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On the Prüfer rank of mutually permutable
products of two abelian groups

A. Ballester-Bolinches, John Cossey, H. Meng and M.C. Pedraza-Aguilera

Abstract

A group G has finite (or Prüfer or special) rank if every finitely
generated subgroup of G can be generated by r elements and r is the
least integer with this property. The aim of this paper is to prove the
following result: Assume that G = AB is a group which is the product
of the mutually permutable abelian subgroups A and B of Prüfer ranks
r and s respectively. If G is locally finite, then the Prüfer rank of G is
at most r + s+ 3. If G is an arbitrary group, then the Prüfer rank of
G is at most r + s+ 4.
Mathematics Subject Classification (2010): 20D10, 20D20
Keywords: abelian group, soluble group, polycyclic group, rank, fac-
torisations.

1 Introduction
A group G has finite (or Prüfer or special) rank r = r(G) if every finitely
generated subgroup of G can be generated by r elements and r is the least
integer with this property. Denote also by d(G) the minimum number of
elements required to generate the group G. If the locally soluble group G =
AB is the product of two subgroups A and B with finite Prüfer rank, then
G is hyperabelian with finite Prüfer rank (see [3, Theorem 1.1]) and, in this
case, the Prüfer rank of G is bounded by a function of the Prüfer ranks of
A and B (see [1, Theorem 4.3.5]). Unfortunately, this bound is not explicit.
If G is a finite p-group for some prime p and the Prüfer ranks of A and B
are bounded by r, then the Prüfer rank of G is bounded by a polynomial
function of r. Better bounds for factorised finite p-groups were showed in [2].
However, it seems to be difficult to decide if the Prüfer rank of G is bounded
by a linear function of the Prüfer ranks of A and B. On the other hand, the
class of metabelian groups of finite rank which are products of two abelian
subgroups has attracted growing interest recently, particulary in relation to
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the class of all metabelian groups which are constructible in the sense of
Baumslag and Bieri [5].

Our main goal in this paper is to give a linear explicit bound for the Prüfer
rank of a mutually permutable product G = AB of two abelian subgroups A
and B in terms of the Prüfer ranks of A and B.

Our first theorem gives an upper bound for the Prüfer rank of locally
finite mutually permutable products.

Theorem A. Let the locally finite group G = AB be the product of the
mutually permutable abelian subgroups A and B. If A and B have Prüfer
ranks r and s respectively, then the Prüfer rank of G is at most r + s+ 3.

As a consequence a linear upper bound for the Prüfer rank of an arbitrary
mutually permutable product is obtained.

Theorem B. Let the group G = AB be the product of the mutually per-
mutable abelian subgroups A and B. If A and B have Prüfer ranks r and s
respectively, then the Prüfer rank of G is at most r + s+ 4.

Recall that two subgroups A and B of a group G permute if AB =
BA is a subgroup of G. A and B are called mutually permutable if every
subgroup of A permutes with B and every subgroup of B permutes with
A; of course any two normal subgroups are mutually permutable. If every
subgroup of A permutes with every subgroup of B we say that A and B are
totally permutable. Obviously totally permutable subgroups are mutually
permutable but the converse does not hold in general. The structure of
mutually and totally permutable products has been investigated by several
authors in the last twenty five years, especially in the finite case, and received
a full discussion in [4]. Mutually permutable products of infinite groups were
considered in [6] and [7]. They play an important role in the proof of our
main theorems.

Throughout the paper, the word rank will mean Prüfer rank.

2 Preliminary results
We collect in this section some results which are needed in the proof of main
theorems. The following known property about ranks can be found in [9,
Lemma 1.6.23] and will be used in the sequel without further comment: Let
N EG and H ≤ G. Then r(G) ≤ r(G/N) + r(N) and r(H) ≤ r(G).

We need to use power automorphisms of a group, so perhaps a quick
review of facts about these groups would be appropiate. Recall that the power
automorphism group of a group G, PAut(G), is the set of all automorphisms
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of G which leave every subgroup of G invariant. Hence, if α ∈ PAut(G), there
exists an integer ng,α such that gα = gng,α , for all g ∈ G. If ng,α = nα does not
depend on the choice of g, then α is called a universal power automorphism.

