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Information is represented by linear strings of symbols with memory that carry errors as a result
of their stochastic nature. Proofreading and edition are assumed to improve certainty although such
processes may not be effective. Here, we develop a thermodynamic theory for material chains made
up of nanoscopic subunits with symbolic meaning in the presence of memory. This framework is
based on the characterization of single sequences of symbols constructed under a protocol and is
used to derive the behavior of ensembles of sequences similarly constructed. We then analyze the
role of proofreading and edition in the presence of memory finding conditions to make revision an
effective process, namely, to decrease the entropy of the chain. Finally, we apply our formalism
to DNA replication and RNA transcription finding that Watson and Crick hybridization energies
with which nucleotides are branched to the template strand during the copying process are optimal
to regulate the fidelity in proofreading. These results are important in applications of information
theory to a variety of solid-state physical systems and other biomolecular processes. Published by

AIP Publishing. https://doi.org/10.1063/1.5004793

. INTRODUCTION

Information comes in linear, stochastic chains with
memory in biological, nanoscale processes such as replica-
tion, transcription, and translation. Molecular subunits are
added directionally and on a one-by-one basis to form DNA,
RNA, and proteins, respectively.! Likewise, current computers
assemble information by configuring bits linearly and sequen-
tially.? Finally, human language involves ordering symbols to
compose or copy messages.> Common to all these phenomena
is the presence of memory effects, which consist of interac-
tions between the newest inserted object, either a particle or a
symbol or both, and its nearest neighbors in the chain. Mem-
ory imposes mathematical correlations of an object over its
previous neighbors and physically involves either positive or
negative feedback of the past over the present.*

Errors are inherent to all these processes, a consequence
of their stochasticity. In biology, fidelity is regulated to balance
the maintenance of genetic identity and the species ability to
evolve/adapt.’ Many of these errors carry no consequences
for the inheritance because they are filtered out in the com-
plex, genetic information flow that goes from DNA to pro-
teins. In language reading, we also tend to filter errors out
or, if recognized, to edit them. Information technologies can
also disregard a few errors by applying mathematical algo-
rithms. Proofreading of information is a strategy to recognize
errors and edition/correction mechanisms aim at reducing
them by removing wrong symbols and incorporating new
ones.*’
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Information theory and thermodynamics are converging
to each other? in their interpretation of phenomena that involve
order because physical entropy and information entropy
may appear together in many systems like the biomolecular
ones.”!% In this regard, several efforts have been made to use
DNA as a practical, high-capacity, and low maintenance infor-
mation storage drive.'""!? Concepts like proofreading, edition,
and correction, which can be comprised under the most general
paradigm of revision, are becoming common across disciplines
due to their intuitive meaning. Although they are assumed to
improve information accuracy, they may worsen the contents
of a message or, in general, they may increase the entropy
of a linear, stochastic chain. In fact, several questions can be
posed as follows: (i) When are errors sufficiently unimportant
to be disregarded? (ii) When can proofreading identify errors?
(iii) When is edition effective in substituting wrong objects by
correct ones?

Information feedback has only been addressed either by
Markov processes, which condition the future to only the
present and discard the past, or by introducing phenomeno-
logical Ansdtze, which are case-dependent. Strong efforts on
non-Markovian dynamics have been placed in the under-
standing of quantum open systems,'3 but there is to date no
thermodynamic theory that accounts exactly for the full mem-
ory of a system as it evolves reversibly, neither in classical
systems nor in their quantum realm. In addition, the proto-
col by which the system evolves has to be considered when
ensemble-average thermodynamics are addressed, especially
when memory effects are present.'* Such cases are common
in the nanoscale, for small systems, 15 namely, those for which
the energy exchanges are smaller or similar to the thermal
level.
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Here, we present a formalism to analyze physical informa-
tion systems in the presence of thermal fluctuations. We show
its usefulness by finding conditions to determine when the revi-
sion of a linear chain that conveys information is effective. We
end up applying it to nucleic acids’ information transfer pro-
cesses, which are biomolecular reactions in which nucleotides
are incorporated sequentially by a protein whose operation
determines a certain copying direction and a mechanism,
both of them responsible for chain stability and information
fidelity.

