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Abstract

Passive acoustic monitoring of underwater sounds is an emerging discipline that can be used to guarantee that
anthropogenic noise meets acceptable limits, to detect the presence of cetacean species, and to ensure sustainable
exploitation of our oceans and seas. In this scenario, graphical representation techniques play a key role in helping to
reveal seasonal structures of human made noises. Nevertheless, for very long temporal series, it might be challenging
to find a graphic visualization technique that allows representing a time range that is long enough to capture these
seasonal events, while at the same time preserving short isolated events. We propose a framework for the creation
of such visualization techniques and analyze the different stages involved: data reduction, color encoding, and signal
processing on graphs. All of this is applied to data from deployments in two marine protected areas in order to provide
an acoustic panorama and identify seasonal events.

Keywords: Big Data Visualization, Acoustic Images, Ambient Noise Characterization, Submarine Environment,

Surveillance, Data Reduction, Hough Transform

1. Introduction

Anthropogenic sources of noise in the marine envi-
ronment have increased in the last few decades. This
is mainly due to the expansion in shipping, oil and
gas exploration, infrastructure development, etc. These
noises of different intensity and frequency can result
in chronic and acute effects on marine organisms (e.g.,
[1, 2]). With the aim of more effectively protecting the
marine environment across Europe, the Marine Strat-
egy Framework Directive (MSFD) was adopted in June
2008. The MSFD aims to achieve Good Environmen-
tal Status (GES) of the EU’s marine waters by 2020 and
to protect the resource base upon which marine-related
economic and social activities depend. Among many
other descriptors, Descriptor 11 covers the assessment
of noise (as well as other forms of energy) and gives in-
dications on how to measure the impulsive and ambient
noise. In the case of the ambient noise, Sound Pressure
Level (SPL) indicators are defined and can be obtained
as described in Eq. (1),
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where pj3(f) is the sound pressure in [Pa] in the
desired 1/3 octave band and T is the integration time
in [sec]. The indicator, S PL3, is given in logarith-
mic units relative to the square value of some reference
sound pressure py in [Pa]. Typically, 63 Hz, 125 Hz, and
2000 Hz are the common 1/3 octave bands employed
and pg is 1 uPa in underwater acoustics. The first two
bands (63 Hz and 125 Hz) are mandatory in the MSFD,
but the third band, though not obligatory, is frequently
used since ambient noise also peaks at higher frequency
levels (>1 kHz) [3].

A great amount of work has been done to study how
SPL indicators can be used in the definition of a GES.
Recently, many authors have adressed the problem of
setting ambient noise thresholds for environmnetal sta-
tus asessment (e.g., [4, 5]). This is being done from dif-
ferent perspectives: population level and displacement
of species, bioacoustics, etc. Although many advances
have been made, this is still an open problem that re-
quires new and enhanced analysis tools such as big data
visualization techniques. Additionally, some of these

SPL1/3 =10- loglo
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thresholds need to be updated regularly as techniques
evolve, which makes the problem even more complex.
For this purpose, it is important to devise specific and
enhanced graphical representation techniques to allow
the representation of ambient noise 1/3 octave indica-
tors. Improved visualization techniques need to take
into account the very special characteristics of acous-
tic impact studies. There are two main features a suit-
able visualization technique should have: the possibility
of representing very long temporal series and the visual
identification of seasonal structures (hourly, daily, etc.).
It is important to highlight that some of the recorders
remain underwater for long periods of time and that the
information provided can cover several months (“Big
Data” problem). Traditional data visualization tools are
often inadequate to handle big data due to the fact that
visualizing every data point can lead to over-plotting
and can produce a graph which is far too cluttered to
perceive any trends, anomalies or structure [6]. With re-
gard to visual identification of seasonal structures, many
different strategies for the arrangement of the temporal
variable at different scales can be chosen, each of which
is interesting for highlighting different types of seasonal
and cyclic patterns.

In addition to the 1/3 octave band indicators, many
authors are extracting information about the presence of
some cetacean species with the help of machine learn-
ing techniques (e.g., [7, 8, 9, 10]). The new representa-
tion framework should allow the visualization of all of
this information (1/3 octave band indicators and species
detection) in such a way that perceptual and interactive
scalability of the visualized data is limited by the chosen
resolution and not by the number of records [11].

