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ABSTRACT   

Background: Dominant Frequency (DF) and rotor mapping have been proposed as 

non-invasive techniques to guide localization of drivers maintaining atrial fibrillation 

(AF).  35 

Objective: To evaluate the robustness of both techniques in identifying atrial drivers 

non-invasively under the effect of electrical noise or model uncertainties.   

Methods: Inverse-computed DFs and phase maps were obtained on 30 different 

mathematical AF simulations. Epicardial Highest DF (HDF) regions and rotor location 

were compared with the same inverse-computed measurements after addition of 40 

noise to the ECG, size variations of the atria and linear or angular deviations in the 

atrial location inside the thorax.  

Results: Inverse-computed EGMs individually correlated poorly with the original 

EGMs in the absence of induced uncertainties (0.45±0.12) and worse with 10dB 

noise (0.22±0.11), 3 cm displacement (0.01±0.02) or 36º rotation (0.02±0.03). 45 

However, inverse-computed HDF regions showed robustness against induced 

uncertainties: from 82±18% match for the best conditions, down to 73±23% for 10 dB 

noise, 77±21% for 5 cm displacement and 60±22% for 36º rotation. The distance 

from the inverse-computed rotor to the original rotor was also affected by 

uncertainties: 0.8±1.61cm for the best conditions, 2.4±3.6cm for 10dB noise, 50 

4.3±3.2cm for 4 cm displacement and 4.0±2.1cm for 36º. Restriction of rotor 

detections to the HDF area increased the rotor detection accuracy from 4.5±4.5 to 

3.2±3.1cm (p<0.05) with 0 dB noise.  

Conclusion: The combination of frequency and phase-derived measurements 

increases accuracy of non-invasive localization of atrial rotors driving AF in the 55 

presence of noise and uncertainties in atrial location or size.  
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INTRODUCTION  60 

Personalized characterization of patterns of activation in atrial fibrillation (AF) 

patients with the novel invasive [Narayan JACC 2013] or the novel non-invasive 

electrocardiographic imaging (ECGI) method has reported successful ablation rates 

[1]. The method has been employed to  identify the hierarchy of dominant AF regions 

by non-invasively measuring dominant frequencies (DF) [2] or rotors on the 65 

epicardial wall of the atria [1,3]. However, the propagation patterns that result from 

the inverse problem solution during AF appear to be simpler [1,3] than to those 

obtained with intra-cardiac contact electrodes and optical mapping experiments [4-5], 

with less and smoother simultaneous wavefronts. These discrepancies between 

contact and non-contact mapping techniques do raise some skepticism regarding the 70 

accuracy of the method in the characterization of the true propagation patterns and 

rotors during AF and for understanding of AF mechanisms us, despite the successful 

AF ablation guided by the inverse solution mapping [1], the accuracy of the method 

in the characterization of the true propagation patterns during AF and for 

understanding of AF mechanisms in general is unclear.  75 

In this work we use multiple computer simulations to quantify the accuracy of ECGI-

based AF driver detection under uncertainties that are relevant to the clinical setting 

of its usage. Variations in the geometry of the computer model, including location, 

orientation and size of the atria, as well as varying electrical noise are introduced into 

the inverse problem solution of body surface potentials to assess the accuracy of the 80 

solutions relative to the atrial activity used to generate the surface potentials. 

METHODS 

Mathematical models  

A realistic 3D model of the atrial anatomy was used to simulate the atrial electrical 
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activity (see the Supplemental Material for further information). Heterogeneity in 85 

electrophysiological properties of the atrial myocardium was introduced in form of 

changes in the ionic currents and in fibrosis distribution to generate AF maintained 

by rotors and fibrillatory activity exhibiting non-uniform propagation patterns and 

different shape and extension of the dominant region (see the Mathematical models 

section in Supplemental Material). An ensemble of 30 different AF episodes driven 90 

by a single rotor at varying locations was simulated (see Figures S1-S342). 

For each simulation, a uniform mesh of unipolar EGMs was calculated surrounding 

the epicardial surface. The ECG potentials on the torso model were calculated by 

solving the forward problem and then, the inverse-computed EGMs (icEGMs) were 

reconstructed on the atrial surface by solving the inverse problem by the zero-order 95 

Tikhonov’s and L-curve methods (see Supplemental Material). Temporal series of 

EGMs and iCEGMs were compared in terms of correlation coefficients.  