Il. ANALYSIS

A microstate of the information system will be specified
by a sequence of values, v = {xy, ..., x;, ..., X, }, taken by
the physical subunits of the chain and represented by random
variables X; = x; (x; € X, X being the alphabet of the sym-
bols or domain of the variables with cardinality |X], and i = 1,
..., n); see Fig. 1. The probability of a sequence is a function
of its energy E, = .7, E;, which is a sum over the energies
of the objects in the chain, from x; to x,. Due to memory
effects, the energy of each object in the chain is in turn a func-
tion of the previous objects, namely, E; = E(x;; xi—1, ..., X1)-
These partial energy functions contain the relative interactions
of every object, x;, with its previous ones, {x;_1, ..., x1 }. We
will treat sequences v as directional, stochastic chains with
memory.'*

The mechanism and external conditions that determine
the protocol by which a system evolves are characterized by
the so-called control parameter, A, which may actually be a set
of parameters that describe the state of the thermal bath and
the constraints over the system. For a system represented by a
chain, the protocol indicates, among others, the way the chain
is constructed. A material one-dimensional chain may be con-
structed by incorporating objects on a one-by-one basis and
directionally; it can also be constructed, e.g., by incorporating
more than one object at a time and/or by alternating senses at
each step and even by including editions, which imply remov-
ing objects. For the particular protocol of directional stepwise
construction, say from left to right in Fig. 1, in material chains
such as DNA, we will use A = D.'* Typical copying systems,
either natural like DNA replication and RNA transcription or
artificial like tape-based technologies, generate copies step-
wisely in one sense and corrections by removing symbols in
the opposite direction.

A. Theory

We next extend the concept of thermodynamic function to
individual chains that have been constructed by a microscop-
ically reversible process. We will assign to each single-chain
thermodynamic function, “A,” a sequence, v, and a protocol,
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FIG. 1. Sketch of a stochastic sequence of n symbols/objects for which the
memory at each position i is constituted by the i — 1 previous symbols/objects.
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A, by which that microstate has been assembled. We will use
the following notation: Af,/l) .

The chains constructed under the same protocol can be
treated by using expected values,

N
AW = <A$'/l)>,l _ ZP&A)A\(/A), (1)
v=1

where N = |A&]" is the number of configurations, which is
the result of combining n events and |X] possibilities for each
event, and pS,’l) is defined according to protocol A by using the

corresponding sequence-dependent partition function'*
—BE,
w_ ¢
Py = 2)

such that ZC’:I pf,/l) = 1, where 8 = 1/kT, T being the tem-
perature and k being the Boltzmann constant. As a directional
chain,' the partition function Z\" has to be evaluated accord-
ing to each protocol A and with respect to a certain pathway
v, i.e., calculating individual probabilities according to the
available configurations at each time step,
N
7z = ) exp(-BEn), 3)

V(=1

where E,, is the two-sequence energy,'*
n
EV'VEZE(in;xi—],""x1>7 (4)
i=1

and subindex v’(1) in the sigma symbol reminds that the
sum over the multiple xi’ variables, which are correlated due
to memory effects, has to be evaluated according to the
constraints imposed by the protocol.

The equilibrium statistical physics is formulated by using
the standard partition function, namely,

N
Py = w, z= ;exp (=BE). (5
In the formalism given by Eq. (5), no constraints or
rules have been imposed to the calculations. This formalism
does not restrict how to access each final configuration. It
comprises all the possible pathways to access all the possi-
ble configurations in the limit of no friction. In particular,
it contains directional pathways, based on a step-after-step
object incorporation and other protocol-dependent pathways
in which adjacent objects are not necessarily incorporated with
a temporal order. Therefore, this formalism comprises all the
protocol-dependent pathways addressed by Eqs. (2)-(4), with
which, by the way, all the possible configurations are accessed
too.
Partition function Z does not make any assumption on
a particular protocol and therefore it comprises all the pos-
sibilities for all the protocols.!* In fact, sequence-dependent
and equilibrium partition functions fulfill the following

relations:
1 1
(777 ©
W\ _
(z"),=2. 0
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which are trivially demonstrated from the definition of p, and
pg,’l).14 These equations are valid for every protocol A, thus
indicating that the equilibrium partition function is an average
over all possible sequences for a fixed protocol, independent
of which the protocol is. In other words, <p,(,/” /pv> = 1and

(D\  _
(pv /") =L

The pathways represented by Eq. (5) can be envisioned
as a linear combination of forward and backward pathways
in which objects are incorporated in the forward direction
and removed in the backward one. In this picture, a deci-
sion is taken at each step as whether to incorporate a new
object or remove the previous one(s). Such a decision is based
on what the formerly incorporated objects are, hence repre-
senting a feedback mechanism. As already reported,'* such
a picture thus naturally comprises the concept of revision,
in which backward recognition of errors (proofreading) and
their substitution by new objects (edition) take place. We
can actually associate the process represented by Eqgs. (2)
and (3) with writing and that represented by Eq. (5) with
revision.