The structures of G and PAut(G) are strictly linked. For instance if
G is a finite abelian p-group or more generally a finite regular p-group ([8,
Theorem 5.3.1]), then every power automorphism is universal, and via the
restriction homomorphism PAut(G) can be embedded in Aut(〈g〉), for every
cyclic group 〈g〉 of G of maximal order. In fact, we have:

Lemma 1 ([8, Theorem 3.4.1]). Every power endomorphism of an abelian
group G is locally universal.

In particular, if G is finite and abelian of exponent pn, then PAut(G) can
be embedded in Aut(Cpn).

Another well known fact we shall need is the description of the auto-
morphism group of a cyclic group. We state it here for the sake of complete-
ness.

Lemma 2 ([10, I, Satz 13.19]). Let G be a cyclic group of order pn, p a
prime.

(i) If p is odd, then Aut(G) ' Cpn−1(p−1).

(ii) If p = 2, then

(a) if n = 1, then Aut(G) = 1;

(b) if n = 2, then Aut(G) = C2;

(c) if n > 2, then Aut(G) = C2 × C2n−2.

Moreover, consider a cyclic group C = 〈c〉 of order 2n, n > 2. Then
Aut(C) = 〈u〉 × 〈α〉, where cu = c−1 and cα = c5 and the order of α is
2n−2. In particular, the involutions of Aut(C) are exactly u, γ = α2n−3 and
η = uγ. Furthermore, cγ = c2n−1+1 and cη = c2n−1−1.

Assume that a group A acts on a group B. Let a ∈ A and b ∈ B. We say
that a inverts b if ba = b−1; a inverts B if a inverts every element of B.

The following lemma shows that, in totally permutable products of finite
p-groups, the structure of a core-free factor is very restricted.

Lemma 3. Let the group G = AB be the product of the totally permutable
finite abelian p-groups A and B. Assume that CoreG(A) = 1.

(i) If p is odd, then A is cyclic.
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(ii) If p = 2, then either A is cyclic or A = 〈a〉× 〈c〉 for elements a, c ∈ A,
such that o(a) = 2 and a inverts B.

Proof. First of all note that A ∩ B is a normal subgroup of G contained in
A. Hence A ∩B ≤ CoreG(A) = 1.

Let a ∈ A be an element of order p and let X be a cyclic subgroup of B.
Then X is a maximal subgroup of X〈a〉 and so a normalises X. Therefore,
a acts as a power automorphism on B. By Lemma 1, a acts as a universal
power automorphism on B. Since CoreG(A) = 1, it follows that a acts non-
trivially on B. Hence Ω1(A) can be embedded in PAut(B). By Lemma 1,
Ω1(A) is isomorphic to a subgroup of Aut(Cpn), where exp(B) = pn.

If p is odd, PAut(B) is cyclic by Lemma 2(i) and so is Ω1(A). Then,
being A the direct product of cyclic subgroups, A is cyclic. This establishes
(i).

Assume that p = 2 and A is not cyclic. Then, by Lemma 2(ii), Ω1(A) is
a subgroup of the direct product of a cyclic 2-group and a group of order 2,
exp(B) ≥ 8, and there exists an element a ∈ A that inverts B by conjugation.
Suppose that there exists an element x ∈ A with x2 = a. Applying [6,
Lemma 6], we have that [x2, y2] = 1 for all y ∈ B. Since conjugation by a
inverts y, we must have y4 = 1 for all y ∈ B, so that we are forced to the
contradiction exp(B) = 4. Hence a /∈ Φ(A) and 〈a〉 has a complement in A.
By Lemma 2(ii), A = 〈a〉 × 〈c〉 for some c ∈ A. This establishes (ii).

Our next lemma is essentially a special case of Theorem 6 of [7], with
the extra information coming from Theorem 4.2.2 of [8]. According to [8],
a group is called weak if it is generated by its elements of infinite order.
In particular, a nilpotent group is weak if it contains an element of infinite
order.

Lemma 4. Let the group G = AB be the product of the totally permutable
abelian subgroups A and B. Assume that CoreG(A) = 1 and B is weak. Then
B is normal in G and |G : B| ≤ 2.

