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Abstract

The shortest path problems (SPPs) with learning effects (SPLE) are widespread in practical appli-
cations and have not been studied yet. In this paper, we show that learning effects make SPLEs
completely different from SPPs. An adapted A* (AA*) is proposed for the SPLE problem un-
der study. Though global optimality implies local optimality in SPPs, it is not true in SPLEs.
Because all sub-paths of potential shortest solution paths need to be stored during the search pro-
cess, a search graph is adopted by AA* rather than a search tree used by A*. Admissibility of
AA* is proven. Monotonicity and consistency of the heuristic functions of AA* are redefined and
the corresponding properties are analyzed. Consistency/monotonicity relationships between the
heuristic functions of AA* and those of A* are explored. Their impacts on efficiency of searching
procedures are theoretically analyzed and experimentally evaluated.

Keywords: A* search, Learning effect, Shortest path, Admissibility

1. Introduction

Shortest Path Problems (SPP for short) are widespread in practical applications (e.g., logistics,
transportation, robot path planning [1] [2], vehicle routing [3]) and no-wait flow shop scheduling
[4]. SPP tries to find the shortest path from the source node to the sink node in a graph. Generally,
the distance, time or price of traversing of each arc is called cost. There are a large number of paths5

in the graph. The shortest path is the one has the minimum total cost. Traditionally, costs of all arcs
are assumed to be known in advance and the SPP was called SSPP (Static Shortest Path Problem)
[3]. However, there are a lot of DSPPs (Dynamic Shortest Path Problem) in practical systems in
which the cost of each arc changes with some factors (e.g., traffic status, learning experiences).
Though there are a lot of studies on DSPPs (especially in traffic systems), the DSPP problem with10

learning experiences or effects (SPLE for short) has not been considered yet.
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In practice, costs of arcs in a path usually change with learning experience or “learning effect”[5].
“Learning effect ”was first observed by Wright [6]. Nowadays there are a lot of topics associat-
ing with learning effects [7–9]. The shortest path problems in robot soccer matches (robot space
exploration, robot rescue in hostile environments, etc.) are typical DSPP problems with learning15

experiences in which robots obtain learning experiences by interaction with environments using
reinforcement learning [10–12]. More experiences imply shorter possible paths robots can find.
In logistic systems, there are a lot of items to be sent to different distribution centers. Finding
optimal paths for all items is a typical SPP problem. Post-persons become more and more experi-
enced after they do the pick-up and drop-down operations many times [13], which makes the costs20

(times for transporting items) change with the learning effects. The no wait flowshop scheduling
problem (NWFS) is another typical example. The processing time of a job becomes shorter if it is
scheduled later in a sequence because the worker is more and more proficient to setup, clean, op-
erate, control, or maintain machines. This problem can be transferred into the traveling salesman
problem (TSP) with learning effects [14], a special case of the SPLE problem.25

Generally, there are three types of learning effect models: position-based, sum-of-processing-
time-based and experience-based [15]. Position-based learning means that learning is affected by
the number of arcs being processed or traversed (the position in a sequence). Sum-of-processing-
time-based learning takes into account the total time of all traversed arcs while experience-based
learning is dependent on the experience of the processor [15]. These models are suitable for d-30

ifferent settings. Position-based learning assumes that learning takes place by processing time
independent operations like setting up of machines in scheduling problems. Sum-of-processing-
time-based learning is the case where running the press itself is a highly complicated and error-
prone process which exists in highly customized products, the production of high-end electric
tools, maintenance of airplanes, pimping cars [16]. Experience-based learning describes process-35

ing times by “S”-shaped functions which includes three phases: the incipient (start-up) phase, the
learning phase and the maturity phase [15]. In this paper, the commonly considered position-based
learning effect is considered. The cost on each arc in SPLE is regularly changed with its position
in the path.

Among existing methods for solving SPPs, A* is one of the most popular algorithms. The40

A* algorithm was originally presented by Hart et. al. [17], which was extended from the Dijk-
stra algorithm [18]. Heuristics are key to the time performance of A*. The A* algorithm usually
outperforms other traditional exact algorithms for SPPs [19]. Recently, many variants of A* have
been presented for SSPPs, such as NAMOA* (New Approach to Multi-Objective) [20], EES (Ex-
plicit Estimation Search) [21], and SSiPP (Short-Sighted Probabilistic Planner) [22]. Though there45

are many A* algorithms for DSPPs, most of them are for irregular ones (i.e., arc costs change s-
tochastically). The one-to-all DSPP (finding the shortest paths between a start node to all the other
nodes in a graph) for a given departure time can be transformed into a SSPP [23]. However, the
transformation works only if the FIFO (first-in-first-out) property is satisfied [24]. In the literature
[19], adaptations of the A* algorithm have been presented for computing the fastest paths in de-50

terministic discrete-time dynamic networks, which also satisfy the FIFO property. By reusing the
preceding searching information to find the shortest paths of a series of similar problems, some
incremental versions of A* were proposed, such as LPA* (Lifelong Planning A*) [25], GLPA*
(Generalized LPA*) [26], FSA* (Fringe-Saving A*) [27], D* (Dynamic A*) [28], D* Lite [29],

2



and Focussed D* [30]. LPA* [25] uses consistent heuristics. GLPA* [26] is a generalized frame-55

work from LPA*. When an A* search for the current search problem deviates from the A* search
for the immediately preceding search problem, FSA* [27] restores the content of the OPEN list
of A* in time at the point. Based on LPA*, D* Lite [29] is developed, which is simple, easy to
analyze, and extendible in multiple ways. AD* [31] is effective for the dynamic and complex
shortest path problem. Within allowed computing time, the AD* reuses the previous search efforts60

and continuously improves the solution. These algorithms iteratively determine the shortest paths
using experience of the previous iteration when the arc costs of a graph change.

Generally, learning effects change the shortest path of the graph, i.e., the shortest path of an
SPP is distinct from that of an SPLE. For example, there are two paths from s to γ in graph G in
Figure 1. One path is s → n1 → n2 → n3 → γ with total cost 40 and the other contains only65

arc s → γ with a total cost 38. Obviously, the second is shorter. However, costs of one arc are
different when it is located at different positions when we take learning effects into account. For
an example, when we consider learning effects, the normal cost c(ni, nj) of arc (ni, nj) becomes
c(ni, nj, r) = c(ni, nj) × r−0.2 if arc (ni, nj) is located at the rth position of a path. If arcs are
traversed in the above order, the arc costs in G are shortened as shown in Figure 2. The total cost70

of the path s → n1 → n2 → n3 → γ becomes 10 + 8.71 + 8.03 + 7.58 = 34.31, which is less
than the total cost 38 on the path s→ γ, i.e., the shortest path in Figure 2 is different from that in
Figure 1. Therefore, A* algorithms and the Dijkstra algorithm for SSPPs are not suitable for the
SPLE problem under study. In addition, few of the above properties (e.g., the FIFO) in irregular
DSSPs are satisfied in the SPLE, and existing algorithms for DSSPs are not suitable for the SPLE75

either. In this paper, the new characteristics in SPLE motivated us to develop the AA* (Adapted
A*) algorithm for the SPLE. Admissibility, monotonicity, and consistency of AA* are analyzed as
they are completely different from those of A*.

n1

S

n3

n2

10

38

10 10

10

Figure 1: The shortest path in graph G without learning effects

The rest of the paper is organized as follows: The considered problem and some preparations
are described in Section 2. Section 3 details the proposed AA* algorithm. Admissibility of the80

proposal is proven in Section 4. Section 5 redefines consistency (monotonicity) of the proposed al-
gorithm and proves some corresponding properties. Experimental results of compared algorithms
are shown in Section 6, followed by conclusions and future research in Section 7.
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Figure 2: The shortest path in graph G with learning effects

2. Problem Description and Properties

2.1. Problem description85

Let G be a finite directed graph G =< N,A, c > with a set of |N | nodes and a set of |A| arcs.
Arc (n, n

′
) is labeled with a positive cost c(n, n′) ∈ R+. A path P is a sequence of nodes going

from the start node n0 to some other node nk in N , i.e., n0 → n[1] → n[2] → . . . → n[j] → nk.
n[i] ∈ N is the ith node on P and (n[i], n[i+1]) ∈ A for all 0 < i < j, (n0, n[1]) ∈ A, and
(n[j], nk) ∈ A. For simplicity, let Q = {n[i]|1 ≤ i ≤ j} and πQ = (πQ[1], π

Q
[2], · · · , π

Q
[j]) be90

a permutation of the elements in Q, i.e., πQ[i] = ni. The path is denoted as P(n0,π(Q),nk). Since
an arc can be in several paths with different positions in the shortest path problem with learning
effects (SPLE), the cost of the arc (ni, nj) is c(ni, nj, r) = c(ni, nj) × rα (r = 1, 2, . . . , ρ and
ρ = min{|N | − 1, |A|}) if arc (ni, nj) is located at the rth position of P , where α < 0 is the
learning index. The cost gl(P ) of the path P is the sum of the costs of its arcs with learning95

effects, i.e., gl(P ) =
∑k−1

i=0 c(n[i], n[i+1], i + 1). For a given set of goal nodes Γ ⊆ N , SPLE tries
to find the shortest path P ∗ with the minimum cost c(P ∗) from n0 to at least one node in Γ.

