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Abstract. Some deleterious effects of drought, soil salinity and other abiotic stresses are mediated by the genera-
tion of oxidative stress through an increase in reactive oxygen species (ROS) that damage cellular membranes, pro-
teins and DNA. In response to increased ROS, plants activate an array of enzymatic and non-enzymatic antioxidant
defences. We have correlated the activation of these responses with the contrasting tolerance to salinity and
drought of three species of the genus Juncus, viz. J. maritimus, J. acutus (both halophytes) and J. articulatus (salt-
sensitive). Both stresses were given for 8 weeks to 6-week-old seedlings in a controlled environment chamber. Each
stress inhibited growth and degraded photosynthetic pigments in the three species with the most pronounced ef-
fects being in J. articulatus. Salt and water stress also generated oxidative stress in all three taxa with J. articulatus
being the most affected in terms of accumulation of malondialdehyde (a reliable oxidative stress marker). The ap-
parent lower oxidative stress in halophytic J. maritimus and J. acutus compared with salt-sensitive J. articulatus is
explained by a more efficient activation of antioxidant systems since salt or water deficiency induced a stronger ac-
cumulation of antioxidant phenolic compounds and flavonoids in J. maritimus and J. acutus than in J. articulatus.
Qualitative and quantitative differences in antioxidant enzymes were also detected when comparing the three spe-
cies and the two stress treatments. Accordingly, glutathione reductase and superoxide dismutase activities in-
creased in the two halophytes under both stresses, but only in response to drought in J. articulatus. In contrast,
ascorbate peroxidase activity varied between and within species according to treatment. These results show the
relative importance of different antioxidant responses for stress tolerance in species with distinct ecological require-
ments. The salt-sensitive J. articulatus, contrary to the tolerant taxa, did not activate enzymatic antioxidant
responses to salinity-induced oxidative stress.

* Corresponding author’s e-mail address: ovicente@ibmcp.upv.es

VC The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly
cited.

AoB PLANTS www.aobplants.oxfordjournals.org VC The Authors 2017 100

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.oxfordjournals.org/


Keywords: Antioxidant enzymes; antioxidant phenolics; ecological adaptation; Juncus; malondialdehyde (MDA);
photosynthetic pigments; salt stress; water deficiency stress.

Introduction

Drought and soil salinity are important environmental
stress factors that cause large reductions in global agri-
cultural production and greatly influence the distribution
of wild species in nature (Dunson and Travis 1991;
Bartels and Sunkar 2005). Most plant species cannot tol-
erate extended drought or saline concentrations over
200 mM NaCl (Hasegawa et al. 2000; Flowers and Colmer
2008) because these conditions provoke a series of dele-
terious effects in the plants that include disturbed cellu-
lar osmotic balance, inhibited photosynthesis, inhibition
of enzyme activities and cellular processes, and interfer-
ence with mineral nutrition. These effects lead to slower
growth and eventually to plant death (Munns and
Termaat 1986; Zhu 2001; Munns and Tester 2008). In ad-
dition, these and other abiotic stresses cause oxidative
stress through the increased formation of reactive oxy-
gen species (ROS) (Foyer and Noctor 2003; Bose et al.
2014; De Carvalho 2013).

ROS typically arise by the transfer to O2 of one, two or
three electrons, to form superoxide (O2

-), hydrogen per-
oxide (H2O2) or the hydroxyl radical (HO-), respectively
(Rodrigo-Moreno et al. 2013). When in excess, each of
these is highly cytotoxic, due to their reactivity with vari-
ous key cellular components (Breusegem et al. 2001;
Quiles and L�opez 2004; Sharma et al. 2012). Small
amounts of ROS are by-products of normal cell metabo-
lism, formed in vital processes such as photorespiration,
photosynthesis and respiration (Martinez et al. 2001;
Mittler 2002; Uchida et al. 2002). Abiotic stress increases
their production resulting in a dramatic promotion of oxi-
dative damage (Asada 2006; Bose et al. 2014). High ROS
concentrations cause a major disturbance to intracellu-
lar ionic homeostasis by depressing cytosolic Kþ concen-
trations followed by activation of proteases and
endonucleases (Shabala 2009; Demidchik et al. 2010),
the oxidation of unsaturated fatty acids in lipids (affect-
ing cell membrane integrity), of amino acid residues in
proteins (inhibiting enzyme activities and the function of
the photosynthetic apparatus) and of DNA. The collective
effect can lead to cell death (Yu et al. 2011; Kumari et al.
2015). Paradoxically, under non-stressful conditions, ROS
at low cellular concentrations play an important role as
signalling molecules involved in plant growth, develop-
ment, gravitropism, hormonal action and many other
normal physiological processes (Mittler 2002; Apel and
Hirt 2004; Mittler et al. 2004; Foyer and Noctor 2005;
Miller et al. 2008, Bose et al. 2014). Such low-level ROS
functions include triggering of antioxidant defence

mechanisms for adapting to abiotic stress (Miller et al.
2008; Abogadallah 2010; Jaspers and Kangasj€arvi 2010;
Kumari et al. 2015). For example, several ROS, at concen-
trations much lower than those causing cellular damage,
can activate different Naþ- and Kþ-permeable ion chan-
nels (Demidchik and Maathuis 2007; Demidchik et al.
2007; Richards et al. 2014) that help maintain the cyto-
solic Kþ/Naþ ratios needed for salinity tolerance
(Maathuis and Amtmann 1999; Anschütz et al. 2014).

To help avoid excessive ROS accumulation during
stress whilst maintaining appropriately small amounts
for signalling, plants activate enzymatic and non-
enzymatic antioxidant systems. The latter include anti-
oxidant compounds such as ascorbic acid, glutathione,
b-carotenes, flavonoids or other phenolic compounds.
The commonest enzymatic antioxidant systems are su-
peroxide dismutase (SOD), catalase (CAT), ascorbate per-
oxidase (APX) (and other peroxidases) or redox
regulatory enzymes such as glutathione reductase (GR),
among many others (Ozgur et al. 2013). Under unfavour-
able conditions, the biosynthesis of these antioxidant
molecules and the activity of these enzymes are altered
(Rossel et al. 2002; Horling et al. 2003; Mittler et al.
2004).

Paradoxically, most studies on stress tolerance in
plants have been conducted in model species that are
not stress tolerant, especially in Arabidopsis thaliana
and, to a much lesser extent, in crop species (Sanders
2000; Zhu 2001). However, the degree of tolerance to
salt or water shortage is not comparable to that attained
by wild species adapted, in nature, to particular stressful
environments. Although stress tolerance mechanisms
are ubiquitous in plants, the molecular and biochemical
pathways leading to improved tolerance may act addi-
tively or synergistically in plants naturally adapted to
arid and/or saline habitats (Sekmen et al. 2007; Kumari
et al. 2015; Srivastava et al. 2015).