Addition of model and signal uncertainties for the inverse problem solution 

To evaluate the robustness of the inverse solution approach against model 

uncertainties, we evaluated the accuracy of the solution under four uncertainty 100 

conditions: (i) noise, (ii) error in the atrial size, (iii) error in the location of the atria, 

and (iv) error in orientation of the atria inside the torso volume. Those uncertainties 

were generated by: (i) White Gaussian noise added to the surface ECG signals with 

a signal-to-noise ratio (SNR) between 60 dBs (low noise) and 0 dBs (high noise). (ii) 

Deviations in the atrial size from -20% to +20% (80% to 120% of its original 105 

dimension in each axis). (iii) Displacements in the atrial position from 0 cm to 5 cm in 

the lateral axis (X axis in Fig 1.A). And (iv) atrial rotations from 0º to 45º around the 

lateral axis.  

Rotor and Dominant Frequency identification 
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Rotor localization was automated based on singularity points (SP) identification in 110 

the phase signal map obtained with the Hilbert Transform. Only long lasting SPs (>1 

rotation) were considered as rotors and other SPs were discarded [6]. Histograms of 

atrial rotors presence were obtained by counting the number of rotors in each atrial 

model node, and the node with highest SP presence was considered as the rotor 

place.  115 

For the dominant frequency (DF) analysis the power spectral density of all signals 

was computed using Welch periodogram to determine the local DFs [7]. Since a 

spatial correlation in our unstructured mesh does not accurately account for the 

discrete metric in the DF maps, we compared inverse-computed DF maps with the 

original DF maps in terms of the concordance of their Highest DF (HDF) regions, 120 

defined as the intersection between HDF regions (or regions within 0.5 Hz from the 

HDF) over the original HDF region. The distance between the barycenters of the 

original and the inverse-computed HDF regions was also calculated. 

 

RESULTS  125 

Illustrating sample cases 

Epicardial maps based on inverse computed potentials always differed from those 

computed from the original EGMs. Figure 1.A illustrates a schematic view of the 3D 

torso model used for the inverse solution and the atrial surface at its reference 

position. The potential distributions for an AF episode driven by a stable rotor is 130 

depicted in Figure 1.B. Panel C shows the inverse-computed voltage map following 

the inverse solution under the best possible conditions, that is, with no added 

electrical noise to the ECGs and with the atria at their reference position. As shown, 

the inverse-computed voltage map is smoother than the original EGMs, due to the 
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inability of the inverse solution to reconstruct the wavefront irregularity produced by 135 

the fibrotic tissue [6]. However, the activating wavefront (transition from blue to red 

colors) around the rotor is at the same place. 

Figure 1.D depicts the inverse-computed maps after inverse solution with noise 

added to the ECG (10dBs SNR). As expected, inverse-computed voltage map 

differed from the original map to a greater extent than those computed with no 140 

addition of uncertainties, but the potential map still retained some similarity with the 

original map. The inverse solution based on a mismatch in the atrial size used in the 

inverse solution (120%, Panel E), presented a potential distribution similar to the one 

obtained under the best conditions. Inverse-computed potential map with atrial 

displacement of 2 cm (Panel F) and rotation of 27º (Panel G) relative to the reference 145 

position and orientation also retained the main features of the original map, although 

some other incorrect wavefronts appeared on the inverse solution map. 

EGM signals correlation 

Figure 2.A shows the original (blue) and inverse-computed (red) EGM signals from a 

point near of the rotor core of the simulation in Figure 1 for two inverse solutions: 150 

with no noise (60dBs SNR) and under noisy conditions (0dBs SNR). Even for the 

best scenario (no noise), the inverse-computed signal notability differed from the 

original EGM signal, although it still retained the main activation sequence showing a 

correlation coefficient of 0.61. However, the addition of noise reduced the similarity 

between the original and inverse-computed signals, showing a correlation of 0.27. A 155 

summary of the measured correlation coefficients in the whole database is presented 

in Figure 2 showing that the correlation coefficient for EGM signals (0.45±0.12) was 

quite poor even in the absence of noise or model uncertainties. An addition of white 

noise to the surface ECGs before computing the inverse solution decreased this 
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correlation coefficient down to 0.18±0.1 for a 0dB SNR. Uncertainties in the atrial 160 

size moderately decreased the correlation coefficient down to 0.33±0.10 for 80%, as 

shown in Figure 2.C. Uncertainties in the location or orientation of the atria inside the 

torso volume, however, had a large impact on the correlation coefficients, as 

depicted in Figures 2.D-E. Correlation coefficients decreased from 0.41±0.13 for 0 

cm down to 0.01±0.02 for a 3 cm displacement, and down to 0.03±0.05 for a 27º of 165 

rotation. 