We now define the thermodynamic potentials, “U,” “F,”
and “S,” for single chains, namely, the sequence- and protocol-
dependent internal energy, Helmholtz free energy, and
entropy,

Ul =E,, (®)

FW = kT 1Inz, )

S = _kInpl? (10)
fulfilling

FW =y — 15, (11)

which is the energy conservation. These potentials characterize
the microstates of the system at i = n.

Note that E, is independent of the protocol but not Fy)
or S,(,’D. From a microcanonical point of view, these functions
can be understood as the thermodynamic potentials for fixed
energy E,. When memory is extended to the complete history
of the system, there is in general a one-to-one relationship
between sequences and energies, but when memory is lim-
ited to a finite number of previous objects, a degeneration
of sequences with the same energy E, arises, what renders
statistical meaning to the entropy within the framework of
the microcanonical ensemble. Namely, the entropy can be
expressed in the form of the Boltzmann formula “S = kIn w”
by identifying w(? = 1/p'Y.

The ensemble-average thermodynamic potentials can be
constructed by taking expected values [see Eq. (1)] on Egs.

(8)=(10),

UY =(E), (12)
F = T (In z@)ﬂ , (13)
SW =~k (inpy") . (14)

U, F_ and S do not depend on the sequence, but they
do depend on the protocol. Therefore, they will appear under
the names of protocol-dependent internal energy, Helmholtz
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free energy, and entropy, respectively. These potentials char-
acterize the microstates of the system at time i = n.

The energy conservation for ensemble-average phenom-
ena can also be expressed in terms of protocol-dependent
potentials as

FO = gy _ TS(’I), (15)

which arise by formally taking expected values on Eq. (11);
see Appendix A.

It is easy to see that equilibrium thermodynamics is
a particular case of the above formalism. Namely, using
Eq. (5) for the partition function and the probabilities, the
energy conservation, F = U — TS, appears naturally by drop-
ping the protocol superindex A on Egs. (12)—(14). Poten-
tials U, F, and S characterize the equilibrium states of the
system.

Noteworthily, thermodynamic functions A(V’l), which char-
acterize the microstates of a system, and AW which character-
ize the states of the system, are different from the equilibrium
state functions, A, which are independent of time and of both
protocols and pathways.

The internal energy for protocol-dependent stochastic
chains fulfills

0
@ _ _ &)
U = <8ﬂ InZ, >,1- (16)

Likewise, the entropy for protocol-dependent, stochastic
chains follows the law

0

S“>=—<—F“)> : (17
or " [,

Equations (16) and (17), while immediate in their demon-
strations, are not obvious (Appendix A). Their equilibrium
analogs appear, respectively, as particular cases within this
formalism,

B _ 0 _ 0

U= <E> = <_6 1HZ> = —a 1HZ, (18)
3 _ 0 _ 0
= _k(np,) = <—6TF> = - F. (19)

To conclude this subsection, we derive an expression that
relates the sequence-dependent partition function with the
respective sequence-dependent energies (Appendix A), which
can be useful from an experimental point of view. For each
sequence, v, the sequence-dependent partition function can be
estimated if knowledge of the energies E,,, exists through the
following relation:

z

- <e—ﬁ(Euv—Eu)> , (20)

where the expected value is taken over all sequences
pu=pu(d)=1,..., N with the equilibrium probability distribu-
tion p,, Eq. (5). Itis in general difficult to apply Eq. (20) when
interactions extend over many neighbors because energies E,,,,
involve many combinations for a defined protocol. When suf-
ficient knowledge on the system is gathered, for example, in
DNA replication, it is possible to restrict the elements of the
energy data set.”!°
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B. Effective revision

We next consider inequalities between protocol-
dependent and equilibrium statistics. The Kullback-Leibler
distances are positive as expected,

o) 7"
D (p/lips") = <1n 7> >0, @1
o 4
D (pVlpy) = {In—5) =0, (22)
Zv p

where we have applied Jensen’s inequality* and Egs. (6)
and (7). Concerning the ensemble-average thermodynamic
functions, the following inequalities hold:

1
ﬂ”ZFE—EmZ (23)

S—ﬂ”z%(U—UWy (24)

Inequality (23) follows from the application of Jensen’s
inequality* to —Inx, which is a convex function of x, and the
use of Eq. (7). The fact that F‘) — F > 0 physically means
that a final state achieved under statistical equilibrium (i.e.,
by going through all pathways under all possible protocols) is
always more stable than when the same state has been achieved
under all the possible pathways but defined by only one specific
protocol A.