Therefore, the mechanisms of response operating in
stress tolerant taxa can be expected to be more effective
than those of non-tolerant species. Consequently, com-
parative studies of genetically related, stress tolerant
and stress sensitive naturally occurring species are gain-
ing increasing attention because of their potential for un-
derstanding stress tolerance mechanisms. Salt and
drought tolerant species of Thellungiella (taxonomically
related to Arabidopsis since both genera belong to the
Brassicaceae) have been proposed as extremophile mod-
els for abiotic stress tolerance studies (Inan et al. 2004;
Gong et al. 2005; Kant et al. 2006). The complete genome
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data on Thellungiella parvula and T. salsuginea have con-
tributed to elucidating a ‘full picture’ of stress responses
in dicotyledonous halophytes. Nevertheless, the involve-
ment of ROS and antioxidants in stress tolerance mecha-
nisms of monocot halophytes is still poorly understood
(Ozgur et al. 2015). Further studies on stress tolerant and
stress sensitive, taxonomically related monocot species
drawn from natural plant communities exposed to ex-
treme environments are thus of great interest.

The monocotyledonous genus Juncus (family
Juncaceae) includes a wide range of halophytes and gly-
cophytes and was thus a suitable choice for the present
study. Most previous comparative analyses of stress re-
sponses in genetically related taxa have been performed
either on different crop cultivars, or in dicotyledonous
genera.

Three species of the genus Juncus with different de-
grees of tolerance to drought and salt stress were se-
lected. They included two halophytes, Juncus maritimus
and J. acutus, which are common in littoral salt marshes
on temporally flooded humid soils. Although they often
share the same habitats they have different ecological
optima. J. maritimus is more salt tolerant than J. acutus
(Boscaiu et al. 2011, 2013) and restricted to saline humid
soils whilst J. acutus is found mostly on salt marsh bor-
ders or other areas with lower salinity. Since J. acutus also
tolerates drought relatively well, it is to be found in soil
with a sandy texture such as that occurring in small de-
pressions among dunes or on gypsum soils (Boira 1995).
J. articulatus is a more salt-sensitive species that occupies
river banks and non-saline wetlands (Albrecht 1994).

This study compares oxidative stress defence mecha-
nisms induced by drought or soil salinity, in J. maritimus,
J. acutus and J. articulatus, with the aim of generating
novel information on the general mechanisms of stress
tolerance in this genus and perhaps more widely. Our
working hypothesis is that the activation of antioxidant
responses contributes significantly to the mechanisms of
salt and drought tolerance in Juncus. For this to be cor-
rect, stress-induced levels of antioxidant compounds
and activities of antioxidant enzymes should correlate
with the relative stress tolerance, i.e. they should be
higher in the halophytes J. maritimus and J. acutus than
in the more sensitive J. articulatus.

We analysed: (i) stress-induced inhibition of vegetative
growth (plant shoot fresh weight (FW), water content
(WC)) and levels of photosynthetic pigments, (ii) accumu-
lation of malondialdehyde (MDA) as a reliable oxidative
stress marker (iii) total phenolic compounds (TPC) and fla-
vonoid contents, as examples of non-enzymatic antioxi-
dants and (iv) specific activities of four antioxidant
enzymes: SOD, CAT, GR and APX. The results of these anal-
yses were correlated with the relative stress tolerance of

the investigated species, estimated from their distribution
in nature and their stress-induced growth inhibition under
controlled experimental conditions.

Methods

Plant material and experimental design

Seeds of J. acutus, J. maritimus and J. articulatus were
collected in ‘La Albufera’ Natural Park (Province of
Valencia, Spain). After sterilization with commercial
bleach and repeated washes with distilled water, seeds
were sown on a mixture of commercial peat:perlite:ver-
miculite (2:1:1), in 1 L pots placed in plastic trays (12 pots
per tray), and watered twice per week with 1.5 L of half
strength Hoagland nutrient solution (Hoagland and
Arnon 1950) added to each tray. After 6 weeks, control,
salt and drought treatments were initiated and carried
out for 8 weeks. Plants subjected to salt stress were wa-
tered twice a week with the same volume of the nutrient
solution containing NaCl at 100, 200 or 400 mM. Drought
treatments were started at the same time by withhold-
ing irrigation. For each treatment (control, water stress
and various NaCl concentrations), five individual plants
of each species were used as biological replicates.

All experiments were conducted in a controlled envi-
ronment chamber, under the following conditions: long-
day photoperiod (16 h of light), at 23 �C during the day
and 17 �C at night, a CO2 level of�300 ppm and 50–80 %
relative humidity. Plant material (the aerial part of each
plant) was harvested after 8 weeks.

Soil analysis

Electrical conductivity (EC1:5) of the substrate in all pots
was determined at the end of the experiment. Soil sam-
ples were air-dried, passed through a 2-mm sieve, mixed
with deionized water in a proportion of 1–5, and the sus-
pensions stirred for 1 h at 600 rpm, at room temperature.
Electric conductivity was measured with a Crison
Conductivity meter 522 and expressed in dS m�1.

Growth measurements

The FW of the aerial part of each plant was measured
and a fraction of the material was dried at 65 �C for 4
days to constant weight and weighed again for dry
weight (DW). The WC of each sample was calculated as
(FW – DW). To facilitate comparisons between the three
Juncus species, which differ in size and show slightly dif-
ferent shoot WC under control conditions, FW and WC
values were expressed as percentage of the mean FW or
WC of corresponding control plants. Absolute FW and
WC mean values of the non-treated controls are indi-
cated in the legend of Table 2.
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Quantification of photosynthetic pigments

Total carotenoids (Caro), chlorophyll a (Chl a) and chloro-
phyll b (Chl b) were measured following Lichtenthaler
and Wellburn (1983): 100 mg of fresh shoot material
were ground in 30 mL of ice-cold 80 % acetone, mixed
by vortexing and then centrifuged. Absorbance of the su-
pernatant was measured at 663, 646 and 470 nm, and
the concentration of each group of compounds was cal-
culated according to the following equations:

Chl a ðlg mL�1Þ ¼ 12:21 ðA663Þ � 2:81 ðA646Þ;

Chl b ðlg mL�1Þ ¼ 20:13 ðA646Þ � 5:03 ðA663Þ;

Caro ðlg mL�1Þ ¼ ð1000A470 � 3:27½Chl achl a�

� 104½Chl b�Þ=227:

Pigment concentrations were expressed in mg g�1 DW.

MDA and non-enzymatic antioxidants

Dried plant material was extracted with 80 % methanol,
in a rocker shaker, for 24–48 h. MDA in the extracts was
determined using a previously described method
(Hodges et al. 1999). Briefly, the samples were mixed
with 0.5 % thiobarbituric acid (TBA) prepared in 20 % TCA
(or with 20 % TCA without TBA for the controls), and then
incubated at 95 �C for 20 min. After stopping the reaction
on ice, the absorbance of the supernatants was mea-
sured at 532 nm. The non-specific absorbance at 600
and 440 nm was subtracted and MDA concentration de-
termined using equations from Hodges et al. (1999).

