

AHLext

mRNAluxI
dmI−→ ∅

mRNAluxR
dmR−→ ∅

LuxI
dI−→ ∅

LuxR
dR−→ ∅

AHL
dA−→ ∅

AHLext
dAe−→ ∅

LuxR · AHL
dRA−→ ∅

(LuxR · AHL)2
dRA2−→ ∅ (1)

where the empty set ∅ represents degradation of biochemical
species. We denoted DNA as the free promoter of gene luxI,
mRNAluxI and mRNAluxR are the mRNA transcribed from the
genes luxI and luxR, respectively, and LuxI and LuxR are their
corresponding translated proteins. AHL is the intracellular
inducer and AHLext the extracellular one, and Vc = Vext/Vcell
is the ratio between the cell and the culture volumes.

The dynamic balance equations for each species in the
above-mentioned reactions can be derived using the mass
action kinetics formalism [1]. The resulting models assume



TABLE I

STATES IN THE COMPLETE DETERMINISTIC QS/FB MODEL

that the amount of species transformed by the reactions
depend solely on the current amount of species, the rates at
which these reactions proceed, and the stoichiometry of the
reactions [2]. We take into account the dilution effect caused
by cells growth, assuming a constant specific growth rate μ
included in the respective degradation rate parameter of each
species. We assume that the number of copies of the genes
luxR and luxI keeps constant over time. This is indeed the
case if the genes are chromosomal ones. In case the genes
are located in plasmids, we can assume that at each cell
division, plasmids are first duplicated and, then, half of them
will be inherited by each of the offspring cells. This is a valid
approximation if we assume that we model the average cell.

The resulting deterministic dynamic model is given by the
set of equations (2)–(11) representing the dynamics of each
species inside the i th cell in a population of N cells. The
model has 9N +1 states and 22 parameters, assuming identical
cells. Table I describes each state in the model

ṅi
1 = keI n

i
7 + αkeI n

i
8 − dmI n

i
1 (2)

ṅi
2 = CR − dmR ni

2 (3)
ṅi

3 = pIn
i
1 − dIn

i
3 (4)

ṅi
4 = pRni

2 + k−1ni
5 − dRni

4 − k−1

kd1
ni

9ni
4 (5)

ṅi
5 = 2k−2ni

6 + k−1

kd1
ni

9ni
4 +

(
−k−1 − dRA − 2

k−2

kd2
ni

5

)
ni

5

(6)

ṅi
6 = kluxni

8 + k−2

kd2
ni

5
2+

(
−k−2 − dRA2 − klux

kdlux
ni

7

)
ni

6 (7)

ṅi
7 = kluxni

8 − klux

kdlux
ni

6ni
7 (8)

ṅi
8 = −kluxni

8 + klux

kdlux
ni

6ni
7 (9)

ṅi
9 = D

(
n10

Vc
− ni

9

)
+ kAni

3 + k−1ni
5 −

(
k−1

kd1
ni

4 + dA

)
ni

9

(10)

ṅ10 = D

(
− Nn10

Vc
+

N∑
i=1

ni
9

)
− dAen10. (11)

Note that we have expressed diffusion as a biochemical
reaction in (1) when it, actually, is a physical process that
we modeled using a lumped approximation of the Fick’s
law [34], [35]. In addition, the extracellular inducer AHLext
is not subject to dilution by growth rate. We assumed that
the external inducer is introduced as a bolus injection. That

is, at time t = 0, an amount of AHLext is injected in the
culture. This value is taken as the initial condition n10(0) for
its corresponding dynamic balance.

C. Model Reduction

Using the model (2)–(11), we get a reduced-order model
by applying the QSS approximation on the fast chemical
reactions and taking into account invariant species derived
from conservation laws. We aim at obtaining a reduced
model more amenable for computational analysis but avoiding
excessive reduction that would lead to a lack of biological
relevance. On the one hand, the species we obtain in the
reduced model are not the lumped ones. Reduced models
accounting for total mRNA and total transcription factor have
been proposed to match modeled species with measurable
ones [36]. In our case, we explicitly modeled bound and
unbound forms of the transcription factor, but the model
accounts for the total LuxI protein. For our circuit, this is
a good proxy for the amount of PoI if both are coexpressed,
and transcriptional noise dominates. In the best case, when
the PoI is in self-cleavable tandem fusion with LuxI, both
will express in 1:1 stoichiometric ratio [37]. On the other
hand, the resulting parameters in the reduced model, even if
being lumped ones, are easy to associate with the tuning knobs
available in the wet-lab implementation (relevant cases [38]),
and their values are amenable to be obtained experimentally.

Conservation laws can be inferred from simple inspection
in the model (2)–(11). Notice the sum of equation (8) rep-
resenting the variation of free promoter plus equation (9)
representing the variation of dimer bound to the promoter
DNA(LuxR · AHL)2 is 0. This implies that the sum of free
and bound promoter is constant and equal to the (plasmid)
copy number PN of the gene luxI

ṅi
7 + ṅi

8 = 0� ni
7 + ni

8 = PN. (12)

Next, we considered that the binding/unbinding reactions of
the dimer (LuxR · AHL)2 to the gene promoter DNA proceed
much faster than translation and mRNA degradation, so they
can be assumed to be at QSS. This is also equivalent to
consider that klux is large enough so that using (12), we can
approximate

1

klux
ṅi

7 = 0 � ni
7 = PN

(
kdlux

kdlux + ni
6

)
1

klux
ṅi

8 = 0 � ni
8 = PN

(
ni

6

kdlux + ni
6

)
. (13)

We also assume that mRNA is produced and degraded much
faster than proteins. Hence, considering mRNA at QSS, we get
algebraic expressions for mRNAluxI (ni

1) and mRNAluxR (ni
2)

ṅi
1 = 0� ni

1 = keI

dmI

(
ni

7 + αni
8

)
(14)

and

ṅi
2 = 0� ni

2 = CR

dmR

. (15)



