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Abstract

Given a square matrix A ∈Mn(F), the lattices of the hyperinvariant (Hinv(A))
and characteristic (Chinv(A)) subspaces coincide whenever F 6= GF (2). If the
characteristic polynomial of A splits over F, A can be considered nilpotent. In
this paper we investigate the properties of the lattice Chinv(J) when F = GF (2)
for a nilpotent matrix J . In particular, we prove it to be self-dual.
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1. Introduction

Let Fn be the n-dimensional vector space over a field F, and A ∈ Mn(F)
a square matrix corresponding to an endomorphism of Fn in a fixed basis. A
vector subspace V ⊆ Fn is called invariant with respect to the endomorphism
if AV ⊆ V . The subspace V is hyperinvariant if it is invariant for every matrix
T ∈ Z(A) (i.e. commuting with A). Weakening the latter condition, if it is
only satisfied for every nonsingular matrix T commuting with A, the subspace
is called characteristic. Obviously

Hinv(A) ⊆ Chinv(A) ⊆ Inv(A),
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where Hinv(A),Chinv(A) and Inv(A) denote the lattices of hyperinvariant, char-
acteristic and invariant subspaces, respectively.

For an arbitrary field F, the lattice Inv(A) is studied in [3], where it is proven
to be self-dual, and characterizations of some other properties are given, for in-
stance when it is distributive or Boolean, among others. A full description of
Hinv(A) when F = C or R can be found in [5], where it is proven to be a dis-
tributive and self-dual lattice, and tight bounds for its cardinality are provided.
Concerning Chinv(A), if the characteristic polynomial of A splits over F and
card(F) > 2, Chinv(A) = Hinv(A) ([1]). When card(F) = 2, Chinv(A) and
Hinv(A) in general do not coincide. Morevover, if all of the eigenvalues of A
are in F, the study of Hinv(A) and Chinv(A) can be reduced to the case where
A has a unique eigenvalue (see, for instance [1], [2] and [5]). Therefore, if the
characteristic polynomial of A splits over F, we can assume A to be a nilpotent
matrix.

If A is a nilpotent matrix, and card(F) = 2, Shoda’s Theorem (see for in-
stance [2]) characterizes the existence of characteristic non hyperinvariant sub-
spaces. General conditions for their existence, as well as some examples, can be
found in [1, 2]. A construction to explicitly obtain all of the characteristic non
hyperinvariant subspaces of A is given in [7].

Our aim in this paper is to analyze basic properties of the lattice of the
characteristic subspaces Chinv(A) of a nilpotent matrix A when F = GF (2). In
particular we will prove that it is a self-dual lattice.

The paper is organized as follows: In section 2 we introduce the notation
and basic results. We present here the structure of the characteristic non-
hyperinvariant subspaces of A as obtained in [7]. In section 3 we analyze the
properties of the lattice Chinv(A). In particular, we give an anti-isomorphism
from Chinv(A) to Chinv(A), hence proving that the lattice is self-dual.

2. Preliminaries

Throughout the paper we will assume that F = GF (2) and A = J a nilpo-
tent Jordan matrix. Given a set of vectors {v1, . . . , vt} ⊂ Fn, we represent
by span{v1, . . . , vt} the vector subspace of linear combinations of the vectors
{v1, . . . , vt}. If E,F are vector subspaces of Fn, the notation E ∼= F means that
they are isomorphic.

Let J ∈Mn(GF (2)) be a nilpotent Jordan matrix. We write α = (α1, . . . , αm)
for its Segre characteristic; that is to say, m = dim ker(J) and α1 ≥ · · · ≥ αm
are the orders of the Jordan blocks. We fix a Jordan basis for J and denote by
u1, . . . , um the generators of the Jordan chains,

uj , Juj , . . . , J
αj−1uj , 1 ≤ j ≤ m.

We write V 1, . . . , V m for the corresponding monogenic subspaces,

V j = span{uj , Juj , . . . }.
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They satisfy that (GF (2))n = V 1 ⊕ · · · ⊕ V m.
For a vector w ∈ (GF (2))n, w 6= 0, its exponent p = exp(w) ≥ 1 and its

depth q = depth(w) are defined by

w ∈ ker Jp, w /∈ ker Jp−1,

w ∈ Im Jq, w /∈ Im Jq+1.

In particular, exp(Jkuj) = αj − k and depth(Jkuj) = k.
We understand the lattice Chinv(J) as

Chinv(J) = Hinv(J) ∪ (Chinv(J)\Hinv(J)).