A* algorithms are commonly used in pathfinding and graph traversals. They are usually best-
first search algorithms. As A* traverses the graph, it follows a path with the lowest expected total
cost. The cost function f(n) is the sum of two functions, i.e., f(n) = g(n) + h(n), where the100

past path-cost function g(n) denotes the cost of the path from the start node to the current node n,
and the heuristic function h(n) estimates the cost of a path from node n to the goal node(s). Let
h∗(n) be the real cost of a path from node n to the goal node(s). The A* algorithm is admissible
if h(n) ≤ h∗(n) (∀n), which guarantees that the optimal solution can be found if it exists.

For the problem under study, we consider the following assumptions:105

(i) The cost of each arc is greater than some positive number ε.

(ii) For any node n in the search graph, h(n) ≤ h∗(n), i.e., h(n) does not overestimate the real
cost h∗(n) in the graph without learning effects.

Notations used in the following are shown in Table 1.

2.2. Properties110

Definition 1. A vector ~u=(u1, u2, · · · , uk) dominates ~v = (v1, v2, · · · , vk) (denoted by ~u ≺ ~v )
iff ~u is partially less than ~v, i.e., ∀i ∈{1, 2, · · · , k}, ui ≤ vi

∧
∃i ∈ {1, 2, · · · , k}, ui < vi.
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Table 1: Notations
c(ni, nj , r) Cost of arc (ni, nj) when it is located at the rth position in a path.

r = 1, 2, . . . , ρ. ρ = min{|N | − 1, |A|}).
g∗(ni) Cheapest cost among the paths from node n0 to node ni in G without learning effects.
h∗(ni) Cheapest cost among the paths from node ni to Γ in G without learning effects.
h(ni) Estimated cost on h∗(ni).
gl(ni, r) Cost of the path going from node n0 to node ni which contains r arcs of G with learning

effect.
h∗l (ni, r) Cheapest cost of paths going from node ni to Γ in N with learning effect where node

ni is located at the rth position.
hl(ni) Estimated cost of h∗l (ni, r) (r ∈ [1, ρ], hl(ni) = ρα × h(ni).
gl(P ) Total cost of arcs on path P in G with learning effects.
fl(ni, r) Estimated cost of the path going from node n0 to Γ through node ni in G with

learning effects, i.e., fl(ni, r) = gl(ni, r) + hl(ni).
P(ni,π(Q),nj) Path starting from node ni to the sink node nj through the node sequence π(Q)

(Q ⊂ N − {ni, nj}).
SP(n[i],n[j])

Sub-path of P from node n[i] to node n[j].
SG Acyclic search graph storing promising partial solution paths.
~g ~g = (gl(ni, r), ρ− r) denotes the path containing r arcs with cost gl(ni, r).
Gop(ni) Set of paths reaching node ni whose extending nodes have not been explored. i.e., of which

each element is a vector ~g.
Gcl(ni) Set of paths reaching node ni whose extending nodes have been explored. i.e., of which

each element is a vector ~g.
OPEN List of partial solution paths that can be further expanded, of which each element is a

tuple (ni, ~g, fl(ni, r)). OPEN is stored in a heap structure for a fast selection of the path with
minimum fl.

c∗ Cheapest cost of the path going from node n0 to Γ in G with learning effect, i.e.,
c∗ = h∗l (n0).

C Cheapest cost of the path found so far from node n0 to Γ

goal Goal nodes with the cheapest found cost so far.

Let P(n0,π(Q1),ni) and P(n0,π(Q2),ni) be two sub-paths from the start node n0 to node ni (ni ∈ N )
with costs ~g1 = (g1l , ρ−r1) and ~g2 = (g2l , ρ−r2) respectively. Two paths P1 and P2 are constructed
by combining P(n0,π(Q1),ni) and P(n0,π(Q2),ni) with another sub-path P(ni,π(Q3),γ) where Q3 is a115

subset of N − Γ− {n0, ni} −Q1 −Q2 and γ ∈ Γ.

Theorem 1. If ~g1 ≺ ~g2, then gl(P1) < gl(P2).
Proof.

gl(P1) =g1l + (r1 + 1)αc(ni, π
Q3

[1] ) +

|Q3|∑
i=2

(r1 + i)αc(πQ3

[i−1], π
Q3

[i] )

+ (r1 + |Q3|+ 1)αc(πQ3

[|Q3|], γ)
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gl(P2) =g1l + (r2 + 1)αc(ni, π
Q3

[1] ) +

|Q3|∑
i=2

(r2 + i)αc(πQ3

[i−1], π
Q3

[i] )

+ (r2 + |Q3|+ 1)αc(πQ3

[|Q3|], γ)

Then,

gl(P2)− gl(P1) =(g2l − g1l ) + ((r2 + 1)α − (r1 + 1)α)c(ni, π
Q3

[1] )

+

|Q3|∑
i=2

(r2 + i)((r2 + i)α − (r1 + i)α)c(πQ3

[i−1], π
Q3

[i] )

+ ((r2 + |Q3|+ 1)α − (r1 + |Q3|+ 1)α)c(πQ3

[|Q3|], γ)

~g1 ≺ ~g2 implies that (i) g1l < g2l , ρ− r1 ≤ ρ− r2 or (ii) g1l = g2l , ρ− r1 < ρ− r2.For the case (i), ρ − r1 ≤ ρ − r2 means that r1 ≥ r2. Similarly, f(x) = xα is a decreasing
function since α < 0. Therefore (r2 + i)α − (r1 + i)α ≥ 0, ∀i ∈ {1, · · · , |Q3|+ 1}. According to120

g1l < g2l , we obtain that gl(P2)− gl(P1) > 0, i.e., gl(P2) > gl(P1).
For the case (ii), g1l = g2l and r1 > r2. Because f(x) = xα (α < 0) is a decreasing function,

(r2 + i)α − (r1 + i)α > 0, ∀i ∈ {1, · · · , |Q3|+ 1}. In addition, g1l = g2l , so gl(P2) > gl(P1).
The proof completes both cases of ~g1 ≺ ~g2.

Theorem 2. If ~g1 ≺ ~g2, then ~g(P1) ≺ ~g(P2).125

Proof. Because sub-path P(ni,π(Q3),γ) has |Q3|+ 1 arcs, there are r1 + |Q3|+ 1 and r2 + |Q3|+ 1
arcs on P1 and P2 respectively. ~g(P1) = (g1(P1), ρ− (r1 + |Q3|+ 1)), ~g(P2) = (g1(P2), ρ− (r2 +
|Q3|+ 1)). ~g1 ≺ ~g2 implies that ρ− (r1 + |Q3|+ 1) ≤ ρ− (r2 + |Q3|+ 1) and gl(P1) < gl(P2).
Therefore ~g(P1) ≺ ~g(P2).

For the shortest path P(n0,π(Q),γ) (γ ∈ Γ and Q ⊆ N − n0 − Γ) in graph G without learning130

effects, every sub-path S
P(n0,π(Q),γ)

(n0,ni)
(ni ∈ Q) is the shortest path from the start node n0 to node ni.

That is to say, global optimality implies local optimality. However, this is not true in the SPLE
problem studied in this paper.

Theorem 3. Let P(n0,π(Q),γ)(Q ⊆ N − {n0} − Γ, γ ∈ Γ) be one of the shortest paths from start
node n0 to Γ in graph G with learning effects. The shortest path from node n0 to node ni (ni ∈ Q)135

in G with learning effects might not be a sub-path of P(n0,π(Q),γ).

Proof. Let P(n0,π(Q1),ni)(Q1 ⊆ N − {n0, ni} − Γ) be the shortest path from n0 to node ni with
cost ~g1 = (g1l , r1) in G with learning effects. Assume there exists another path P(n0,π(Q2),ni)(Q2 ⊆
N − {n0, ni} − Γ) with cost ~g2 = (g2l , r2) and g1l < g2l . Two paths P1 and P2 are constructed
by combining P(n0,π(Q1),ni) and P(n0,π(Q2),ni) with sub-path P(ni,π(Q3),γ) where Q3 ⊆ N − Γ −140

{n0, ni} −Q1 −Q2. There are two cases:
(i) r1 ≥ r2. Conditions g1l < g2l and r1 ≥ r2 imply that ~g1 ≺ ~g2. According to Theorem 1, P1

is shorter than P2.
(ii) r1 < r2. However, it is uncertain which one among P1 and P2 is better when g1l < g2l and

r1 < r2, especially when g1l is slightly less than g2l and r2 is much greater than r1. Because of145
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learning effects and r1 < r2, gl(P2) − g2l , the cost of S
P(n0,π(Q),γ)

(ni,γ)
on P2, is less than gl(P1) − g1l .