TABLE II

STATES IN THE DETERMINISTIC REDUCED MODEL

From (13) and (14), replacing in (4), we have

ṅi
3 = PNkeI pI

dmI

(
kdlux + αni

6

kdlux + ni
6

)
− dIn

i
3 (16)

and from (13) and (15), replacing in (5), we have

ṅi
4 = CRpR

dmR

+ k−1ni
5 −

(
k−1

kd1
ni

9 + dR

)
ni

4. (17)

In addition, using (13) in (7), we obtain

ṅi
6 = k−2

kd2

(
ni

5

)2 − (k−2 + dRA2)n
i
6. (18)

Finally, we assumed that the monomer production is large
as compared to that of the dimer, so that it can be considered
at QSS, i.e., ṅi

5 = 0 in (6). The resulting expression for ni
5

can be replaced in (5), (7), and (10).
All these approximations, after convenient renaming of the

state variables as shown in Table II, lead to the reduced-order
model (19)–(23) for the i th cell in a population of N cells

ṅi
1 = CIpI

dmI

(
kdlux + αni

3

kdlux + ni
3

)
− dIn

i
1 (19)

ṅi
2 = CRpR

dmR

+ k−1ni
6 −

(
k−1

kd1
ni

4 + dR

)
ni

2 (20)

ṅi
3 = k−2

kd2

(
ni

6

)2 − (k−2 + dRA2)n
i
3 (21)

ṅi
4 = k−1ni

6 + kAni
1 + D

(
n5

Vc
− ni

4

)
−

(
k−1

kd1
ni

2 + dA

)
ni

4

(22)

ṅ5 = D

(
− Nn5

Vc
+

N∑
i=1

ni
4

)
− dAen5 (23)

with

ni
6 = K

⎡⎣√
8 k−2

(
2 k−2kd1ni

3 + k−1ni
2ni

4

)
kd1kd2(dRA + k−1)2 + 1 − 1

⎤⎦ (24)

where CI is the plasmid copy number of gene luxI times its
effective transcription rate. The model requires 18 parameters,
as (CIpI/dmI) and (CRpR/dmR) represent lumped effective
expression rates, and the constant K = (kd2(dRA + k−1))/4k2.
It has 4N + 1 states and N algebraic equations. The reduction
by 5N states makes this model more computationally efficient
than the original one.

Notice the first term on the right-hand side of (19) is a
Hill-like function with the Hill exponent equal to n = 1 [39],
which together with the monomer algebraic equation (24)
represents the transcription factor regulatory effect (repression

Fig. 2. Comparison of models. A 200-min-long simulation carried out over
a single cell (N = 1) for both the reduced (solid line) and the complete
model (dashed line). Both simulations used the same initial conditions, same
parameter values, and same discretization step size (δt = 10−3 s). The
species eliminated by the reduction process [mRNAluxI, mRNAluxR, DNA,
DNA(LuxR·AHL)2, and (LuxR·AHL)] were calculated algebraically from the
remaining species. As N = 1, the amount of molecules of AHL and AHLext
is similar, so the AHLext plot was omitted in this figure.

in our case) over the expression of protein LuxI. These expres-
sions are equivalent to the ones that can be obtained using [36]
for the multimer-dominant case.

To compare the complete model with the reduced order one,
we performed a series of simulation experiments. Fig. 2 shows
some of the results for both the complete and the reduced
models. The biochemical species are plotted in Fig. 2 for the
reduced model (solid line) and the full one (dashed line).

The agreement between the results of both models was
good enough for our purposes, without requiring any ad hoc
adjustment. From a qualitative point of view, the transient
regimes of both models are similar for all species. The length
of the transients and the steady-state values coincide in both
models.

D. Stochastic Model

To model gene expression intrinsic noise, we have derived
a stochastic CLE model. Here, the mean of each species’
trajectory corresponds to the trajectory of the deterministic
reduced model (19)–(23). To this end, we first considered the
following equivalent set of pseudoreactions for the i th cell
drawn from the deterministic model:

(LuxR · AHL)2
f (n3,t)−→ LuxI + (LuxR · AHL)2

LuxI
kA−→ LuxI + AHL

ttLuxR−→ LuxR

LuxR + AHL
k−1/kd1

�
k−1

LuxR · AHL

2(LuxR · AHL)
g(n6,t)
�

g(n6,t)
(LuxR · AHL)2

AHL
D
�

D/Vc

AHLext



LuxI
dI−→ ∅

LuxR
dR−→ ∅

(LuxR · AHL)2
dRA2−→ ∅

AHL
dA−→ ∅

AHLext
dAe−→ ∅ (25)

where

f (n3, t) � CIpI

dmI

(
kdlux + αI ni

3

kdlux + ni
3

)
the Hill-like function associated with LuxI expression, g(n6, t)
corresponds to the dimerization reflected in (24), ttLuxR =
(CR pR/dmR) represents the transcription–translation activity
of luxR, and ∅ denotes species degradation. From these reac-
tions, it is possible to obtain the associated CLE [52]

dn(t) = S · a(n(t))dt + S · √a(n(t)) · dW(t) (26)

where n(t) = [n(t)i , . . . n(t)N, n5]T are the number of mole-
cules of each species in the population, a(n(t)) the reaction
propensities, and W(JN+1)×(JN+1) is a diagonal matrix of
independent scalar Brownian motions [52] with J = 13 the
number of reactions for the i th cell.

The stoichiometry matrix S, whose elements are the sto-
ichiometry submatrices for every cell Scell and the external
stoichiometry Sext, has the structure

S =
[

Scell ⊗ IN 04N×1

Sext ⊗ 11×N −1

]
(27)

where ⊗ is the Kronecker product, IN is the identity matrix of
dimension N × N , 04N×1 and 11×N are the vectors of zeroes
and ones, respectively. The coefficients in the stoichiometry
matrices Scell and Sext, obtained from the set of pseudoreac-
tions (25), are

Scell =

⎡⎢⎢⎣
1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0 0
0 0 0 1 −1 0 0 0 0 1 −1 −1 1

⎤⎥⎥⎦
Sext = [0 0 0 0 0 0 0 0 0 0 0 1 − 1].