The hyperinvariant subspaces have been characterized in [5] and [2], and the
characteristic non-hyperinvariant subspaces in [7]. We recall now both results.

Let J ∈Mn(GF (2)) be a nilpotent Jordan matrix and α = (α1, . . . , αm) its
Segre characteristic. Given a partition (k1, . . . , km) such that

0 ≤ kj ≤ αj , (1)

we denote by V jkj the vector subspace spanned by the last kj vectors of the
corresponding Jordan chain:

V jkj = span{Jαj−kjuj , . . . , J
αj−1uj},

and set
V (k1, . . . , km) = V 1

k1 ⊕ · · · ⊕ V
m
km , (2)

(we take V jkj = 0 if kj ≤ 0).

Theorem 2.1 (Gohberg & al. [5]). The subspaces in Hinv(J) are of the form:

V (k1, . . . , km),

with

k1 ≥ · · · ≥ km ≥ 0, (3)

α1 − k1 ≥ · · · ≥ αm − km ≥ 0. (4)

In particular, if αj+1 = αj, then kj+1 = kj.

The tuples (k1, . . . , km) satisfying conditions (1), (3) and (4) will be called
hyper-tuples. They can be visualized as decreasing both in exponent and depth.

Example 2.2. For α = (4, 2, 2, 1), the possible non-trivial hyper-tuples are:
(1, 0, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1), (2, 0, 0, 0), (2, 1, 1, 0), (2, 1, 1, 1), (2, 2, 2, 1),
(3, 1, 1, 0), (3, 1, 1, 1), (3, 2, 2, 1).
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We recall next an explicit construction of the characteristic non hyperinvari-
ant subspaces, which has been given in [7]. According to Shoda’s theorem (see
for instance [2]), there exists X ∈ Chinv(J) \ Hinv(J) if and only if there exist
at least two Jordan blocks of unique order (i.e., no other block has the same
order) which differ in more than 1. We will refer to this property as the “Shoda
condition”.

We denote by Ω the set of indexes corresponding to blocks of unique order:

Ω := {1 ≤ i1 < · · · < il ≤ m : only one Jordan block has order αij}.

Let us consider a tuple of the form

b = (bi1 , . . . , bit), t ≥ 2, {i1, . . . , it} = Ωt ⊂ Ω,

with 1 ≤ i1 < i2 < · · · < it ≤ m. The tuple b = (bi1 , . . . , bit) is said to be a
char-tuple associated to Ωt if

bi1 > bi2 > · · · > bit > 0,

αi1 − bi1 > αi2 − bi2 > · · · > αit − bit ≥ 0.

Given a char-tuple b = (bi1 , . . . , bit) associated to Ωt, two families of vector
subspaces can be associated to b, in order to describe the characteristic non-
hyperinvariant subspaces:

1. A hyperinvariant subspace Y is associated to b if it is of the form:

Y = V (k1, . . . , ki1−1, bi1 − 1, ki1+1, . . .

. . . , ki2−1, bi2 − 1, ki2+1, . . . , kit−1, bit − 1, kit+1, . . . , km),

and the following subspace is also hyperinvariant:

V (k1, . . . , ki1−1, bi1 , ki1+1, . . .

. . . , ki2−1, bi2 , ki2+1, . . . , kit−1, bit , kit+1, . . . , km).

Observe that the required conditions are (see Theorem 2.1) kij−1 ≥ bij
and αij − bij ≥ αij+1 − kij+1, j = 1, . . . , t.

2. Define z1, . . . , zt as

zj = Jαij
−bij uij , 1 ≤ j ≤ t.

The subspace Z is called a minext subspace associated to b if:

a) z ∈ Z ⇒ z = zj1 + · · ·+ zjp , 1 ≤ j1 < j2 < . . . < jp ≤ it, p ≤ t.
b) zj /∈ Z, for j = 1, . . . , t.
c) Each zj appears as a summand of some z ∈ Z, i.e.

dim (span{z1, . . . , z̃j , . . . , zt}+ Z) = t, ∀j = 1, . . . , t.
(5)
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Notice that, by construction, zj /∈ Y and zj /∈ Z for 1 ≤ j ≤ t, and Y, Z as
above. Moreover,

z1, . . . , zt /∈ Z ⊕ Y.
In fact, the subspace Z plays the role of a direct “extension” of Y such that the
sum Z ⊕ Y is still characteristic but non-hyperinvariant ([7]).