Notably, the correlation coefficient between icEGMs and original EGMs showed 

significantly higher values in the HDF regions than in the rest of the passively-

activated atrial tissue (see Figure S3S5). This trend was observed for all those 

scenarios in which the general correlation coefficient was significantly different from 170 

0: for 60, 30, 20 and 10dB SNR in the ECG; for all the atrial sizes; for 1 cm, 2 cm 

and 3 cm of displacement and for rotations of 0º, 9º and 18º. These values could be 

explained by the more stable propagation patterns in the area of the rotor, where the 

propagation had clear wavefronts, relative to the peripheral passive tissue where 

there is fibrillatory conduction.  175 

Highest Dominant Frequency Regions 

Although the morphology of icEGMs and their original EGMs has been shown to be 

poorly related, they do allow for a robust estimation of the local activation rate (or 

DF) against signal or model uncertainties (see Figure 3). Inverse-computed DF map 

(Panel B) presented a high correlation with the original DF map (Panel A) in the 180 

absence of ECG noise, and the extent and position of the Highest DF (HDF) region 

was preserved following the inverse solution. In the presence of ECG noise (Panel 

C), identification of the HDF region was accomplished with a concordance above 

75% for SNRs as low as 10 dB that decreased to 56.5±32.3% for 0 dB. Changes in 
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the atrial size did not result in noticeable changes in the HDF region concordance 185 

which remained stable around 85±10%. Notably, identification of the HDF region was 

very robust against uncertainties in the atrial location, with mean concordance values 

above 75.9±11.9% for uncertainty of 3 cm in location. Inverse-computed DF maps 

were more sensitive to angular deviations (but less sensitive than the EGMs), where 

the concordance of the HDF progressively decreased from 84.5±10.6% for 0º down 190 

to 56.2±23.0% for 45º.     

The rationale behind the ability of the inverse solution to locate correctly HDF 

regions can be understood from data presented in Figure S4 S6 showing that the 

HDF region is generally wider in the inverse-computed data as compared to the 

original HDF region. Indeed, the addition of noise increased the size of the HDF 195 

region by 26.8±32.2% for 60 dB and up to by 36.7±35.1% for 20 dB, and only 

followed by a decrease down to -4.8±53.0% for the largest level of noise at 0 dB 

SNR. Decreases in the atrial size also increased the HDF region (-10.4±83.6% for 

80% size), whereas atrial enlargement did not significantly alter the HDF area size 

(15.2±27.3% for 120% size). In contrast, displacement in the atrial position resulted 200 

in a considerably higher increase in the HDF area, up to 202.1±169.9% for 5 cm 

whereas an angular deviation provoked a maximum increase of 59.0±78.6% for 45º. 

Complementary to the data presented in Figure 3, the center of the original HDF 

maps and their inverse-computed counterparts were compared. Figure 4.A shows 

the original DF map with its barycenter (black cross), which suffered a displacement 205 

(black dot, Panel B) when compared with the barycenter of the HDF region of the 

inverse-computed DF map with a displacement of 2 cm in the atrial position. As can 

be observed in Figure 4.C, this deviation for the entire database presented values 

lower than 4 cm for every level of electrical noise added to the ECG, being the 
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average value 1.36±0.78cm for 0 dB SNR. Changes in the atrial size increased the 210 

error in the HDF region center location to 1.67±0.94cm for 80% and 0.81±0.56cm for 

120%. When atrial displacements were present in the inverse calculation, the 

distance between HDF region centers increased gradually with the displacement, up 

to 3.12±1.11 cm for 5 cm (Panel 4E). Finally, the angular deviations also showed a 

constant increment in the error of HDF center region location, which reached 215 

3.15±1.05 cm for 45º.  