Proof. We may assume that B is a proper subgroup of G. Note that A∩B =
1. Let x ∈ B be an element of infinite order and a ∈ A. If a is of infinite
order, then 〈a2〉 is normalized by x by [7, Lemma 1(2)] and if a has finite
order, 〈a2〉 is normalized by x by [7, Lemma 3]. Since B is weak, it is
generated by elements of infinite order. Therefore 〈a2〉 is normal in G. Since
CoreG(A) = 1, it follows that a2 = 1.

Therefore it has been proved that A is an elementary abelian 2-group.
Consider a ∈ A and x ∈ B. Then |〈a〉〈x〉 : 〈x〉| = 2. Hence 〈x〉 is normalized
by A. Hence A can be embedded in PAut(B) since CA(B) ≤ CoreG(A) = 1.
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Applying [8, Corollary 4.2.3], A has order 2. Thus B has index 2 in G and
so it is normal in G, as required.

3 Ranks of finite p-groups
Some results about the rank of a finite p-group, p a prime, which is a mutu-
ally permutable product of two abelian groups will be proved in this section.
These results wiill be crucial to prove our main theorems.

Note that if A is a finite abelian p-group, then d(A) = r(A).

Lemma 5. Let the finite p-group G = AB be the product of two cyclic
subgroups A and B. Then the rank of G is at most 2 if p is odd and at most
3 if p = 2.

Proof. If p > 2, then G is metacyclic by [10, III, Satz 11.5]. Thus G is of
rank 2. Assume that p = 2. If G is a nonmetacyclic 2-group, then G has
a unique nonmetacyclic maximal subgroup by [11, Theorem 5.1]. Let M be
a metacyclic maximal subgroup of G. Then M is normal in G and G/M is
cyclic. Hence r(G) ≤ r(M) + r(G/M) ≤ 2 + 1 = 3, as required.

Lemma 6. Let G = 〈a〉〈b〉 be the product of two cyclic groups 〈a〉 and 〈b〉
such that |〈a〉| = |〈b〉| = 22 and 〈a〉 ∩ 〈b〉 = 1. Then 〈a2, b2〉 is contained in
Z(G). Furthermore, if G is nonmetacyclic, then [a, b] = a2b2.

Proof. By [4, Corollary 3.1.9], G is the totally permutable product of 〈a〉 and
〈b〉. Then 〈a2〉〈b〉 is a subgroup of G and 〈b〉 is a normal subgroup of 〈a2〉〈b〉.
If a2 does not centralise 〈b〉, we have that a2 inverts 〈b〉. In this case 〈b〉〈a2〉
is isomorphic to the dihedral group of order 8. Hence 〈b〉 is a characteristic
subgroup of 〈b〉〈a2〉 which is normal in G. Hence 〈b〉EG and then ba ∈ 〈b〉.
It follows that ba = b or ba = b−1. In both cases, we have ba2 = b, against
supposition. Hence [a2, b] = 1 and a2 ∈ Z(G). By using the same arguments
with b2, we get 〈a2, b2〉 ≤ Z(G). Assume now G is a nonmetacyclic group.
By [11, Proposition 2.12], Φ(G) = 〈a2, b2〉 and G/〈a2, b2〉 is abelian. Hence
[a, b] ∈ 〈a2〉〈b2〉. Since [a, b] 6= 1, we deduce that [a, b] = a2, b2 or a2b2. If
[a, b] = a2 or [a, b] = b2, then either 〈a〉 or 〈b〉 is a normal subgroup of G and
G is metacyclic. By this contradiction [a, b] = a2b2, as required.

Lemma 7. Let G = AB be the product of the mutually permutable finite
abelian 2-groups A and B with A ∩ B = 1. Assume that s = r(B) = 1 or 2.
If A is either cyclic or A = 〈a〉 × 〈y〉 such that o(y) = 2 and y inverts B,
then r(G) is at most s+ 3.
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Proof. Since A ∩ B = 1, we have that A and B are totally permutable
subgroups of G. Let D = CoreG(B). By [4, Lemma 4.1.10], G/D is the
product of the totally permutable subgroups AD/D and B/D. Moreover,
B/D is core-free in G/D. By Lemma 3, either B/D is cyclic or B/D =
〈bD〉 × 〈xD〉, where o(bD) = 2m and o(xD) = 2. Note that if g ∈ D, then
gz ∈ 〈g〉〈z〉∩D = 〈g〉(〈z〉∩D) = 〈z〉 for all z ∈ A. Therefore 〈g〉 is a normal
subgroup of G.