The term a(n) in (26) is the associated vector of reaction
propensities for the whole population of cells with

a(n) =
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Fig. 3. Comparison of the deterministic and stochastic models.
A 800-min-long simulation of the deterministic reduced model is compared
with a simulation of the stochastic model carried out over a population of cells
(N = 240). The deterministic trajectory (dashed red line) is plotted along the
stochastic mean (solid blue line) and standard deviation (cyan shadow).

For the computational analysis, we used the Euler–
Maruyama discretization (28) of the CLE stochastic
model (26)

n(t + δt) = n(t) + S · a(n)δt + S · N · √
a(n)

√
δt (28)

where N(JN+1)×(JN+1), with J = 13, is a diagonal matrix of
continuous normal random variables with zero mean and unit
variance.

Note that, we used the lumped propensity functions derived
from the reduced model, like the f (ni

3, t) Hill-like func-
tion associated with LuxI repression. This approach has
already been used in [53]. We validated it for our model
(see Appendix I) by simulating the pseudoreaction associated
with f (ni

3, t) using the CLE approach and comparing the
result with the one obtained by simulating the expanded set
of corresponding original reactions using the Gillespie’s direct
method Stochastic Simulation Algorithm (SSA). For the rest
of the analysis, we performed stochastic simulations (28)
using N = 240 cells [28] with a total time of 400 min
using δt = 25 × 10−4 s. Extrinsic noise was modeled by
randomizing the values of the model parameters [54], [55],
an approach that can easily be integrated within the CLE
framework. We assumed a normal distribution to generate the
model parameters for each i th cell in the population. Under
these conditions, we compared the output of the deterministic
and the stochastic models. The results are shown in Fig. 3.
The mean expression of the species in the stochastic model is
very close to their corresponding trajectory in the deterministic
one.

E. Model Parameters

Table III describes the model parameters for both the Qs/Fb
and the NoQs/NoFb circuits, with 24 and 22 parameters,



TABLE III

PARAMETERS OF THE GENE CIRCUIT MODEL

respectively. Recall the model (28) also represents the
NoQs/NoFb CLE-based model if the synthesis rate is set to
kA = 0. Out of these parameters, 17 were obtained from the
literature and were kept fixed (top of Table III). Some of these
parameters were calculated as follows.

1) CI is the LuxI transcription rate times the LuxI plas-
mid copy number. The typical transcription rate in
E. coli. is ≈600–6000 bp/min [34]. The LuxI length
is 582 bp [56]. The LuxI transcription rate is
(600 bp/min)/582 bp = 1.03 min−1; using the plasmid
vector pBR322 with [15, 20] copies/cell, we estimated
CI = 17 ∗ 61.03 = 17.5 molecules · min−1.

2) CR is the transcription rate obtained as before times the
LuxI plasmid copy number. We used the plasmid vector
pACYC184 with 10 copies/cell, the minimum transcrip-
tion rate 600 bp/min, and the LuxR length 756 bp [56].
Hence, the plasmid copy number times LuxR tran-
scription rate is CR = (10 ∗ 600 bp/min)/756 bp =
7.9 molecules · min−1.

3) The degradation rates dmI , dmR , dI, dR, dA, and dRA
include the dilution effect due to cell growth. We con-
sidered a specific growth rate μspe = 0.011 min−1

corresponding to a cell doubling time of 63 min obtained
experimentally.

4) The degradation rate dRA2 = 0.017 min−1 of the
transcription factor (LuxR · AHL)2 only depends on
the specific growth rate μspe, assuming (LuxR · AHL)2
is much more stable than the other species in the
system [57], [45].

The remaining seven parameters are easy to associate with
the experimental tuning knobs available in the lab and will
be estimated in this paper. For them, initial range intervals

were set, taking into account the plausible biological values
from the literature.

III. MULTIOBJECTIVE OPTIMIZATION

AND PARAMETER IDENTIFICATION

A. Two-Stage Identification Approach

In our circuit, the only available experimental data are
limited to two classes. These are typically available in a
standard laboratory: 1) time-course averaged measurements
of cells growth and total production of the PoI in a culture
and 2) steady-state distributions of protein production across
the cells population. In this last case, time snapshots can be
obtained with low frequency using a lab-intensive and costly
approximate procedure.

Recall that the goal of the circuit is to minimize output
variance for a given mean. To this end, it integrates two
feedback loops to achieve robustness with respect to the
external perturbations. This makes the identification problem
harder due to the practical lack of excitability of the input.
Indeed, time-course data of the closed-loop circuit output,
both the mean and the distribution across the cell population,
show very little variation, even for the large perturbations
we can introduce experimentally. As seen in Fig. 4(a), even
after a large perturbation of 50 nM AHL introduced in the
culture medium, the closed-loop circuit output (population
distribution for different times after the induction) remains
almost unaltered. On the contrary, the open-loop circuit can be
easily excited [see Fig. 4(b)]. Thus, we resort to a two-stage
identification procedure, where we first identify the open-
loop circuit using easy-to-get experimental time-course bulk
measurements, i.e., the mean of the cells population behavior.



Fig. 4. Population distribution snapshots taken with a flow cytometer for some time points after AHL induction with 50 nM. (a) Experimental data for the
closed-loop circuit. (b) Experimental data for the open-loop circuit.

Therefore, the relevant model for this first stage is the deter-
ministic model given by (19)–(23).

