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We present FloatX (Float eXtended), a C++ framework to investigate the effect of leveraging customized

floating-point formats in numerical applications. FloatX formats are based on binary IEEE 754 with smaller

significand and exponent bit counts specified by the user. Among other properties, FloatX facilitates an

incremental transformation of the code, relies on hardware-supported floating-point types as back end to

preserve efficiency, and incurs no storage overhead. The paper discusses in detail the design principles,

programming interface and datatype casting rules behind FloatX. Furthermore, it demonstrates FloatX’s usage
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and LAPACK; the Ginkgo library for sparse linear systems; and two neural network applications related with

image processing and text recognition.
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1 INTRODUCTION
In the last years, transprecision computing (TC), in which systems are specialized to deliver just

the required precision for intermediate computations, has delivered important energy savings in

comparison with the conservative principle of guaranteeing numerical precision of each elementary

step of the process [Bekas et al. 2012; Ho et al. 2017; Malossi et al. 2018; Mittal 2016; Palem 2014;

Palmer 2015; Xu et al. 2015]. A strong tail wind for TC comes from the deployment of low-power

devices and the internet-of-things (IoT) in home appliances, healthcare, and transportation, among

others. In particular, many of the embedded applications running on this type of power-constrained

systems involve numerical computations that consume a considerable amount of energy to perform

the actual computations andmove data across the device memory hierarchy. However, the numerical

requirements for many of these applications can be satisfied by using a significantly lower precision

than the conventional double-precision (DP), single-precision (SP), or even half-precision (HP)

floating-point formats, as defined by the IEEE 754 standard binary64, binary32, and binary16 [IEEE

2008]. At a different scale, convolutional neural networks (CNNs) and weather forecast simulations

also benefit from more versatile floating-point formats [Gupta et al. 2015; Hill et al. 2018; Palmer

2014; Tobias [n. d.]].

While most current hardware architectures offer support for the conventional SP/DP formats

only (and a few recent ones extend this to HP), the discussion in the opening paragraph hints the

potential benefits of customized floating-point units (FPUs) that operate with non-conventional

formats at reduced precision. This is especially the case as some of these applications are important

enough to justify the development of application-specific integrated circuits (ASICs), particularly

as we progress along the road towards the end of Moore’s Law.

In this paper we present a flexible C++ framework, named FloatX (for Float eXtended), to

investigate the effect of exploiting customized reduced-precision floating-point formats in numerical

applications. Here, reduced or low precision means a type which does not have more significand or

exponent bits than IEEE 754 double precision format. Some of the appealing properties of FloatX

include:

Programming interface. FloatX is easy-to-use and minimally-intrusive in order to facilitate

an incremental transformation of numerical applications.

Performance. FloatX relies on hardware-supported floating-point types as back end to pre-

serve efficiency. Furthermore, it incurs no storage overhead by maintaining the size of the

emulated datatype shorter than (or equal to) that of the back-end datatype.

Expected semantics. The arithmetic in FloatX adheres to the round-to-nearest, ties-to-even

rule in the standard IEEE 754 whenever feasible, and the interoperability of variables follows

the datatype casting convention in C++.

In more detail, our paper makes the following contributions:

• We discuss the design principles, decisions, programming interface and datatype casting

rules underlying FloatX.

• We leverage several representative operations from BLAS (Basic Linear Algebra Subpro-

grams) [Dongarra et al. 1990], LAPACK (Linear Algebra Package) [Anderson et al. 1999],

and Ginkgo
1
(a modern C++ linear algebra library for the iterative solution of sparse linear

systems) to expose the insights that we gained during the integration of these linear algebra

(LA) packages
2
on top of FloatX.

1
https://github.com/ginkgo-project/ginkgo

2
The choice of LA is not arbitrary. On one hand, LA operations constitute fundamental building blocks appearing in many

scientific and engineering applications, including the aforementioned CNNs and weather forecast modelling. On the other
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• Some of the aforementioned LA cases are also employed to report the performance overhead

due to FloatX’s (emulated) arithmetic as well as to illustrate the integration of the FloatX

framework in conjunction with multithreaded codes for multicore processors and kernels

written in CUDA C++ for graphics processing units (GPUs).

• In addition, we abandon the classical comfort zone of linear algebra to demonstrate the

potential benefits of FloatX by analysing the effect of customized floating-point precision on

two neural network applications: an image generator code integrated with TensorFlow [Abadi

et al. 2016]; and the Bidirectional Long Short-Term Memory (BLSTM) algorithm for optical

character recognition.

The rest of the paper is structured as follows. In Section 2 we discuss the differences between

FloatX and some related works. Then, in Section 3 we present FloatX’s design principles, application

programming interface (API), and several key properties such as performance overhead. In Section 4

we review an “easy” case: the porting of the C++ Ginkgo library to operate on FloatX. Next, in

Sections 5 and 6 we address two more challenging cases posed by C and Fortran instances of BLAS

and LAPACK. In Sections 7 and 8 we analyse the numerical performance of two neural networks

applications running on top of FloatX. Finally, in Section 9, we close this paper with a summary

and an outline of future research work.

2 RELATEDWORK
There exist some packages to experiment with non-native floating-point precision. Among these,

the GNU MPFR [Fousse et al. 2007] library
3
is a de-facto standard for arbitrary higher than

regular precision, used for example in gcc. At this initial point, we highlight that FloatX aims to

provide a software emulation tool to rapidly explore ideas by experimenting with reduced-precision
floating-point formats within high-level, complex applications. This is in contrast with many other

floating-point emulation tools (see, e.g., the survey in https://www.mpfr.org/) which, similarly

to GNU MPFR, provide software support for extended precision and, therefore, serve a different

purpose. In the following review we target floating-point emulation tools that focus on reduced

floating-point precision.

FlexFloat [Tagliavini et al. 2018] is (internally) a C software library (enhanced with C++wrappers)
that enables exploration of numerical effects by tuning both precision and dynamic range of program

variables. The purpose of FlexFloat is, therefore, very similar to that of our FloatX. Nonetheless, as

we will discuss in the following section, FloatX presents several programming advantages, due to

the adoption of C++ as the back-end framework language, that are difficult to attain with a solution

based on C.

INTLAB (INTerval LABoratory) [Rump 1999] is a Matlab package that offers the fl-numbers, a

concept similar to FloatX. From a freely available example
4
it can be concluded that fl-numbers

have, at most, 26 significand bits (including the implied one); the maximal exponent range is

[−241, 242] (both lower than that in FloatX numbers); and global variables exist that control the

numbers of significand and exponent bits in effect. That last trait makes INTLAB slightly less

flexible than FloatX, where the precision is a property of the data itself.

The Sipe [Lefèvre 2013] C library
5
is a header-only tool for experimenting with floating-point

algorithms and very low precision. It supports the correctly-rounded basic arithmetic operations,

except divisions and square roots, but with fused-multiply-adds (FMA). Compared with FloatX, it

hand, LA is one of traditional areas where the effects of rounding errors and finite precision are better understood than, e.g.,

in the domain of deep learning, where empirical studies are necessary.

3
Available at http://www.mpfr.org/ (version 4.0.1, February 2018).

4
Available at http://www.ti3.tuhh.de/intlab/demos/html/dfl.html as of May 2018.

5
Available at http://www.vinc17.net/research/sipe/ as of May 2018.
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stores the number’s value either in a native back-end floating-point type, or as a pair of two integers

(for the non-normalized significand and the exponent parts, respectively), while the precision is a

property of an operation on the data.