Inequality (24) is derived from the subtraction of Eq. (15)
from F' = U — TS and the use of inequality (23). The entropy
of a chain can increase or decrease with respect to the statis-
tical equilibrium entropy value (i.e., S — SV s 0); it depends
on the protocol A. In fact, certain protocols can decrease the
entropy largely at the cost of high dissipations under non-
equilibrium conditions.'*!” Inequality (24) guarantees that if
the ensemble-average internal energy of the chain achieved
under protocol A is lower than that achieved under statisti-
cal equilibrium (namely, if U — UY > 0), the final entropy
decreases below the statistical equilibrium value through this
protocol (namely, then § — SV > 0).

From the ensemble-average energy conservation, Eq. (15),
it is clear that U > F and that UY > F(D_ which mean that
the useful energies, F or FY, are always lower than the total
energies, U or UV, respectively, due to the entropic term.
From these inequalities, it follows that

UWY > F, (25)

which sets a minimal boundary for the ensemble-average inter-
nal energy of the system. Former results on DNA replication
in the reversible limit® are compatible with inequalities (23)—
(25). In particular, the statistical equilibrium entropy of the
stochastic chain was lower than the entropy achieved under
a directional construction protocol, and the same trend was
observed for the internal energy, both of them to a strength
compatible with inequality (24) at the temperature of that
study.

We are now in the position to formulate conditions for
effective revision:

J. Chem. Phys. 147, 205101 (2017)

Condition 1 (effective revision necessary and sufficient con-
dition).

Effective revision < S < S, (26)
ineffective revision < S > s, 27)
Condition 2 (effective revision necessary condition).
Effective revision = U < UW. (28)
Condition 3 (ineffective revision sufficient condition).
U>UWY = Ineffective revision. 29)

The equalities take place when there exist no interactions with
the previous neighbors (see the independence limit theorem'4).

These conditions are consequences of Eq. (24). In the
following, we apply this formalism to biomolecular processes
that manage information, showing coherence with the above
formalism and finding consequences to the associated natural
systems.

lll. GENETIC INFORMATION TRANSFER

Nucleic acids are the genetic information carriers: linear
polymers with writing and reading directionality that are com-
mon to all living beings on Earth. Their alphabet is a set of four
symbols in contrast to the binary alphabet used in computer
and communication sciences to date. Information is stored and
transmitted by the arrangement of complementary data lists
into double-helix, long molecules. These structures are flex-
ible platforms that interact with proteins, these interactions
being at the core of information processing in cells.'® Under-
standing genetic information storage and transfer is not only
interesting from a biological point of view but also inspir-
ing nanotechnologies for recognition and for information and
communication.'!!2

We next illustrate the above theory with two natural
processes in which information and thermodynamics appear
together: DNA replication and RNA transcription. In these bio-
physical processes, nucleotides of four types are chained into
a DNA/RNA strand according to a DNA template sequence.
These four nucleotide types are univocally identified to four
alphabet symbols: A, C, G, and T/U (which stand for adenine,
cytosine, guanine, and thymine/uracil, the last of which cor-
responds to either DNA or RNA and to either replication or
transcription). A double-stranded DNA copolymer is gener-
ated in DNA replication, and a DNA-RNA hybrid is generated
during RNA transcription, a copying process which leads to
the conversion of DNA sequences to the RNA “language” in
the cells. Then, a DNA/RNA strand represents a sequence of
symbols that contain messages (genes that code for proteins),
and, at the same time, this sequence is a linear string of par-
ticles (molecular subunits) whose stability is related to a low
total free energy of the copolymerized strand, and that is ulti-
mately related to a low number of copying errors. In these
systems, the definitions of errors and certainties were shown
to be intimately linked to the energies of incorporating an A,
aC,aG,oraT/U?

Replication and transcription are enzymatic reactions
that involve an energy source responsible for driving these
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processes in a certain direction, either forward or back-
ward.!” The mechanisms used by DNA and RNA poly-
merases, their respective enzymes, naturally introduce a time
arrow.