In the second stage, once we have estimated the open-
loop circuit parameters, we extend the identified open-loop
dynamics to get the full closed-loop circuit. Here, the goal is to
estimate only the remaining parameters kA, Kfc. The available
data are the steady-state population distribution of the PoI.
Therefore, we use the stochastic model (28) derived from the
deterministic one to predict such distribution.

Notice that the single-stage optimization could be imple-
mented. Yet, even if parameters search space dimension
increases only by two (the open-loop parameters plus the two
closed-loop ones), the computationally expensive stochastic
simulations will have to be evaluated in each iteration for the
whole set of open-loop parameters plus the two closed-loop
ones. The two-stage approach appreciably reduces the number
of stochastic evaluations required.

B. Multiobjective Optimization Approach

As mentioned before, parameter degeneracy is often the
price to pay for having models of biological gene networks
and circuits that allow for a relevant degree of mechanis-
tic biological interpretation and have parameters that can
be associated with available experimental lab tuning knobs.
To alleviate degeneracy, the use of an expanded space of model
performance objectives in a multiobjective setting leads to a
set of optimal solutions that can be clustered. In this way, sets
of model parameters naturally arise, each valid to describe an
experimental scenario.

Consider a dynamic model described by ODEs of the
following general form:

� :

⎧⎪⎨⎪⎩
ẋ(t) = f (x(t), u(t), θ)

y = g(x(t), θ)

x0 = x(t0), θ)

(29)

where x ∈ X ⊂ R
n is the state vector, u ∈ U ⊂ R

r is
a control input, f : R

nxrxq −→ R
n a vector field defined

in X, y ∈ X ⊂ R
m the measurable output or observable

vector, and θ ∈ R
q is a real-valued vector of parameters.

Each input/output experiment performed in the system � will
provide a particular value ŷ of the observables vector y.
The parameter identification problem consists on finding the

Fig. 5. Pareto optimality and dominance concepts. A Pareto front (dotted
line in objective space J ) is approximated by a set of solutions (depicted
with stars) selected from the feasible decision space X . The red solutions
are nondominated solutions in the set, and therefore, they are used to build a
Pareto front approximation (solid line). The remainder solutions are dominated
solutions. Adapted from [24].

best value of θ , such that some cost function J (θ) related to
the model prediction error y(θ) − ŷ is minimized.

As referred in [58], an MOP can be stated as follows:

min
θ

J(θ) = [J1(θ), . . . , Jm(θ)] (30)

s.t. K(θ) ≤ 0

L(θ) = 0

θi ≤ θi ≤ θi ∀i = [1, . . . , n] (31)

where θ = [θ1, θ2, . . . , θn] is defined as the decision vector,
J(θ) is the objective vector, K(θ) and L(θ ) are the inequality
and equality constraint vectors, respectively, and θi and θi

are the lower and upper bounds in the decision space �.
The solution of this problem, instead of one unique solution
as in the case of single objective optimization, is a set of
solutions defined as the Pareto Set �P. Each solution in this
set corresponds to an optimal objective vector in the Pareto
Front JP. All solutions in the Pareto Set are Pareto-optimal
nondominated solutions and differ from each other in the
tradeoff of objectives each one represents.

Definition 1 (Pareto Optimality [24]): An objective vector
J(θ1) is Pareto optimal if there is not another objective vector
J(θ2), such that Ji (θ

2) ≤ Ji(θ
1) for all i ∈ [1, 2, . . . , m]

and J j (θ
2) < J j (θ

1) for at least on j , j ∈ [1, 2, . . . , m].
See Fig. 5.



Fig. 6. Three steps of the MOOD procedure with the specific problems to
solve.

Definition 2 (Dominance [59]): An objective vector J(θ1)
is dominated by another objective vector J(θ2) if and only
if Ji (θ

2) ≤ Ji (θ
1) for all i ∈ [1, 2, . . . , m] and J j (θ

2) <
J j (θ

1) for at least on j , j ∈ [1, 2, . . . , m]. This is denoted as
J(θ2) � J(θ1). See Fig. 5.

Notice that, in general, the Pareto Front JP is unknown,
and it is only possible to rely on an approximation of the
Pareto Front JP

∗ and of its corresponding approximation of
the Pareto Set θP

∗.
In order to successfully implement this approach, the fol-

lowing three fundamental steps are required [58]:
1) the MOP definition;
2) the optimization process;
3) and the MCDM stage.

This overall MOOD procedure, depicted in Fig. 6, enables
to analyze the existing tradeoffs between the objectives and,
accordingly, choose the preferable solution [24].

1) Multiobjective Problem Definition: At this point,
the objective vector function has to be defined in order to
solve our parameter identification problem. For the case of our
two-stage identification problem, we must define the objective
vector functions related to the minimization of the error
between, respectively, the following:

1) time-course plate reader experimental observations and
open-loop model predictions;

2) steady-state flow cytometry experimental observations
and closed-loop model predictions.

These will be detailed later on.
2) Multiobjective Optimization Process: The multiobjective

optimization process finds the best parameters θ∗
P that produce

the best Pareto front approximation J ∗
P . For problems with a

large number of decision variables, as it is our case, it is more
efficient to use an appropriate multiobjective optimization
algorithm to approximate this solution.

In this paper, we used the sp-MODE1 algorithm, an MOEA
based on differential evolution, which uses a spherical pruning
to approximate the Pareto front. sp-MODE improves: 1) the
convergence by using an external file to store solutions and
include them in the evolutionary process; 2) spreading by
using the spherical pruning mechanism [60]; and 3) pertinency
of solutions by means of a basic bound mechanism in the
objective space, as described in [61].

1Tool available in http://www.mathworks.com/matlabcentral/fileexchange/
39215

3) Multicriteria Decision Making Stage: The selection of
the preferable solution according to designer’s criteria takes
place in an a posteriori multicriteria analysis of the Pareto
front approximation. Tools that simplify the visualization and
the analysis of the tradeoff among competing objectives are
very useful. Such visualization and analysis is not a trivial task
when the number of objectives is larger than three, and/or
the number of decision variables in the Pareto set is large.
Desirable characteristics to analyze and visualize the results
include the following.