We distinguish two cases:

(i) r(B) = 1. Let C be a cyclic subgroup of A such that |A : C| ≤ 2.
Then CB is a normal subgroup of G such that r(CB) ≤ 3 by Lemma 5, and
G/CB is cyclic. Therefore r(G) ≤ 4 and the lemma holds in this case.

(i) Assume that r(B) = 2. If B/D is cyclic, then D is not contained
in Φ(B), the Frattini subgroup of B. Let u ∈ D \ Φ(B). Then U = 〈u〉
is a normal subgroup of G. Since B/Φ(B) is an elementary group of order
4 and UΦ(B) is a proper subgroup of B, it follows that G/UΦ(B) is cyclic
of order 2. In addition UΦ(B)/U is contained in Φ(B/U), so that B/U is
cyclic. Since G/U is the product of the totally permutable subgroups AU/U
and B/U by [4, Lemma 4.1.10], G/U satisfies the hypotheses of the theorem.
Since r(B/U) = 1, we have that r(G/U) ≤ 4 by Case (i). Therefore r(G) ≤ 5.

Suppose that B/D is not cyclic. Then B/D = 〈bD〉 × 〈xD〉, where
o(bD) = 2m and o(xD) = 2. In this case, x2 ∈ D and so 〈x2〉 is a normal
subgroup of G. The lemma will therefore follow should be succeed in proving
that r(G/〈x2〉) ≤ 4. Without loss of generality, we may assume that x2 = 1.
Since xD /∈ Φ(B/D), we have that x is an element of order 2 in B\Φ(B). Let
M be a complement of 〈x〉 in B. Now B cannot be cyclic. Hence M = 〈b〉 is
cyclic for some b ∈ B, and B = 〈b〉 × 〈x〉.

Assume that A is cyclic. Then r(A〈x〉) ≤ 3 by Lemma 5, and A〈x〉 is a
normal subgroup of G such that G/A〈x〉 is cyclic. Therefore r(G) ≤ 4.

Assume that A = 〈a〉 × 〈y〉 such that o(y) = 2 and y inverts B. Write
N = 〈a〉〈b〉. Then N is a normal subgroup of G and G/N ' C2 × C2. By
Lemma 5, we have that r(N) ≤ 3 and then that r(G) ≤ 5. What we must
prove is that d(H) ≤ 4 for all subgroups H of G. Assuming this to be false,
let us choose a subgroup H of G such that d(H) ≥ 5.

Since d(H) ≤ r(G) ≤ 5, we have that d(H) = 5. If HN/N is cyclic,
we have d(H) ≤ r(H) ≤ r(H/H ∩ N) + r(N) ≤ 1 + 3 = 4, a contradiction
which shows that G = HN . Denote H1 = H ∩ N . Then we have H/H1 '
G/N ' C2 × C2 and so d(H1) ≥ 3. Since d(H1) ≤ r(N) ≤ 3, we have that
d(H1) = 3 and so H1 is not metacyclic. Note that H1 cannot equal to N
because d(N) = 2. Therefore H1 lies inside a nonmetacyclic maximal X
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subgroup of N . Applying [11, Theorem 5.1], it follows that X = 〈ab, a2, b2〉,
d(X) = 3, and o(a), o(b) ≥ 4. By [11, Proposition 2.12], we have that
Φ(Φ(N)) = 〈a4, b4〉 and |N : Φ(Φ(N))| = 24. Clearly 〈a4, b4〉 ≤ Φ(X). In
addition, |N : Φ(X)| = |N : X||X : Φ(X)| = 2 · 23 = 24, therefore we can
conclude that Φ(X) = 〈a4, b4〉 = Φ(Φ(N)). Note that 〈a2, b2〉 is a metacyclic
maximal subgroup of X and H1 is not contained in 〈a2, b2〉 since we agreed
that d(H1) = 3. Therefore X = H1〈a2, b2〉.