Finally, a characterization of the subspaces Chinv(J) \ Hinv(J) is given in
the next result.

Theorem 2.3 ([7]). A subspace X ∈ Chinv(J) \ Hinv(J) if and only if X =
Z ⊕ Y for some Z and Y defined as above; i.e., if and only if there exists a
char-tuple such that Z and Y are, respectively, a minext and a hyperinvariant
subspaces associated to it.

Remark 2.4. Notice that in the above theorem the subspaces Z and Y can
not be zero.

Example 2.5. Let J ∈ M31(GF (2)) be a nilpotent Jordan matrix with Segre
characteristic α = (12, 7, 4, 4, 3, 1). Then,

Ω = {1, 2, 5, 6}.

Taking Ω3 = {1, 5, 6}, the tuple b = (10, 2, 1) is a char-tuple associated to Ω3.
In this case there is only one hyperinvariant subspace associated to b, namely,

Y = V (9, 5, 2, 2, 1, 0).

Moreover, for
z1 = J2u1, z2 = Ju5 , z3 = J0u6 = u6,

there are only two minext subspaces Z associated to b:{
span{z1 + z2 + z3}
span{z1 + z2, z2 + z3}

Therefore, {
X1 = span{z1 + z2 + z3} ⊕ V (9, 5, 2, 2, 1, 0),
X2 = span{z1 + z2, z2 + z3} ⊕ V (9, 5, 2, 2, 1, 0),

are characteristic non-hyperinvariant subspaces.

3. Properties of the lattice Chinv(J)

A lattice is a partially order set where each pair of elements X1, X2 has a
meet (X1 ∩ X2) and a join (X1 + X2). By the definition of a characteristic
subspace, if X1, X2 ∈ Chinv(J), then X1 ∩ X2 ∈ Chinv(J) and X1 + X2 ∈
Chinv(A). Therefore, Chinv(J) is a lattice with inclusion as order, intersection
as meet and linear sum as join. In particular, Chinv(J) is a sublattice of Inv(J).
Given a lattice L, a linear application φ : L −→ L is an anti-isomorphism
if it is an isomorphism which reverses the order. Therefore, φ(X1 ∩ X2) =
φ(X1) + φ(X2) and φ(X1 +X2) = φ(X1) ∩ φ(X2).
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Remark 3.1. a) Notice that Chinv(J) \ Hinv(J) is not a lattice. For in-
stance, letX1, X2 be the characteristic non-hyperinvariant subspaces given
in Example 2.5. Then, X1 ∩X2 = V (9, 5, 2, 2, 1, 0), which is hyperinvari-
ant, therefore, it is not in Chinv(J) \Hinv(J).

b) Observe that given V1 = V (k1, . . . , km), V2 = V (k′1, . . . , k
′
m) as in (2), then

V1 ∩ V2 = V (min{k1, k′1}, . . . ,min{km, k′m}).

In particular, we remark that if V1, V2 ∈ Hinv(J) are nontrivial subspaces,
they have nontrivial intersections.

We recall next some general definitions:

Definition 3.2. Let L(A) be a lattice of subspaces of Fn with zero element {0}
and unit element Fn. We say that

1. L(A) is distributive if for every X1, X2, X3 ∈ L(A) the following identity
is satisfied

(X1 +X2) ∩X3 = (X1 ∩X3) + (X2 ∩X3). (6)

and L(A) is modular if (6) holds whenever X1 ⊆ X3.

2. L(A) is complemented if for every X1 ∈ L(A) there exist X2 ∈ L(A) such
that

X1 ∩X2 = {0} and X1 ⊕X2 = Fn.

3. L(A) is a Boolean algebra if it is distributive and complemented.

4. L(A) is finite if it has a finite number of elements.

5. L(A) is self-dual if there exist an anti-isomorphism from L(A) to L(A).

For the lattice Hinv(J) we have the following results.

Proposition 3.3 ([4]). Let J ∈ Mn(GF (2)) be a nilpotent Jordan matrix and
α = (α1, . . . , αm) its Segre characteristic. Then,

1. Hinv(J) is distributive. In particular, Hinv(J) is modular.

2. Hinv(J) is complemented if and only if α = (1, . . . , 1).

3. Hinv(J) is finite.

4. Hinv(J) is self-dual.

Let us analyze these properties on Chinv(J).