The remainder of this work is structured as follows.
In Section 2, we present a visualization technique that
is very appropriate for the representation of underwa-
ter noise indicators of very long temporal series. Sig-
nal processing techniques and data reduction methods
can be used in these graphs to ensure that no interesting
structures or outliers are missed, to help spot repetitive
patterns, and to show the presence of different cetacean
species as graphic layers. In Section 3, we introduce a
different type of graph that is specifically designed to
show the cyclical nature of certain events and how this
cyclic nature is reflected in the 1/3 octave noise indi-
cators. Finally, Section 4 presents our conclusions and
future work.

2. Long time series representation of ambient noise
indicators

Line graphs are the simplest way to represent time se-
ries data. They are intuitive, easy to create, and give a
quick sense of the trend over time. However, there are
some drawbacks with this kind of representation when
dealing with very long temporal series. The first draw-
back is that visualizing data points in a linear plot may
not be the best idea when seasonality in data at different
observation scales must be identified. Two dimensional
representations such as (Hour, Day) or (Minutes, Day)
are more convenient for this purpose. Secondly, trying
to visualize every data point can overwhelm our per-
ceptual capacities and lead to over-plotting due to lim-
itations in the resolution of conventional displays. For
instance, using an inadequate representation technique
could lead to undetected seasonal patterns such as those
produced by recreational activities as well as to failure
in detecting abnormal anthropogenic noises of high in-
tensity.

2.1. Heat maps

Geospatial visualizations often use heat maps since
they quickly allow the identification of “hot spots” or
regions of high concentrations of a given variable. Al-
though less frequently used, heat maps can also be used
to represent temporal series if the data are conveniently
structured in 2D time frames (Hour, Day). This rep-
resentation technique is convenient when large tempo-
ral series need to be represented, as frequently happens
with underwater noise indicators. For instance, we can
use 24 hours in a day (or 1440 minutes) spread across
30-31 days of the month or 7 days of the week. The
process of obtaining the 2D representation from 1D un-
derwater audio recordings is schematically illustrated in
Figure 1. First, we need to process the recordings and
extract the parameter to be represented (e.g., S PL;3),
then the data needs to be structured in two dimensions:
hour, day. Lastly, data reduction and graphical data
analysis must be performed, which is explained in Sec-
tions 2.2 and 2.4. This framework allows a more in-
tuitive querying interaction of the sounds database to
be built by combining visual selections with pattern en-
hancement by means of image processing techniques.

Structuring the data in the 2D time frame requires a
precise clock without any kind of drift. Although unde-
sirable, time drift sometimes appears. Time drift may be
aggravated by file system latency increasing as the num-
ber of recorded files increases. Different techniques can
be used to correct this drift, but the most simple one is
encoding the real date/time into the file header when the
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Figure 1: Obtaining the 2D heat map representation from the acoustic signal involves the following steps (among others): extracting the parameter
to be represented (e.g., S PLy,3), structuring the data in 2D time frames (Hour, Day), and data reduction for proper representation.

processor is ready to start writing new samples into the
file. When applied to SPL indicators, heat map visu-
alizations can represent very long temporal recordings
(up to several months) in a very compact way. In ad-
dition, they provide a straightforward identification of
periodic events or seasonal activities. The main limita-
tion of these representations is the difficulty to visualize
more than one variable. Even though comparison be-
tween two or more variables is difficult to represent, in
the case of a binary variable such as the presence of a
given species, this can be done using symbols or semi-
transparent colors.