We write ḡ to denote the image of g in Ḡ = G/Φ(X). Also if K is any
subgroup of G, then K̄ is the image of K in G. Applying Lemma 6 to the
group N̄ = 〈ā〉〈b̄〉, o(ā) = o(b̄) = 22, we obtain that 〈ā2, b̄2〉 ≤ Z(N̄). Since X̄
is an elementary abelian group of order 8 contained in N̄ , it follows that N̄ is
nonmetacyclic. Hence [ā, b̄] = ā2b̄2 by Lemma 6. Moreover since x̄ centralises
ā2 and ȳ centralises b̄2, we have that 〈ā2, b̄2〉 ≤ Z(Ḡ).

Let us now prove that H̄ is non-abelian. Since y ∈ G = HN , there exists
n ∈ N such that ny ∈ H. In addition, there exists t ∈ 〈a2, b2〉 such that
abt ∈ H1.

Bearing in mind that n̄ is a product of a power of ā and a power of b̄, we
can conclude that (āb̄)n̄ ∈ {āb̄, b̄ā}. Therefore

[abt, ny] = [ab, ny] = (āb̄)−1(āb̄)n̄ȳ = b̄−1ā−1(āb̄)ȳ or b̄−1ā−1(b̄ā)ȳ,

which is equal to b̄−2 or [ā, b̄]b̄−2. Thus [abt, ny] = ā2 or b̄2. Consequently
[abt, ny] 6= 1 and H̄ is non-abelian.

Consequently H ′ is not contained in Φ(X). Therefore H ′ is not contained
in Φ(H1). In particular, H/Φ(H1) is non-abelian and so Φ(H1) < Φ(H).
Since d(H1) = 3 and | H : H1 |= 22, we obtain that | H : Φ(H1) |=| H : H1 ||
H1 : Φ(H1) |= 25. Hence | H : Φ(H) |≤ 24 and then d(H) ≤ 4, contrary to
the choice of H, which is our final contradiction.

Therefore d(H) ≤ 4 for all subgroups H of G, and so r(G) ≤ 4. The
proof is of the lemma is complete.

Lemma 8. Let a finite p-group G = AB be the mutually permutable product
of two abelian p-groups A and B with CoreG(A) = 1. Suppose that B has
rank s. Then the rank of G is at most s+ 2 if p is odd and at most s+ 3 if
p = 2.

Proof. Since A ∩ B ≤ CoreG(A) = 1, it follows that the product is totally
permutable. Let D = CoreG(B). Then G/D = (AD/D)(B/D) is the totally
permutable product of AD/D and B/D such that B/D is core-free in G/D.
Assume that p is odd. It follows from Lemma 3(i) that A and B/D are both
cyclic. By Lemma 5 we obtain r(G/D) ≤ 2. Hence r(G) ≤ s+ 2.
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Now we assume that G is a 2-group. It follows from Lemma 3(ii) that A
is cyclic or A = 〈a〉 × 〈y〉, where y inverts B and o(y) = 2. If r(B) = s ≤ 2,
the result directly follows from Lemma 7. If B EG, the result is trivial.

Now we only consider the case s ≥ 3 and B/D 6= 1. It follows from
Lemma 3(ii) that d(B/D) ≤ 2. ThusD � Φ(B) otherwise r(B) = d(B/D) ≤
2, contrary to s ≥ 3. Write d = d(B/D) and note that d = 1 or 2. Let
|D : D ∩ Φ(B)| = 2t, where t ≥ 1. It is easy to see that

2t = |DΦ(B) : Φ(B)| = |B : Φ(B)|
|B : DΦ(B)|

≤ |B : Φ(B)|
|B/D : Φ(B/D)|

= 2s−d,

which implies that t+ d ≤ s.
Note that D/D ∩ Φ(B) is an elementary abelian 2-group of order 2t.

Let x1(D∩Φ(B)), ..., xt(D∩Φ(B)) be generators of D/D∩Φ(B) and denote
K = 〈x1, x2, . . . , xt〉 ≤ D. We see thatK is a normal subgroup ofG. Actually
K ≤ B is normal in B. Let x ∈ K and a ∈ A. As 〈a〉〈x〉 is a subgroup, Then
xa ∈ 〈a〉〈x〉 ∩ D = 〈x〉, as desired. Since D = K(D ∩ Φ(B)), we have that
d(B/K) = d(B/D) = d.