Incidence of SP detections 

The low accuracy and tendency for simplification of propagation patterns by the 

inverse solution did not allow to fully estimate the complexity of the electrical patterns 

during our simulated AF. The original EGM maps presented more simultaneous non-220 

driving, short-lasting, rotors (8.5±5.3) than their inverse-computed counterparts, even 

for high SNRs (i.e. 4.4±2.5 for 60 dB SNR), and this number further gradually 

decreased down to 1.4±0.3 for 0 dB SNR (see Figure S5S7). Uncertainties in the 

atrial location or orientation, however, had the opposite effect in the detected number 

of non-driving rotors, with up to 5.6±2.6 for 1 cm or 14.6±1.1 for 5 cm displacements 225 

and 4.6±2.4 for 9º or 12.3±4.7 for 45º rotations. 

However, despite the sensitivity of rotor detection to signal or model uncertainties, 

driving rotor identification, defined as the region with most frequently detected 

rotations, was quite robust. Figure 5 shows the phase map (top) and rotor location 

maps (bottom) for the original and the inverse-computed signals (Panels A and B 230 

respectively). Due to the smoothing effect of the inverse-solution, rotors tended to 

cluster in stable sites, and the rotor position (in red) was easily identified. In Figure 

5.C-F, the accuracy of this estimation is presented for the entire database. Panel 5C 

shows this error both for the original phase maps (0.7±0.7 cm) and for the inverse-
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computed maps under the effect of electrical noise. These average errors remained 235 

stable around 1 to 1.5 cm from 60 to 20 dBs. For higher noise level of 10 and 0 dB 

the average value of the error in rotor location increased to 2.4±3.6 cm and 4.5±4.5 

cm respectively, but in both cases 50% of rotors were localized to <2 cm from their 

original location. Variations in atrial size (Figure 5.D) did not result in significant 

variations respect to the original location. Displacements in the atrial position 240 

provoked a similar error in the inverse-computed rotor position: from 0.9±1.3 cm for a 

displacement of 1 cm to 4.7±3.3 cm for a displacement of 5 cm (Figure 5.E). 

Rotations of the atria inside the thorax also resulted in incremental errors in the 

inverse-computed rotor position: from 1.2±1.3 cm for 9º to 4.9±2.6 cm for 45º (Figure 

5.F). 245 

Inverse identification of the driving atrium 

Next, the overall ability of the inverse solution in identifying the dominant atrium 

responsible for AF maintenance was also evaluated both by SP and HDF analysis. 

The atrial surface was divided into 2 anatomical regions (LA and RA) and the match 

between the original and inverse-estimated dominant atrium was quantified. As 250 

shown in Figure 6.A, there was a good match in the SP detection and rotor site 

(>90%) for all SNRs except for the most noisy case where the matching ratio 

decreased to 73% for 0 dB. Atrial size again had little effect on rotor region 

identification. Rotor region identification was also accurate (>80%) for deviations 

lower than 4 cm or 36º.  255 

Then the ability to identify the dominant atrium by measuring the extension of the 

HDF region was evaluated in Figure 7. Here it can be observed that there was a 

good match (>90%) for all SNRs except for the most noisy case where the match 

ratio decreased to 87% for 0 dB, results that outperform SP alone identification. The 
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analysis of the inverse-computed HDF region was able to properly identify the 260 

dominant atrium for more than 90% of cases when changes were present in the 

blood conductance (Online Supplement) or in the atrial location. However, changes 

in the atrial orientation decreased this match ratio down to 80% for angular 

deviations higher than 27º.   

Combined SP and HDF approach for driver identification 265 

Since driving rotors activate at the fastest rates in the atria and both DF and rotor 

measurements and localizations were robust against inverse problem uncertainties, 

these two parameters were combined in order to improve driver location. Figure 8 

depicts the error in the atrial rotor location considering only those inverse-computed 

rotors present in the HDF region, compared with the error when all inverse-computed 270 

rotors were considered. As shown, the combination of information from both 

measurements can reduce the average error in the driver location. However, this 

reduction in the inverse-computed rotor location error is significant just for the 

extreme cases, as in the sample case shown in Figure 8.A-B.  

 275 

 

DISCUSSION 

Main findings 

In this work we use mathematical models of the human torso and AF propagation to 

demonstrate that inverse-computed maps allow for an accurate identification of atrial 280 

drivers, even in the presence of noise or model uncertainties. Despite limited 

accuracy in the morphology of the inverse-computed epicardial potentials caused by 

noise and uncertainties in the heart position and orientation, atrial drivers can still be 

identified with significant accuracy because the predominant activation patterns and 

their frequencies are preserved. Overall, the identification of atrial drivers by 285 
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localization of SPs confined to highest DF regions outperforms drivers identification 

based on SP localization alone. 