Therefore, it is possible that [gl(P1) − g1l ] − [gl(P2) − g2l ] > g2l − g1l , i.e., P1 is not P(n0,π(Q),γ)

though P1 contains the shortest sub-path P(n0,π(Q1),ni).

To illustrate the case (ii) of Theorem 3, an example is now given. Assume node ni is the previ-
ous node of γ on the shortest path and ~g(P(n0,π(Q1),ni)) = (100, 99), ~g(P(n0,π(Q2),ni)) = (95, 1),150

c(ni, γ) = 20. If α = −0.2, then c(ni, γ, 100) = 100−0.2 × 20 = 7.96 and c(ni, γ, 2) =
2−0.2× 20 = 17.41. Therefore gl(P1) = 100 + 7.96 = 107.96 and gl(P2) = 95 + 17.41 = 112.41,
i.e., P1 is shorter than P2.

Theorem 4. Let P(n0,π(Q),γ)(Q ⊆ N − {n0} − Γ, γ ∈ Γ) be one of the shortest paths from the

start node n0 to Γ in graph G with learning effects. Every sub-path S
P(n0,π(Q),γ)

(n0,ni)
(ni ∈ Q) is one of155

the nondominated paths from the start node n0 to node ni.

Proof. Assume that sub-path S
P(n0,π(Q),γ)

(n0,ni)
is not a non-dominated path from the start node n0 to

node ni with cost ~g. There must exist a path P(n0,π(Q1),ni)(Q1 ⊆ N−{n0, ni}−Γ) with cost ~g′ and
~g′ ≺ ~g. A new path P(n0,π(Q

′ ),γ) (Q
′ ⊆ N−{n0}−Γ) can be generated by combining P(n0,π(Q1),ni)

with the other sub-path S
P(n0,π(Q),γ)

(ni,γ)
. According to Theorem 1, gl(P(n0,π(Q

′ ),γ)) < gl(P(n0,π(Q),γ)),160

which is a contradiction to the optimality of path P(n0,π(Q),γ). Therefore, sub-path S
P(n0,π(Q),γ)

(n0,ni)
is

one of the nondominated paths from the start node n0 to node ni.

3. Adapted A* for SPLE problems

Theorems 3 and 4 illustrate that not only the shortest path P from the start node n0 to some
node ni (ni ∈ N ) but also some other sub-paths need to be put in the list of solution paths to165

be explored (OPEN ). If the path from n0 to ni contains more arcs, more learning effects are
accumulated and then the total cost from ni to Γ might decrease. Therefore, both the cost gl and
the included number of arcs r on the paths are included in the graph SG. For the paths from the
same start node to the same sink node and with the same cost gl, the bigger the r (or equivalently
the smaller the ρ− r) implies a higher “learning effect” and a reduced total cost of the remaining170

sub-path.
Adapted A* (AA* for short) for the SPLE is a best-first heuristic search algorithm, adapted

from A*. A seed solution path in G without learning effects n0 → n[1] → n[2] → · · · → n[k] → γ
is generated by the weighted A* [32]. And we obtain C = c(n0, n[1]) + 2αc(n[1], n[2]) + · · ·+ (k+
1)αc(n[k], γ) as an upper bound. AA* starts the search process with the start node n0. Initially, n0 is175

set as the only node in the search graph SG and the sub-path tuple (n0, ~g, fl(n0, 0)) is introduced
into the list OPEN . OPEN stores all the alternatives to be expanded, which are stored using a
heap structure for a quick selection and retrieval. In every iteration, AA* selects the path P with
the smallest fl (randomly select one to break ties if there are any), which is determined by gl + hl.
Each successor of P is expanded by deleting P from OPEN and moving the corresponding ~g180

from Gop to Gcl. A* uses a search tree to record the shortest paths from the start node to the
expanded nodes, e.g., only the shortest path from the source node to node ni is recorded in the tree

7



if more than one path from the source node to the same node ni has been found. However, AA*
uses the search graph SG to store all the non-dominated paths found to the same node ni in terms
of Theorem 4. Gop(ni) andGcl(ni) are two path sets with ni being the sink node. Gop(ni) contains185

the expanded paths and Gcl(ni) contains the unexpended ones respectively.
Let P ′ be a new path to node ni which is constructed during the expansion with an estimated

cost fl(P ′) being calculated by gl(P
′) + hl(P

′). If ni ∈ Γ and fl(P
′) < C, C is updated to

gl(P
′) (denoted as FUP ← true). P ′ and all the paths in Gop(ni)

⋃
Gcl(ni) are verified and three

operations are carried out: (i) PRUNE is performed if there are dominations, i.e., P ′ is discarded190

if it is dominated by some element P ′′ ∈ Gop(ni)
⋃
Gcl(ni), or P ′′ is removed if P ′ dominates P ′′

by deleting its tuples from both Gop(ni)
⋃
Gcl(ni) and OPEN (if the tuple of P ′′ was already in

OPEN ). (ii) FILTER is performed if there are some bad path(s), i.e., P ′ is discarded if fl(P ′) > C
or P ′′ ∈ Gop(ni) is removed if fl(P ′′) > C when FUP = true by deleting its tuples from both
Gop(ni) and OPEN . Otherwise, (iii) ENTER is performed by inserting the tuples of P ′ into both195

Gop(ni) andOPEN . The process is repeated untilOPEN is empty, i.e., no path can be expanded.
The shortest paths from the start node to the goal nodes are constructed by backtracking from SG.

Let ~g be the cost vector of a path from the start node to the current node m. PRUNE returns
true when the new expanded path is discarded. PRUNE is formally described in Algorithm 1.

ALGORITHM 1: Boolean PRUNE(m,~g)
1 begin
2 if m /∈ Γ then
3 foreach ~g′ ∈ Gop(m) ∪Gcl(m) do
4 if ~g′ ≺ ~g then
5 return true;

6 if ~g ≺ ~g′ then
7 Eliminate ~g′ from Gop(m) ∪Gcl(m) ;
8 Remove the arc (n,m) (n ∈ Predecessor(m)) from the path with ~g′ in SG;
9 if ~g′ ∈ Gop(m) then

10 Eliminate (m, ~g′ , f ′) from OPEN ;

11 return false.

Let (m, ~g, fl) be the tuple in OPEN of a path from the start node to the current node m,200

and c be the cheapest solution cost found so far. FILTER returns true if the new expanded path is
discarded. FILTER is formally described in Algorithm 2.

The pseudocode of AA∗ for the SPLE is formally described in Algorithm 3.
To illustrate the AA* algorithm, a labeled directed graph is given in Figure 3, where n0 is the

start node and γ is the only goal node. The graph contains 8 nodes and 14 arcs. Because no cycle205

is included on the path from the start node n0 to Γ, there are at most ρ = min{8−1, 14} = 7 arcs.
The learning effect factor α takes a value of -0.2. C is initialized as +∞. c(n, γ) is the cost of arc

8



ALGORITHM 2: Boolean FILTER( m,n,~g, fl, FUP )
1 begin
2 if fl > C then
3 return true;

4 if fl = C and FUP = false then
5 return false;

6 if FUP = true then
7 foreach (m, ~g′, f ′l ) ∈ OPEN do
8 if f ′l > C then
9 Delete the tuple (m, ~g′, f ′l ) in OPEN and ~g′ in Gop(m);

10 Remove the arc (n,m) (n ∈ Predecessor(m)) from the path with the
estimate f ′ in SG;

11 return false.

(n, γ) if it exists in G, otherwise it is +∞. In the graph G without learning effects, the heuristic
value h is defined as h(n) = min{c(n, γ), min

ns∈Sucessor(n)
c(n, ns) + min

np∈Predecessor(γ)
c(np, γ)}. In

the graph G with learning effects, the heuristic value hl(n) = ρα × h is used to evaluate the value210

of h∗l (hl is computed by ρα × h = 7−0.2 × h in this example). h and hl for each node are given in
Table 2.

Figures 4-9 illustrate the changes on the search graph when AA* is performed on the example,
which show the operations PRUNE, FILTER, and the updating operations on Gop, Gcl sets and
OPEN . A trace of OPEN is seen in Table 3. Details for the data-structures in each iteration are215

given in the following.

(1) n0 is initialized as the root and the only node of the search graph SG. Therefore gl(n0, 0) = 0,
ρ−0 = 7,Gop(n0)← {(0, 7)}, andGcl(n0) = ∅. fl = gl(n0, 0)+hl(n0) = 0+2.033 = 2.033.
Therefore OPEN ← {(n0, (0, 7), 2.033)}.