Note that G/K is the totally product of AK/K and B/K with r(B/K) =
d = 1 or 2, and AK/K is cyclic or AK/K = 〈aK〉 × 〈yK〉 such that yK
inverts B/K and o(yK) = 2. It follows from Lemma 7 that r(G/K) ≤
r(B/K) + 3 = d+ 3. Hence r(G) ≤ r(K) + d+ 3 = t+ d+ 3 ≤ s+ 3. Now
the proof is complete.

4 Proof of Theorem A
Before we prove Theorem A, we have to deal with the case that G is finite.
Our next lemma is a result of Lucchini concerning the number of generators
of a finite group. It will be essential in the proof of Theorem A.

Lemma 9 ([13, Lemma 1]). Let G be a finite group with a normal p-subgroup
N . Assume that the Sylow p-subgroups of G can be generated by r elements:

(a) If G/N can be generated by d elements, where d ≥ r + 1, then G can
be generated by d elements.

(b) If p = 2 and G/N can be generated by d elements, where d ≥ r, then
G can be generated by d elements.

Lemma 10. Let G be a finite soluble group. Suppose that all its Sylow 2-
subgroups can be generated by d+ 1 elements and the other Sylow subgroups
can be generated by d elements. Then G can be generated by d+ 1 elements.
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Proof. We work by induction on |G|. As G is soluble, there is a normal
p-subgroup N of G for some prime p. By induction, G/N can be generated
by d+ 1 elements. Let P be a Sylow p-subgroup of G. If p = 2, then P can
be generated by d + 1 elements by hypothesis. Applying Lemma 9 (b), we
have that G can be generated by d + 1 elements. If p 6= 2, then P can be
generated by d elements by hypothesis. It follows from Lemma 9 (a) that G
can be generated by d+ 1 elements.

We are ready to prove Theorem A.

Proof of Theorem A. Now consider H = 〈a1b1, ..., anbn〉 a finitely gener-
ated subgroup of G, where ai ∈ A and bi ∈ B. As G is locally finite, H
is finite. Moreover, H is soluble since G is metabelia by Itô’s Lemma. Let
C = CoreG(A) andG/C is the totally permutable product of A/C and BC/C
as A ∩B ≤ C.

Write L = 〈a1, ..., an〉,F = 〈b1, ..., bn〉, X = 〈L, F 〉 and D = C ∩ X.
Note that all of them are finite and H ≤ X. Note that XC/C is the
totally permutable product of LC/C and FC/C. Since X/D is isomorphic
to XC/C, it follows that X/D is a finite group that is the product of the
totally permutable subgroups LD/D and FD/D and LD/D ∩ FD/D = 1.
Let Lp and Fp be the Sylow p-subgroups of L and F , respectively. Then
U/D = (LpD/D)(FpD/D) is a Sylow p-subgroup of X/D. Also, U/D is the
product of the totally permutable subgroups LpD/D and FpD/D.

Let S/D = CoreU/D(LpD/D). It is easy to see that U/S is the totally
permutable product of LpS/S and FpS/S, moreover, LpS/S is core-free in
U/S. By Lemma 8, we get that r(U/S) ≤ r(FpS/S) + 2(or r(FpS/S) + 3 if
p = 2). Since S ≤ LpD ≤ A and FpS/S ≤ BS/S, it implies that r(U) ≤
r + s + 2( or r + s + 3 if p = 2). Clearly the rank of the Sylow p-subgroup
of U is at most r + s + 2( or r + s + 3 if p = 2). Note that the Sylow
p-subgroup of U is also the Sylow p-subgroup of X and a Sylow p-subgroup
of H is contained in a Sylow p-subgroup of X, we obtain that the rank of a
Sylow p-subgroup of H is at most r+s+2( or r+s+3 if p = 2). Recall that
H is a finite soluble group, by Lemma 10, H can be generated by r + s + 3
elements. Consequently, the rank of G is at most r + s+ 3.