A real example of ambient noise indicators such as
heat map representations can be found in Figure 2.
The left panel in Figure 2 shows the S PL;;3 at 2 kHz
representation of an acoustic campaign in shallow wa-
ters (aprox. 80 meters of depth) done in July 2013 in
the Cabrera Archipelago Maritime-Terrestrial National
Park (Spain). Among other things, the figure shows
coherence in the noise level depending on the time of
the day. This produces a characteristic vertical band-
ing effect in the heat map. Sunrise/sunset times were
calculated for longitude, latitude, and all deployment
dates using a generic astronomy calculator. These sun-
rise/sunset times have been plotted in Figure 2 (left
panel) with a continuous blue line. This reveals a slight
increase in the noise level during the night. This is prob-
ably due to noise produced by organisms as a result of
the diurnal (or diel) vertical migration induced by light.
This is a common form of migration where organisms
ascend to the surface around dusk, remaining at the sur-
face for the night, then migrating to depth again around
dawn. The right panel in Figure 2 shows the S PL;,3 at
125 Hz representation of an acoustic campaign done in
August 2016 in Cabo de San Antonio Natural Marine
Reserve (Denia, Spain). The recorder was placed 4 Km
away from the harbour. Among other events, Figure 2
clearly shows the noise increase due to the fishing ves-

sels departing at 5:00 AM every week day and returning
to the fish market starting at 17:30 PM.

Even though some data reduction is done through
the integration time 7 (see Eq. (1)), further data re-
duction is needed. The typical integration time used
is of the order of [1-20] seconds, which leads to hor-
izontal resolutions greater than those of 4K displays
(1440min/day - 3pixels/min = 4320pixels/day that
need to be reduced so that heat maps can be visualized
in conventional displays. In the two heat maps presented
in Figure 2, data was reduced so that, independently of
the integration time 7', each pixel gave an indication of
the noise level in a 15-minute period. Our approach for
doing such a data reduction should follow an overarch-
ing principle: reduced data should be physically mean-
ingful and representative of a large region while at the
same time preserving seasonal structures.

2.2. Data reduction Methods

Not all of the different data reduction techniques
available are suitable when they are used for the assess-
ment of the GES due to acoustic energy emissions. For
instance, although straightforward, extracting every n'
point, may lead to the exclusion of some important fea-
tures in the data such as sharp spikes coming from brief
high pressure events. A more feasible alternative is bin-
ning aggregation (counting the number of events in a
temporal interval). This technique is of direct applica-
tion when used with detections of animal species that
happen during a given time interval. In the case of SPL
noise indicators, aggregate data reduction can be done
through the histogram and the median or percentile val-
ues. The data reduction method used should provide
data that is:

e robust to minor changes or differences in imple-
mentation.
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Figure 2: Two examples of a heat map representation of 1/3 octave noise indicators (each pixel gives an indication of the noise level in a 15-minute
period). The left panel shows the S PL;/3 at 2 kHz representation of an acoustic campaign done in July 2013 in the Cabrera Archipelago Maritime-
Terrestrial National Park (Spain). The right panel shows the S PL;/3 at 125 Hz representation of an acoustic campaign done in August 2016 in

Cabo de San Antonio Natural Marine Reserve (Denia, Spain).

o physically meaningful and representative of a large
enough region to justify its use as an indicator of
GES [12].

e practical (simple to implement).

Figure 3, panel (a) shows a zoomed section of a com-
plete heat map (20-second integration time) alongside
a reduced data version using a temporal interval of 15
minutes using: the arithmetic mean (panel (b)), the me-
dian (panel (c)), and the statistical noise level L, or per-
centile 90 % (panel (d)).

Data reduction also includes filtering techniques and
modelling techniques as well as hybrid methods or a
combination of some of them. For example, the peak-
preserving filtering algorithms [13] perform a combi-
nation of modeling techniques using straight lines and
filtering. Although the computational complexity of
some of these techniques may make them inadequate
for noise SPL indicators, it is possible to design sim-
ple peak-preserving algorithms for short time intervals
of data. A peak-preserving data reduction technique for
ambient noise indicators should assure that peaks higher
than a given threshold are preserved, but at the same
time ensure that the average sound pressure level is not
increased as happens with the Ly data reduction tech-
nique described above. This is done in the proposed
Algorithm 1. The algorithm starts with fitting a line in a

data reduction interval (in our case 15 minutes). Then, it
determines whether the data fits the line within a certain
tolerance level. If so, the algorithm returns the mean
of the data. Otherwise, the data value returned is the
data point that is furthest away from the line. The re-
sults of the Peak-Preserving Data Reduction Algorithm
(PPDRA) are shown in Figure 3, panel (e) where the
algorithm is applied to the underwater ambient noise in-
dicator S PL;;3 in the band of 63 Hz.