(2) The only path in OPEN is selected, of which the four extensions n1, n2, n3, n4 are added220

to SG and OPEN . The corresponding four arcs are located at the first positions of the gen-
erated search paths respectively. The learning effect has no impact on their costs, i.e., they
are unchanged. Since gl(n1, 1) = 6 and there are at most 6 arcs in any path from node n1

to goal node γ, ~g(n1, 1) = (6, 6). fl(n1, 1) = gl(n1, 1) + hl(n1) = 6 + 3.338 = 9.338.
Gop(n1) ← {(6, 6)} and (n1, (6, 6), 9.338) is inserted into OPEN . The other extensions are225

processed in the same way. The resulting SG is depicted in Figure 4.

(3) Node n3, with the smallest estimated cost in OPEN , is selected for extension. n1 is the only
offspring of n3. The arc (n3, n1) is located at the 2nd position in a new path. Because of the
learning effect, the cost of the arc c(n3, n1, 2) is 2× 2−0.2 = 1.741. The new sub-path to node
n1 dominates the existing ones in OPEN . According to Theorem 1, a path to γ including230
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ALGORITHM 3: Algorithm AA* for SPLE
Input: A finite labeled directed graph G = (N,A, c), a start node n0 ∈ N , a set of goal nodes Γ ⊆ N , a

constant learning index α ≤ 0
Output: The minimum cost paths in G from n0 to Γ

1 begin
2 C ← +∞;
3 Set n0 as the root of the acyclic search graph SG;
4 ρ← min{|N | − 1, |A|}, gl(n0, 0)← 0, ~g(n0, 0)← (gl(n0, 0), ρ), hl(n0)← ρα × h(n0),

fl(n0, 0)← gl(n0, 0) +hl(n0) ;
5 Gop(n0)← {~g(n0, 0)}, Gcl ← ∅, OPEN ← {(n0, ~g(n0, 0), fl(n0, 0))};
6 while OPEN 6= ∅ do
7 Select the path (n,~g(n, r), fl(n, r)) in OPEN with the lowest fl;
8 Delete (n,~g(n, r), fl(n, r)) from OPEN ;
9 Move ~g(n, r) from Gop(n) to Gcl(n);

10 if n /∈ Γ then
11 Generate the set M by expanding node n, which contains only the successors not already

ancestors of node n in SG ;
12 foreach m ∈M do
13 FUP ← false, gl(m, r + 1)← gl(n, r) + c(n,m)× (r + 1)α ;
14 ~g(m, r + 1)← (gl(m, r + 1), ρ− (r + 1)), fl(m, r + 1)← gl(m, r + 1) + ρα × h(m) ;
15 if m ∈ Γ&&fl(m, r + 1) < C then
16 C ← gl(m, r + 1), goal← {m}, FUP ← true;

17 if PRUNE(m,~g) = false then
18 if FILTER(m, fl) = false then
19 Establish a pointer from m to n with the cost ~g(m, r + 1) in SG;
20 Insert (m,~g(m, r + 1), fl(m, r + 1)) to OPEN ;
21 Gop(m)← Gop(m)

⋃
{~g(m, r + 1)};

/* A path from n0 to a new goal node in Γ with cost
gl = C is found. */

22 if FUP = false and gl = C and m ∈ Γ and m /∈ goal then
23 goal← goal

⋃
{m};

24 Construct the subgraph of SG by backtracking the nodes in goal according to the cost C;
25 return The paths from goal to the start node.

the new sub-path is shorter than that of the one including the existing sub-path. By PRUNE,
the arc (n1, n0) is removed from SG, the tuple (n1, (6, 6), 9.338) is deleted from OPEN ,
and ~g(n1, 1) is eliminated from Gop(n1). Similarly, the arc (n1, n3) is added to SG. The
tuple (n1, (2.741, 5), 6.129) is inserted into OPEN , and the vector ~g(n1, 2) = (2.741, 5) is
appended to Gop(n1). The n3 expanding process is shown in Figure 5.235

(4) Node n1 is selected for expansion from OPEN because it had the smallest cost estimation.
There are two direct successors, n4 and n6. The cost c(n1, n4, 3) is 3 × 3−0.2 = 2.408 be-
cause the arc is located at the 3rd position in the path. Therefore, gl(n4, 3) = gl(n1, 2) +
c(n1, n4, 3) = 2.741 + 2.408 = 5.149 and ~g(n4, 3) = (5.149, 4). Now there are two paths
reaching n4, of which the cost vectors do not dominate each other. In terms of Theorems 3240
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Table 2: Heuristic Function

n n0 n1 n2 n3 n4 n5 n6 γ

h(n) 3 5 2 4 5 3 5 0
hl(n) = 7−0.2 × h(n) 2.033 3.338 1.355 2.710 3.388 2.033 3.388 0

and 4, both sub-paths are stored into SG, i.e., the arc (n4, n1) is added to SG. The tuple
(n4, (5.149, 4), 8.537) is inserted into OPEN , and the vector ~g(n4, 3) = (5.149, 4) is ap-
pended to Gop(n4). For the node n6, c(n1, n6, 3) = 6 × 3−0.2 = 4.816, gl(n6, 3) = 7.558,
fl(n6, 3) = 10.945. The tuple (n6, (7.558, 4), 10.945) is inserted into OPEN , and the vector
~g(n6, 3) = (7.558, 4) is appended to Gop(n6). The n1 expanding process is shown in Figure 6.245

(5) Node n4 is selected because its fl is the cheapest in OPEN , from which n6 and γ are extend-
ed. The cost of the new path leading to the goal node γ is 9.353, which is cheaper than C.
Therefore C is updated to 9.353, and the path to n2 is filtered because fl(n2) = 9.355 > C
using steps 8 and 9 in FILTER. And the path to n6 is filtered since fl(n6) = 10.945 > C.
A pointer from γ to n4 is added to SG. The tuple (γ, (9.353, 5), 9.353) is inserted into250

OPEN , and the vector ~g(γ, 2) = (9.353, 5) is appended to Gop(γ). As for n6, the cost of
arc (n4, n6) is now c(n4, n6, 2) = 4 × 2−0.2 = 3.482. gl(n6, 2) = 5 + 3.482 = 8.482, and
fl(n6, 2) = gl(n6, 2)+hl(n6) = 8.482+3.388 = 12.860. Therefore, the path to n6 is discarded
by FILTER because fl(n6, 2) > C. The n4 expanding process is shown in Figure 7.

(6) Next, the second path to n4 (with ~g(n4, 3) = (5.149, 4)) is selected, as it has the smallest fl in255

OPEN . The two direct successors γ and n6 of n4 are checked again. The arc (n4, γ) is located
at the 4th position in the newly generated path with the cost c(n4, γ, 4) = 5 × 4−0.2 = 3.789.
Therefore, fl(γ, 4) = gl(γ, 4) = gl(n4, 3) + c(n4, γ, 4) = 5.149 + 3.789 = 8.938 which
is less than C = 9.353, and C is updated to 8.938. The extension to γ is generated. The
cost of arc (n4, n6) is changed to c(n4, n6, 4) = 4 × 4−0.2 = 3.031. gl(n6, 4) = 8.180,260

fl(n6, 4) = gl(n6, 4) + hl(n6) = 8.180 + 3.388 = 11.568 > C = 8.938. Therefore, the
sub-path to n6 is discarded by FILTER. The resulting SG is depicted in Figure 8.

(7) Now the only remaining alternative (γ, (8.938, 3), 8.938) in OPEN is selected and removed
from OPEN . OPEN is now empty. The algorithm traces back the obtained SG from γ. The
obtained path with cost 8.938 is returned, as demonstrated in Figure 9.265

AA* records the non-dominated sub-paths in the search graph. Though it is similar to NAMOA*
(New Approach to Multi-Objective A*)[20], there are several differences between them: (i) AA*
is for a single objective while NAMOA* was for multiple objectives, i.e., AA* returns the shortest
solution paths while NAMOA* gives the optimal Pareto solution set. (ii) Along one optimal solu-
tion path, all the elements of ~g increase simultaneously in NAMOA* whereas it is not the case in270

AA*. In the cost vector of any path −→g = (gl(ni, r), ρ − r) of the AA*, the first element gl(ni, r)
increases along the solution path while the second one ρ − r decreases. However, there are mul-
tiple elements in the cost vector −→g of NAMOA* and all the elements increase simultaneously.
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Figure 3: Sample graph
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Figure 4: Search graph (iteration 2)
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1.741
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Figure 5: Search graph (iteration 3)

(iii) NAMOA* considers the static shortest path problems but AA* deals with the regular dynamic
shortest path version. These distinct aspects lead to different properties, which are analyzed below.275
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Figure 6: Search graph (iteration 4)
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Figure 7: Search graph (iteration 5)
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Figure 8: Search graph (iteration 6)
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Figure 9: The final solution subgraph

4. Admissibility of AA*

An algorithm is admissible if it is guaranteed to return an optimal solution whenever a solution
exists [33]. Let h∗l (ni, r) be the cheapest cost of the paths going from node ni to Γ in G with
learning effects where node ni is located at the rth position. Similar to the definition of admissible
heuristics [33] for A*, we define admissible heuristics for AA*:280

Definition 2. A heuristic function hl is admissible if hl(n) ≤ h∗l (n, r) (r = 0, 1, 2, · · · , ρ) for each
node n ∈ G.