A. Toy model

We will use the toy model developed in a previous study, '*
which was later on applied to explain the energetic contribution
of fidelity to the thermodynamic efficiency of polymerases.'’
We propose partial energy functions with linear dependence
on the energies of each object in the absence of neighboring
interactions,

Ei(ixict, o) = ) K= ji)EiGy), (30)
j=1

where « is a kernel function in the energy domain. This kernel
can be positive or negative, thus representing positive or nega-
tive feedback, respectively. « is a real parameter that addresses
the neighboring-interaction strength: it increases when interac-
tions weaken and fulfills @ — +co in the limit of no interactions
(independently distributed, id, random variables). The total
energy of a sequence is

Be= )Y k- ). 31

i=1 j=1

Based on the behavior of the hybridization energies of the
four nucleotide bases'®!° for complementary strands, we will
use the following energy spectrum:'*

—E, x; correct,
Ei(x;) = (32)
+FE, x; error,

where E is a real, positive number. Additionally, we propose
that at each position i, there is only one so-called correct x;,
the rest being errors, a simplification that does not consider the
mechanisms of spontaneous point mutations.’*!

The standard, directional, and id entropies were already
calculated'* and are provided in Appendix B, Eqgs. (B1) and
(B2), along with other auxiliary functions. In the following,
we show the expressions of the rest of the thermodynamic
potentials of the information chain.

The internal energies for the standard, directional, and id
processes are, respectively,

UB.E,|Xl;a)=-E Z ai()N(BE, |Al;@), (33)
i=1

UPYB,E,|X];a) = ~EA(@)A(BE, | X)), (34)
UYD(B,E,| X)) = —nEAD(BE, | X)), (35)

where A; and AU are factors with absolute values between
0 and 1 given by Egs. (B3) and (B4), respectively, and a; and
A are partial and total sums over the kernel functions given by
Egs. (B5) and (B6), respectively (see Appendix B).

The standard, directional, and id Helmholtz free energies
are

J. Chem. Phys. 147, 205101 (2017)
1
F(B.E,|X];a) = W InZ(BE, |A]; @), (36)

FO(B.E\ M) = = In 200 (BE. 1)
— EA“Y(BE, | X)) (A(@) = n), (37)

FU(B,E,|X1) = —% In Z(BE, | X)), (38)

where Z and ZU9) are given by Egs. (B7) and (B9), respectively
(see Appendix B).

B. Effective revision in genetic information transfer

Both DNA replication and RNA transcription have proof-
reading mechanisms®>?? although they are more normal and
effective in the former process, where edition improves fidelity
by 10-10° fold with respect to the raw copying reaction. As
previously introduced, DNA and RNA polymerases are the
enzymes responsible for each process, which are nanoma-
chines able to correlate the current nucleotide incorporation at
i, see Fig. 1, with the previously formed base-pairs. The mem-
ory is thus related to the number of base-pairs in the resulting
double-stranded polymer that each protein covers, which is
different for DNA and RNA polymerases.

To approach the information transfer, we will use two
kernel functions, one with hyperbolic attenuation and the other
with exponential attenuation, Egs. (C4) and (C5), respectively,
in the influence of the previous neighbors over the current
incorporation (Appendix C). These kernels, with appropri-
ate neighboring-interaction strength and positive feedback in
the above toy model, were shown to be sufficient to derive
the order of magnitude of error rates in DNA replication;'*
hence, we will apply them to test the effective proofreading
conditions.

Figure 2 shows the behavior of the entropy difference, AS
= S-S, as a function of the energy invested per nucleotide,
E, in building the replicate or transcript strand. As expected,
according to condition 1, this increment is lower than zero for
positive feedback regimes, Eq. (26), in agreement with DNA
replication and transcription where the polymerase makes it
possible to increase fidelity by proofreading. When the feed-
back is negative, AS becomes positive, which, consistent with
the first condition, as expressed by Eq. (27), implies that proof-
reading within this adverse coupling regime actually wors-
ens the fidelity of the initially written replicate or transcript
strand.

Asymptotic behaviors of the thermodynamic potentials
within the toy model are given in Appendix C. In general, the
higher the energy invested at each incorporation, the lower
the S and S, tending to zero asymptotically. However, for
negative feedback regimes, if the influence of the previously
formed base-pairs in the energy of the current incorporation is
higher than the energy contrast E, the entropy may not decrease
below a certain threshold [see Fig. 2(b) for @ = 1.5] because
the positive value of a correct incorporation is balanced by a
negative correlation.