 

Accuracy of the inverse problem solution in AF 

We have recently shown that icEGMs are poorly related to intracardiac contact 290 

electrograms (either measured experimentally or simulated), with large relative 

errors in the instantaneous phases [2]. In the present work we demonstrate that 

errors in reconstruction of the epicardial potentials can be mostly attributed to a loss 

of complexity in the surface potentials relative to the original epicardial potentials, 

quantified in terms of the number of simultaneous phase singularities. This loss of 295 

complexity is consistent with a mutual cancellation of extracellular potentials of 

propagating wavefronts with opposed directions [6] that is not be retrievable by 

solving the inverse problem.  

Despite this loss of information at the body surface level, surface potentials have 

shown to keep some relevant attributes of AF drivers both in terms of their activation 300 

frequency [7] and rotor location [6]. However, other uncertainties may add 

computational errors to the inverse problem solution which may restrict the validity of 

such approach in the context of AF. These uncertainties include, among others, the 

presence of electrical noise of up to 32dB or the inaccuracies in the geometrical 

model used of up to 3 cm [8] due to either an inaccurate volume segmentation, the 305 

changes in chambers size due to treatment or the use of a static torso model that 

does not account for the dynamic position of the atria inside the thorax during heart 

contraction and respiration [9]. Although previous works [8-10] concluded that these 

uncertainties have a limited impact in inverse problem solutions in the context of 

non-fibrillating ventricular activity, they did not account for the more complex 310 



14 

 

scenario of AF, with multiple simultaneous activation wave-fronts and lower signal-

to-noise ratios (which can reach 0 dB in a real clinical setting). Moreover, the impact 

of the anticipated atrial surface acquisition by image techniques could also have a 

significant impact on position of the atria inside the thorax [1]. 

We also found that the addition of electrical noise to the surface recordings results in 315 

an additional smoothening of the surface potentials, already smoothened by the 

inverse problem solution in the absence of noise, which results in a further decrease 

in the number of simultaneous phase singularities. However, despite the non-

negligible effect of signal or noise inaccuracies on the reconstructed propagation 

patterns, we found that activation-based parameters, such as the activation 320 

frequency or rotor location, are robust against both signal and model uncertainties, 

with errors that allow identifying the AF driving atrium and mean errors in location of 

drivers below 2 cm for up to 20 dB of SNR or 2 cm displacement. This driver 

identification accuracy can also be expected for reduced and irregular geometries on 

the atrial shell or a reduced amount of sensing surface electrodes (see Figures S6 325 

S8 and S7S9). The good performance of activation-based parameters suggests that 

the information underlying key features of propagation patterns reach the torso 

surface and can be inverse-reconstructed whereas the fibrillatory conduction that 

surrounds the main rotational activity cancels out, as we have previously described 

[6].  330 

Targeting drifting rotors for ablation with some inaccuracy (comparable to rotor drift, 

1.18 ± 0.55 cm in our population of models) may result in successful AF termination, 

since the rotational path can be interrupted by ablation (see supplementary Movie 1, 

with an error in rotor location of 1.7 cm). In contrast, ablation strategies based on 

larger identification errors may not result in AF termination (see supplementary 335 
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Movie 2, with an error in rotor location of 3.3 cm).    

Combination of rotor and DF measurements, however, allows for an improved rotor 

identification in the most extreme cases of noise or displacement.  

Inverse problem and AF mechanisms 

There is still no agreement on which are the mechanisms responsible for AF 340 

maintenance [11-12]. A growing body of experimental and clinical evidence suggests 

that drivers in the form of rotors are responsible for AF maintenance [1,13-14]. The 

success of rotor-guided ablation strategies [1,13] has demonstrated the mechanistic 

role of rotors in AF maintenance. Nevertheless, other investigators disagree with 

rotors driving AF [5,12]. Indeed, even the clinical reports suggesting that rotors play 345 

a driving role in AF differ in their details. While Haissaguerre et al. [1] have reported 

on the identification of driving rotors by solving the inverse problem of 

electrocardiography, their activation maps were simpler and with fewer and less 

stable rotors as compared to intracardiac panoramic contact activation maps by 

Narayan [13]. Neither of these two systems has been independently validated for AF 350 

waves detection so we cannot know for sure which results are closer to the true, but 

those differences could be explained based on of the present study. According to our 

results, the reconstructed epicardial potentials using the inverse solution present a 

simplified version of the original epicardial potentials, however the presence of key 

patterns and rotors is preserved, albeit affected by secondary epicardial patterns as 355 

well [6]. 