Theorem 5. If h(n) is admissible in the graph G without learning effects, then hl(n) = ραh(n) is
admissible in G with learning effects.

Proof. Let P(ni,π(Q),γ) (Q ⊂ N − Γ− {ni} and γ ∈ Γ) be the shortest path from node ni to Γ and
ni located at the rth position in G with learning effects. Then ∀r(r + |Q|+ 1 ≤ ρ):

h∗l (ni, r) = c(ni, π
Q
[1], r + 1) +

∑|Q|−1
j=1 c(πQ[j], π

Q
[j+1], r + j + 1)+

c(πQ[|Q|], γ, r + |Q|+ 1)

= (r + 1)αc(ni, π
Q
[1]) +

∑|Q|−1
j=1 (r + j + 1)αc(πQ[j], π

Q
[j+1])+

(r + |Q|+ 1)αc(πQ|Q|, γ)

Since f(x) = xα (α < 0) is a decreasing function and r + |Q|+ 1 ≤ ρ, we obtain:285

h∗l (ni, r) ≥ ραc(ni, π
Q
[1]) +

∑|Q|−1
j=1 ραc(πQ[j], π

Q
[j+1]) + ραc(πQ|Q|, γ)

= ρα[c(ni, π
Q
[1]) +

∑|Q|−1
j=1 c(πQ[j], π

Q
[j+1]) + c(πQ|Q|, γ)]

Because h∗(ni) is the cheapest cost of the path from ni to Γ in the graph G without learning
effects, then c(ni, π

Q
[1]) +

∑|Q|−1
j=1 c(πQ[j], π

Q
[j+1]) + c(πQ|Q|, γ) ≥ h∗(ni).

Therefore, h∗l (ni, r) ≥ ραh∗(ni).
If h(n) is admissible, it implies that h∗(ni) ≥ h(ni). Therefore, hl(ni) = ρα × h(ni) ≤

ρα × h∗(ni) ≤ h∗l (ni, r), i.e., hl(n) = ραh(n) is admissible in G with learning effects.290
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Table 3: Tuples in OPEN at each iteration of AA∗

Iteration OPEN

1 (n0, (0, 7), 2.033) ←
2 (n1, (6, 6), 9.388)

(n2, (8, 6), 9.355)

(n3, (1, 6), 3.710) ←
(n4, (5, 6), 8.388)

3 (n2, (8, 6), 9.355)

(n4, (5, 6), 8.388)

(n1, (2.741, 5), 6.129)←
4 (n2, (8, 6), 9.355)

(n4, (5, 6), 8.388)←
(n4, (5.149, 4), 8.537)

(n6, (7.558, 4), 10.945)

5 (n4, (5.149, 4), 8.537)←
(γ, (9.353, 5), 9.353)

6 (γ, (8.938, 3), 8.938)←

Lemma 1. Let P(n0,π(Q),γ)(Q ⊆ N − {n0} − Γ, γ ∈ Γ) be one of the shortest paths from the

start node n0 to Γ in the graph G with learning effects. For any sub-path S
P(n0,π(Q),γ)

(n0,ni)
(ni ∈ Q ) in

OPEN , fl(S
P(n0,π(Q),γ)

(n0,ni)
) ≤ c∗.

Proof. According to Theorem 5, hl(ni) ≤ h∗l (ni, r) (r = 0, 1, · · · , ρ). Therefore,
fl(S

P(n0,π(Q),γ)

(n0,ni)
) = gl(S

P(n0,π(Q),γ)

(n0,ni)
) + hl(ni) ≤ gl(S

P(n0,π(Q),γ)

(n0,ni)
) + h∗l (ni, r) = c∗.295

Lemma 2. For any shortest path from the start node n0 to Γ, P(n0,π(Q),γ)(Q ⊆ N −{n0}−Γ, γ ∈
Γ), in the graph G with learning effects, there is always a sub-path S

P(n0,π(Q),γ)

(n0,ni)
(ni ∈ Q ∪ {n0}

) stores into SG, Gop(ni), and OPEN in each iteration before completing the construction of
P(n0,π(Q),γ).

Proof. (Mathematical Induction) Base case: At the beginning search of AA∗, only n0 is selected300

for expansion. The path including only node n0 is a sub-path of P(n0,π(Q),γ), i.e., S
P(n0,π(Q),γ)

(n0,n0)
is

stored into SG and ~g(S
P(n0,π(Q),γ)

(n0,n0)
) ∈ Gop(n0).

Induction step: We assume that the conclusion of the lemma is true in the kth iteration, i.e.,
there is always a sub-path (for simplicity, it is denoted as SPk ) of P(n0,π(Q),γ) stored into SG, Gop,
and OPEN in iteration k. Now we would prove it true in iteration k + 1, i.e., there must be a305

sub-path SPk+1 in SG, Gop, and OPEN in iteration k + 1. There are two cases for SPk in iteration
k + 1.
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1. SPk is not selected for expansion. Since SPk is a sub-path of P(n0,π(Q),γ), SPk is not dominated
by any new expanded paths according to Theorem 4, i.e. SPk can not be pruned by PRUNE.
In addition, Lemma 1 indicates that fl(SPk ) ≤ c∗. Because of C ≥ c∗, fl(SPk ) ≤ C,310

which implies that SPk can not be filtered by FILTER. In other words, SPk is unchanged, i.e.,
SPk+1 = SPk .

2. SPk is selected for expansion. When ni = γ, P(n0,π(Q),γ) is constructed, which is in SG and
Gcl(ni) but not in Gop(ni) and OPEN . When ni 6= γ, the newly constructed sub-path SPk+1

can not be either pruned or filtered according to Theorem 4 and Lemma 1. In other words,315

SPk+1 is stored into SG, Gop(ni) and in OPEN .

Therefore, there is always a sub-path S
P(n0,π(Q),γ)

(n0,ni)
(ni ∈ Q ∪ {n0} ) stored into SG, Gop(ni)

and OPEN in each iteration before completing the construction of P(n0,π(Q),γ).

Corollary 1. A non-shortest path from the start node n0 to the goal nodes Γ can never be selected
for expansion.320

Proof. By contradiction, let P(n0,π(Q),γ) (Q ⊆ N − Γ − {n0} and γ ∈ Γ) be a non-shortest path
leading to Γ in the graph G with learning effects with cost c′ . It is obvious that c∗ < c

′ . We
have fl(P(n0,π(Q),γ)) = gl(P(n0,π(Q),γ)) + hl(γ) = gl(P(n0,π(Q),γ)) + 0 = gl(P(n0,π(Q),γ)) = c

′ . By
Lemmas 1 and 2, there is always a sub-path SP ∗(n0,ni)

of the optimal solution path P ∗ (ni is a node
on P ∗) in OPEN with cost fl(SP

∗

(n0,ni)
) ≤ c∗ before completing the construction of P ∗. There are325

two cases: (i) Before completing construction of P ∗. For the purpose of contradiction, we assume
that path P(n0,π(Q),γ) is selected before SP ∗(n0,ni)

for expansion. fl(P(n0,π(Q),γ)) is the cheapest one
in OPEN . Therefore, c′ = fl(P(n0,π(Q),γ)) ≤ fl(S

P ∗

(n0,ni)
) = c∗, which contradicts c∗ < c

′ . (ii)
After P ∗ with fl(∗) = c∗ being constructed. Once P(n0,π(Q),γ) is detected, it be filtered because
fl(P(n0,π(Q),γ)) < C = c∗.330

Theorem 6. AA∗ was admissible.

Proof. We assume that there is at least one shortest path from n0 to Γ in a finite labeled directed
graph G with learning effects. It is known that all best first search algorithms that prune cycles
terminate on finite graphs [33]. Since AA* is a best first search algorithm for finite graphs, a
non-shortest solution path is never selected for expansion in terms of Corollary 1. Therefore, an335

optimal path is returned when AA∗ terminates, which means that AA∗ is admissible.

5. AA∗ Properties and Efficiency

5.1. Properties of AA∗

Similar to the definition on c − bounded for the A∗ algorithm by Pearl [33], we defined
λ− bounded for the AA∗:340

Definition 3. A path P(n0,π(Q),nk) (Q ⊆ N − Γ − {n0, nk} and nk ∈ N ) is λ− bounded if every

sub-path S
P(n0,π(Q),nk)

(n0,ni)
(ni ∈ Q) satisfies fl(S

P(n0,π(Q),nk)

(n0,ni)
) ≤ λ.
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From Lemmas 1 and 2 of AA*, which are similar to the corresponding properties of NAMOA*,
we have the following similar properties of AA*.