Precimonious [Rubio-González et al. 2013] is a program analysis tool based on LLVM that analyses

floating-point program variables in an attempt to lower their precision. This tool recommends the

smallest datatype for each variable that produces an accurate enough answer for a representative

set of program inputs.

Unum and its new version posit [Gustafson and Yonemoto 2017] are variable-size alternatives to

the IEEE 754 binary formats. FloatX also provides variable-size formats but those are based in the

IEEE 754 standard and the number of bits is fixed prior to any computations. In contrast, the unum

formats cloud grow automatically if required by the computation. Furthermore, there is no easy

mapping between the unum and IEEE 754 formats.

Berkeley’s SoftFloat [Hauser 2019] is a library that provides a floating point IEEE 754 implemen-

tation using only integer operations. This implementation is limited to the standard types plus the

legacy 80-bit format from Intel/Motorola. In contrast, FloatX uses the floating point hardware to

greatly reduce code size with respect to SoftFloat as well as to support any format smaller than the

underlying base format. Also, FloatX leverages C++ overloaded operators to ease integration in

existing programs.

3 THE FLOATX LIBRARY
3.1 Design goals and interface
In addition to implementing custom low-precision floating-point formats, an important design

principle of FloatX is to provide an intuitive and easy-to-use interface, and whenever possible, to

simplify the conversion of existing codes to use FloatX. Thus, the library is shaped by the following

design goals:

(1) FloatX types should be an extension of the standard binary floating-point types (float and

double), and their interface should be equivalent to them. This means that, for any two FloatX

objects, a and b, the following expressions/operations should offer the expected semantics,

as in the case of float and double:
– a + b, a / b, . . .
– a < b, a >= b, . . .
– a = b, a += b, . . .

(2) FloatX types should also be interoperable with built-in numeric types (signed and unsigned

integers, built-in floating-point types) – the expressions above should be valid even if a and

b are different FloatX types, or if one of them is a built-in type. This implies that FloatX types

should support a set of implicit conversions compatible with standard numeric promotions

and numeric conversions of built-in types.

(3) The size of a FloatX object should never be larger than the size of a double. This simplifies

the porting of existing codes to operate on top of FloatX, as it is then possible to embed a

FloatX value into the storage space originally used for a double. This ensures that parts of
the code which just move or read data, but perform no floating-point operations, do not have

to be modified.

Listing 1 provides a small example that demonstrates the features and interface of FloatX. The

example demonstrates several properties in a small fragment of code, but was not conceived to

perform any useful computation.

Lines 1, 2, and 7 show how floatx numbers can be constructed from built-in types (floating-point

numbers and integers) and read from C++ streams. Lines 8 and 9 show how these objects are used

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.



FloatX: A C++ Library for Customized Floating-Point Arithmetic 1:5

1 flx::floatx<7, 12> a = 1.2; // 7 exponent bits , 12 sign. bits
2 flx::floatx<7, 12> b = 3; // 7 exponent bits , 12 sign. bits
3 flx::floatx<10, 9> c; // 10 exponent bits , 9 sign. bits
4 float d = 3.2;
5 double e = 5.2;
6

7 std::cin >> c;
8 c = a + b; // decltype(a + b) == floatx <7, 12>
9 bool t = a < b;
10 a += c;
11 d = a / c; // decltype(a / c) == floatx <10, 12>
12 e = c - d; // decltype(c - d) == floatx <10, 23>
13 c = a * e; // decltype(a * e) == floatx <11, 52>
14 auto f = a + c; // decltype(f) == floatx <10, 12>
15 std::cout << c;

Listing 1. Sample code using FloatX.

to perform basic arithmetic and relational operations. Lines 10–13 demonstrate the interoperability

between different floatx and built-in types. The comments on the right specify the return type

of the operation. (Note that T == U, where T and U are types, is used to convey that these two

types are the same, i.e., that std::is_same<T, U>::value evaluates to true.) Lines 8 and 11–13

also show that floatx types can be implicitly converted to other floatx types or to built-in types,

while Line 14 shows that the floatx types behave as expected when used in combination with the

modern C++ auto keyword. Finally, Line 15 shows how floatx types can be written to an output

stream.

3.2 The choice of C++
Given the restrictions imposed by the design goals stated at the beginning of this section, the

language of choice needs to support a powerful datatype system, which enables programmers

to define their own types and operators on those types. In addition, the language has to support

some sort of “type arithmetic”, which is general enough to specify numeric promotion and implicit

conversion rules for custom types. Furthermore, the design goal of supporting custom types that

are (almost) as precise as double and fit into the same storage space as double means that custom

types are not allowed to incur any memory overhead and that the information about the precision

of the type cannot be maintained as additional data, but has to become a part of the type itself.

These requirements discard C as a possible candidate. In contrast, C++ fits the job perfectly as

this programming language supports both user-defined types and operator overloading, and the

abstractions built in C++ do not impose any memory overhead. C++ templates provide an easy

means to incorporate precision information into the type as well as to define arbitrary conversion

rules using this information. The latter is possible since C++ templates (are believed to) form a

Turing-complete language [Veldhuizen 2003], evaluated during compilation. In addition, most C++
compilers are capable of inlining function calls and optimizing output expressions that can be

evaluated at compile time, which improves the performance of FloatX types.

Applications using C and Fortran 77, languages of wide adoption in high performance scientific

computing, can be ported to C++ (and thus, integrated with FloatX) with a reasonable programming

effort. Since C++ maintains a good level of compatibility with C, applications written in the latter

language can usually be compiled as C++ applications with minimal modifications. Fortran 77

applications (unlike more modern Fortran variants) can be translated into C using the tool f2c and

then compiled with a C++ compiler.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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3.3 The floatx class template
To achieve the third design goal specified in the introduction of this section, and to simplify

realization of the first and second goals, different precisions in FloatX are implemented as distinct

specializations of the floatx class template. The number of exponent and significand bits used in

the format are encoded into the type via integral template parameters.

FloatX uses a hardware-supported floating-point type as back end, which is used to store the

data, simplify the implementation, and improve performance of arithmetic and relational opera-

tions. The binary representation of any FloatX value is equivalent to the rounded and (whenever

possible) normalized representation of the same value in the back-end type. Note that the set of all

representable values in a back-end floating-point type B, with SB significand bits and EB exponent
bits, is a superset of all representable values in any floating-point type with S ≤ SB significand bits

and E ≤ EB exponent bits. Thus, B can be used as back end for any floatx type that is, at most, as

precise as B. There are both positive and negative consequences of this approach.

On the positive side, a comparison of two FloatX values amounts to a comparison of the un-

derlying back-end values, which yields a considerable performance benefit. The textual output is

likewise straight-forward. In addition, all arithmetic operations are performed on those back-end

values. The result is then rounded in accordance to the precision of the FloatX type and again stored

(exactly) in the back-end type. Values such as ±∞ or NaN are directly stored in the back-end type

without any conversion. For efficiency, floating point status flags are not supported by FloatX. Also,

FloatX multiplication and addition are not fused in the current implementation, as this optimization

is rarely worth the extra template metaprogramming effort.