TPC were quantified according to Blainski et al. (2013),
by reaction with the Folin–Ciocalteu reagent. The metha-
nol extracts were mixed with sodium bicarbonate and
the reagent and absorbance was recorded at 765 nm us-
ing gallic acid (GA) as standard. The measured TPC con-
centrations were expressed as GA equivalents
(mg eq. GA g�1 DW).

Total ‘antioxidant flavonoids’ (TF) were determined by a
reaction with NaNO2 and AlCl3 at a basic pH, as described
by Zhishen et al. (1999), with catechin used as standard;
the product of the reaction being detected spectrophoto-
metrically, at 510 nm. This protocol is often claimed to
measure ‘total flavonoids’ in the sample, although this is
not strictly true. The method is based on the nitration of ar-
omatic rings containing a catechol group. Several groups
of flavonoids—e.g. flavonols and flavanols—but also other
phenolics, such as caffeic acid and derivatives react in this
way. Nevertheless, phenolic compounds detected in the
assay are all strong antioxidants and there is a good corre-
lation between their levels and the total antioxidant activ-
ity of the samples (Zhishen et al. 1999). To simplify, in the
text we refer to the AlCl3-reactive compounds simply as TF,

and express their concentrations as equivalents of cate-
chin (mg eq. C g�1 DW).

Protein extraction and quantification

Crude protein extracts were prepared from fresh plant ma-
terial as described by Gil et al. (2014). Samples were
ground in the presence of liquid N2 and then mixed with
extraction buffer [20 mM Hepes, pH 7.5, 50 mM KCl, 1 mM
EDTA, 0.1 % (v/v) Triton X-100, 0.2 % (w/v) polyvinylpyrroli-
done, 0.2 % (w/v) polyvinylpolypyrrolidone and 5 % (v/v)
glycerol]. A 1/10 volume of ‘high salt buffer’ (225 mM
Hepes, pH 7.5, 1.5 M KCl and 22.5 mM MgCl2) was added to
each sample, and the homogenates were centrifuged for
20 min at 20 000 g and 4 �C. Supernatants were collected,
concentrated in U-TubeTM concentrators (Novagen,
Madison, USA), and centrifuged to remove precipitated
material. The final samples (referred to as ‘protein ex-
tracts’) were divided into aliquots, flash-frozen in liquid N2

and stored at -75 �C until used for enzyme assays. Protein
concentration in the extracts was determined by the
method of Bradford (1976), using bovine serum albumin
as a standard and the Bio-Rad commercial reagent.

Antioxidant enzyme activity assays

SOD activity in the protein extracts was determined ac-
cording to Beyer and Fridovich (1987) by following spec-
trophotometrically (at 560 nm) the inhibition of nitroblue
tetrazolium (NBT) photoreduction, in reaction mixtures
containing riboflavin as the source of superoxide radi-
cals. One SOD unit was defined as the amount of enzyme
causing 50 % inhibition of NBT photoreduction under the
assay conditions.

CAT activity was determined as described by Aebi
(1984), following the decrease in absorbance at 240 nm
which accompanies the consumption of H2O2 added to
protein extracts. One CAT unit was defined as the
amount of enzyme that will decompose 1mmol of H2O2

per minute at 25 �C.
APX activity was determined according to Nakano and

Asada (1981) by measuring the decrease in absorbance at
290 nm as ascorbate becomes oxidized in the reaction.
One APX unit was defined as the amount of enzyme re-
quired to consume 1mmol of ascorbate per minute, at
25 �C.

GR activity was determined according to Connell and
Mullet (1986), following the oxidation of NADPH [the co-
factor in the GR-catalysed reduction of oxidized glutathi-
one (GSSG)] by the decrease in absorbance at 340 nm.
One GR unit was defined as the amount of enzyme that
will oxidize 1mmol of NADPH per minute at 25 �C.

Minor modifications to the original enzymatic assays
are described in Gil et al. (2014).
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Data analysis

Data were analysed using Statgraphics Centurion XVI.
Before the analysis of variance, the Shapiro–Wilk test
was used to check for validity of normality assumption
and Levene’s test for the homogeneity of variance. If
ANOVA requirements were met, significant differences
among treatments were tested by one-way ANOVA at
the 95 % confidence level and post hoc comparisons
were made using the Tukey HSD test. All means through-
out the text are followed by their SD (n¼5). A two-way
ANOVA was applied to test the effect of species, treat-
ments (salt and drought, separately) and their interac-
tion on the analysed characteristics.

In addition, all parameters measured in plants submit-
ted to salt stress treatments were correlated by principal
component analysis (PCA), independently for each of the
three studied Juncus species. Each principal component
was a linear combination of the original variables with
coefficients equal to the eigenvectors of the correlation
matrix. A graphic interpretation was obtained as a biplot
on the 2D of the main principal components.

Results

Salt stress

EC of substrates. EC1:5 was measured in samples of the
pot substrates, once the 8-week salt and water defi-
ciency treatments had been concluded. At the end of the
experiment, a similar increase in EC1:5 was detected in
parallel to the increase of NaCl concentrations in the soil

of all three Juncus species. Conductivities reached be-
tween 13 and 14 dS m�1 in pots watered with nutrient
solution containing 400 mM NaCl (Table 1) thus confirm-
ing the high correlation between EC1:5 and the concen-
tration of the saline solution. As expected, water
deficiency did not modify EC in the pots (data not
shown).

Growth parameters. The FW of aerial parts as a per-
centage of appropriate unstressed controls was reduced
under salt stress in each species but with quantitative
differences between the taxa. Reduction in biomass ac-
cumulation was more pronounced in salt-sensitive
J. articulatus than in the two halophytes. Thus, in the
presence of 100 mM NaCl, FW of the shoots of J. articula-
tus was 38 % of controls compared with 53 % and 43 %
for J. maritimus and J. acutus, respectively. At the highest
salt concentration (400 mM) relative fresh mass was re-
duced by >90 % in J. articulatus, compared with �70 %
in J. maritimus and J. acutus (Table 2A). Therefore, the
relative salt tolerance of J. maritimus> J. acutus> J.
articulatus as defined by the degree of salt-induced inhi-
bition of growth, correlates well with their distribution in
nature. Similarly, Juncus taxa were quite resistant to
salt-induced dehydration in terms of the relative reduc-
tions of WC, with water losses of 17 %, 19 % and 25 %
for J. maritimus, J. acutus and J. articulatus, respectively,
in the presence of 400 mM NaCl (Table 2B). These values
correlate negatively with the salt tolerance of the species
in the wild.

The general patterns of salt-induced changes in the
shoot levels of photosynthetic pigments were also

...............................................................................................................................................

......................................................................................................................................................................................................................