Lemma 3. Each path P(n0,π(Q),ni) (Q ⊆ N −Γ−{n0, ni} and ni ∈ N ) selected from OPEN for345

expansion satisfies that fl(P(n0,π(Q),ni)) ≤ c∗.

Theorem 7. A necessary condition forAA∗ to select a path P for expansion is that P is c∗ bounded.

Theorem 8. A sufficient condition forAA∗ to select a path P(n0,π(Q),ni) (Q ⊆ N−Γ−{n0, ni} and
ni ∈ N ) for expansion is that (1) P(n0,π(Q),ni) be c∗ bounded. (2) P(n0,π(Q),ni) be a non-dominated
path to ni.350

Theorem 9. Let h1l (n) and h2l (n) be two admissible heuristics for the same SPLE problems; AA∗1
and AA∗2 be two versions of algorithm AA* that differ only in the use of heuristic functions h1l (n)
and h2l (n) respectively. If h1l (n) ≤ h2l (n), then all non-dominated and c∗ bounded paths selected
for expansion by AA∗2 would also be selected by AA∗1.

5.2. Efficiency and Heuristics355

The consistency and monotonicity conditions have a great influence on the traditional A* and
NAMOA* algorithms [20]. For example, when either of the two conditions is satisfied, there
is no redirect pointer to extended nodes in A* [34]. NAMOA* is optimal among admissible
multiobjective algorithms over problems with consistent heuristic functions when efficiency is
measured by the number of path expansion operations [20]. Since the cost on each arc changes360

with its position, we redefine the consistency and monotonicity conditions for the AA* algorithm
in the following.

Let P r
(ni,π(Q),nj)

(Q ⊆ N − Γ− {ni, nj} and ni ∈ N , nj ∈ N ) be the shortest path from ni to
nj and ni located at the rth position on a path from n0 to Γ; kl(ni, nj, r) be the cost of P r

(ni,π(Q),nj)

with kl(ni, nj, r) = c(ni, π
Q
[1], r + 1) +

∑|Q|−1
i=2 c(πQ[i], π

Q
[i+1], r + i) + c(πQ[|Q|], nj, r + |Q|+ 1).365

Definition 4. In a finite labeled directed graph G with learning effects, a heuristic function hl(n)
is ` − consistent if hl(ni) ≤ kl(ni, nj, r) + hl(nj) (r = 0, 1, · · · , ρ; r + |Q| + 1 ≤ ρ) holds for
each pair of nodes ni and nj in G and for each possible position ni located on the path from n0 to
Γ.

Definition 5. In a finite labeled directed graph G with learning effects, a heuristic function hl(n)370

is `−monotone if hl(ni) ≤ c(ni, nj, r)+hl(nj) (r = 1, 2, · · · , ρ) is true for all possible positions
at which each arc (ni, nj) ∈ A is located on the path from n0 to Γ.

According to the above definitions, ` − consistent and ` −monotone depend on the related
positions r, which make the derivation on `−consistent and `−monotone not easy. However, the
`−consistent and `−monotone properties in a finite labeled directed graph with learning effects375

can be deduced from consistency and monotonicity in a finite labeled directed graph without
learning effects.
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Theorem 10. If a heuristic function h(n) is consistent in a finite labeled directed graphGwithout
learning effects, then the heuristic function hl(n) = ραh(n) (α ≤ 0) is ` − consistent in G with
learning effects.380

Proof. Let P(ni,π(Q),nj) be the shortest path from ni to nj when node ni is located at the rth position
(r ≤ ρ − (|Q| + 1)) in a finite labeled directed graph G with learning effects; k(ni, nj) be the
shortest path cost from node ni to node nj in G without learning effects. It can be deduced that:

k(ni, nj) ≤ c(ni, π
Q
[1]) +

∑|Q|−1
i=2 c(πQ[i], π

Q
[i+1]) + c(πQ[|Q|], nj)

kl(ni, nj, r) = c(ni, π
Q
[1], r + 1) +

∑|Q|−1
i=2 c(πQ[i], π

Q
[i+1], r + i)

+ c(πQ[|Q|], nj, r + |Q|+ 1)

h(n) is consistent implies that h(ni) ≤ k(ni, nj) + h(nj). Therefore, h(ni) ≤ c(ni, π
Q
[1]) +385 ∑|Q|−1

i=2 c(πQ[i], π
Q
[i+1]) + c(πQ[|Q|], nj) + h(nj).

Since ρ > 0, ρα > 0, so

ραh(ni) ≤ ραc(ni, π
Q
[1]) + ρα

|Q|−1∑
i=2

c(πQ[i], π
Q
[i+1]) + ραc(πQ[|Q|], nj) + ραh(nj)

Similarly, f(x) = xα(α < 0) is a decreasing function and r ≤ ρ− (|Q|+ 1), we obtain

hl(ni) = ραh(ni)

≤ (r + 1)αc(ni, π
Q
[1]) +

∑|Q|−1
i=2 (r + i+ 1)αc(πQ[i], π

Q
[i+1])

+ (r + |Q|+ 1)αc(πQ[|Q|], nj) + ραh(nj)

= kl(ni, nj, r) + hl(nj)

390 Therefore, hl(n) = ραh(n) (α < 0) is `− consistent.

Theorem 11. If a heuristic function h(n) ismonotone in a finite labeled directed graphG without
learning effects, then the heuristic function hl(n) = ραh(n) (α < 0) is ` −monotone in G with
learning effects.

Proof. h(n) is monotone in a finite labeled directed graph G without learning effects implies395

that ∀(ni, nj) ∈ A, h(ni) ≤ c(ni, nj) + h(nj). Similar to Theorem 10, hl(ni) = ραh(ni) ≤
ραc(ni, nj) + ραh(nj) ≤ rαc(ni, nj) + ραh(nj) = c(ni, nj, r) + hl(nj), which illustrates that
hl(n) = ραh(n) (α < 0) is `−monotone.

Theorem 12. `−monotonicity and `− consistency are equivalent properties.

Proof. Let P(ni,π(Q),nj) be the shortest path from node ni to node nj in G with learning effects400

when node ni is located at the rth (r = 0, 1, · · · , ρ) position on a path starting from n0.

1. hl(n) is ` −monotone implies that: (i) hl(ni) ≤ c(ni, π
Q
[1], r + 1) + hl(π

Q
[1]); (ii)hl(π

Q
[i]) ≤

c(πQ[i], π
Q
[i+1],r + i + 1)+ hl(π

Q
[i+1]) (i = 1, 2, · · · , |Q| − 1); and (iii)hl(π

Q
[|Q|]) ≤ c(πQ[|Q|], nj,
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r + |Q| + 1) + hl(nj). Therefore, hl(ni) ≤ c(ni, π
Q
[1], r + 1) +

∑|Q|−1
k=1 c(πQ[k], π

Q
[k+1], r +

k + 1)+c(πQ[|Q|], nj, r + |Q|+ 1)+hl(nj) = k(ni, nj, r) + hl(nj), which means that hl(n) is405

`− consistent.

2. hl(n) is `− consistent demonstrates that hl(ni) ≤ kl(ni, nj, r) + hl(nj) for any immediate
successor nj of ni. Because kl(ni, nj, r) is the cheapest cost from ni to nj when node ni
is located at the rth position, kl(ni, nj, r) ≤ c(ni, nj, r). Therefore, hl(ni) ≤ c(ni, nj, r) +
hl(nj) for (ni, nj) ∈ A, which illustrates that hl(n) is `−monotone.410

Therefore, `−monotonicity and `− consistency are equivalent.

Lemma 4. If the ` −monotonicity condition is satisfied, then the fl values in the search graph
are monotonically non-decreasing along every search path.

Proof. Let n[0] = n0 → n[1] → n[2] → · · · → n[k−1] → n[k] = nj (nj ∈ N ) be a path P
in the search graph SG. Then arc (n[i−1], n[i]) (0 < i ≤ k) is located at the ith position on the415

path. It follows that gl(SP(n[0],n[i])
) = gl(S

P
(n[0],n[i−1])

) + c(n[i−1], n[i], i). Therefore, fl(SP(n[0],n[i])
) =

gl(S
P
(n[0],n[i])

) + hl(n[i]) = gl(S
P
(n[0],n[i−1])

) + c(n[i−1], n[i], i) + hl(n[i]).
Since `−monotonicity condition is satisfied, c(n[i−1], n[i], i)+hl(n[i]) ≥ hl(n[i−1]). Therefore,

gl(S
P
(n[0],n[i−1])

) + c(n[i−1], n[i], i) + hl(n[i]) ≥ gl(S
P
(n[0],n[i−1])

) + hl(n[i−1]) = fl(S
P
(n[0],n[i−1])

), i.e.,
fl(S

P
(n[0],n[i])

) ≥ fl(S
P
(n[0],n[i−1])

).420

Lemma 5. Every sub-path S
P(n0,π(Q),ni)

(n0,nk)
(nk ∈ Q) of the nondominated path P(n0,π(Q),ni) is a

nondominated path.