1) Enabling comparison of design alternatives (analyze
different solutions).

2) Enabling comparison of design concepts (analyze
different Pareto front approximations).

3) Completeness: All relevant information should be con-
tained in the visualization.

4) Persistence: All the relevant information should be
retained in the designer’s mind.

5) Simplicity: The visualization should be easily
understandable.

We used the visualization tool level diagrams [62], and it
is freely available implementation for designers LD-Tool.2

LD-Tool allows to correlate design objectives with decision
variables by providing two graphs. The first graph contains
each objective, where its Y-axis is the p-norm ‖J (θ)‖p of the
objectives vector and the X-axis corresponds to each objective
value Ja(θ) [see Fig. 7(a)]. The second graph shows ‖J (θ)‖p

with respect to each decision variable [see Fig. 7(c)]. Thus,
a given solution will have the same y-value in all graphs.
In addition, the solutions were clustered using a hierarchical
clustering algorithm, and all the graphs were colored according
to the resulting clusters.

a) Open-loop identification using bulk time-series
data: For the time-series data sets, we used our implementa-
tion of the synthetic circuit (see Appendix II) and followed the
protocol in Appendix III. The samples were measured using
a 96-well Plate Reader (Biotek Cytation3 Imaging) at every
T = 10 min during approximately 400 min. Corresponding
absorbance (OD) and bulk green fluorescent protein (GFP)
fluorescence (F) of the cell population at different induction
levels of AHL were obtained. The subsequent analysis was
performed using custom scripts in MATLAB. The time-series
data represent the open-loop NoQS/NoFb circuit dynamics
across the population for values of the AHL inducer circuit
input signal corresponding to 0, 1, 10, and 50 nM.

To compare these measurements with the model results,
we first eliminated the effect of the culture medium absorbance
and the autofluorescence of the cells, subtracting these mea-
surements from the corresponding data sets. The Plate Reader
gain was also removed. Then, we obtained the fluorescence per
cell (FOD = F/OD) for each induction. As expected, the circuit
shows higher fluorescence (higher FOD) at AHL = 0 nM
than for the other data sets. Therefore, it was defined as
the output signal baseline. The data sets for AHL values

2Tool available at http://www.mathworks.com/matlabcentral/fileexchange/
24042



Fig. 7. Identification results. (a) LD-modified representation of the Pareto
Front for each objective. (b) LD-modified representation of the Pareto Set for
the five parameters. Colors reflect each resulting cluster.

of 1, 10, and 50 nM were normalized with respect to the
baseline before they were used in the identification process.

The definition of the MOP consists of formulating the
objectives to be optimized. We minimize the mean square error
of the temporal profile of FOD (GFP fluorescence per cell) for
the different induction levels of the input signal AHL taken as
different objectives

J[a=1,...,3](θol) = 1

n

n∑
q=1

1

m

m∑
k=1

(n̂1aq (k) − n1aq (kT ))2 (32)

where n̂1 is the experimental observation of FOD at the
instant k, the index a = 1 corresponds to AHL = 1 nM,
a = 2 to AHL = 10 nM, and a = 3 to AHL = 50 nM,
q = [1, . . . , n] is the observation sample (replica) measured
at the point k for each objective, and m is the total number of
temporal samples. The input stimulus is applied at t0 = 0. The
predicted observation n1 is the result of the model simulation.

Finally, we looked for the values of the decision variables
θ described in Table III which minimize all objectives J (θ).
These three objectives are in conflict, so a tradeoff must be
reached. Our problem can be formulated as an MOP

min
θ∈�5

J (θol) = [J1(θol), . . . , J3(θol)] ∈ �3

s.t. equations (19)–(23) (33)

where recall that the deterministic model (19)–(23) is used,
as the time-series data corresponds to bulk averaged data.
By using the deterministic model, we introduced some ran-
domness by allowing the values of the parameters in each of

the N cells of the simulated population to be drawn from a
normal distribution with mean equal to the estimated value
of the parameter or to the one obtained from the literature
for the fixed parameters. This extrinsic randomness partly
accounts for the variance of the mean observed across the
sample replicas.

b) Closed-loop identification using population distrib-
ution data: After choosing a preferable solution obtained
from the first identification stage, we used the stochastic
model to perform a second stage of the identification. In this
one, we obtained the values for the closed-loop parameters,
that is, the synthesis rate of AHL by LuxI (kA) and the
ratio between fluorescence and number of molecules (flow
cytometer gain Kfc). In this context, flow cytometry data
provide the distributions of fluorescent output species coming
from many individual cells. These distributions are steady-
state measurements of the population fluorescence at a given
time t .

For this particular case, the measures were taken with
the BD FACSCalibur flow cytometer under the protocol in
Appendix IV. Thus, the absolute value of the relative errors
for the mean eμ and the noise strength eη2 were optimized.
These objectives are expressed by the indexes

J4(θcl) = eμ(QS/Fb) =
∣∣∣∣μ(QS/Fb) − Kfc μ̂(QS/Fb)

μ(QS/Fb)

∣∣∣∣
J5(θcl) = eη2(QS/Fb) =

∣∣∣∣∣η
2
(QS/Fb) − η̂2

(QS/Fb)

η2
(QS/Fb)

∣∣∣∣∣ (34)

where μ(QS/Fb) is the mean of the experimental flow cytometry
data of the protein GFP/LuxI and η2

(QS/Fb) is its corresponding
noise strength as defined in (35). The simulated mean and
noise strength (μ̂ and η̂2, respectively) of GFP/LuxI (n1) were
computed from the stochastic simulation using the model (28)
and the previously selected preferable solution obtained from
the open-loop identification stage (with the corresponding
identified parameter values).