Algorithm 1 Proposed simplified peak-preserving data
reduction algorithm

Input:
data > Vector data contains data in a time interval

1: Approximate data with straight line.

2: IF: line fits data within tolerance (+3 dB were used
in this work)

return mean[data] — STOP

ELSE:

Find the point furthest from line in data.

Return the furthest point.

A

From the Figure 3, it can be observed that arithmetic
mean (3 - b) and median (3 - ¢) produce similar data re-
duced representations. The arithmetic mean is sensitive
to outliers (extreme high values) that might be caused by
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Figure 3: Zoomed region of the S PLy/3 indicator in the band of 63
Hz. From top left to bottom right: (a) Original representation with
20-second integration time; (b) data reduced for a 15-minute time in-
terval using the aritmetic mean; (c) data reduced for a 15-minute time
interval using the median, (d) data reduced for a 15-minute time inter-
val using Lo (percentile 90 %); and (e) data reduced for a 15-minute
time interval using the proposed non-uniform peak-preserving algo-
rithm described.

acquisition or processing artefacts [14]. However, the
median tends to exclude some isolated high amplitude
excursions that might contribute to total noise. The L
reduction (3 - d) preserves some of these excursions but
at the same time overestimates the total noise. Finally,
the proposed PPDRA technique (3 - e) preserves high
amplitude excursion (controlled by the corresponding
tolerance parameter in Algorithm 1) while at the same
time producing a less biased representation of the to-
tal noise than that obtained with the L;o. Although not
presented here, it is important to note that these differ-
ences are not so obvious for high frequencies indicators
(SPLy3 at 125 Hz and 2 kHz).

2.3. Graphical representation enhancement: Colormap
encoding for the detection of seasonal and periodic
events

Periodic or seasonal events might appear as small
variations in the SPL values that can be difficult to detect
within the whole range of variation of the acoustic in-
dex. In some situations, color encoding can enhance and

ease the visibility of seasonal patterns in heat map repre-
sentation (equivalent to some sort of heat map equaliza-
tion). Traditional image equalization techniques some-
times give good results in increasing the contrast in ver-
tical structures, but care must be taken since some of
these techniques introduce a non-linearity in the his-
togram that might make the physical interpretation of
the SPL difficult. In our work, we propose mapping an
acoustic SPL to a pseudo-color value y € [0, 1] using
the formula:

SPLyj3 - SPLy

S PLYY — S PLY™

y 2

where S/P-L1\/3 is the value of S PL;/3, bounded from
above and below by the range parameters S PL’I”/“; and
S PL’{%’. These parameters can be interactively selected
by the user or automatically adjusted to optimize the

contrast of the heat map.

2.4. Graphical representation analysis: Automatic de-
tection of vertical structures

One of the main applications of heat maps in ambient
noise monitorization is the detection of seasonal events
or events happening with a given periodicity (daily,
weekly, etc.). If the heat map is conveniently struc-
tured, these periodic events are shown as vertical lines
in the heat map. Different line detection algorithms may
be used. The Hough transform is a feasible alternative.
However, care must be taken since this transformation
was not devised for graphs. The data reduction stage
produces aggregated bins that might have rectangular
shape (having different pixel sizes in the horizontal-
vertical dimensions). This situation, might be inter-
preted by the Hough transform as horizontal/vertical
lines. Transforming rectangular bins into square ones
(with the same number of pixels in both dimensions)
and applying a threshold to obtain a binary black and
white heat map representation is necessary for proper
identification of vertical structures. Let /(x, y) be a heat
map representation. The heat map can be binarized by
applying a convenient threshold 7 according to Eq. (3).

1, ifl(x,y)>t1

Br(x.y) :{ 0, ifI(x,y)<t 3)

If we define H[.] as the operator that transforms a

binary image into the 8 — p space, we can obtain the
Hough transform (H. (0, p)) according to Eq. (4).

H(0,p) = H[B:(x,y)] “
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Figure 4: Evaluation of the cost function for different threshold levels
(averaged over 100 Monte Carlo runs). The graph also shows the
mean vertical line length detected using the Hough transform.