5 Proof of Theorem B
Recall that d(G) is the minimum number of elements required to generate
the group G. Now define f(G) to be the maximum of {d(G/H)} for every
normal subgroup H of finite index in G. From [12, Theorem], we have the
following:
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Lemma 11. If G is a polycyclic group, then d(G) ≤ f(G) + 1.

Now we are ready to prove Theorem A.

Proof of Theorem B. If A or B is normal in G, r(G) ≤ r + s. Thus we
may assume that neither A nor B are normal in G. Let C = CoreG(A). Since
A∩B ≤ C, we have that G/C is the totally permutable product of A/C and
BC/C and A/C is core-free in G/C.

Suppose BC/C is weak. Then BC/C is a normal subgroup of G/C with
|G/C : BC/C| = 2 by Lemma 4. Therefore we have the normal series
1 ≤ C ≤ BC ≤ G with the rank of C at most r = r(A), the rank of BC/C
at most s = r(B) and G/BC cyclic. Hence the rank of G is at most r+s+1.
If D = CoreG(B), a similar argument applies if AD/D is weak.

Thus we may assume that both AD/D and BC/C are periodic groups.
On the other hand, since A ∩ B is a normal subgroup of G, we have that
A ∩D = A ∩ B = C ∩ B. This implies that A/(A ∩ B) and B/(A ∩ B) are
both periodic groups. Denote Z = A ∩ B. Since Z is abelian of finite rank,
we can consider a free abelian subgroup E of Z of maximal rank, k say. Then
Z/E is a periodic group of finite rank, and E/Em is a finite group of order
mk for every positive integer m, where Em is the subgroup generated by
{xm : x ∈ E}. Since E ≤ Z(G) we have that G/Em is the product of A/Em

and B/Em both periodic groups of finite rank. It then follows that G/Em

is locally finite (and of finite rank) by a theorem of Černikov [1, Theorem
3.2.12].

If E = 1, then G is locally finite. It follows from Theorem A that r(G) ≤
r+ s+ 3, as desired. Assume now that E 6= 1. Let H be a finitely generated
subgroup of G. As G/Em is locally finite for all positive integers m and
HEm/Em ≤ G/Em, by Theorem A, we can argue that HEm/Em ' H/(H ∩
Em) has rank at most r + s+ 3.

Let X be a subgroup of H. Then X/(X∩E) ' XE/E is finite. Moreover
E is finitely generated because it has finite rank. This implies that X ∩ E
is finitely generated since subgroups of finitely generated abelian groups are
finitely generated. Consequently X is finitely generated, which implies that
every subgroup of H is finitely generated. Note that H is soluble. Hence H
is polycyclic.

We next claim that for every normal subgroup N of H of finite index,
there exists a positive integer m such that H ∩ Em ≤ N . Since H/(N ∩ E)
is finite, we may assume without loss of generality that N ≤ E. Then
E/N = U/N ×W/N , where U/N is free abelian and W/N is finite. Assume
the exponent of W/N is m. Then (E/N)m = (U/N)m is free abelian. Now
(H ∩ Em)N/N ≤ H/N which is finite. Also (H ∩ Em)N/N ≤ EmN/N ≤
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(E/N)m. This implies that (H∩Em)N/N is a finite subgroup of a free abelian
group. Consequently (H ∩ Em)N/N = 1 and H ∩ Em ≤ N , as claimed.

Recall that H/(H∩Em) has rank at most r+s+3 for all positive integers
m. It follows that H/N has rank at most r+s+3 for every normal subgroup
N of H of finite index. Now we can apply Lemma 11 to conclude that
d(H) ≤ r + s + 4. Consequently, the rank of G is at most r + s + 4. The
proof of the theorem is now complete.

We bring the paper to a close with an example of a group G = AB of
rank 3, which is the totally permutable product of the abelian subgroups A
and B with A ∩B = 1.

Example Let the group H be

H = 〈a, b, c | a2 = b2 = c4 = 1, [a, b] = 1, ac = ab, bc = b〉

Then H is the totally permutable product of 〈ac〉 and 〈c〉. The rank of
G is 3 since K = 〈a〉 × 〈b〉 × 〈c2〉 is a subgroup of rank 3.
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