Both GFP/LuxI μ̂ and η̂2 were obtained at steady state over
the population of cells using both the laws of total expectation
and total variance. The result is the set of equations (35),
where ni

1(kT ) is the value of protein GFP/LuxI (in number
of molecules) at time instant kT for the i th cell, k ∈ N , k0T
is the time instant at which steady state is reached, k f T is
the end of the simulation, and N is the number of cells of the
population. The GFP/LuxI mean over the population at time
kT is m(kT ), ant its variance is s2(kT ). The long-term mean
of GFP/LuxI is μ̂ and the variance η̂2

m(kT ) = 1

N

N∑
i=1

ni
1(kT )

s2(kT ) = 1

N

N∑
i=1

(
ni

1(kT ) − m(kT )
)2

μ̂ = 1

(k f − k0)T

k f∑
k=k0

m(kT )



σ̂ 2 = 1

(k f − k0)T

k f∑
k=k0

s2(kT ) + 1

(k f − k0)T

×
k f∑

k=k0

(m(kT ) − μ̂)2

η̂2 = σ̂ 2

μ̂2 . (35)

The MO-based identification process looked for the values
of the closed-loop parameters θcl = [kA, Kfc] that minimize
the objectives J4,5(θcl) achieving a tradeoff between. This,
again, can be formulated as an MOP

min
θcl∈�2

J (θcl) = [J4(θcl), J5(θcl)] ∈ �2

s.t. equation (28). (36)

IV. RESULTS

We carried out a first optimization of (30) to get an initial
estimate of the Pareto front and the unknown parameters
in the open-loop model. From this preliminary optimization,
we found appropriate minimum and maximum limits for each
objective, the so-called pertinency of each Ji (θ), which were
used to enhance the search of the Pareto front in a narrower
region of the parameters space. In both cases, the optimization
was done using sp-MODE starting with an initial population
of candidate solutions chosen randomly from a uniform dis-
tribution in the parameters space.

In the next step, an approximation of the Pareto front
with six solutions was obtained [see Fig. 7(a)], together
with the Pareto set containing their corresponding parameters
[see Fig. 7(b)]. These solutions were classified using the
k-means| algorithm [63], yielding two clusters showing a
tradeoff between the different objectives. This clustering helps
to choosing the best parameters for different scenarios.

The analysis of the Pareto front [see Fig. 7(a)] shows
the classical tradeoffs. For instance, red points, which are
the best solutions for J3, correspond to one of the worst
solutions for J1. The blue solutions are the best solutions for
J1 but not so good for J2 and J3. However, in the Pareto set
[see Fig. 7(b)], some trends can be seen. The LuxI translation
rate, pI, has an opposite trend to the one of the translation rate
of LuxR, pR. The degradation of the measured protein dI has
consistent values in both clusters (for all the solutions). This
value is in the limit of the initial interval for this parameter
and is compatible with the slowest measured growth rate of the
microoorganisms 140 min and equivalent to a degradation rate
of dI = 0.005 min−1 (including the growth rate as mentioned
in Section II). Note, in particular, that a value of this parameter
lying in the boundary of the initial interval means that the
protein is very stable. It is not actively degraded by the cell
and only dilutes due to growth rate.

Fig. 8 shows the values obtained for all five parameters
in each cluster. The Y-axis reflects the initial search inter-
val for each parameter. Out of five estimated parameters,
two had approximately the same value in both clusters:
dI ≈ 0.005 min−1 and Kpr ≈ 0.056. Notice that even the
parameters with the most different values in both clusters lie

Fig. 8. Values of the estimated parameters for the two resulting clusters.
The range of the Y-axis corresponds to the initial search interval for each
parameter. Filled boxes represent the mean value of the parameter in each
cluster, and vertical bars represent their standard deviation.

TABLE IV

PARAMETER VALUES OF THE SELECTED SOLUTION

within close orders of magnitude: pI is in the order of 2 min−1

and pR is in the order of 8 min−1. In addition, kdlux has a range
in the hundreds of molecules (500–1000 molecules), smaller
than the initial search range (1–1000 molecules).

As a first validation, we selected two solutions from the
resulting clusters, described in Table IV. Fig. 9(a) and (b)
shows the good agreement between the model predictions
and the experimental data for different induction levels
(see Appendix III). The validation was performed with data
sets not previously used for identification. The experimental
data sets and the simulated data sets were treated as explained
in Section III.

Note that all the solutions obtained are optimal in the
sense of Pareto. It is the job of the engineer to select the
most appropriate solution. To continue with the identification
process, we choose the solution corresponding to the red
cluster in Table IV as preferred one, as it better predicts high
induction input values. This selection is useful for a model that
will not be used with zero or low induction levels. The reason
behind this choice is that the closed-loop circuit has a kA
different than zero, which means that there will be an induction
level different than zero. With these parameters, for the open-
loop circuit, the GFP/LuxI protein estimations coming from
long-term distributions generated by the closed-loop stochastic
model were used to optimize the best values for θcl. The Pareto
front and set obtained are depicted in Fig. 10. As seen, one of
these optimal solutions is very close to the ideal one [lowest
norm to the ideal (0, 0) point]. Following the MCDM process,
the chosen values for both the feedback and the flow cytometer
gain were:

kA = 0.048 min−1, Kfc = 0.0777. (37)

Interestingly, the value (values) for the closed-loop gain
kA is very close to the value previously reported in the
literature kA = 0.04 min−1 ([27] and references therein), thus



Fig. 9. Comparison between predicted and experimental temporal data.
(a) Using parameter values from a solution in the red cluster for the three
levels of input induction. (b) Using parameter values from a solution in the
blue cluster for the three levels of input induction.

Fig. 10. (a) Pareto front showing the typical tradeoff between both relative
errors J4 and J5. (b) In the Pareto set θcl, the best optimal value for the
feedback gain kA = 0.048 min−1 was chosen.

validating both the model and the experimental setup to obtain
the data.