Looking for vertical lines implies looking for local
maximum in H:(8, p) when 6 = 0. It is then only nec-
essary to compute H.(0, p), thus reducing the compu-
tational complexity of the Hough transform algorithm.
Additionally, we can use some “shape factor” obtained
from H(0, p) as a cost function to be maximized in or-
der to automatically adjust the binarization threshold (1)
of I(x,y). An approach that has proven to work in this
particular situation is described in Eq. (5)

Topr = argmax{Kurt[H-(0, p) + {a(p)}]} ®)

, where Kurt[.] is the kurtosis and {7i(p)} is a low-level
Gaussian noise (10% of the maximum H.(0, p)) that is
added to avoid indetermination when trying to compute
the kurtosis of constant values such as those obtained
for very low or high thresholds. The kurtosis was cho-
sen to generate the cost function to be maximized since,
under some circumstances, it may be representative of
the peakedness of the distribution. The presence of local
maxima in the 6 — p space at 8 = 0 produces a distribu-
tion with heavy tails, thus increasing the value of the
kurtosis. Figure 4 shows the evolution of the cost func-
tion and the average vertical line length (in pixels) for a
Monte Carlo simulation of heat map representation with
three daily repeating seasonal events.

The different stages of the process are illustrated in
Figure 5. Starting with a gray level heat map graph,
successive binarizations are done for a range of thresh-
olds Eq. (3). The maximization of Eq. (5) allows us
to obtain the optimum threshold. The right top panel
in Figure 5), shows the binarized heat map for 7,,; and
the bottom panel shows its Hough transform. The local
maxima of the Hough transform at 8 = 0 (highlighted

Heat map Binarized Heat map

Figure 5: From top left to bottom right: original heat map, binary heat
map, Hough transform of the heat map. The three red dots in 6 = 0
correspond to the three daily repeating events seen in the original heat
map.

with red squares in the bottom panel) reveals the exis-
tence of daily repeating events.

Despite the huge potential of the proposed heat map
representations, it is sometimes desirable to be able
to represent two or more variables in order to estab-
lish correlations among them. For instance, in ambient
noise monitoring it is interesting to be able to simulta-
neously represent 1/3 octave band SPL indicators along-
side cetacean species detection.

2.5. Two-layer structure for the detection of cetacean
presence

There are different alternatives for the representation
of more than one variable in the described heat map rep-
resentation of an acoustic monitoring campaign. One
possible technique consists in encoding one of the vari-
ables in the luminance and using the chrominance to
represent the other variable (YUV colorspace). This
technique should be restricted to situations were the
variable to be encoded in the chrominance is a bi-
nary variable (e.g., the presence / absence of cetacean
sounds). Otherwise, the final representation may be dif-
ficult to understand. Eq. (6) and Eq. (7) show how we
can create a two-layer representation, for a given binary
variable a € {0, 1} and a sound pressure level S PL3,
by selecting a color [u, v;] in the UV color plane and a
transformation I' that maps pressure levels in the lumi-

nance (Y).
U "
|:V:| - |:V] :| - (6)



Y =T(SPLy;3) @)

The left panel of Figure 6 illustrates this idea of en-
coding the ambient noise indicator in the luminance and
the detection of cetaceans in the chrominance [u,v] =
[43,21] (green bins).

The other technique that might also be used is much
more simple. It consists in using different symbols over-
laid in the heat map representation. As an example, the
right panel of Figure 6 shows how a rectangular box can
be overlaid to indicate the presence of cetacean sounds.
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Figure 6: Representation of two variables in a heat map. The left
panel: luminance heat map with chrominance encoding. The right
panel: heat map with overlay of rectangular symbols.

3. Enhanced representation of seasonal events: Po-
lar Area or Coxcomb Diagrams

Polar area diagrams are an interesting tool for rep-
resenting the cyclical nature in time series of data - a
season in a year, a time of the day, and so on. A polar
diagram looks like a traditional pie chart, but the sectors
do not differ from each other by the size of their angles
but rather by how far they extend out from the centre of
the circle. As a result, they are an excellent tool for the
characterization of daily events or seasonal occurrences.
We can also use these diagrams to represent more than
one variable, thus avoiding the limitation of one of the
variables being binary. To the best of our knowledge,
polar area diagrams have never been used to represent
underwater ambient noise indicators or as a tool to eval-
uate the presence of anthropogenic noise.