Figure 3 shows the behavior of the internal energy dif-
ference, AU = U — U'®). The increments are negative for
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positive feedback and positive for negative feedback with the
exception of the curve for @ = 1.5, negative feedback, and
hyperbolic coupling. For the last case, the correlations among
previous neighbors become very important with respect to the
hybridization energy alone, thus reversing the internal energy
difference trend. In any case, all the data follow Eq. (24) and
observe conditions 2 and 3, Egs. (28) and (29). More in depth,
the fact that AU < 0 is a necessary condition for effective revi-
sion, panels (a) and (c) in Figs. 2 and 3, but not sufficient,
panel (b) in the same figures with @ = 1.5, and the fact that
AU > 0 is a sufficient condition for ineffective revision, pan-
els (b) and (d). DNA replication and RNA transcription give
rise to double helices with higher fidelities upon proofreading,
according to Figs. 2(a) and 2(c), which are related to lower
internal energies, Figs. 3(a) and 3(c).

Positive feedback

E (kT)

The free energy differences, AF = F — FP), are plot-
ted in Fig. 4. As predicted by Eq. (23), these increments are
always negative and they can be used as control calculations.
Another control calculation is obtained by using Eq. (29),
which for our case states that U®) > F. Although not shown
here for the sake of brevity, the simulations also obey this
inequality.

The three potential differences increase when parameter
a decreases because the lower this parameter, the higher the
interactions with the previous neighbors, making correlations
stronger and thus the positive or negative feedback influence
in the revision.

A common and important feature of these two copoly-
merization processes is also reflected in Figs. 2—4: The ener-
gies for which the maximum differences between writing and
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edition take place for the three thermodynamic potential
differences are £ ~ 1 — 3 kT. This energy level corre-
sponds to the hybridization energy contrast between cor-
rect (Watson-Crick) and wrong base-pairs in both DNA and
DNA/RNA hybrid double helices.!® More in depth, Watson-
Crick unions (namely, A-T, T-A, C-G, or G-C) involve an
energy release between —1.5 and -3 kT, whereas wrong incor-
porations normally involve energy absorptions between +1 and
+2 kT. Hybridization energies, as derived from melting exper-
iments,'® depend on the nature of the particular base-pair and
exhibit a Markovian behavior, that is, a dependence on the pre-
viously formed base-pair.'® This behavior—which, to build a
sequence-average model, we have not included in the energy
spectrum of Eq. (32)—contrasts with the non-Markovianity
involved in the proofreading mechanisms of editing enzymes,
for which the memory length depends on the structural fitting
of the protein to the resulting nucleic acid double-stranded
polymer (see Refs. 9, 24, and 25 for the case of DNA
replication).

The peaks in the potential differences therefore imply
that hybridization energies found in nature for the double-
helix arrangement are optimal for discrimination protocols, as
used by editing proteins during proofreading. The position of
the critical points, in particular, of these maximum/minimum
increments, is slightly different for the distinct potential incre-
ments since they are solutions of different characteristic equa-
tions, as shown in Appendix D. In addition, these positions
depend slightly on whether the feedback is positive or negative
and on the coupling strength, «, and the alphabet cardinality,
|A].

IV. CONCLUSIONS

Systems represented by strings of physical objects sub-
ject to thermal fluctuations convey information and accept a
thermodynamic description. We have presented a theoretical
framework to analyze their construction in the presence of a
driving protocol and by addressing memory effects, inherent

to information management. To do that, we have introduced
sequence- and protocol-dependent functions, including ther-
modynamic potentials, that characterize the non-Markovian
states of the system. The canonical ensemble—with fixed tem-
perature, T, and number (or density) of objects/symbols, n, in
the chain—uses protocol-dependent potentials, whereas the
microcanonical ensemble—with fixed pathway energy, E,,
besides T and n—uses both sequence- and protocol-dependent
potentials. Within this framework, it has been possible to
discern between writing and edition processes and to find
conditions for effective proofreading.

This theory has been applied to DNA replication and
transcription finding that the energies involved in the for-
mation of double-stranded copolymers with genetic infor-
mation are optimal for making error discrimination and
correction effective. A high energy contrast between cor-
rect symbols/objects and errors is wished to increase the
certainty in information transfer, but since edition requires
the excision of the wrong symbolic objects, it might make
the overall process energetically expensive. Double-stranded
nucleic acids involve hybridization energies above but near the
thermal level, which, besides making edition cost-effective,
allows the optimization of fidelity by non-equilibrium reac-
tions in which the polymerase enzyme enhances the ener-
getic contrast between correct and wrong incorporations.
Watson-Crick base-pairs can thus be envisioned as an evo-
lutionary adaptation, among others, for making edition pro-
cesses developed by polymerase enzymes not just effective
from an information viewpoint but also thermodynamically
efficient.