Finally, we used the chosen values for validation. The
resulting histograms are shown in Fig. 11. Histograms cor-
responding to the simulations of the stochastic model are
shown in solid colors. The purple histogram corresponds to the
open-loop circuit and the orange histogram to the closed-loop
one. The experimental data obtained using flow cytometry are
plotted in black dashed lines and black lines for the open- and
closed-loop circuits, respectively (when the simulation data
match the experimental one, the histograms colors become
light orange or light purple accordingly). Notice the good

Fig. 11. Validation of predicted and experimental population distribution
data for the open-loop and the closed-loop circuits. Open-loop Circuit:
experimental histogram in black dashed lines and simulation in purple lines.
Closed-Loop Circuit: experimental histogram in black lines and simulation in
orange lines.

matching between the histograms from their superposition,
validating both the open-loop identification process and, most
importantly, the reduced model obtained for the feedback
synthetic gene circuit.

V. CONCLUSION

Parameter degeneracy is often the price to pay for having
models of biological gene networks and circuits that allow for
a relevant degree of mechanistic biological interpretation and
have parameters that can be associated with available exper-
imental lab tuning knobs. These semimechanistic nonlinear
biological models, usually arising from model order reduction
of high-dimensional models based on first principles, inherit
some of the problems of their parent models: lack of iden-
tifiability, low number of measurable variables and scarcity
of available measurements, and inherent stochasticity of the
parameters due to unmodelled dynamic interactions between
the circuit and the host microorganism. In addition, many
gene circuits, both natural and engineered, integrate feedback
loops to achieve robustness against external perturbations. This
makes the identification problem harder due to the practical
lack of excitability of the input signals that can be applied to
perturb the system.

Not less important is the limitation of experimental data to
two broad classes typically available in a standard laboratory:
time-course averaged measurements of cells growth and total
production of a PoI in a culture, and steady-state distributions
of protein production across the population of cells.

To cope with these problems, ensembles of models, i.e., sets
of models with different structures and/or parameter values,
have received much attention in the last years. Here, we have
proposed a methodology, akin to ensemble modeling. Different
from obtaining the model prediction as a weighted average of
the individual models in the set, we express the identification
problem as a multiobjective optimization one.



The use of an expanded space of model performance
objectives in a multiobjective setting leads to a set of optimal
solutions that can be clustered. In this way, sets of model
parameters naturally arise, each one valid to describe an
experimental scenario. By the formulation of the identification
problem as a multiobjective optimization, one also allows easy
integration of experimental data of different nature, requiring
diverse performance indexes and fusion of information coming
from different experiments.

We addressed the practical case of identifying the model
parameters of a feedback circuit design to control the variance
of the production of a PoI. For this circuit, only the steady-state
distribution of protein production across the population of cells
was available for the original feedback configuration. Besides,
a circuit implementing the open-loop direct chain was built.
For this last, time-course averaged measurements and a deter-
ministic model were available. We used these to estimate sets
of parameters describing the open-loop dynamics for different
magnitudes of a perturbing input signal. In a second stage,
we extended the identified open-loop dynamics to get the full
closed-loop circuit. Then, we used the steady-state population
distributions of production of the PoI and a stochastic model
derived from the deterministic one to estimate the remaining
parameters.

The methodology gives good identification results in the
open-loop identification stage that can be translated into a
complete identification of feedback circuit in the second stage
of the identification, one of the closed loop. In the practical
case addressed here, we obtain values for the feedback gain
close to the ones reported in the literature.

APPENDIX I
NONLINEAR PROPENSITIES

Following an approach used in [53], we validated the use of
a high-order propensity function by simulating the pseudore-
action associated with f (n3, t) using the CLE approach and
then comparing this result with the one obtained by simulating
the set of corresponding original reactions using the Gillespie’s
direct method SSA.

In particular, denoting as ni
3, (LuxR · AHL)2 for the i th cell,

the Hill-like function

f (n3, t) � CIpI

dmI

(
kdlux + αI n3

kdlux + n3

)
represents how the dimer (LuxR.AHL)2 inhibits transcription
of DNA from the corresponding gene luxI into its mRNA,
which, in turn, is translated into protein LuxI. Recalling the
fast reactions (1) involving messenger mRNAluxI

DNA
CI−→ DN A + mRNAluxI

(LuxR · AHL)2 + DNA
klux/kdlux
�
klux

DNA(LuxR.AHL)2

DNA(LuxR · AHL)2
αCI−→ DNA(LuxR.AHL)2

+ mRNAluxI

mRNAluxI
dmI−→ ∅ (38)

Fig. 12. SSA and CLE comparison for a complex propensity. (a) One
realization of mRNAluxI made using the SSA (cyan color) and the CLE (blue
color), respectively. Both trajectories match during a large temporal window
(15 × 104 min). (b) Histograms with similar means and covariances. (c) Two
medians’ μSSA = 127.7 and μCLE = 126.1 molecules are statistically the
same in the Box-and-Whisker plots.

they were approximated into two equivalent reactions as

(LuxR · AHL)2
f (n3,t)−→ (LuxR · AHL)2 + mRNAluxI

mRNAluxI
dmI−→ ∅ (39)

where f (n3, t) describes the time evolution of mRNAluxI in
the same way than in (38). To validate the propensity function
f (n3, t), both sets of reactions were simulated. For one single
cell (i = 1) and with the same conditions, reactions (39) were
ran using the CLE approach, and reactions (38) were simulated
using the Gillespie’s SSA direct method.