All arithmetic operations are performed in the back-end type, using the corresponding machine’s

floating-point arithmetic instruction. The result of any operation is inevitably rounded back to

that type, using the machine’s rounding mode in effect (usually round-to-nearest, ties-to-even),
before it is rounded again to the target FloatX type, what is called double rounding [Figueroa 1995;

Martin-Dorel et al. 2013].

Double rounding could fail when the first step results in a value that is just at the same distance

from two values in the reduced precision. In the following discussion X stands for an arbitrary

bit and single/double arrows are reduced/high precision roundings respectively. One example of

double rounding failure is when the bit addition carries all the way up to the last bit before the

reduced significand:

X.

q︷             ︸︸             ︷
X · · ·X1︸   ︷︷   ︸

p

01 · · · 1 1X · · ·X
truncation

−−−−−−−→ X.X · · ·X1︸   ︷︷   ︸
pw�

addition

X.

q︷             ︸︸             ︷
X · · ·X1︸   ︷︷   ︸

p

10 · · · 0
addition

−−−−−−→ X.X · · ·X0︸   ︷︷   ︸
p

An additional example of double rounding failure is when the original value is close to the middle

point in high precision:

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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X.

q︷             ︸︸             ︷
X · · ·X0︸   ︷︷   ︸

p

10 · · · 0 0X · · ·X −→ X.X · · ·X1︸   ︷︷   ︸
pw�

X.

q︷             ︸︸             ︷
X · · ·X0︸   ︷︷   ︸

p

10 · · · 0 −→ X.X · · ·X0︸   ︷︷   ︸
p

In this case, at least one bit after q + 1 must be set in the original value. The same situation arises

if the last bits after q in the original value are exactly 10 . . . 0. In both examples the error using the

double rounded value is

|a − roundp (roundq(a))| ≤
ϵp

2

+
ϵq

2

,

which is approximately the expected error for a significand of p bits, that is ϵp/2, when p ≪ q.
This should be the typical case for FloatX as, in most cases, we expect the user is interested in

formats which are “smaller” than single precision. Formats close to double precision (more than 44

significand bits) are not quite as interesting because they will provide much lower benefits from

the hardware point of view.

The correct result without double rounding can be obtained by exploiting only back-end arith-

metic [Rump 2016]. Also, the iterative correction proposed in [Ziv 1991] could be used for any

elementary mathematical function. FloatX does not employ either approach because both have

a large overhead not worth the extra accuracy. An alternative way to avoid double rounding is

to employ round-to-odd [Boldo and Melquiond 2008]. This rounding mode is very efficient and

without bias, but the maximum error is the same as with truncation, and twice as large as for

round-to-nearest. FloatX does not implement round-to-odd because is not in the IEEE 754 standard.

The rounding routine currently integrated in FloatX has a limitation in that it only supports

double as the back-end type, and only “round to nearest, ties to even” rounding mode. A more

general rounding routine with support for different rounding modes and back-end types is planned

in the future.

Listing 2 shows the outline of the floatx class template and demonstrates how the desired binary

representation is achieved. Listing 3 is a verbatim copy of FloatX’s top-level rounding routine,

which demonstrates the steps required to transform a value of the back-end type into a value of

FloatX type.

The rounding process constructs the new value by converting the exponent and mantissa from

the original value (the sign is unchanged). No conversion is required for Infinity and NaN values,

nor if the FloatX type is configured with the same parameters as those of the back-end type.

The first step in the rounding process is to extract the bits for the mantissa, exponent, and sign

using bitwise operations. This process is more complicated for the exponent because of the bias.

Next, each part of the number is fitted into the target format. If the exponent is too small, the

number will be denormalized; if it is too large, the result will be Infinity. The mantissa is rounded to

the nearest value and corrected, together with the exponent, if it is too large. Finally, the rounded

value is constructed from the original sign and the revised mantissa and exponent.

3.4 Operations on floatx objects
As already noted in Subsection 3.3, all operations on floatx values are trivially implemented in

terms of operations on the back-end datatype and the rounding routine. In consequence:

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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1 template <int exp_bits , int sig_bits ,
2 typename backend_float = double >
3 class floatx {
4 private:
5 backend_float data;
6 };

Listing 2. Basic structure of floatx.

1 backend_float enforce_rounding(backend_float value) noexcept {
2 const auto exp_bits = get_exp_bits(self());
3 const auto sig_bits = get_sig_bits(self());
4

5 if (exp_bits == float_traits <backend_float >:: exp_bits &&
6 sig_bits == float_traits <backend_float >:: sig_bits)
7 return value;
8

9 bits_type bits = reinterpret_as_bits(value);
10 auto sig = (bits & backend_sig_mask) >> backend_sig_pos;
11 auto raw_exp = bits & backend_exp_mask;
12 const auto sgn = bits & backend_sgn_mask;
13

14 int exp = (raw_exp >> backend_exp_pos) - backend_bias;
15 const int emax = (1 << (exp_bits - 1)) - 1;
16 const int emin = 1 - emax;
17

18 if (! is_nan_or_inf(bits))
19 {
20 if (is_small(exp , emin))
21 convert_subnormal_mantissa_and_exp(bits , sig_bits , emin , exp ,
22 sig , raw_exp);
23 else
24 sig = round_nearest(sig , backend_sig_bits - sig_bits);
25 if (significand_is_out_of_range(sig))
26 fix_too_large_mantissa(sig_bits , exp , sig , raw_exp);
27 if (exponent_is_out_of_range(exp , emax))
28 bits = assemble_inf_number(sgn);
29 else
30 bits = assemble_regular_number(sgn , sig , raw_exp);
31 }
32 return reinterpret_bits_as <backend_float >(bits);
33 }

Listing 3. Main FloatX rounding routine.

• Comparing two floatx values is equivalent to comparing their representations in the back-

end type.

• Any arithmetic operation on two floatx values is equivalent (up to problems with double

rounding) to the equivalent arithmetic operation on their back-end representations, followed

by a rounding of the result.

• Printing a floatx value to a stream is equivalent to printing its back-end representation.

• Reading a floatx value from a stream is equivalent to reading it as a back-end value and

rounding the result.

• Converting a numeric type into a floatx type is equivalent to converting it into the back-end
type and rounding the result.

• Converting a floatx type into a numeric type is equivalent to converting its back-end

representation into that numeric type.

• Converting between two floatx types is equivalent to re-rounding the back-end representa-

tion.

As a result, the non-trivial part of FloatX remains hidden in the implementation, exposing an

intuitive interface to the user which makes FloatX (semantics) behave as expected and supports a

flat learning curve.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Creating floatx objects and casting between floatx objects (as well as between built-in and

other floatx objects) should be as easy as creating and casting between built-in objects. In order to

attain this, FloatX defines a set of converting constructors for creating floatx objects and casting to
floatx objects, as well as a set of conversion operators for casting from floatx objects to built-in

types.

To support arithmetic and relational operations using the same syntax as that of built-in types,

the library provides a complete set of arithmetic and relational operator overloads for floatx
numbers. In addition, stream input and output operator overloads are also provided to simplify

writing and reading floatx objects to and from C++ streams.

Supporting interoperability between distinct types (i.e., accommodating operations involving

operands of different types) is more difficult. This requires extending the standard numeric promo-

tion and conversion rules to include floatx numbers. The C++ definition of these rules relies on the

concept of a common type, a rigorous definition of which, including the set of implicit conversions

and promotions, can be found in the C++ standard [ISO 2017].