Lemma 3.4. Let J ∈ Mn(GF (2)) be a nilpotent Jordan matrix and α =
(α1, . . . , αm) its Segre characteristic. Assume that the Shoda condition is satis-
fied. Then,

1. Chinv(J) is not distributive, but it is modular.

2. Chinv(J) is not complemented.

3. Chinv(J) is finite.
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Proof. 1. We give a counterexample. Let α = (8, 6, 4). Let

Y = V (6, 4, 2),

X1 = span{z1 + z2 + z3} ⊕ V (5, 4, 3),

X2 = span{z1 + z2, z2 + z3} ⊕ V (5, 4, 3),

where z1 = J2u1, z2 = Ju2 and z3 = u3. Then, X1, X2, Y ∈ Chinv(J)
and

(X1 +X2) ∩ Y = V (6, 5, 4) ∩ Y = V (6, 4, 2) 6=
6= (X1 ∩ Y ) + (X2 ∩ Y ) = V (5, 4, 2).

The property of Chinv(J) being modular follows from the fact that the
lattice Inv(J) is modular ([3]).

2. As in this case α1 > 1, Hinv(J) is not complemented. Therefore, there
exists a subspace X1 ∈ Hinv(J) not complemented in Hinv(J).
Assume that X1 is complemented in Chinv(J). Then, there exists a sub-
space X2 ∈ Chinv(J) such that X1 ∩X2 = {0} and X1⊕X2 = (GF (2))n.
Observe that X2 ∈ Chinv(J)\Hinv(J). By Theorem 2.3, there exists a
char-tuple such that if Y is a hyperinvariant subspace and Z a minext
subspace associated to it, X2 = Z ⊕ Y .
But this implies that X1 ∩ Y ⊂ X1 ∩ X2 = {0}, what is a contradiction
because X1 ∩ Y 6= {0} (see Remark 2.4 and Remark 3.1.b). This proves
that Chinv(J) is never complemented.

3. Given α, the number of char-tuples is finite (they are a particular type
of hyper-tuples, and this is a finite number ([5])). Moreover, given a
char-tuple, the number of minext subspaces is finite because the minext
subspaces are linear subspaces of a finite dimension space over a finite
field GF (2) and the number of hyperinvariant subspaces associated to
this char-tuple are finite too because the number of hyper-tuples is finite
(see [4]). Therefore, the order of Chinv(J) is always finite.

Remark 3.5. As Chinv(J) is neither distributive nor complemented, Chinv(J)
is not a Boolean lattice.

In what follows we prove that Chinv(J) is self-dual.

Given a subset S of Fn, we denote by Ann(S) the annihilator of S:

Ann(S) = {u ∈ Fn| u · v = 0, ∀v ∈ S},

where ’·’ is the standard scalar product of the components of the vectors, with
respect to the canonical basis (notice that if F = GF (2), the scalar product is a
bilinear form, non positive definite).
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We will also find annihilators of subsets with respect to subspaces of Fn
instead of with respect to the whole space. In that case, we will specify the
subspace in the notation. Given a vector subspace V ⊂ Fn,

Ann(S, V ) = {u ∈ V | u · v = 0, ∀v ∈ S}.

In particular, Ann(S,Fn) = Ann(S).

Proposition 3.6. If Z is a minext subspace associated to a char-tuple b =
(bi1 , . . . , bit) and Zt = span{z1, . . . , zt}, then

1. Ann(Z,Zt) is a minext subspace associated to the same char-tuple.

2. The Ann(Z) is

Ann(Z,Zt)⊕ V (α1, . . . , αi1−1, α̃i1 , αi1+1, . . . , αit−1, α̃it , αit+1, . . . , αm),

where,

V (α1, . . . , αi1−1, α̃i1 , αi1+1, . . . , αit−1, α̃it , αit+1, . . . , αm) =

= V 1⊕ . . .⊕V i1−1⊕ Ṽ i1⊕V i1+1⊕ . . .⊕V it−1⊕ Ṽ it⊕V it+1⊕ . . .⊕V m,

with

Ṽ ij = span{uij , . . . , J
αij
−bij−1uij , J

αij
−bij+1uij , . . . , J

αij
−1uij}, j = 1, . . . , t.

Proof. 1. Assume that the minext space Z can be written as

Z = span{w1, . . . , wd} ⊆ span{z1, . . . , zt} = Zt.

Taking Fi = span{z1, . . . , zi−1, zi+1, . . . , zt} for i = 1, . . . , t, then

Ann(Fi,Zt) = span{zi}.