Table 1. Electrical conductivity (EC1:5, dS m�1) of pot substrate samples after 8-week treatments with the indicated NaCl concentrations, for
the three juncus species under study. The values shown are means with SD (n¼5). Different lowercase letters in each column indicate signifi-
cant differences between salt treatments applied to a species, and different capital letters in each row indicate significant differences between
species undergoing the same salt treatment, according to the Tukey test (a¼0.05). The results of one-way ANOVAs carried out for each spe-
cies ([P-values, F-ratios, and ‘degrees of freedom’ (df)] are shown below the main table.

EC1:5 (dS m21)

NaCl treatments (mM) J. maritimus J. acutus J. articulatus

0 1.10 6 0.20aA 1.00 6 0.10aA 1.00 6 0.20aA

100 5.30 6 0.40bA 5.10 6 0.40bA 4.80 6 0.60bA

200 7.50 6 0.40cA 7.70 6 0.50cA 9.70 6 0.80cB

400 13.40 6 0.50dAB 14.30 6 0.50dB 13.00 6 0.40dA

One-way ANOVA J. maritimus J. acutus J. articulatus

P value 0.0000 0.0000 0.0000

F ratio 956.02 1029.57 514.56

df between groups: 3.

df within groups: 16.
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clearly different in the halophytes and salt-sensitive spe-
cies (Fig. 1). In J. articulatus, a concentration-dependent
reduction of Chl a (Fig. 1A), Chl b (Fig. 1B) and Caro (Fig.
1C) concentrations with increasing external NaCl concen-
trations, was measured. In contrast, chlorophyll levels
remained almost constant in the most salt-tolerant spe-
cies, J. maritimus whilst J. acutus showed intermediate
behaviour with a significant reduction of chlorophylls
taking place only under the two highest salinity levels
(Fig. 1A and B). Changes in Caro concentrations were
broadly similar to those seen for chlorophyll but with the
concentrations boosted by 100 mM and/or 200 mM in
the two halophytes and a fall in 400 mM NaCl (Fig. 1C).
As shown in Table 3, a two-way ANOVA revealed signifi-
cant differences, according to ‘treatment’, ‘species’ and
significant interactions between the two independent
variables, for all growth parameters (FW, WC) and photo-
synthetic pigments (Chl a, Chl b, Caro).

MDA and non-enzymatic antioxidants. MDA concentra-
tions differed little in the three Juncus taxa under non-

stress conditions and increased only slightly in halo-
phytes J. maritimus and J. acutus under salt stress.
However, in salt-sensitive J. articulatus, 200 mM and
400 mM NaCl raised MDA concentrations, with a 3-fold
increase occurring in the latter (Fig. 2A). TPC and TF levels
were similar in control J. maritimus and J. acutus and in-
creased significantly in parallel with increasing salinity
(Fig. 2B and C). In J. articulatus, TPC levels did not show a
clear correlation with NaCl concentrations (Fig. 2B),
whilst salt-induced increases of TF were much smaller
than in J. maritimus or J. acutus at 400 mM (Fig. 2C).
According to the results of two-way ANOVA, the levels of
all analysed compounds (MDA, TPC and TF) were signifi-
cantly different in respect of species, treatments, and
their interactions (Table 3).

Antioxidant enzyme activities. The specific activities of
several antioxidant enzymatic systems showed different
variation patterns in response to the salt treatments, de-
pending on species and enzyme (Fig. 3). SOD activity
tended to rise under salt in each species although the

...............................................................................................................................................

......................................................................................................................................................................................................................
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Table 2. Variation in (A) fresh weight (FW, %) and (B) relative water content (WC, %), in shoots of J. maritimus, J. acutus, and J. articulatus
plants after 8 weeks of salt treatments with the indicated concentrations of NaCl. The mean FW (A) and WC (B) of control, non-treated plants
(J. maritimus: 3.85 g, 78 %; J. acutus: 2.60 g, 81 %; J. articulatus: 21.69 g, 86 %, respectively) were considered as 100 % for each species. The
values shown are means with SD (n¼5). For each species, different lowercase letters indicate significant differences between treatments ac-
cording to the Tukey test (a¼0.05). The results of one-way ANOVAs carried out for each species [P-values, F-ratios, and ‘degrees of freedom’
(df)] are shown below the main table.

(A) Fresh weight (%)

NaCl treatments (mM) J. maritimus J. acutus J. articulatus

0 100.00c 100.00b 100.00c

100 53.00 6 10.00b 43.00 6 4.00a 38.00 6 8.00b

200 45.00 6 15.00ab 34.00 6 3.00a 10.00 6 4.00a

400 29.00 6 9.00a 33.00 6 3.00a 9.00 6 3.00a

(B) Water content (%)

NaCl treatments (mM) J. maritimus J. acutus J. articulatus

0 100.00c 100.00c 100.00b

100 96.00 6 4.00b 94.00 6 4.00bc 92.00 6 7.00b

200 95.00 6 9.00b 90.00 6 9.00b 82.00 6 6.00ab

400 83.00 6 2.00a 81.00 6 4.00a 75.00 6 8.00a

One-way ANOVA J. maritimus J. acutus J. articulatus

FW % P value 0.0001 0.0000 0.0000

F ratio 14.91 60.09 26.00

WC % P value 0.0000 0.0000 0.0000

F ratio 64.65 73.29 74.48

df between groups: 3.

df within groups: 16.
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trend was clearest in J. acutus where activity was in-
creased 75 % by 400 mM NaCl (Fig. 3A). Activities of CAT
were depressed by salt most strongly in J. acutus (up to
85 % less) and J. articulatus (up to 34 % inhibition) with a
smaller reduction seen in the most salt-tolerant J. mariti-
mus (max. inhibition of 25 %) (Fig. 3B). The inherently
high APX activities of salt-sensitive J. articulatus were de-
pressed by up to 71 % as salt concentrations increased.

No clear trends were found in J. acutus and J. maritimus
except at 400 mM salt when APX in J. maritimus rose by
a third (Fig. 3C). The strongest response to salt was seen
in GR activity of J. maritimus which was stimulated al-
most 6-fold by 400 mM NaCl. Smaller increases were
seen in the less salt tolerant J. acutus but no changes in
activity in salt-sensitive J. articulatus (Fig. 3D). Two-way
ANOVA revealed that all enzymatic activities (SOD, CAT,

Figure 1. Photosynthetic pigments in three Juncus species after 8-week treatment with a range of NaCl concentrations. Leaf concentrations
of (A) chlorophyll a, (B) chlorophyll b and (C) total carotenoids, are shown as means with SD (n¼5). For each species, different letters above
the bars indicate significant differences between treatments according to the Tukey test (a¼0.05). The results of the corresponding one-way
ANOVAs [P values, F ratios, degrees of freedom (df)] are shown beside each graph.
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APX, GR) differed significantly between species and treat-
ments (P<0.05), and that the interaction of the two in-
dependent variables was also statistically significant
(Table 3).