Study Limitations 

We used mathematical models in order to validate the noninvasive estimation of 

atrial drivers during AF because current technology does not allow validating such 

approach in a physiologically realistic scenario. An accurate validation would require 360 
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precise simultaneous measurements of the transmembrane voltage in the entire 

atrial tissue (i.e. as optical mapping recordings) with simultaneous torso potentials, 

which is unattainable.  

The mathematical models used a simplistic representation of the torso and the atrial 

surface, with no intra-structural heterogeneities. Inclusion of uncertainties in the 365 

conductance of inner organs may add further errors in the estimation of AF driver 

locations (i.e., added errors of up to 1 cm for 100% error in lungs conductivity, see 

Figure S8S10).    

Finally, although our population of models may not represent the whole possible 

atrial substrates during AF, we employed a set of 30 different simulations to enhance 370 

the relevance of the study to the general AF population.  

CONCLUSIONS 

AF driver identification based on the inverse problem solution is possible despite the 

overall simplification of calculated epicardial potentials. The identification of drivers 

based on a combination of frequency and phase-derived measurements outperforms 375 

the identification of drivers based on rotor location only, especially under noise 

conditions.  
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Figure 1. Illustration of the numerical set-up and examples of uncertainties in 

inverse-computed maps. (A) Schematic view of the torso (green) and the reference 440 

atrial (red) surface at its original position. (B) Original potential map for an AF 

episode maintained by a rotor in the LA. (C) Inverse-computed potential map for the 

simulation in (B). Inverse-computed potential maps for the simulation in (A) solved: 

(D) with 10dB of signal-to-noise ratio; (E) with a 20% enlarged atria; (F) at displaced 

(2 cm) position; (G) at rotated (27º) position.  445 

 

Figure 2. Correlation of inverse-computed EGMs with original EGMs. (A) 

Comparison between original (EGM) and inverse-computed signals (icEGM) from a 

point in the PLAW under two levels of ECG noise. Average correlation coefficients 

under variations in: (B) ECG noise; (C) Size; (D) Displacement; (E) Rotation. 450 

 

Figure 3. Concordance of inverse-computed HDF region with original HDF region. 

(A) Original DF map. (B) Inverse-computed DF map solved with 60dB of Noise-to-

Signal Ratio. Average concordance values under variations in: (C) ECG noise; (D) 

Size; (E) Displacement; (F) Rotation. 455 

 

Figure 4. Error in non-invasive HDF center identification. (A) Original DF map with 

the barycenter of the HDF (black cross). (B) Inverse-computed DF map solved with 

60dB of Noise-to-Signal Ratio with the barycenter of the HDF (black dot). Error 

average under variations in: (C) ECG noise; (D) Size; (E) Displacement; (F) 460 

Rotation. 
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Figure 5. Error in non-invasive rotor position identification. (A) Original EGM phase 

map for an AF episode maintained by a rotor in the LA (top) and the histogram 465 

quantifying the rotor presence (bottom). (B) ECGI phase map with 60dBs SNR for 

the simulation in (A) (top) and the histogram quantifying the rotor presence (bottom). 

Error average under variations in: (C) ECG noise; (D) Size; (E) Displacement; (F) 

Rotation. 

 470 

Figure 6. Non-invasive identification of the dominant atrium by rotor histogram under 

variations in: (A) ECG noise; (B) Size; (C) Displacement; (D) Rotation. 

 

Figure 7. Non-invasive identification of the dominant atrium by HDF region analysis 

under variations in: (A) ECG noise; (B) Size; (C) Displacement; (D) Rotation. 475 

 

Figure 8. Rotor identification in the HDF region. (A) Non-invasive rotor histogram 

with 0dBs SNR and (B) with 0dBs SNR with only rotors inscribed inside the HDF 

region. Error in non-invasive rotor position identification by rotational activity (blue) 

and by rotational activity plus dominant frequency (red) under variations in: (C) ECG 480 

noise; (D) Size; (E) Displacement; (F) Rotation. 