In short, the common type for two floating-point types F and G is the more precise of the two,

and the common type of an integral type I and a floating-point type F is the floating-point type F.
All binary operations are performed by first converting both operands to their common type, and

then performing the operation with converted values. The result of the operation is of the common

type. In addition, if the integer being converted is out of the representation range of the common

type (this can happen when converting a large integer to a low-precision floating-point type), the

result of the operation is unspecified.

Applying these rules literally to FloatX is impossible, since there are pairs of floatx types such

that neither of them can be considered as more precise (e.g., floatx<7, 9> and floatx<10, 6>).
Thus, FloatX has to extend these rules in a way which does not modify their definition for standard

types, while maintaining the desirable properties of those types for FloatX’s emulated types. Some

of the properties that we consider crucial are the following:

(1) The common type of two operands of the same type T is type T itself; that is, common_type
(T, T) = T.

(2) For any two floating-point types R and S, and objects of those types a and b, respectively,
consider the statement c = a + b; (equivalently, any basic arithmetic operation). If c is of
type T ∈ {R, S}, the final result stored in c is equivalent (up to effect of double rounding) to

the infinitely-precise result of a + b, properly rounded to type T.
(3) For any two floating-point types R and S, common_type(R, S) is the smallest type which has

at least as many exponent and significand bits as both R and S.

To remove ambiguities with the standard specification of a common type, FloatX uses the

following definition.

Definition 1 (Common type for floatx). Let ES and ET denote the number of bits reserved for
the biased representation of the exponent in the floating-point types S and T, and letMS andMT stand
for the number of bits in the significand (mantissa) of the same types.
For two floating-point types, S and T, FloatX defines common_type(S,T) as a type with max{ES,ET}
bits reserved for the exponent and max{MS,MT} bits for the significand.
For a floating-point type S and an integral type I, common_type(S,I) = S.

Note that this definition satisfies all of the above mentioned desirable properties and keeps the

original semantics of a common type unchanged for the built-in types. Since the FloatX definition

extends the original C++ definition, FloatX only needs to implement the extensions for operations

where at least one of the operands is of a type provided by FloatX. This is done by providing
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more general operator overloads which can take any operands, as long as at least one of them is a

FloatX-provided type, and then convert them into their common type.

The common type is determined at compile time, using a combination of meta-programming

techniques including: trait classes for built-in and FloatX-provided types, SFINAE (Substitution

Failure Is Not An Error) [ISO 2017], and the std::enable_if standard C++ utility. For implemen-

tation details, refer to the FloatX source code
6
. The common type resulting from such an overload

is always a FloatX-provided type with the significand and exponent bits set to the values specified

as in Definition 1. The back-end type is set to the common type of back-end types of the operands

(if one of the operands is a built-in type T, its back-end type is considered to also be T).

3.5 The floatxr class template
One downside of floatx is that the “range” and “precision” of a type need to be known at compile

time. Since the goal of floatx is to ease and accelerate the experimentation with low precision,

this limit can sometimes be too restrictive. There are applications (e.g., Jacobi linear solvers [Anzt

et al. 2015]) for which it is interesting to start with a low precision and increase the number of bits

in small steps as the algorithm progresses. In this case, having a different type for each step will

make the actual implementation very complex. In addition, the intent “to evaluate an algorithm with
all significand sizes between S1 and S2, and return the optimal one” is difficult to express, as it would

either require the user to recompile the code for each size or use template meta-programming to

write the compile-time equivalent of a loop.

For this reason we introduce another class template, floatxr, which allows the user to set the

precision at runtime. Listing 4 displays the data layout of this type.

1 template <typename backend_float = double ,
2 typename metadata_type = unsigned int >
3 class floatxr {
4 private:
5 backed_float data;
6 metadata_type exp_bits;
7 metadata_type sig_bits;
8 };

Listing 4. Basic structure of floatxr.

Unfortunately, specifying the precision at runtime comes at the cost of increased memory

footprint, and as such, floatxr does not fulfill the third design goal specified in the beginning of

this section.

On the positive side, floatxr and floatx can be implemented to use the same code base, so

there is only one rounding routine and one set of operators to maintain (and the compiler just

optimizes the same generic function templates more efficiently when instantiating them for floatx
than for floatxr). Also, floatxr types support the same operations and conversions as floatx
types, and interoperate with floatx and built-in types. As stated in the following definition, the

latter requires a minor revision of the common type, since the precision of floatxr is not known

at compile-time.

Definition 2 (Common type for floatxr). For any two types S and T:

• If at least one of S and T is a floatxr type, their common type is a floatxr type whose
back-end type is the common type of S and T’s back-end types.

• Otherwise, the common type is deduced as specified in Definition 1.

6
Available at https://github.com/oprecomp/FloatX
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3.6 Notes on concurrency
FloatX variables maintain no state (e.g., there are no routines for setting or global variables holding

the current working precision, since this is either a property of the types involved in an operation,

and/or a property of the data). The rounding operation itself also depends only on the back-end

and the destination types’ properties.

An important advantage of the stateless floatx compared with stateful floatxr, is that the
framework can be safely used from many concurrent threads of execution, in a sense that no

arithmetic or relational operation on floatx variables involves accessing (let alone changing) any

other non-constant data. The threads in question can either be operating system threads on a CPU

or CUDA threads on a GPU. It should also be noted that the rounding operation and the functions

employed in FloatX consist of the same code in both the CPU and the GPU cases, up to certain

integer compiler intrinsics and the necessary CUDA device function attributes.

Since changing the precision of a floatxr variable at run-time requires modifying its two

metadata components and re-rounding the value in the back-end component, neither read nor write

access to the variable from another thread should be allowed while the operation is in progress. In

general, there are no special guarantees of atomicity for any FloatX type or operation. For example,

an assignment of a floatx variable b to a involves: creating a temporary floatx with the back-end

value set to the one of b, re-rounding of that value in-place, and finally replacing a’s back-end
component with the temporary’s (up to any compiler optimizations that might be applied). The

users should therefore rely on standard mutual exclusion primitives to avoid data races during the

concurrent access to FloatX variables of any type.

3.7 Advanced properties and performance of FloatX
An additional advantage of the stateless FloatX is that the memory size and the alignment require-

ments are both identical to those of the back-end type. Thus, in certain read-only scenarios, an

array of FloatX variables can be directly passed, with just a pointer typecast, to a routine expecting

an array of the back-end type. A use case might be a pretty-printer routine, or a writer routine for

a custom file format, possibly written in a different language.

The easiest way to compute the mathematical functions for FloatX is to obtain the result using the

back-end function, and round the result into a target FloatX type. Of course, that could sporadically

introduce results which are not correctly rounded, due to double rounding, where the routine itself

is expected to be correctly rounded (e.g., sqrt).
When representing a native floating-point type as a FloatX type (in particular, floatx<11, 52>

represents double, and floatx<8, 23> is equivalent to float), the final rounding operation is

unnecessary (no-op) when that machine’s type is equivalent to the back-end one, or can otherwise

be simplified by employing two native datatype conversions. In both cases, the simplification can

be triggered at compile time. The former case yields arithmetic performance close or equivalent

(zero-overhead achieved by code inlining) to using the native back-end type directly, including the

possibility of automatic vectorization and other optimizations not generally applicable to FloatX

types. The latter case has not yet been implemented.