PCAs. Principal component analyses, including all parame-
ters measured under salt stress, were performed indepen-
dently for J. maritimus (Fig. 4A), J. acutus (Fig. 4B), and J.
articulatus (Fig. 4C). Three components with an Eigenvalue
>1 explained 88 % of the data variability in J. maritimus
and 97 % in J. acutus. In J. articulatus, only two

components had an Eigenvalue >1, explaining 86 % of
the variability. In all PCAs, the first component (X-axis)
was determined by the ‘salinity’ variable (established by
EC1:5 measurements in the pot substrates, Table 1).
Correlation of the analysed parameters with substrate sa-
linity varied, depending on the relative salt tolerance of
the species. In the three PCAs, growth parameters (FW,
WC) were found to be negatively correlated with salinity,
as salt stress inhibited growth in all cases. However, the
corresponding loading vectors presented smaller angles
with the X-axis in J. articulatus than in the two salt-
tolerant taxa, indicating a stronger negative correlation
with EC. Similarly, the negative correlation between salin-
ity and variation of photosynthetic pigments levels was
much stronger in J. articulatus than in J. acutus, whilst no
significant correlation was detected in J. maritimus (Fig. 4).

There were other clear differences between the three
species: MDA, considered a reliable indicator of oxidative
stress, was strongly positively correlated with salinity
only in J. articulatus. This species also showed a strong
negative correlation between the substrate EC and APX
and CAT activities. Salt-sensitive J. articulatus also gave a
relatively weak positive correlation with antioxidant TF
contents, but no significant correlation with TPC levels or
SOD and GR activities. On the contrary, in the halophytes
J. maritimus and J. acutus, positive correlations between
salinity and TPC concentrations or SOD and GR activities
were detected (Fig. 4).

Drought stress

Growth parameters. Drought stress inhibited growth of
all three Juncus species. As under salt stress, J. articula-
tus was the most affected by water shortage. Eight
weeks after last watering, mean shoot FW was reduced
to ca. 3 % of the corresponding well-watered control.
Strong relative decreases in FW were also observed in J.
maritimus (down to 12 % of the value measured in the
non-stressed plants) and in J. acutus (17 % of the con-
trol), which appears to be the most drought-tolerant spe-
cies (Table 4A). However, a fraction of this FW reduction
was not due strictly to growth inhibition, but to loss of
water (Table 4B); drought-induced dehydration of the ae-
rial part of the plants being stronger than that observed
in salt-stressed plants, even in the presence of 400 mM
NaCl (compare Tables 4B and 2B).

Photosynthetic pigments (Chl a, Chl b and Caro) de-
creased in droughted plants of each species, relative to
controls (Table 5). This reduction in chlorophyll was
most pronounced in J. articulatus (80 % of the corre-
sponding controls), whilst in J. maritimus the reduction
was �50 % and 40 % in J. acutus (Table 5A and B).
Decreases in Caro were also large, dropping by �83 % in

......................................................................................................

Table 3. Salt treatments of the selected juncus species. Results of
two-way ANOVAs (P values, F ratios) for the independent variables
‘species’ and ‘treatment’, and the ‘species� treatment’ interac-
tions. The measurements included were: fresh weight (FW), water
content percentage (WC %), chlorophyll a (chl a), chlorophyll b (chl
b), total carotenoids (caro), malondialdehyde (MDA), total phenolic
compounds (TPC), total flavonoids (TF), and the specific activities of
superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase
(APX), and glutathione reductase (GR).

Measured parameter Species Treatment Interaction

FW P: 0.0000 P: 0.0000 P: 0.0000

F: 55.31 F: 37.12 F: 20.16

WC % P: 0.0005 P: 0.0000 P: 0.0000

F: 9.08 F: 197.86 F: 9.27

Chl a P: 0.0000 P: 0.0000 P: 0.0000

F: 91.39 F: 140.78 F: 83.04

Chl b P: 0.0000 P: 0.0000 P: 0.0000

F: 37.84 F: 275.49 F: 129.78

Caro P: 0.0000 P: 0.0000 P: 0.0000

F: 250.57 F: 165.03 F: 92.89

MDA P: 0.0000 P: 0.0000 P: 0.0000

F: 219.41 F: 255.43 F: 161.47

TPC P: 0.0000 P: 0.0000 P: 0.0000

F: 18.06 F: 408.49 F: 129.34

TF P: 0.0000 P: 0.0000 P: 0.0000

F: 57.31 F: 430.42 F: 35.03

SOD P: 0.0000 P: 0.0000 P: 0.0000

F: 1465.98 F: 61.38 F: 84.12

CAT P: 0.0000 P: 0.0000 P: 0.0000

F: 196.76 F: 136.93 F: 27.52

APX P: 0.0000 P: 0.0000 P: 0.0000

F: 219.85 F: 51.19 F: 120.82

GR P: 0.0000 P: 0.0000 P: 0.0000

F: 155.20 F: 107.53 F: 49.08
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J. articulatus, 71 % in J. acutus and by 50 % in J. mariti-
mus (Table 5C). Two-way ANOVA revealed significant dif-
ferences, at the 95 % confidence level, attributable
to ‘treatment’, ‘species’ and their interactions, for all
growth parameters and photosynthetic pigments ana-
lysed, except for the differences of WC between species
(Table 6).

MDA and non-enzymatic antioxidants. Water deficiency
generated oxidative stress as a secondary effect in each
of the species, as revealed by statistically significant in-
creases in MDA (Fig. 5A). Although MDA concentrations
were similar in the non-treated controls of the three spe-
cies, increase from water-deficient plants was greater in
less salt-tolerant J. articulatus (>2-fold), than in the

Figure 2. Oxidative stress marker and non-enzymatic antioxidants in three Juncus species, after 8-week treatment with a range of NaCl con-
centrations. Leaf concentrations of (A) malondialdehyde (MDA), (B) total phenolic compounds (TPC) and (C) total flavonoids (TF), are shown
as means with SD (n¼5). For each species, different letters above the bars indicate significant differences between treatments, according to
the Tukey test (a¼0.05). The results of the corresponding one-way ANOVAs [P values, F ratios, degrees of freedom (df)] are shown beside
each graph.
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Figure 3. Activity of antioxidant enzymes in three Juncus species, after 8-week treatments with a range of NaCl concentrations. The graphs
show specific activities of (A) superoxide dismutase (SOD), (B) catalase (CAT), (C) ascorbate preoxidase (APX) and (D) glutathione reductase
(GR), as mean values with SD (n¼5). For each species, different letters above the bars indicate significant differences between treatments,
according to the Tukey test (a¼0.05). The results of the corresponding one-way ANOVAs [P values, F ratios, degrees of freedom (df)] are
shown beside each graph.