Conditions (5b) and (5c) in the definition of Z can be written as:

• span{zi} * Z.
• Z * Fi.

Using annihilator properties ([6]),

• Ann(Z,Zt) * Ann(span{zi},Zt) = Fi.
• Ann(Fi,Zt) = span{zi} * Ann(Z,Zt).

It means that Ann(Z,Zt) is a minext subspace associated to the same
char-tuple as Z.

2. It is straightforward.

Corollary 3.7. Given α = (α1, . . . , αm), let b = (bi1 , . . . , bit) be a char-tuple
associated to α. If Z and Y are a minext subspace and an hyperinvariant sub-
space associated to b, then

Ann(Z,Zt) ⊂ Ann(Y ).
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Proof. By the above proposition, Ann(Z,Zt) is a minext subspace associated to
b. For Y = V (k1, . . . , bi1 − 1, . . . , bit − 1, . . . , km), it is obvious that

Ann(Z,Zt) ⊂ Zt = span{z1, . . . , zt} ⊂ Ann(Y ).

Let
B = {u1, Ju1, . . . , Jα1−1u1, . . . , um, . . . , J

αm−1um},

be a Jordan basis for (GF (2))n. Let S be the matrix of the change of basis from
the basis B to the basis

B′ = {Jα1−1u1, . . . , Ju1, u1, . . . , J
αm−1um, . . . , um}.

It is known (see [5, 6]) that the application

D : Inv(J) −→ Inv(J)
X −→ S−1 Ann(X)

(7)

is an anti-isomorphism.

We prove next that Chinv(J) is self-dual.

Theorem 3.8. Let J ∈ Mn(GF (2)) be a nilpotent Jordan matrix and α =
(α1, . . . , αm) its Segre characteristic. Then, the lattice Chinv(J) is self-dual.

Proof. It is enough to prove that

X ∈ Chinv(J)⇒ D(X) ∈ Chinv(J).

In fact, the application D in (7) transforms subspaces of Hinv(J) into subspaces
of Hinv(J), and subspaces of Chinv(J) \ Hinv(J) into subspaces of Chinv(J) \
Hinv(J) as we show next.

1. Let V (k1, . . . , km) ∈ Hinv(J). Then,

Ann(V (k1, . . . , km)) =
Ann(span{Jα1−k1u1, . . . , J

α1−1u1; . . . ; Jαm−kmum, . . . , J
αm−1um}) =

= span{u1, . . . , Jα1−k1−1u1; . . . ;um, . . . , J
αm−km−1um}.

Therefore,

D(V (k1, . . . , km)) = S−1(Ann(V (k1, . . . , km))) =
S−1 span{u1, . . . , Jα1−k1−1u1; . . . ;um, . . . , J

αm−km−1um} =
span{Jk1u1, . . . , Jα1−1u1; . . . ; Jkmum, . . . , J

αm−1um} =
= V (α1 − k1, . . . , αm − km) ∈ Hinv(J).
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2. Let X ∈ Chinv(J) \Hinv(J). Assume that X = Z ⊕ Y with

Y = V (k1, . . . , ki1−1, bi1 − 1, ki1+1, . . . , kit−1, bit − 1, kit+1, . . . , km),

where b = (bi1 , . . . , bit) is the char-tuple associated to X, and Z a minext
subspace associated to b. Let us find Ann(X).
Taking into account Proposition 3.6,

Ann(X) = Ann(Z) ∩Ann(Y ) =

(Ann(Z,Zt)⊕ V (α1, . . . , α̃i1 , . . . , α̃it , . . . , αm)) ∩Ann(Y ) =

= Ann(Z,Zt)⊕ (V (α1, . . . , α̃i1 , . . . , α̃it , . . . , αm) ∩Ann(Y )).

The last identity is a consequence of the fact that Chinv(J) is modular and
Ann(Z,Zt) ⊂ Ann(Y ) (see Lemma 3.4, condition (6) and Corollary 3.7).
We have that

Ann(Y ) = span{u1, . . . , Jα1−k1−1u1; . . . ;ui1 , . . . , J
αi1
−bi1−1ui1 ; . . . ;

uit , . . . , J
αit−bit−1uit ; . . . ;um, . . . , J

αm−km−1um},

then,

V (α1, . . . , αi1−1, α̃i1 , αi1+1, . . . , αit−1, α̃it , αit+1, . . . , αm) ∩Ann(Y ) =

span{u1, . . . , Jα1−1u1; . . . ;ui1 , . . . , J
αi1
−bi1−1ui1 , J

αi1
−bi1+1ui1 , . . . ,

Jαi1
−1ui1 ; . . . ;uit , . . . , J

αit−bit−1uit , J
αit−bit+1uit , . . . , J

αit−1uit ; . . . ;

um, . . . , J
αm−1um} ∩ span{u1, . . . , Jα1−k1−1u1; . . . ;ui1 , . . . , J

αi1
−bi1ui1 ;