Proof. Suppose S
P(n0,π(Q),ni)

(n0,nk)
are dominated by another path to node nk, P(n0,π(Q1),nk) (Q1 ⊆ Q),

i.e., ~g(P(n0,π(Q1),nk)) ≺ ~g(S
P(n0,π(Q),ni)

(n0,nk)
). A new path P (n0, π(Q

′
), ni) can be generated by com-

bining P(n0,π(Q1),nk) and S
P(n0,π(Q),ni)

(nk,ni)
. According to Theorem 1, ~g(P(n0,π(Q),ni)) ≺ ~g(P(n0,π(Q

′ ),ni)
)425

which contradicts the non-dominance of P(n0,π(Q),ni). Therefore, S
P(n0,π(Q),ni)

(n0,nk)
(nk ∈ Q) is a non-

dominated path.

Theorem 13. If hl is ` − monotone, necessary conditions for AA∗ to select a path P(n0,π(Q),ni)

(ni ∈ N and Q ⊆ N − {n0, ni} − Γ) for expansion are:
(1) P(n0,π(Q),ni) be c∗ bounded.430

(2) P(n0,π(Q),ni) be a non-dominated path to ni.

Proof. Theorem 7 implies that P(n0,π(Q),ni) be c∗ bounded is a necessary condition.
For the purpose of contradiction, assume that P(n0,π(Q),ni) is selected for expansion and there

exists another nondominated path to ni, P(n0,π(Q
′ ),ni)

, with ~g(P(n0,π(Q
′ ),ni)

) ≺ ~g(P(n0,π(Q),ni)).
There are two cases:435

1. ~g(P(n0,π(Q
′ ),ni)

) ∈ Gop(ni)
⋃
Gcl(ni), which means that P(n0,π(Q),ni) would be pruned be-

cause ~g(P(n0,π(Q
′ ),ni)

) ≺ ~g(P(n0,π(Q),ni)).
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2. ~g(P(n0,π(Q
′ ),ni)

) /∈ Gop(ni)
⋃
Gcl(ni), i.e., P(n0,π(Q

′ ),ni)
has not been discovered. In terms

of Lemma 5, all sub-paths S
P
(n0,π(Q

′
),ni)

(n0,nk)
(nk ∈ Q

′ ⋃{n0, ni}) are non-dominated. There-

fore, they would not be pruned. Since the heuristic is ` − monotone, fl(S
P
(n0,π(Q

′
),ni)

(n0,nk)
) ≤440

fl(P(n0,π(Q
′ ,ni))

) according to Lemma 4. Similarly, the assumption ~g(P(n0,π(Q
′ ),ni)

) ≺ ~g(P(n0,π(Q),ni))
implies that
gl(P(n0,π(Q

′ ),ni)
) ≤ gl(P(n0,π(Q),ni)), i.e., fl(P(n0,π(Q

′ ),ni)
) ≤ fl(P(n0,π(Q),ni)). P(n0,π(Q),ni)

being selected for expansion demonstrates that fl(P(n0,π(Q),ni)) ≤ c∗ in terms of Lemma 3.

Then fl(S
P
(n0,π(Q

′
),ni)

(n0,nk)
) ≤ fl(P(n0,π(Q),ni)) ≤ c∗ ≤ C. Therefore all sub-paths S

P
(n0,π(Q

′
),ni)

(n0,nk)
445

can not be filtered, and P(n0,π(Q),ni) would not be selected for expansion until all sub-paths
of P(n0,π(Q

′ ),ni)
are selected for expansion. Therefore, P(n0,π(Q),ni) would be pruned once

P(n0,π(Q
′ ),ni)

is constructed, which contradicts the assumption.

The proof of the theorem is completed.

Based on Theorem 8 and Theorem 13, we have450

Theorem 14. If hl is ` −monotone, the necessary and sufficient conditions for AA∗ to select a
path P(n0,π(Q),ni) (ni ∈ N and Q ⊆ N − {n0, ni} − Γ) for expansion are:

(1) P(n0,π(Q),ni) be c∗ bounded.
(2) P(n0,π(Q),ni) be a non-dominated path to ni.

Let AA∗1 and AA∗2 be two versions of AA* for the same problem that differ only in the use of455

heuristic functions h1l (n) and h2l (n) respectively.

Theorem 15. All paths selected for expansion by AA∗2 will also be selected for expansion by AA∗1
if h1l (n) and h2l (n) are two admissible heuristics, h2l (n) is `− consistent and h1l (n) ≤ h2l (n).

Proof. Theorem 14 illustrates that all paths selected for expansion by AA∗2 are non-dominated
and c∗ bounded. For each c∗ bounded path P(n0,π(Q),ni) in AA∗2, h

1
l (n) ≤ h2l (n) implies that460

f 1
l (P(n0,π(Q),ni)) = gl(P(n0,π(Q),ni)) + h1l (n) ≤ gl(P(n0,π(Q),ni)) + h2l (n) = f 2

1 (P(n0,π(Q),ni)) ≤
c∗, i.e., all c∗ bounded paths in AA∗2 are c∗ bounded in AA∗1. Therefore, all paths selected for
expansion by AA∗2 would be selected for expansion by AA∗1 according to Theorem 8.

Theorem 16. Let h1(n) and h2(n) be two admissible heuristics for SPPs in a finite labeled directed
graph G without learning effects; h2(n) be consistent. h1l (n) = ραh1(n) and h2l (n) = ραh2(n)465

are heuristics of AA∗1 and AA∗2 respectively. All paths selected for expansion by AA∗2 would also
be selected for expansion by AA∗1 if h1(n) ≤ h2(n).

Proof. Because h1(n) and h2(n) are two admissible heuristics in G without learning effects,
h1l (n) = ραh1(n) and h2l (n) = ραh2(n) are admissible in G with learning effects as a result
of Theorem 5. Since h2(n) is consistent in a finite labeled directed graph G without learning470

effects, h2l (n) is ` − consistent in G with learning effects according to Theorem 10. In addition,
since h1l (n) = ραh1(n), h2l (n) = ραh2(n) and h1(n) ≤ h2(n), then h1l (n) ≤ h2l (n). Based on
Theorem 15, all paths selected for expansion by AA∗2 would also be selected for expansion by
AA∗1.
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It is difficult to deduce the ` − consistency of a heuristic function of AA* in a graph with475

learning effects. Theorem 16 demonstrates that ` − consistency could be obtained from the
consistency of the heuristic in the graph without learning effects, which makes the derivation
much easier. According to Theorems 15 and 16, a greater h(n) or hl(n) value results in more
paths that can be cut down during the search process. Similarly, the estimated cost of the selected
path for expansion fl is not more than c∗. In every iteration, the maximum fl of all the paths ever480

being selected for expansion is an approximation to c∗. The more iterations in the AA*, the better
the approximation to c∗.

6. Experimental results

Since SPLE has never been studied yet, AA* is compared with the classical backtracking
method (which enumerates all paths from the start node to the goal node) in order to illustrate485

efficiency of the proposed AA*. Similar to [31] [35] [36] , we compare the algorithms on bi-
dimensional grids with s1 × s2 nodes. Node ni (identified by its coordinate (x, y)) has several
neighbors as successors. Each node on the angle points has two neighbors, each on the edges has
three and each inside node has four. Therefore, there are 4×s1×s2−2×(s1 +s2) arcs in the grid.
Arc costs are randomly generated with a uniform distribution in [1,10]. Assume that the learning490

index α is−0.2. The involved algorithms search one of the shortest paths from the start node (0,0)
to the goal node (s1 − 1, s2 − 1) with learning effects. An extreme case is that the longest path
has s1× s2 nodes. Since the backtracking method is enumerative which is much time-consuming,
we set the maximum 48 hours as the termination criterion, i.e., all the algorithms stop within 48
hours.495

In terms of Theorems 15 and 16, ` − monotone and ` − consistency heuristic function-
s exert a great influence on efficiency of AA∗. Therefore, we construct four AA∗ algorithm-
s: AA∗1 with h1(ni) = 0, AA∗2 with h2(ni) = max{s1 − 1 − x, s2 − 1 − y}, AA∗3) with
h3(ni) =