Overhead. It is evident from the control flow in Listing 3 that the complexity of rounding depends

on the value being rounded as well as on the type constraints. Therefore, the performance of the

code is inherently dependent on the data itself. For example, the rounding operation from Listing 3,

fully optimized and inlined after an addition a + b, with the variables declared as floatx<7, 12>
a and floatx<10, 9> b, requires around 80 assembly instructions on an Intel Haswell architecture

with the gcc 7.2.1 C++ compiler. However, not all of those instructions are executed in each rounding

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:12 G. Flegar et al.

<5,10> <8,23>∗ <10,13> <11,44> <11,52>∗∗ float∗ double∗∗

128.8 132.6 127.7 149.4 1714.8 1999.1 1715.2

Table 1. MFLOP/s for DOT BLAS-1 operation with various FloatX and native types. Numerically-equivalent
datatypes are identified using the same positive amount of asterisks in the superscript.

<8,23>∗ <9,14> <10,13> <11,28> <11,52>∗∗ float∗ double∗∗

128.4 125.1 125.7 149.8 2316.8 5751.0 2652.0

Table 2. MFLOP/s for GEMM BLAS-3 operation with various FloatX and native types. Numerically-equivalent
datatypes are identified using the same positive amount of asterisks in the superscript.

operation, due to possibly different code paths taken in each case. Furthermore, the alternative

code paths make code vectorization almost impossible.

Our next experiments provide an evaluation of the practical overhead introduced by FloatX

when using non-native datatypes, using the routines for the legacy
7
BLAS-1 DOT and BLAS-3 GEMM

converted to C++ and integrated with FloatX.

The testing machine for all experiments performed in this paper (except when the target is a

GPU) was an Intel Xeon E5-2630 v3 (Haswell) system, running at 2.40 GHz, with the gcc 7.3.0 C++
compiler and a 64-bit GNU/Linux.

Table 1 summarizes the performance of the sequential DOT routine, with two vectors of n =
10

9
pseudo-random elements in (−1, 1) of a particular type each. The millions of floating-point

operations per second (MFLOP/s) is displayed for each type specified in the header (“floatx” prefix
was omitted for brevity). The conclusion from this experiment is that all floatx types exhibit

a similar (but not the same) performance hit compared with the back-end type, except when

equivalent to it and the optimization described above is in effect. However, when the exponent

range is the same as the one of the back-end type (11 bits for double), the rounding procedure

from Listing 3 is faster than in the other cases.

Table 2 summarizes the overhead observed with the BLAS-3 GEMM multiplication of the form

C = 2AB −C , when using FloatX versus the native datatypes in the reference implementation of

this routine in BLAS converted to C++. The entries of matrices A, B and C , of order n = 3000, were

randomly generated. The computation consists of multiplications and subtractions, for a total of

2n3 + O(n2) floating-point operations. The choice of types displayed in Table 2 covers the minimal

and maximal observed performance (125.1 and 149.8MFLOP/s, respectively) within a test subset of

20 “proper” (i.e., not particularly optimized, like floatx<11, 52>) FloatX types, confirming further

that the complexity of the rounding operation varies with the datatype of the parameters as well as

with the data values themselves.

4 THE GINKGO FRAMEWORK
Our first example illustrates the effort to integrate a C++ framework, such as Ginkgo, with FloatX.

Given that the programming language for Ginkgo matches that of FloatX, and the advanced features

of Ginkgo, we can naturally expect that this integration is smoother than that of BLAS and LAPACK

(to be discussed in the next two sections).

7
Available at http://www.netlib.org/blas.
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Ginkgo is a single-node high performance linear algebra library, designed to transparently

support heterogeneous systems consisting of various devices. It currently contains a single-threaded

reference module for CPUs and a highly optimized CUDA module for NVIDIA GPUs. An OpenMP-

based multithreaded module for CPUs is under development. The library is designed as a linear

operator algebra, primarily focusing on the iterative solution of sparse linear systems of equations.

However, other linear transformations also fit the Ginkgo framework.

One of the main focuses of Ginkgo is extensibility, making it an ideal first candidate for FloatX.

Even more so, since in addition to supporting user-defined sparse building blocks (matrix formats,

preconditioners, solvers, stopping criteria, etc.), Ginkgo enables easy integration of user-defined

arithmetic types. In fact, integrating a FloatX type only required changing 5 lines in Ginkgo’s

source code. Once this was done the type could be used in the same way as a native type could.

1 #include <ginkgo/ginkgo.hpp >
2 #include <floatx.hpp >
3 #include <iostream >
4

5 int main() {
6 using T = flx::floatx <7, 16>;
7 auto gpu = gko:: CudaExecutor :: create(0, gko:: OmpExecutor :: create ());
8 auto A = gko::read <gko:: matrix ::Ell <T>>(std::cin , gpu);
9 auto b = gko::read <gko:: matrix ::Dense <T>>(std::cin , gpu);
10 auto x = gko::read <gko:: matrix ::Dense <T>>(std::cin , gpu);
11 auto solver =
12 gko:: solver ::Cg<T>:: build()
13 .with_criteria(
14 gko::stop:: Iteration ::build().with_max_iters (20u).on(gpu),
15 gko::stop:: ResidualNormReduction <T>:: build()
16 .with_reduction_factor(T{1e-15})
17 .on(gpu))
18 .on(gpu);
19 solver ->generate(give(A))->apply(lend(b), lend(x));
20 write(std::cout , lend(x));
21 }

Listing 5. An example of using floatx<7,16> in combination with the Ginkgo library.

Our tests with Ginkgo+FloatX included the compilation of the framework with support for

several custom FloatX types and a few of the examples included with Ginkgo, modified to solve a

sparse linear system using the Conjugate Gradient (CG) method with a matrix stored in ELLPACK

format. The purpose of our tests with Ginkgo was not to validate FloatX itself, but to gain some

initial experiences on the type of caveats and problems of such integration process. In general,

the experience was quite satisfactory, and the CG method was run both on one core of the Intel

Haswell CPU and an NVIDIA P100 GPU connected to the server.

As an example, in Listing 5 we display the complete source code needed to iteratively solve a

sparse linear system using Ginkgo with FloatX. Line 7 defines the execution space that will be used

to run all subsequent operations. In this case, it is the CUDA device with ID 0. Next, in Lines 8–10,

a system matrix A, right-hand side vector b and an initial guess x are read from the standard input

and saved in Ginkgo’s ELLPACK matrix format and dense vector formats that use the specified

FloatX types to store the numeric values of the matrix. Then, a CG solver is constructed from the

system data in Lines 11–18. The system is solved in Line 19, and the solution written to the standard

output in Line 20. All in all, Ginkgo + FloatX is a good example where both libraries are designed

with standardized interfaces and are compatible with one another. As a result, there is virtually no

difference for the user when Ginkgo is used with FloatX, compared to using Ginkgo with built-in

types.
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5 BLAS
5.1 Legacy implementation
The legacy implementation of the BLAS API

8
is written in Fortran, though there exist C and C++

wrappers which preserve established array storage and interface conventions while offering some

of the advanced features of more modern languages. The first question to obtain an implementation

of (the legacy) BLAS that operates with custom types is how to combine a library like (the reference

implementation of) BLAS, which is strongly rooted in the old Fortran 77, with a C++ framework

such as FloatX. The inauspicious answer is that this is not straight-forward.