. . . ;uit , . . . , J
αit−bituit ; . . . ;um, . . . , J

αm−km−1um} =

= span{u1, . . . , Jα1−k1−1u1; . . . ;ui1 , . . . , J
αi1−bi1−1ui1 ; . . . ;

uit , . . . , J
αit−bit−1uit ; . . . ;um, . . . , J

αm−km−1um}.

Applying the inverse of the change of basis S to this set, we obtain

S−1(V (α1, . . . , α̃i1 , . . . , α̃it , . . . , αm) ∩Ann(Y )) =

span{Jα1−1u1, . . . , J
k1+1u1; . . . ; Jαi1−1ui1 , . . . , J

bi1+1ui1 ; . . . ;

Jαit−1uit , . . . , J
bit+1uit ; . . . ; J

αm−1um, . . . , J
km+1um} =

= V (α1 − k1, . . . , αi1 − bi1 , . . . , αit − bit , . . . αm − km).

On the other hand,

Ann(Z,Zt) = {w ∈ Zt = span{z1, . . . , zt}| w · z = 0,∀z ∈ Z},

which by Proposition 3.6 is a minext subspace associated to the char-tuple
b. Applying the inverse of the change of basis S to this subspace, we obtain
that S−1(Ann(Z,Zt)) is a minext subspace generated by the elements

z′i = Jαij
−bij uij , j = 1, . . . , t.
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As a consequence, D(X) = S−1 Ann(X) is the subspace

Ann(Z,Zt)⊕ V (α1 − k1, . . . , αi1 − bi1 , . . . , αit − bit , . . . αm − km),

and, by Theorem 2.3, D(X) ∈ Chinv(J) \Hinv(J) associated to the char-
tuple

b′ = (αi1 − bi1 + 1, . . . , αit − bit + 1).

Example 3.9. Let α = (12, 7, 4, 2, 1) be the Segre partition of a Jordan matrix
J and Ωt = {2, 4}. Let b = (6, 2) be a char-tuple. Y = V (9, 5, 3, 1, 1) is a
hyperinvariant subspace associated to b (V (9, 6, 3, 2, 1) is also hyperinvariant).
Define z1 = Ju2, z2 = u4 and Z = span{z1 + z2}. Then X = Z ⊕ Y ∈
Chinv(J) \ Hinv(J). Let S be the change of basis matrix from the basis B to
the basis B′ mentioned above. We find D(X):

V (9, 5, 3, 1, 1) = span{J3u1, . . . , J
11u1; J2u2, . . . , J

6u2; Ju3, . . . , J
3u3; Ju4;u5},

Ann(V (9, 5, 3, 1, 1)) = span{u1, Ju1, J2u1;u2, Ju2;u3;u4},

V (12, 7̃, 4, 2̃, 1) = span{u1, . . . , J11u1;u2, J
2u2, . . . , J

6u2;u3 . . . J
3u3; Ju4;u5},

V (12, 7̃, 4, 2̃, 1) ∩Ann(V (9, 5, 3, 1, 1)) = span{u1, Ju1, J2u1;u2;u3},

D(X) = S−1 span{u1, Ju1, J2u1;u2;u3} =

span{J11u1, J
10u1, J

9u1; J6u2; J3u3} =

= V (12− 9, 7− 6, 4− 3, 2− 2, 1− 1) = V (3, 1, 1, 1, 0) ∈ Hinv(J),

associated t the char-tuple b′ = (7− 6 + 1, 2− 2 + 1) = (2, 1).

Ann(Z,Zt) = {w ∈ span{z1, z2}|w · (z1 + z2) = 0} = span{z1 + z2},

S−1 Ann(Z,Zt) = span{J5u2 + Ju4},

therefore, S−1 Ann(Z,Zt) is a minext subspace associated to the char-tuple
b′ = (2, 1).

Finally,

D(X) = S−1 Ann(X) = span{J5u2+Ju4}⊕V (3, 1, 1, 1, 0) ∈ Chinv(J)\Hinv(J).
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