Al Hassan et al. — Antioxidant responses under salinity and drought in three wild monocots

010 AoB PLANTS www.aobplants.oxfordjournals.org VC The Authors 2017



halophytes J. acutus and J. maritimus (ca. 1.7- and 1.4-
fold, respectively). Drought-induced changes in TPC were
qualitatively like those observed in response to salt stress
with TPC values more than doubling in stressed plants of
J. maritimus and J. acutus, whilst remaining little changed
in J. articulatus (Fig. 5B). TF concentrations increased in all
three species after drought treatment and the effect was

again more pronounced in the halophytes (2.6–2.8-fold)
than in J. articulatus (1.9-fold) (Fig. 5C). Two-way ANOVA
indicated significant differences for all compounds ana-
lysed (MDA, TPC and TF), regarding species, treatment and
their interactions. An exception was for the interaction be-
tween the two independent variables in the case of TF,
which was non-significant (Table 6).

Figure 4. Principal component analysis (PCA). Site score plots of the studied variables in the salt stress treatments, for the three Juncus spe-
cies, J. maritimus (A), J. acutus (B) and J. articulatus (C). PCAs included, as analysed variables: substrate EC1:5 (Salinity), water content (WC %),
fresh weight (FW %), chlorophyll a (Chl a), chlorophyll b (Chl b), total carotenoids (Caro), malondialdehyde (MDA), total phenolic compounds
(TPC), total flavonoids (TF), and specific activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione
reductase (GR).
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Antioxidant enzyme activities. Antioxidant enzyme
activities were altered by water deficiency in each spe-
cies (Fig. 6), although patterns were quantitatively and
qualitatively different from those observed under salt
stress (Fig. 3). Notably, CAT activity was lowered by either
stress treatment in each species (Figs 3B and 6B); the
strongest drought-induced reduction in CAT activity be-
ing in J. acutus, followed by J. maritimus and J. articula-
tus (Fig. 6B). SOD and GR were activated in all three
species by drought but there was no clear correlation be-
tween the relative stress tolerance of the different taxa
and the activity increases over controls. Thus, SOD activ-
ity was almost doubled in J. maritimus and J. articulatus,
whilst in J. acutus the increase was only ca. 1.2-fold (Fig.
6A). Maximum GR activation was detected in J. mariti-
mus (almost 5-fold), followed by J. acutus (2.2-fold) and
J. articulatus (1.6-fold) (Fig. 6D) whilst APX activity in
J. acutus was raised 1.7-fold compared with controls
but reduced to 35–40 % of control readings in J. articula-
tus and J. maritimus (Fig. 6C). For all enzymatic activities
assayed here (SOD, CAT, APX, GR), significant differences

regarding the independent variables ‘species’ and ‘treat-
ment’ were revealed by two-way ANOVA; the interac-
tions between the two factors were also significant for
SOD, CAT and APX, but not for GR (Table 6).

Discussion

Many publications report the activation of antioxidant
systems in response to environmental conditions such as
drought or soil salinity that generate oxidative stress.
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Table 4. Variations in (A) fresh weight (FW, %) and (B) relative wa-
ter content (WC, %), in shoots of J. maritimus, J. acutus, and J. artic-
ulatus plants after 8-week water-deficiency stress (WS) treatment.
The mean FW (A) and WC (B) of control plants, which were consid-
ered as 100 % for each species, are indicated in the legend of Table
2. The values shown are means with SD (n¼5). For each species,
different lowercase letters indicate significant differences between
treatments according to the Tukey test (a¼0.05). The results of
one-way ANOVAs carried out for each species [P-values, F-ratios,
and ‘degrees of freedom’ (df)] are shown below the main table.

(A) Fresh weight (%)

Treatments J. maritimus J. acutus J. articulatus

Control 100.00b 100.00b 100.00b

WS 11.90 6 1.60a 16.90 6 3.80a 3.30 6 0.70a

(B) Water content (%)

Treatments J. maritimus J. acutus J. articulatus

Control 100.00b 100.00b 100.00b

WS 31.00 6 4.80a 11.30 6 0.60a 18.50 6 2.50a

One-way ANOVA J. maritimus J. acutus J. articulatus

FW % P value 0.0000 0.0000 0.0000

F ratio 64.65 73.29 74.48

WC % P value 0.0000 0.0000 0.0000

F ratio 102.52 936.52 186.73

df between groups: 1.

df within groups: 8.
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Table 5. Photosynthetic pigments in the shoots of the three juncus
species under study, after 8-week water-deficiency stress (WS)
treatment. Variations in (A) chlorophyll a, (B) chlorophyll b, and (C)
total carotenoid contents. The values shown are means with SD
(n¼5). For each species, different lowercase letters indicate signifi-
cant differences between treatments according to the Tukey test
(a¼0.05). The results of one-way ANOVAs carried out for each spe-
cies [P-values, F-ratios, and ‘degrees of freedom’ (df)] are shown be-
low the main table.

(A) Chlorophyll a (mg g21 DW)

Treatments J. maritimus J. acutus J. articulatus

Control 2.30 6 0.30b 2.80 6 0.20b 3.60 6 0.10b

WS 1.20 6 0.10a 1.70 6 0.10a 0.80 6 0.10a

(B) Chlorophyll b (mg g21 DW)

Treatments J. maritimus J. acutus J. articulatus

Control 1.30 6 0.10b 1.60 6 0.10b 2.30 6 0.10b

WS 0.60 6 0.10a 0.90 6 0.10a 0.50 6 0.10a

(C) Total carotenoids (mg g21 DW)

Treatments J. maritimus J. acutus J. articulatus

Control 0.40 6 0.10b 0.70 6 0.00b 0.60 6 0.00b

WS 0.20 6 0.00a 0.20 6 0.00a 0.10 6 0.00a

One-way ANOVA J. maritimus J. acutus J. articulatus

(A) Chl a P value 0.0000 0.0000 0.0000

F ratio 70.67 98.50 3094.63

(B) Chl b P value 0.0000 0.0000 0.0000

F ratio 217.57 275.21 1415.38

(C) Caro P value 0.0000 0.0000 0.0000

F ratio 37.76 3240.00 482.50

df between groups: 1.

df within groups: 8.
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However, articles comparing antioxidant responses in
genetically related wild species are rare, especially in
monocots adapted to contrasting stressful habitats. The
three Juncus taxa used in the present work help make
good this deficiency in the literature, due to their differ-
ing tolerance, not only to salinity but also to drought and
to their occurrence in neighbouring areas of the same
geographic territory. In addition, salt tolerant Juncus
have been little studied ecophysiologically and biochem-
ically despite their importance as structural species in
salt marshes and saline grasslands.

Water deficit in the soil due to lack of rain or irrigation
(drought stress), or high concentration of salts in the soil
solution (salt stress) both lower plant water potential,
leading to cellular dehydration. High soil salinity has

several additional deleterious effects for plants due to di-
rect toxicity, mostly by Naþ ions. It has been considered
that the initial response to salt stress is identical to that
of drought, and is triggered by its osmotic component,
whilst salinity-specific responses due to ion toxicity de-
velop only over time with longer exposure to stress
(Munns 2002). This overlap explains how the physiologi-
cal effects of water deficiency and salinity can appear
the same, by initiating a cascade of deleterious effects
that hinder vegetative growth (Cramer et al. 1994;
Hummel et al. 2010) mediated by ROS (Apel and Hirt
2004), nutritive imbalance (Grattan and Grieve 1994),
desiccation and eventually plant death.