Fortunately, the contents of the legacy BLAS can be automatically transformed into plain C

routines via a tool such as f2c without too much trouble. However, when the goal is to combine

the result of f2c with FloatX, there appear some caveats worthy of being discussed:

• The f2c converter produces a plain C code, which needs to be “genericized” by templating

the routines with a type parameter, named after the appropriate f2c’s typedef: e.g., real or

doublereal, for single or double precision routines, respectively (our implementation is a

generic version of the latter). Here, only the floating-point type needs to become generic

while the character, logical, and integer types may be left as typedefs.
• In addition, the f2c-processed code depends on the f2c.h header definitions and the libf2c
routine library. The header file introduces a couple of macros (e.g., for abs and min/max), for
which the standard C++ generic functions would be more appropriate.

• Moreover, f2c sometimes declares global static variables, which need to be moved into the

translated routines, to get them in scope of the template’s typename by which they will be

declared.

• The calls to non-generic mathematical functions have to be fixed as well.

• BLAS by itself does not use the Fortran I/O subsystem, and therefore the translated code

can be made self-contained, i.e., not dependent on libf2c. The only exception is the XERBLA
routine, which is simple enough to be manually encoded in C++.

Having done so, all of the BLAS has been “genericized” to the point that it becomes a header-only

library; that is, no code is compiled into separate object files (except for testing purposes). All

routines that are needed by a particular application are instantiated when and where needed, with

the appropriate types used in each call (e.g., the native or the FloatX types). This type of approach

increases the compile time of the applications noticeably, but we believe that the flexibility of the

result outweighs that drawback. For reference, Listing 6 shows examples of generic C++ prototypes

for a real AXPY9 and a real GEMM.10

1 template <typename doublereal >
2 void daxpy_(integer *n,
3 doublereal *da,
4 doublereal *dx, integer *incx ,
5 doublereal *dy, integer *incy);
6

7 template <typename doublereal >
8 void dgemm_(char *transa , char *transb ,
9 integer *m, integer *n, integer *k,
10 doublereal *alpha , doublereal *a, integer *lda ,
11 doublereal *b, integer *ldb ,
12 doublereal *beta , doublereal *c, integer *ldc ,
13 ftnlen transa_len , ftnlen transb_len);

Listing 6. Generic prototypes for some real BLAS routines.

8
Available at http://www.netlib.org/blas (version 3.8.0, November 2017).

9
An update of a vector by another scaled vector, y = y + ax.

10
Matrix multiplication, C = βC + αAopABopB , with opX being an optional transpose (with or without conjugate) of X.
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At this point, it is worth mentioning that, in comparison with a recent effort to produce a generic

C++ API for BLAS (and LAPACK) [Gates et al. 2017], our “FloatX-ed” routines operate only on

a single datatype. In comparison, the proposed C++ BLAS API implementation
11
allows mixing

the datatypes in a single call (e.g., an AXPY call is “template-ized” with two type parameters, one

for vector x and another for y, while the type of the scalar a is deduced from the two). However,

offering a generic BLAS interface was only a secondary goal to us, needed to demonstrate the

feasibility of using FloatX with ubiquitous scientific computing kernels.

5.2 Optimized implementations
The experiment in Table 1 exposed the overhead incurred when using software-emulated datatypes

instead of their hardware-native counterparts within the legacy BLAS. In practice, numerical applica-

tions do not rely on such a plain implementation of the BLAS but on an optimized, hardware-specific

counterpart. These high performance instances of BLAS heavily rely on vector FMA instructions
and inline cache prefetching, at the same time exerting a strong control of data movements across

the memory hierarchy to amortize the cost of communication. Some examples of vendor-optimized

implementations of the BLAS are included in Intel MKL [Intel 2015], IBM ESSL [IBM 2015] and

NVIDIA cuBLAS [NVIDIA 2016]. Unfortunately, all these software packages are black-boxes and

their contents cannot be inspected nor modified. Open instances of BLAS that are often competitive

in performance include OpenBLAS [OpenBLAS 2015], ATLAS [Whaley and Dongarra 1998] and

BLIS [Van Zee and van de Geijn 2015].

Among the previous instances of the BLAS, BLIS (BLAS-like Library Instantiation Software
Framework) is especially appealing because it drastically reduces the amount of code that needs

to be manually optimized for a given architecture. For example, BLIS encodes the GEMM kernel

as five plain loops around two simple packing routines and a micro-kernel. All code in BLIS is

written in C, while only for highly optimized for architecture-specific implementations of BLIS, the

micro-kernel is usually written in assembly or with vector intrinsics. Furthermore, BLIS includes

OpenMP pragmas to deliver a multi-threaded execution of the routines on a multicore processor;

see [Van Zee and van de Geijn 2015] for details.

An interesting question in this case is whether we can migrate a C framework such as BLIS,

parallelized with OpenMP, to operate on top of FloatX and still benefit from some of the performance

optimizations integrated in the former. In particular, given the implementation of BLIS, we can

expect to maintain the tight control over the data movements as well as to take advantage of the

multi-threading capabilities of BLIS/OpenMP on a multicore processor. However, is not possible

to profit from the optimized implementation of the micro-kernel, which depends on the target

architecture and includes vector FMA instructions. The conclusion is that any instance of BLAS,

even a cache-aware one such as BLIS, operating on top of FloatX, will offer low performance due

to the lack of support at the micro-kernel level.

6 LAPACK
To further illustrate our experience with FloatX, in this section we discuss the integration of the

custom floating-point framework with the solver for general linear systems (via the LU factorization)

and with the singular value decomposition (SVD), both from LAPACK
12
[Anderson et al. 1999].

The solution of (dense) linear systems was chosen because it is one of the classical examples of

a numerical method that can be adapted to combine an inner reduced-precision (RP) solver with

an outer extended-precision (EP) iterative refinement [Barrachina et al. 2008; Buttari et al. 2007;

11
Available at https://bitbucket.org/icl/blaspp as of May 2018.

12
Available at http://www.netlib.org/lapack (version 3.8.0, November 2017).
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Higham 2002]. With FloatX, one can then investigate customized datatypes for the inner RP solver,

which can for example feature a range of representation (i.e., number of bits in the exponent)

as wide as that of DP (to avoid underflow/overflow problems), but a constrained precision (i.e.,

number of bits in the significand) similar to that of HP. The SVD was selected because it has been

described as the “Swiss Army knife of matrix decompositions”, due to its many applications [O’Leary

2006], and also for being representative of the type of unitary/orthogonal one-sided and two-sided

factorizations for (dense) linear least squares problems and the solution of (dense) eigenvalue

problems.

Migration. Porting a routine from LAPACK to C++ using f2c shares many of the issues discussed

for the BLAS in the previous section. An additional obstacle in the case of LAPACK are the operations

on character strings (e.g., concatenation of two strings), which get translated into calls to the libf2c
routines, and have to be re-coded manually to avoid reliance on that library. The same is true for the

power function (x**y, i.e., xy ) and the logarithms, which are used in the reference LAPACK code

to compute certain numerical bounds in a portable fashion, but are not essential to the algorithms

themselves.