√
(s1 − 1− x)2 + (s2 − 1− y)2 (Euclidean distance) and AA∗4 with h4(ni) = (s1 −

1− x) + (s2 − 1− y).500

6.1. Comparing AA* algorithms against the backtracking method
To illustrate efficiency of the four constructed AA* algorithms, they are compared to the back-

tracking method on grid instances with s1 ∈ {2, 3, 4} and s2 ∈ {s2|s1× s2 ≤ 42∧ s1 ≤ s2 ≤ 15}.
Five instances are generated for each combination of s1 and s2. Therefore, 165 instances in to-
tal are tested. All algorithms are coded in Visual C++ 2010 and conducted on computers with505

Windows 7 professional (64 bits), 4G RAM and Intel(R) Core(TM) i5-2400 CPU 3.10 GHz.
Experimental results are analyzed by the multi-factor analysis of variance (ANOVA) technique

[37]. A number of hypotheses have to be ideally met by the experimental data. The main three
hypotheses (in order of importance) are the independence of the residuals, homoscedasticity or
homogeneity of the factor’s level variance and normality in the residuals of the model. All the hy-510

potheses are easily accepted since their p-values are zero. The response variable in the experiments
is computation time for each algorithm in every instance. Interactions between the compared al-
gorithms and the number of nodes with 95.0% Tukey HSD intervals are shown in Figure 10 and
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those between the compared algorithms and the number of arcs with 95.0% Tukey HSD intervals
are shown in Figure 11.515

Figure 10 implies that the AA* algorithms are rather faster than the backtracking method
when the number of nodes is more than 16, which is much clearer in the zoomed in area. When
the number of nodes is more than 22, the time spent by the backtracking method increases very
fast. In fact, the backtracking method cannot finish in 48 hours when the number of node is no
less than 44. Similarly, Figure 11 demonstrates that the AA* algorithms are far faster than the520

backtracking method when the number of arcs is more than 45. The computation time of the
backtracking method increases significantly when the number of arcs is more than 90. Therefore,
the computation times of the constructed AA* algorithms increase rather slowly with the increase
of the number of nodes (arcs) as compared with the backtracking method.Interactions and 95.0 Percent Tukey HSD Intervals

The number of nodes

-1

2

5

8

11

14

(×10000)

T
im

e 
(s

)

4 6 8 9

1
0

1
2

1
4

1
5

1
6

1
8

2
0

2
1

2
2

2
4

2
6

2
7

2
8

3
0

3
2

3
3

3
6

3
9

4
0

4
2

The number of nodes

-5

5

15

25

35

45

55

T
im

e 
(s

)

4 6 8 9 1
0

1
2

1
4

1
5

1
6

1
8

2
0

2
1

2
2

2
4

Algorithm

Backtrack

AA*1

AA*2

AA*3

AA*4

Figure 10: Interactions between algorithms and the number of nodes with 95.0 Percent Tukey HSD intervals

6.2. Influence of heuristic functions on AA* algorithms525

Though AA* algorithms are more efficient than traditional exact methods (e.g., the back-
tracking method), different heuristic functions with ` − monotone and ` − consistency exert
great influences on efficiency of AA* because they result in distinct landscapes. In this sub-
section, we compare the four constructed AA* algorithms further. Five instances are random-
ly generated for each grid size (s × s) where s ∈ {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30},530

i.e., each of the four AA* algorithms are performed on 14 × 5 = 70 grid instances. It is ob-
vious that h1(ni) ≤ h2(ni) ≤ h3(ni) ≤ h4(ni) ≤ h∗(ni) where h∗(ni) is the real cheapest
cost from node ni to the goal node without learning effects in the grids. All these heuristic
functions hk(ni) (k = 1, · · · , 4) are consistent heuristics. Since hl(ni) = ρα × h(ni) where
ρ = min{|N | − 1, |A|} = min{s2 − 1, 4s2 − 4s}, h1l (ni) ≤ h2l (ni) ≤ h3l (ni) ≤ h4l (ni) ≤ h∗l (ni)535

. hk(ni) (k = 1, · · · , 4) are l − consistent heuristics according to Theorem 10. All algorithms
are coded in Visual C++ 2010 and carried out on virtual machine with Windows XP professional
(32bits) in 1024BM RAM.
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Interactions and 95.0 Percent Tukey HSD Intervals
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Figure 11: Interactions between algorithms and the number of arcs with 95.0 Percent Tukey HSD intervals

Table 4: Comparisons of the backtracking to the four versions of AA∗ on computational time (s)

Grid Size Node Arc Backtracking AA∗1 AA∗2 AA∗3 AA∗4

5× 5 25 80 36.54 2.00 1.81 1.81 1.71
6× 6 36 120 6355.35 4.86 4.13 4.03 3.90
7× 7 49 168 — 11.67 10.51 10.57 10.22
8× 8 64 224 — 16.85 14.54 14.38 13.62

10× 10 100 360 — 51.21 44.50 43.33 42.05
11× 11 121 440 — 91.12 78.97 71.21 67.21
12× 12 144 528 — 108.60 101.48 99.78 96.91
13× 13 169 624 — 164.65 155.06 157.64 148.22
14× 14 196 728 — 235.75 202.88 170.20 153.74
15× 15 225 840 — 357.58 256.70 247.93 234.85
20× 20 400 1520 — 1695.81 1388.26 1351.82 1275.68
25× 25 625 2400 — 5388.04 4653.68 4634.07 4355.98
30× 30 900 3480 — 44224.16 20917.03 12983.37 12576.24

— : the algorithm cannot finish in 48 hours.

Average computation times of the compared algorithms over the five instances for each grid
size are shown in Table 4.540

From Table 4, it can be observed that the backtracking method for the considered SPLE prob-
lems cannot finish in 48 hours when the grid size is no less than 7×7 = 49, which is in accordance
with the results shown in Figure 10. However, all theAA∗ algorithms spend only about 10 seconds
for the grids with 7×7 = 49 nodes. When the grid size is less than 8×8 = 64 nodes, the fourAA∗

algorithms require similar computation times. For example, the computation times of AA∗1, AA∗2,545
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AA∗3 and AA∗4 are 16.85s, 14.54s,14.38s and 13.62s respectively for 8 × 8 = 64 grids. They are
not significantly different. However, their computation times are 44224.16s, 20917.03s, 12983.37s
and 12576.24s respectively for 30×30 = 900 grids, of which the differences are rather significant.
We can conclude from these that the computation times of AA∗ algorithms still increase fast with
the increase of the size of grids though the increasing speed is far less than that of enumerative550

searching methods. On the other hand, AA∗1 requires much more computation time than AA∗2,
AA∗3 and AA∗4 on all instances, e.g., the computation time of AA∗1 is 44224.16s which is more
than two times of AA∗2 (20917.03s). AA∗2 needs more time than AA∗3 and AA∗4 on all instances.
Though the computation times of AA∗3 and AA∗4 are similar on all instances, AA∗4 always spends
less time than AA∗3, i.e., AA∗4 is the fastest algorithm among the constructed four AA∗ algorithms.555

The reason lies in that the heuristic function h4l (ni) is the closest to h∗l (ni), the real cheapest cost
from node ni to the goal node with learning effects in the grid, i.e., a closer heuristic function with
`−monotonicity and `− consistency to the real cheapest cost implies a faster AA∗ algorithm.

Furthermore, different learning functions exert influences on performance of AA*. However,
the proposed AA* algorithms are still efficient if the hl function has the same changing rate as560

that of the learning effect function. For example, the proposal is efficient when hl = f(ρ, h) if the
learning effecting function c(ni, nj, r) = f(r, c(ni, nj)) is concerned.

7. Conclusions and future work

In this paper, we have considered the shortest path problem with learning effects (SPLE), of
which each arc has a regularly dynamic cost. The cost of an arc in a path was determined by a565

function of the arc’s position in the path because of learning effects. The shortest sub-paths in
SPLE were demonstrated to be unnecessary sub-paths of the final shortest path, which is different
from the case in SPP without learning effects. The AA* method was proposed for SPLE problems.
A search graph rather than a search tree was adopted to store candidates because there would
be more than one candidate sub-path for the final shortest path. With two assumptions, AA*570

was proven to be admissible. Efficiency of AA* was influenced by the heuristic function with
the ` − consistency and ` − monotonicity properties which were similar to the consistent or
monotone properties in A*. Though it was difficult to judge the ` − consistency of a heuristic
function directly, it could be done by judging consistency of heuristic functions for graphs without
learning effects. A closer to (less than) admissible and ` − consistent heuristic function’s real575

value implies less paths to be expanded. Experimental results illustrated that AA* algorithms were
far faster than the backtracking method. Though computation times of AA∗ algorithms increased
fast with the increase of the size of problems, the increasing speed was far less than those of
enumerative searching methods. In addition, a closer heuristic function with ` − monotonicity
and `− consistency to the real cheapest cost resulted in faster AA∗ algorithms.580

In the future, SPLE problems with experience-based or sum-of-processing-time-based learning
effects are promising topics. In addition, multi-objective SPLE problems are interesting further
work.
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