These natural systems inspire a strategy in the construc-
tion of artificial devices for storing and transferring informa-
tion in the nanoscale: use of (i) energies above but near the
thermal level to stabilize the information chain and (ii) nano-
metric heads that, by working out of equilibrium, increase
the energetic contrast between correct and wrong symbolic
objects in the writing and edition processes, which is required
to optimize fidelity.
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The toy model herein developed for DNA replication
and RNA transcription is minimal to represent the main
information and thermodynamic features of these reactions.
This model may be, however, tuned to characterize these
copying processes in the presence of protocols with step-
dependent negative/positive feedback or under sequence-
dependent effects so that it can be used to characterize specific
polymerases.
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APPENDIX A: PROOFS

We next demonstrate the expressions of Sec. IT A.

Proof to Eq. (15): From Eqgs. (1)-(4) and (12)—(14), it
follows that

1 4
S — kzp< n pl =

—k (/l)
v=1 Zp

=k(B(E)+(nZ)),) =kp (U(/l) _ F(/l)) .

~nZ)

Proof to Eq. (16): From Egs. (12) and (1),

N N oBE
(Ey)a = ZPS//I)EV = Z TEV
v=1 v=1 Zv
- e =
— (/1)
- Bl
v=1 Zx(/ ) aﬁ aﬁ

N 9
Z pw 70 = < In Z(A)> .
ap N

Proof to Eq. (17): From Egs. (15), (13), (16), and (9), in
this order, it follows that

-1 (F - y)
T

1
= <—kT Inz% +

L
o' |,

Proof to Eq. (20): From Egs. (3) and (5), it is straightfor-
ward that

Spnzit)
A

(D) (D) N
& _ b =72 1 3 (e e 1
VA VA VA
pD=1
1 N
= — e’ﬁEu (e’ﬁ(Eﬂ Eﬂ) — 1) +1
z u(D)=1
N
= Z pﬂ <e_ﬁ(EHV_EM) — 1) +1
u(D=1

= <e_:8(E;lv_Eu)> .
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APPENDIX B: PARTITION FUNCTIONS, ENTROPIES,
AND AUXILIARY FUNCTIONS FOR THE TOY MODEL

The entropy for the standard, directional, and id processes
is

S(BE,|X]; @) = kIn Z(BE, | X]; @)
—kBE ) ai@)A(BE, |X];a), (B
i=1
SPUBE, | X)) = SY“Y(BE,|A)) = kIn ZUD(BE, |A))

— knBEAYD(BE, | X)), (B2)

where factors A; and AU are

ePEait@) _ (| x] = 1)e BEa(@)
MBE N0 = G D BY)
) PE _ (1X] — 1)e PE
A (gE, 1A = &~ UM = De (B4)

ePE + (|X] = 1)e PE

and partial and total sums of the kernel, «, are, respectively,

i

ai(@) = ) ki = j; ), (BS)
j=1
Ala) = Z ai(a). (B6)

i=1

The standard, sequence-dependent, and id partition func-
tions read

n
7 = ﬂz;
i=1

= ﬁ (4@ 4 (|X] = DePEA@) | (BT)
Z, = ﬂz HeﬁE+(|X| e PF)

i-1
X exp (—/3 IIGE a)E,»(x,)) . (B9

j=1
70 = (P54 (120 - DePE)". (B9)
It is important to note that while index i runs over the ordered

sequence positions, 1, ..., n, in Eq. (B8), this index is strictly
not related to sequence positions in Eq. (B7).

APPENDIX C: ASYMPTOTIC BEHAVIORS
IN THE TOY MODEL

To illustrate representative physical systems, we use
kernel functions with the following properties:

limk(i —j;@) =1, (€n
W ad!
lim (i —j; @) = 6y, (C2)
a—+00
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lim «(i-j;a)= (C3)
—]—>+oo

In particular, we have used the following kernels with hyper-
bolic or exponential attenuation, respectively, for simulations
(see Figs. 2-4):