A hidden stumbling point that one should be aware of when using LAPACK routines that

require a floating-point workspace and allow for querying its optimal size is that the query result

(intrinsically an integer) is returned as a floating-point number in the first element of the workspace

array. Should that floating-point type be too narrow to exactly represent the integer value, all sorts

of issues can and will arise with the large matrix dimensions and especially with the workspace of

a quadratic size in terms of them. If the integer to floating-point conversion is done via truncation

instead of rounding towards +∞, a too-small workspace length can be returned; otherwise, it may

become unnecessarily large. In the worst case, the length can even be a useless ∞. That is however

a design decision of LAPACK that cannot be changed without breaking its API.

Furthermore, the LAPACK codes evolve faster than the underlying BLAS routines, with a tendency

to introduce the more modern Fortran language constructs. Unfortunately, some of these constructs

are beyond those recognized by f2c, such as the EXIT statement for exiting the innermost enclosing

loop, or the newer Fortran intrinsics. Those cases have to be re-written, either by “downdating” the

Fortran sources, or by providing an alternative implementation in C++.

Routine LAMCH. The main non-straightforward part in the conversion of LAPACK to C++ is

implementing a generic LAMCH function. This routine is expected to return certain parameters

derived from the floating-point type’s limits and representation, such as the type’s ε (the smallest

positive number to satisfy 1+ε , 1 in a selected roundingmode), the smallest and largest normalized

positive number of the type, the type’s radix (providing support for non-radix-2 arithmetic), etc.

For the native types, those quantities can be taken or easily computed from the values provided

by the standard C++ template class std::numeric_limits, but for FloatX types they have to be

deduced from the type’s exponent and significand widths, as discussed next.

Listing 7 shows how to derive the quantities for FloatX types. These expressions are valid for

any floating-point type T with radix 2, one bit for the sign, a biased exponent, and a significand that

includes an implicit bit for the normalized numbers. Here we assume that the range of values of T is
a subset of the range of values of some (here, back-end) type B with which it is easy to manipulate.

Figure 1 explains the meaning of the mnemonics for the LAMCH quantities, and offers concrete

values for the example floatx<5, 10> (equivalent to a 16-bit HP type). The quantities that are

derived from the basic ones do not have a mnemonic, while our extension t of the standard

quantities serves to simplify a bound required in the LARTG routine for computing the Givens

rotations.
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1 template <typename T>
2 typename std::enable_if <(flx:: float_traits <T,void >:: is_floatx &&
3 !flx:: float_traits <T,void >:: is_runtime),T>:: type
4 dlamch_(const char *const cmach , ftnlen cmach_len) {
5 using B = typename flx:: float_traits <T>:: backend_float;
6

7 static const int E = flx:: float_traits <T,void >:: exp_bits;
8 static const int M = flx:: float_traits <T,void >:: sig_bits;
9 static const int bias = (1 << (E - 1)) - 1;
10 static const int tinyE = 1 - bias;
11 static const int hugeE = ((1 << E) - 2) - bias;
12

13 T ret = 0;
14 switch (toupper(cmach [0])) {
15 case 'E': ret = std:: scalbn(B(1.0), -(M + 1)); break; // 2\^{} -(M+1)
16 case 'S': ret = std:: scalbn(B(1.0), tinyE); break; // 2^tinyE
17 case 'B': ret = FLT_RADIX; break; // assumed to be 2
18 case 'P': ret = std:: scalbn(B(1.0), -M); break; // 2^-M
19 case 'N': ret = (M + 1); break;
20 case 'R': ret = 1; break; // always rounding -to-nearest
21 case 'M': ret = tinyE + 1; break;
22 case 'U': ret = std:: scalbn(B(1.0), tinyE); break; // 2^tinyE
23 case 'L': ret = hugeE + 1; break;
24 case 'O':
25 // fma(x,y,z) = x*y + z; here , x*y alone could overflow , but fma()
26 // comes to the rescue , since only one rounding should take place.
27 ret = std::fma(std:: scalbn(B(1.0), hugeE), B(2.0),
28 -std:: scalbn(B(1.0), (hugeE - M))); break;
29 case 'T': // non -standard extension for SAFMN2 from xLARTG
30 ret = std:: scalbn(B(1.0), (tinyE + (M + 1))/2); break;
31 default: // non -standard return -0 to signify undefined result
32 ret = -ret;
33 }
34 return ret;
35 }

Listing 7. LAMCH for FloatX.

E: Epsilon = 0.000488281 | M: Minimum exponent = -13
S: Safe minimum = 6.10352e-05 | U: Underflow threshold = 6.10352e-05
B: Base = 2 | L: Largest exponent = 16
P: Precision = 0.000976562 | O: Overflow threshold = 65504
N: # of digits in mantissa = 11 | 1 / safe minimum = 16384
R: Rounding mode = 1 | t: SAFMN2 for xLARTG = 0.5

Fig. 1. An example of the output from LAMCH for floatx<5, 10>.

For example, the machine precision ε (mnemonic E) is computed as 2
−(M+1)

, since LAPACK uses

ε for the maximum rounding error. In rounding-to-nearest, this is half the distance 2
−M

between

the number 1.0 and the next one exactly representable in T.
Another interesting LAMCH quantity is the largest finite representable number (mnemonic O).

This value is computed by taking 2 to a power equal to the largest exponent available for the finite

numbers, multiplying it by 2 (which would lead to overflow if not done carefully and the exponent

range is the same for T and its back-end type), and subtracting the difference between that and

the required value, going back into the finite range. The FMA operation behaves as if there was no

rounding taking place after the intermediate multiplication.

Note that the FMA operation cannot be autogenerated for FloatX by a C++ compiler, so all testing

comparisons have been done by disabling the automatic generation of such machine instructions

for the native types as well (with -mno-fma compiler flag in GNU’s gcc), but the fma function from

the standard library is available where explicitly needed, as is the case in the computation above.

7 GENERATION OF SYNTHETIC IMAGES USING REDUCED PRECISION IN GANS
The next two sections aim to demonstrate the possibilities and benefits of leveraging FloatX from

practical applications. We integrate an arithmetic-consistent casting operator into the Tensor-

Flow [Abadi et al. 2016] framework, and use different number formats to generate synthetic images
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with the generator of a Generative Adversarial Network (GAN) [Goodfellow et al. 2014]. The

generator receives a random latent vector as input and is trained to generate synthetic data similar

to the images stemming from the training data.

Neural network and numerical analysis setup. In this demonstration, we study the inference

phase of the state-of-the-art generator network used in DCGAN [Radford et al. 2015] and reused

in BAGAN [Mariani et al. 2018] trained on the CelebA [Liu et al. 2015] dataset. The generator

produces a 64× 64-pixel synthetic face image based on a 100-dimensional random latent vector. We

study the quality of the generated image depending on the reduced precision floating-point format

used to communicate information between all compute operations within the generator network.

For the evaluation, we implemented a cast layer that maps IEEE 754 floating point values to reduced

floating-point datatypes using FloatX, and maps them back to IEEE 754 floating point values. In

this study, we quantized weights, inputs and outputs to the same global format to compress the

model and to compress the amount of data that is required to flow from one compute operation to

the next.