Fig. 12(a) depicts, for one realization, how the SSA tra-
jectory (left-top) matches very well with the CLE trajectory
(right-top) during the whole simulation time. Both SSA and
CLE trajectories have similar distributions with small differ-
ences between their first statistical moments, so μSSA ≈ μCLE
and σSSA ≈ σCLE [see Fig. 12(b)]. It can be seen that the noise
strength of mRNAluxI for the SSA distribution (η2

SSA = 0.008)
matches closely with the same for the CLE (η2

CLE = 0.0072).
Finally, Fig. 12(c) shows the Box-and-Whisker plots of

mRNA of the luxI SSA and CLE realizations. Their medians
(red line) are practically the same, and the Kruskal–Wallis
test [64] reveals that there is no statistically significant dif-
ference between their medians at the 95.0% confidence level
[test statistic, p-value] = [−2.09067 × 106, 1.0].

APPENDIX II
EXPERIMENTAL IMPLEMENTATION

Following the implementation in [28], we engineered
and implemented the closed-loop QS/Fb and open-loop
NoQS/NoFb circuits in vivo. We used components from the
iGEM Registry of Standard Biological Parts. All parts were



cloned using the Biobrick’s foundation 3 Antibiotic Assembly
method and confirmed by sequencing.

The circuit QS/Fb couples both QS-based cell-to-cell com-
munication and the negative feedback subsystems. It was
split in two subunits integrated in different plasmids. On the
one hand, plasmid pCB2tc contains the gene luxR (part
BBa_C0062) coding for the protein LuxR constitutively
expressed under the control of a medium strength promoter
(part BBa_J23106) and a strong RBS (part BBa_B0034).
This insert was cloned into the pACYC184 plasmid cloning
vector (p15A origin, chloramphenicol/tetracycline). On the
other hand, plasmid pYB06ta contains gene luxI (part
BBa_C0161) under control of the PluxR repressible promoter
(part BBa_R0062) and a strong RBS (part BBa_B0034). The
strong RBS BBa_B0034 and the GFP (part BBa_E0040)
were inserted using GIBSON assembly (NEB Catalog Number
E2611S) upstream of luxI, right after the PluxR promoter. This
way, GFP, used as PoI [in Fig. 1(a)] is coexpressed with
LuxI. None of them are tagged for degradation, so the main
decay source for both proteins is the growth-related dilution.
Therefore, their dynamics can be considered as equivalent.
These constructions were inserted into the pBR322 plasmid
cloning vector (pMB1 origin, ampicillin/tetracycline). Finally,
both plasmids pCB2tc and pYB06ta were cotransformed in
competent cells (DH-5α, Invitrogen).

As a control network, we implemented the circuit
NoQS/NoFb that removes both QS and the feedback loop.
To this end, the above-mentioned plasmid pCB2tc was cotrans-
formed with the plasmid pAV02ta (pMB1 origin, ampicillin/
tetracycline) containing only GFP downstream of the PluxR
repressible promoter (part BBa_R0062) and the the strong
RBS (part BBa_B0034). Both were cloned in the pBR322
plasmid cloning vector.

To obtain the data sets used in this paper, we followed
the same protocol for bacterial growth as in [28], and the
resulting samples were measured using the BD FACSCalibur
flow cytometer (original default configuration parameters) and
analyzed using custom scripts in MATLAB for the distribution
of protein levels across the population of cells. For the time-
series data sets, we followed the same protocol as in [65],
and the resulting samples were measured and incubated with
the appropriate induction using the Biotek Cytation3 Imaging
Plate Reader and analyzed using custom scripts in MATLAB.

APPENDIX III
EXPERIMENTS FOR TIME-SERIES DATA SETS

The following experiments were performed. E.coli cells
(Top 10, NEB) carrying the pCB2tc and pAV02ta plasmids
for the open-loop circuit and the pCB2tc and pYB06ta plas-
mids for the closed-loop circuit were grown overnight in
LB medium with the appropriate antibiotics. Then, 96 well
plates were inoculated at OD600 ≈ 0.05 and incubated to
reach an optical density OD600 ≈ 0.1. At this point, selected
wells were induced with appropriate concentrations of AHL
(N-3-Oxohexanoyl-L-homoserine lactone, Santa Cruz Biotech-
nology Catalog Number SC205396) and incubated for
400 min. Measurements were taken with a Biotek Cyta-
tion3 Imaging Plate Reader with the following protocol: 7’

shaking, OD measurement, and Fluorescent measurement.
Each condition was performed in four replicates (data sets)
for each condition. For each experiment, we have four con-
ditions (ranging from 0- to 50-nM AHL), four data sets,
and absorbance and fluorescence measurements every 10 min
during 400 min of incubation after induction.

APPENDIX IV
EXPERIMENTS FOR STEADY-STATE POPULATION

DISTRIBUTION DATA SETS

The following experiments were performed. Two sets of
E. coli cells (cloning strain DH-5α) carrying the closed-loop
QS/Fb and the open-loop NoQS/NoFb circuits, respectively,
were inoculated from −80 ◦C stocks into 3 mL of LB with
appropriate antibiotics, followed by an overnight incubation at
37 ◦C and 250 rpm in 14-mL culture tubes. When the cultures
reached an optical density OD600 = 4 (Eppendorf BioPho-
tometer D30), the overnight cultures were diluted 500-fold
(OD600 = 0.02) into M9 medium with appropriate antibiotics.
These were used to inoculate new cultures that were incubated
for 7 hr (37 ◦C, 250 rpm, 14-mL culture tubes) until they
reached an OD600 between 0.2 and 0.3. At this point, cell
growth and protein expression were interrupted by transferring
the culture into an ice–water bath for 10 min. Next, 50 μL of
each tube were transferred into 1 mL of phosphate-buffered
saline with 500 μg/mL of the transcription inhibitor rifampicin
(PBS + Rif) in one 5-mL test tube and incubated during
1 hr in a water bath at 37 ◦C so that transcription kept was
blocked and GFP had time to mature and fold properly. After
that, samples were measured using the BD FACSCalibur flow
cytometer (original default configuration parameters), and data
were analyzed using custom scripts in MATLAB.
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