. ., — 1’ ] - i’
K== {+<—)1/(i—j+ e j<i Y
and
R A A C5
k(i—ja) = +(=)e @) <. ©

They can be used for the positive (negative) feedback coupling
regimes. In addition, they are bounded for a > 1.4
In the limit of no interactions, it is fulfilled that

lim q;(@)=1, lim A(a)=mn, (Co6)
a—+o0o a—+00

lim Ai(BE.|X:a) = AYBE. 1), (CT)
@—+00

lim Z= lim Z, =Z, (C8)
a—+o0o a—+00

Then, the standard and protocol-dependent potentials converge
to the case of independent variables,

lim = lim S®© = st (C9)
a—+00 a—+00

lim U= lim UP =y, (C10)
a—+00 a@—>+00

lim F= lim F® = gt (C11)
a—>+00 a—>+00

In the limit of low energies with respect to the thermal
level,

. . : 2 —|X]
lim A; = lim A == Cl12
élllo élllo | X ( )
lim Z= lim Z, = hm Z@ =", (C13)
BE—0 BE—0
Therefore,
lim = lim $® = lim §/
BE—0 BE—0 BE—0
=knln|X|, (C14)
lim U= lim U® = hm Ui =, (C15)
PBE—0 BE—0
lim F = lim F® = lim F®
BE—0 BE—0 BE—-0
1
=——nln|A], (C16)
B

which represent the maximum uncertainty.

The equalities in the thermodynamic potentials and par-
tition functions in these two limits, Egs. (C8)—(C11) and
(C13)—(C16), are expected according to the independence limit
theorem.!* Besides, consistent with the same theorem, for a
> 1 and sufficiently large, a; > 0, A > 0, limgr_400 A; = 1
(limgg—+e A = 1), and the limits

J. Chem. Phys. 147, 205101 (2017)

lim S= lim §®©
BE—+c0 BE—+c0
= lim S =y, (C17)
BE—+c0
lim U= lim U®
PE—+0 BE—+c0
= lim -FA=-o (C18)
BE—+c0
lim U = lim —En=-o0 (C19)
BE—+c0 BE—+c0
lim F= lim F®
PE—+0 PE—+c0
= lim —-FA=-o0 (C20)
PE—+0
lim F% = lim —En= -0 (C21)

BE—+co BE—+c0

hold for both positive feedback and negative feedback since
the high contrast between correct insertions and errors leads
asymptotically to a total certainty. For the kernels of Egs. (C4)
and (C5), it suffices that @ > 1.75 for both the positive and
negative feedback regimes.'*

These results remain if the feedback is positive with inde-
pendence of the actual value of «, but if the feedback is
negative and « is not large enough, then ¢; < 0, A < 0, and
limgg_100 A; = —1 (nand i sufficiently large), modifying some
of the previous limits

lim S=knln(JX]-1), (C22)
BE—+c0
lim U= lim EA=-o (C23)
BE—+0 BE—+c0
lim UP = lim -EA = +co, (C24)
BE—+c0 BE—+c0
1
lim F=-—=nln(X] - 1)
BE—+00 ’8
+ lim EA=-c (C25)
BE—+c0
lim F® = lim —EA = +oo. (C26)

BE—+c0 BE—+c0

In these conditions, the asymptotic behavior of the potential
differences for SE — +co yields

lim S-S? =knln(JA-1), (C27)
BE—+
lim U-UP = lim 2FEA = —co, (C28)
BE—+c0 BE—+c0
1
lim F-F® = ——nln(JX]-1)
BE—+c0 ﬁ
+ lim 2EA=-o0, (C29)

BE—+00

which is the case for a = 1.5, hyperbolic attenuation, Eq. (C4),
and negative feedback, as shown in Figs. 2—4(b). If @ > 1 and
large enough or the feedback is positive, the three potential
differences tend to 0; see the rest of the curves in Figs. 2—4.
For a binary alphabet, AS always tend to zero asymptotically.
This alphabet actually confers a symmetry for £ < 0 and E >
0 in the potential differences.
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APPENDIX D: CRITICAL POINTS IN EFFECTIVE
REVISION WITHIN THE TOY MODEL

Critical points for § = S, U — UP), and F — FP) as
functions of the energy E are given by the following equations,
respectively:

n

0= BE Zaf(l—Af)—n(l—A(id)z) 1)
i=1
n .
= > @i + AN
i=1
=pE|Y a(1-A%) -4 (1 - A("d>2) (D2)
i=1
= > @i+ AN
i=1
= BE (1 - A("d)z) n—-A). (D3)

It is straightforward to see that E = 0 is a critical point for
the three potential differences. Other critical points like those
near BE = 1, see Figs. 24, or the asymptotic critical point
for BE — +oo may appear depending on the behavior of the
memory kernel. Critical points near SE = 1 appear at different
positions in E for the three potentials since Eqs. (D1)—(D3) are
different.
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