Numerical results. In the followingTw,t denotes a FloatX type floatx<w, t> used to generate low
precision computing pipeline variants from the same randomly generated latent vectors. Figure 2

shows the obtained image quality in terms of the PSNR (peak signal-to-noise ratio) between the

approximated and the reference generated image. We observe a sharp change in quality when

the number of bits used to encode the exponent exceeds 3. Using too few exponent bits fails to

produce real-looking images, since the dynamic range of the compute domain is too restricted. In

contrast, exceeding the dynamic range does not alter the results significantly. For a large enough

exponent, adding more mantissa bits gives a smooth numerical improvement of the average PSNR

value over the full range. Figure 3 shows faces generated with reference precision and with low

precision number formats. As known, images exceeding a PSNR value of around 50 dB are visually

equivalent. Number formats as small as T4,1, consisting only of four exponent bits, one mantissa

bit, and one sign bit (for a total of 6 bits) generate visually equivalent faces as the IEEE 754 32-bit

floating point baseline. With this reduced type, all weights of the model can be compressed by a

ratio of 5.3×when storing all values with 6 bits instead of 32 bits.

PSNRt: length of significand field
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Fig. 2. Average quality of the generated faces when operating the generator with quantized weights, inputs
and outputs. For one test, the full network is using a global format Tw,t in all quantization steps and the
quality is assessed by comparing the result with the reference faces computing the PSNR measured in dB. For
exponent fields below three bits, a major harm is caused in the output. Increasing the number of exponent
bits beyond 4 bits does not significantly alter the results as the dynamic range of the computing domain is
covered well enough.
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Fig. 3. a) One batch of 16 randomly generated synthetic faces when using the BAGAN generator network
with the 32-bit floating point reference datatype. b) and c) show two representative samples produced with
different formats Tw,t . Results obtained with number formats T3,3, T3,4, T4,1, T4,2, T4,3, and T4,4 look alike
and are visually indistinguishable from the full precision reference.

8 REDUCED PRECISION FOR BLSTM
We integrated FloatX and studied the overall recognition accuracy on the optical character recogni-

tion (OCR) tasks by using a Bidirectional Long Short-TermMemory (BLSTM) architecture [Rybalkin

et al. 2017]. We performed our evaluation based on the data and C implementation provided by

the authors of the BLSTM [Rybalkin et al. 2017], and conclude that BLSTM profits from compact

floating-point formats with negligible impacts on the final accuracy.

The trained BLSTM [Rybalkin et al. 2017] model solves the optical character recognition problem

by processing scanned text images column-wise. The BLSTM updates two LSTM cells in a forward

and backward passes, merges the results with a dense layer, and finally predicts with a softmax

output layer. Even though matrix-vector operations dominate the BLSTM [Rybalkin et al. 2017],

nonlinear activation functions within the recurrent update cause a non-trivial error propagation

behaviour of the BLSTM inference. Due to the presence of recurrent computations within BLSTM,

artefacts due to numerical approximation might potentially accumulate and propagate through the

output and yield wrong results. However, the error resilience of deep learning methods [Hill et al.

2018; Rybalkin et al. 2017] allows recovering from imprecision caused by numerical representations.

With FloatX we demonstrate for all internal representations and arithmetic operations that a

reduction of the average bit-width down to 12.2 bit is enough to stay within the strict accuracy

requirements.

Figure 4 shows a sharp transition between correct and incorrect operation when running at

different precisions Tw,t . The sharp boundary between these two types of operations is due to the

inherent error resilience of deep learning-based computations and stands in contrast to regular

linear solvers that exhibit a smooth error dependency on bit widths. Due the presence of the accuracy

plateau from T6,6 up to T11,52 (double), we identify T6,6 as the optimal global data type, which is

considerably narrower than T8,23 (float) used to execute the baseline. Table 3 presents accuracies

obtained for selected operation points. Operating with a 16-bit format encoded as T8,7 [Tagliavini
et al. 2017] outperforms the T5,10 (half ) format. Individually reducing input encoding for weights

(W) and image (I) down to T3,1 has a marginal effect on the result. Since simultaneously using T3,1

14
[Rybalkin, Wehn, Yousefi, and Stricker 2017]

15
[Tagliavini, Mach, Rossi, Marongiu, and Benini 2017]
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Fig. 4. Recognition accuracy of BLSTM when operating with type Tw,t . The baseline runs with T8,23, which
explains part of the plateau at around 98% accuracy. BLSTM operates close-to-perfect with further reduced
formats.

Setting Weights Images Operations Accuracy

See ref.
13 T8,23 T8,23 100% in T8,23 (float) 98.2337%

See ref.
14
, Fig. 6 16 bit fixed See ref.

14
IV-C 97.9794%

See ref.
14
, Fig. 6 5 bit fixed See ref.

14
IV-C 97.5821%

T5,10 (half ) T5,10 T5,10 100% in T5,10 (half ) 21.4392%
T6,6, see Figure 4 T6,6 T6,6 100% in T6,6 98.0536%
T8,7, see ref.

15 T8,7 T8,7 100% in T8,7 98.1890%

Quantized W T3,1 T8,23 100% in T8,23 98.0692%
Quantized I T8,23 T3,1 100% in T8,23 98.1181%
Quantized W&I T3,1 T3,1 100% in T8,23 96.7730%
Quantized W&I T4,1 T4,1 100% in T8,23 98.1660%

Modified MAC T4,1 T4,1 40.7% in T5,2, 40.7% in T5,10 98.1905%
(average 15.7 bit) 18.6% in T8,23
Proposed T4,1 T4,1 40.7% in T5,2, 40.7% in T5,10 97.9969%
(average 12.2 bit) 18.6% in T6,6

Table 3. Impact of reduced precision on BLSTM recognition accuracy: reference results, global
scans, input quantization effects and proposed configurations.

for weights and images reduces accuracy, we usedT4,1 which enables fair accuracy. Profiling shows

that MAC operations from dot products contribute more than 80% of all executed operations. We

suggest to use T5,1 arithmetic for multiplication and a T5,10 arithmetic for accumulation. The last

configuration shows that replacing the remaining parts with narrow formats allows computing

with an average bit-width of 12.2 bit and still getting an accuracy of about 98%.
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9 SUMMARY AND FUTUREWORK
This paper presents FloatX, a framework developed in modern C++ designed with three main

goals: i) easy-to-use and minimally-intrusive API which facilitate an incremental transformation

of numerical applications; ii) offer reasonable performance while incurring no storage overhead;

and iii) follow “natural” C++ rules such as “round-to-nearest, ties-to-even” and datatype casting

conventions.

Our experience gained with the integration of numerical LA libraries such as BLAS, LAPACK,

and Ginkgo, offers a variety of insights and serves to identify a number of problems that other

users of FloatX may also encounter. In principle, the difficulties of porting an application to operate

on top of FloatX largely depend on the design of the application. In general though, we found that

many caveats were due to the use of C or Fortran. We hope that our efforts in this line can help

others to rapidly take advantage and enjoy working with FloatX. The last group of applications

aim to illustrate only two among the many numerical analyses that are enabled by FloatX. We

recognize that the number of possibilities is much larger and we expect it will be fueled by the

advance of IoT.

FloatX is a living open project. Therefore, it is natural to think of many appealing extensions to

it. Here we name only a few:

• FloatX is a real floating-point arithmetic framework, and therefore, it is natural to ask whether

it could support complex numbers over FloatX types and how.

• The only back-end type for FloatX is double. From the storage and performance points of

view, depending on the emulated datatype, single or even half could be more efficient.

• As mentioned earlier in the manuscript, the development of a general rounding routine with

support for different rounding mode is an open research line.
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