Growth inhibition is one of the first and most general
responses to stress, as plants redirect their resources
from primary metabolism and biomass accumulation to
the activation of stress responses (Zhu 2001; Munns and
Tester 2008). Reduction of growth under stressful condi-
tions is more pronounced in stress sensitive than in
stress tolerant plants (Demiral and Türkan 2005; Sekmen
et al. 2007). As expected, halophytic J. acutus and J. mar-
itimus proved to be more stress tolerant than J. articu-
latus—a species never found in naturally saline areas.
Their greater tolerance was revealed in terms of a
smaller reduction in FW and DW, and a relatively higher
resistance to salt-induced dehydration.

Salt and drought stress also trigger the degradation of
photosynthetic pigments, reducing the photosynthetic
yield and, in the long term, contributing to stress lethality
by lack of nutrients and energy. Monitoring the concen-
trations of photosynthetic pigments in stressed plants
can be used as a biomarker of stress (Schiop et al. 2015).
Here again, it seems logical to assume that any reduc-
tion should be more pronounced in less tolerant species
(Li et al. 2006; Lee et al. 2007). Accordingly, we have ob-
served a stress-dependent decrease in the levels of chlo-
rophylls and carotenoids, in the three Juncus species,
with the strongest changes detected, in general, in the
more sensitive J. articulatus. These results are in agree-
ment with numerous previous reports of decreased lev-
els of photosynthetic pigments at high salinities in
different plant taxa (e.g. Parida et al. 2004; Sai Kachout
et al. 2013).

Previously, we investigated different stress responses,
based on the control of ion transport and the accumula-
tion of specific osmolytes in the same Juncus taxa and
found that the higher tolerance of the halophytes is
based, at least partly, on their greater ability to block
transport of toxic ions to aerial parts and on the accumu-
lation of much higher levels of proline (Al Hassan et al.
2016). The present work extends these studies, focusing
on secondary oxidative stresses generated in the plants
under saline and drought conditions.

......................................................................................................

Table 6. Drought treatments of the selected juncus species.
Results of two-way ANOVAs (P values, F ratios) for the independent
variables ‘species’ and ‘treatment’, and their interactions.
Abbreviations of the measured parameters (dependent variables)
as in the legend of Table 3.

Measured parameter Species Treatment Interaction

FW P: 0.0000 P: 0.0000 P: 0.0000

F: 28.04 F: 56.03 F: 26.45

WC (%) P: 0.1389 P: 0.0000 P: 0.0131

F: 2.15 F: 640.43 F: 5.22

Chl a P: 0.0000 P: 0.0000 P: 0.0000

F: 22.16 F: 768.49 F: 84.25

Chl b P: 0.0000 P: 0.0000 P: 0.0000

F: 82.63 F: 1617.49 F: 187.83

Caro P: 0.0000 P: 0.0000 P: 0.0000

F: 32.55 F: 1223.55 F: 126.06

MDA P: 0.0000 P: 0.0000 P: 0.0000

F: 67.04 F: 646.89 F: 50.54

TPC P: 0.0008 P: 0.0000 P: 0.0000

F: 9.76 F: 208.55 F: 52.50

TF P: 0.0000 P: 0.0000 P: 0.239

F: 49.84 F: 857.91 F: 1.52

SOD P: 0.0000 P: 0.0000 P: 0.0000

F: 893.18 F: 455.35 F: 140.85

CAT P: 0.0000 P: 0.0000 P: 0.0000

F: 136.47 F: 712.44 F: 28.43

APX P: 0.0000 P: 0.0000 P: 0.0000

F: 244.52 F: 370.71 F: 356.18

GR P: 0.0000 P: 0.0000 P: 0.4755

F: 147.63 F: 345.98 F: 0.77
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Plants have developed a series of detoxification
systems to counteract oxidative stress, by activating
non-enzymatic and enzymatic mechanisms to reduce
the levels of highly toxic ROS (Larkindale and Huang
2004). Our present results show that the most stress-
sensitive species (J. articulatus) is more affected by water
shortage- and salt-induced oxidative stress than the hal-
ophytes, J. maritimus and J. acutus. This was revealed by
a stronger accumulation of MDA, a reliable marker of

oxidative stress (Del Rio et al. 1996) presumably arising
from a less efficient activation of antioxidant systems.

Phenolic compounds and especially certain flavonoids
have numerous functions including adaptation to abiotic
stresses (Farah and Donangelo 2006). Since many flavo-
noids and other phenolics are strong antioxidants, their
accumulation can reduce oxidative damage (Hussain
et al. 2013). Antioxidant flavonoid levels increased in all
three Juncus taxa, in response to both, salt and drought,

Figure 5. Oxidative stress and non-enzymatic antioxidants in shoots of three Juncus species, after an 8-week water-deficiency treatment.
Shoot system concentrations of (A) malondialdehyde (MDA), (B) total phenolic compounds (TPC) and (C) total flavonoids (TF) are shown as
means with SD (n¼5). For each species, different letters above the bars indicate significant differences in between treatments according to
the Tukey test (a¼0.05). The results of the corresponding one-way ANOVAs [P values, F ratios, degrees of freedom (df)] are shown beside
each graph.
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Figure 6. Activity of antioxidant enzymes in shoots of the three Juncus species after an 8-week water-deficiency treatment. The graphs
show specific activities of (A) superoxide dismutase (SOD), (B) catalase (CAT), (C) ascorbate peroxidase (APX) and (D) glutathione reductase
(GR), as mean values with SD (n¼5). For each species, different letters above the bars indicate significant differences in between treatments
according to the Tukey test (a¼0.05). The results of the corresponding one-way ANOVAs [P values, F ratios, degrees of freedom (df)] are
shown beside each graph.
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but the increase was stronger in the halophytes. These
differences were even clearer when referring to stress-
dependent accumulation of TPC, which also increased in
salt-tolerant J. maritimus and J. acutus, whilst no signifi-
cant changes were observed in salt-sensitive J. articula-
tus. These data point to a more efficient activation of
non-enzymatic antioxidant systems in the more tolerant
taxa. It should also be mentioned that the results re-
ported here do not seem to agree with previous field
studies carried out on J. maritimus and J. acutus growing
in a littoral salt marsh near Valencia (east Spain). These
showed much weaker, non-significant seasonal changes
in TFC and TF content in the plants even though soil sa-
linity and drought conditions varied widely through the
year (Gil et al. 2014; Bautista et al. 2016). Strictly, it is un-
wise to compare experimental data obtained in the field
and those derived from studies performed in controlled
laboratory or greenhouse set-ups. The reasons include
different developmental stage of the plants, the physical
containment of the root systems in the pots as opposed
to open growth in natural soil, etc. (see Boscaiu et al.
2013, for a more extensive discussion on this topic).
Nevertheless, in the present case the most likely expla-
nation of the disparity between the field and greenhouse
results is that J. acutus and J. maritimus plants experi-
enced much higher levels of stress in the artificial green-
house treatments (eight consecutive weeks of water
shortage and salt concentrations up to 400 mM NaCl)
than they would usually experience in their natural
habitats.