The creation of ambient noise polar area diagrams
can be easily done from the heat maps described in the
previous section. Hourly marginal distributions can be
computed from the heat map matrix (see Figure 1) for
all days or just for a selection of them. In this way,
any noise indicator (e.g., S PL3 at 63 Hz) can be plot-
ted in polar coordinates as a function of the hour of the
day. As an example, we represent the data introduced
in Section 2 from Cabo de San Antonio Natural Marine

Reserve. We have divided the heat map matrix data into
two different sub-matrices: the first matrix corresponds
to weekdays, whereas the second matrix corresponds
to weekends. The standard ambient noise indicators in
each of the 1/3 octave frequency bands (63, 125, and
2000 Hz) were computed daily and averaged for each
one of the two sub-matrices. To avoid misrepresenta-
tion, it is important to highlight that in the successive
polar representations we used a sector radius (and not a
sector area) that was proportional to the variable being
represented.

Figure 7 represents the polar area diagram of the
different noise indicators: the top panel represents the
hourly SPL noise distribution during the weekend and
the bottom panel represents the hourly SPL noise dis-
tribution during weekdays. In both panels, we have in-
cluded the sunrise and sunset variations within the de-
ployment period as a light gray sector. The representa-
tion gives a clear indication of the cyclic nature of the
represented variable while at the same time comparing
different ambient noise indicators. As shown in Figure
7, the daily repeating events that were produced during
weekdays by shipping activity were clearly identified.
In addition, the polar area diagrams also show peaks at
9:00 AM with high intensity during weekdays (85 dB
re 1uPa at 125 Hz) and low intensity during weekends
(80 dB re 1uPa at 125 Hz). This is due to the ferry that
travels from Denia to Ibiza. Two more peaks at 15:46
and 17:46 happening daily can also be identified in the
diagrams. It is also interesting to highlight how dur-
ing the night and in the absence of anthropogenic noise,
ambient noise levels go back to a situation where noise
levels decrease with increasing frequency (S PL;;3 63
Hz > SPLy;3 125 Hz> SPL,;3 2 kHz). The relation-
ship among the three ambient noise levels may serve as
a human activity indicator.

4. Conclusions

We have proposed a graphical visualization frame-
work that is advantageous when working with large
databases of sound files. This framework has been
applied to passive acoustic monitoring of underwater
sounds, specifically to ambient noise and cetacean pres-
ence indicators. As a result of this work, two different
visualization techniques are proposed. The first tech-
nique, which is a variant of heat maps, is very suitable
for representing very long temporal series. It provides a
global acoustic panorama while at the same time reveal-
ing the presence of short duration events as well as dif-
ferent kinds of seasonal activities. We also studied the
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Figure 7: Example of a coxcomb chart for the representation of 1/3
octave noise indicators and their daily variation in the Cabo de San
Antonio Natural Marine Reserve.

influence of some variables such as data reduction tech-
niques and automatic detection of vertical structures.
Based on this study, we have presented an algorithm
to reduce the volume of data in order to adapt it to the
resolution of conventional displays and an algorithm to
detect seasonal structures. The proposed representation
can also be used for visual querying of a large database
of recordings.

A second visualization technique, which is created
by means of polar area diagrams, has been devised us-
ing marginal distributions of the heat map representa-
tions. Although it is not very suitable for big data
visualization, it has great potential when performing

a detailed analysis of several variables under different
circumstances. An example is given to illustrate how
noise from shipping lanes changes during the week-
days/weekends and how precise detection of ship de-
partures times can be determined.

Both proposed techniques can be used to evaluate
circadian rhythms as we have illustrated with the heat
map representations. Although the proposed framework
has been applied to the evaluation of ambient noise and
its possible influence on the behavior of some animal
species, the work presented here may be of interest in
many other areas such as the design of surveillance sys-
tems or the visualization and analysis of natural phe-
nomena.
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