Antioxidant enzymes, such as SOD, CAT, APX or GR,
among others, also constitute essential components in
the machinery of defence against oxidative stress in
plants (Gill and Tuteja 2010). There are relatively few
published reports describing comparative studies on
plant responses to abiotic stress based on the activation
of antioxidant enzymes. Most of those studies have been
carried out either on taxa belonging to different genera
(Ellouzi et al. 2011; Srivastava et al. 2015) or, when deal-
ing with congener species, mostly on dicots (Mittova
et al. 2000, 2003; Sekmen et al. 2007). Data on monocot-
yledonous plants, derived from this kind of experimental
approach, are much scarcer (e.g. Seckin et al. 2010).

SOD is probably the most effective enzymatic antioxi-
dant, ubiquitous in all aerobic organisms prone to ROS-
mediated oxidative stress; it is considered that the
enzyme acts ‘in the first line of defence against oxidative
stress in plants’ (Alscher et al. 2002; Larkindale and
Huang 2004). SODs remove O–

2 by catalysing its dismuta-
tion into less-toxic H2O2 and O2 (Gill and Tuteja 2010).
SOD activity has been reported to increase under water
deficiency (Sharma and Dubey 2005; Zlatev et al. 2006;
Wang et al. 2008; Wang and Li 2008) and salt stress

(Harinasut et al. 2003; Kukreja et al. 2005; Gapinska
2008) in a wide range of plant species, including stress
tolerant and sensitive taxa. Positive and negative corre-
lations, or no correlation at all, between SOD activity and
salinity have been reported in glycophytes, whereas all
available data in halophytes indicate an increase in SOD
specific activity with increasing salt concentrations (Bose
et al. 2014). CAT eliminates H2O2 by its dismutation into
H2O and O2. Under stressful conditions, CAT activity has
been reported to be up-regulated in a number of plant
species (Eyidogan and Oz 2005; Yang et al. 2008), but
down-regulated in others (e.g. Pan et al. 2006). APX has
a higher affinity for H2O2 than CAT, and is thought to
play an essential role in ROS scavenging during stress.
APX was found to be activated under salt and drought
stress in several species (Srivastava et al. 2005; Zlatev
et al. 2006). Some halophytes have been shown to have
higher APX activity than glycophytic related species
(Mittova et al. 2000, 2003; Shalata et al. 2001; Sekmen
et al. 2007). GR also helps to control redox status by
maintaining the reduced form of glutathione (by reduc-
tion of GSSG) using NADPH as cofactor. Higher GR activity
was reported in salt-stressed plants of the halophyte
Plantago maritima compared with the related glycophyte
P. media (Sekmen et al. 2007).

In the present study, it has not been possible to estab-
lish a general pattern of variation in the specific activities
of antioxidant enzymes in response to salt and drought
by the three Juncus species. The only common features
seen were a reduction of CAT activities in the three taxa
under saline- and water-deficient treatments and higher
specific activities for the four enzymes tested in salt-
sensitive J. aritculatus. The lower levels of CAT activity
detected in salt-stressed and droughted plants, as com-
pared with the controls, may reflect a highly dynamic an-
tioxidant system in which levels of the active enzyme
vary depending not only on the species but also on the
intensity and/or duration of stress. For example, CAT
may be inactivated under long-term stress, counteract-
ing the initial, stress-induced activation of the expression
of the corresponding gene. In this specific study, sam-
pling of plant material was carried out after a long expo-
sure to stress, but samplings at shorter times may have
revealed an initial rise in CAT activity, as shown in other
experiments (Kukreja et al. 2005). Yet, some general
trends are discernible in terms of the relative changes in
the activities of the different enzymes. For example, in
salt-sensitive J. articulatus, salt stress did not activate
any of the antioxidant enzymes. This agrees with the
higher degree of oxidative stress in this species, revealed
by its greater salt-induced MDA levels. Overall, SOD and
GR activities were not changed significantly after 8
weeks of stress, whilst CAT and APX decreased in the
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presence of salt. This was confirmed by the correspond-
ing PCA, which showed a strong negative correlation be-
tween salinity and CAT and APX, and no correlation with
SOD and GR. Contrary to salt stress, water deficiency did
induce a slight (<2-fold) increase in SOD and GR activi-
ties in J. articulatus, indicating that the responses of this
species to drought and salinity are similar, but not
identical.

In J. maritimus, a strong increase in GR activity, and a
weaker increase in SOD activity were detected in salt-
and drought-treated plants. In J. acutus, the activation
of SOD and GR was also observed in response to both
stresses, although with some quantitative differences.
Therefore, it seems that these two enzymes are involved
in the mechanisms of stress tolerance in the Juncus hal-
ophytes, helping to maintain low levels of oxidative
stress in the presence of salt and under drought
conditions.

Notably, the patterns of changes in APX activity dif-
fered under salt and drought stress, and were opposite
for the two halophytes. Thus, in J. maritimus, APX activity
increased in the presence of salt, but decreased in
water-deficient plants, whilst in J. acutus it was reduced
in salt-stressed plants and increased under drought. This
particular behaviour could be related to the specific eco-
logical optima of the two halophytes and the character-
istics of their preferred natural habitats. Thus, the
activation of APX as a specific response to salinity in
J. maritimus may contribute to the higher salt tolerance
of this taxon, as compared with J. acutus. On the other
hand, the latter species is better adapted to more arid
soils, such as sand dunes, which could be partly depen-
dent on drought-induced activation of APX.

Conclusions

The halophytes J. acutus and J. maritimus are more toler-
ant to salt and drought than J. articulatus, as shown by
their weaker inhibition of growth and smaller reduction
of photosynthetic pigments contents under salt or
drought stress. They are also less affected by oxidative
stress under both conditions, as indicated by their lower
stress-induced MDA levels. This lower degree of oxidative
stress is explained by the more efficient activation of an-
tioxidant mechanisms in J. maritimus and J. acutus than
in J. articulatus. Accumulation of TPC and flavonoids was
higher in stressed plants of the halophytic taxa, which
also showed increases in SOD and GR activities. Although
some responses were similar under salt and water defi-
cient conditions, others were specifically associated to
drought or salinity. In the most salt-sensitive J. articula-
tus, antioxidant enzymes (SOD and GR) are activated

only in response to drought, but not to salinity. The
stress-specific APX activation patterns in the halophytes
J. maritimus and J. acutus may be related to the ecologi-
cal optima of these species, as the former is more toler-
ant to salinity and the latter is better adapted to arid
soils.
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