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Abstract

Ecological networks, both displaying mutualistic or antagonistic interactions, seem to share common structural traits: the
presence of nestedness and modularity. A variety of model approaches and hypothesis have been formulated concerning
the significance and implications of these properties. In phage-bacteria bipartite infection networks, nestedness seems to
be the rule in many different contexts. Modeling the coevolution of a diverse virus–host ensemble is a difficult task, given
the dimensionality and multi parametric nature of a standard continuous approximation. Here, we take a different ap-
proach, by using a neutral, toy model of host–phage interactions on a spatial lattice. Each individual is represented by a bit
string (a digital genome) but all strings in each class (i.e. hosts or phages) share the same sets of parameters. A matching al-
lele model of phage-virus recognition rule is enough to generate a complex, diverse ecosystem with heterogeneous patterns
of interaction and nestedness, provided that interactions take place under a spatially constrained setting. It is found that
nestedness seems to be an emergent property of the co-evolutionary dynamics. Our results indicate that the enhanced di-
versity resulting from localized interactions strongly promotes the presence of nested infection matrices.
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1. Introduction

Our biosphere is a complex adaptive system where flows of en-
ergy and matter take place within tangled ecological networks
(Montoya et al. 2006). Most of these flows occur at the level of
microorganisms, and microbial communities are in turn con-
stantly coevolving with their viruses in highly dynamical ways.
One dramatic illustration of the permanent arms race between
bacteria and their viral partners is provided by the staggering
scale of ecological interactions in marine ecosystems (Suttle
2005, 2007). It has been estimated that 1030 viruses might be

present in the entire marine biota, while no less than 1023 phage
infections are taking place every second. The impact on popula-
tion dynamics is no less impressive: bacteriophages might kill
around 20% of the total microbial biomass in a single day. This
massive turnover happens in an evolutionary context: bacteria
and phages constantly (and rapidly) coevolve. Such coevolu-
tionary arms races occur in all known examples, including the
gut microbiome or soil ecosystems, and provide a source of both
phenotypic and genotypic diversity while affecting community
structure (Koskella and Brockhurst 2014).
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On a large-scale perspective, the resulting networks of inter-
action between phages and their host microbes display a num-
ber of interesting regularities emerging from the underlying
arms race dynamics (Weitz et al. 2013). One pervasive feature of
the virus–host infection networks (along with modularity) is the
presence of nestedness, namely, the presence of a hierarchical
pattern where (ideally) we can order both microorganisms and
phages as illustrated in Fig. 1. A nested network is characterized
by the tendency of low-degree species to interact with a subset
of highly connected species.

This type of pattern, which appears widespread in a wide ar-
ray of contexts, has also been explained under rather different
ways, from species-specific approaches grounded in the given
community organization to abstract statistical physics models.
Some of these studies support the existence of optimization
principles that would pervade the nested architecture of ecolog-
ical webs (Suweis et al. 2013). However, this idea has been chal-
lenged by further studies revealing that nested structures are
likely to be an inevitable byproduct of other more fundamental
properties of these graphs, in particular their heterogeneous
character (Jonhson et al. 2013; Feng and Takemoto 2014). What
is the origin of nested webs in antagonistic systems?

The nested pattern found in phage-bacteria infection networks
has been hypothesized to result from a coevolutionary sequence
of adaptations driven by gene-for-gene recognition processes (Flor
1956; Thompson and Burdon 1992; Agrawal and Lively 2002; Weitz
et al. 2013). In a dynamic gene-for-gene coevolutionary sequence,
new mutations arising in the bacterial genome confer resistance to
concurrent phages, while maintaining resistance to phages that
were abundant in the past. Likewise, mutations in the concurrent
phages result in their ability to infect these newly arose bacterial
genotypes while still being able of infecting past bacterial geno-
types (Bohannan and Lenski 2000). This process results in bacterial
genotypes that are resistant to a subset of all possible phages and
phages able of infecting a subset of all bacterial genotypes. In other
words, the most infectious phage has access to most bacterial ge-
notypes while the second most infectious phage has only access to
a subset of these bacterial genotypes.

From the bacterial perspective, the most resistant bacteria can
be only infected by a limited number of phages (usually the most
infectious one) while the second most resistant bacteria can be
infected a larger number of phages (Fig. 1). According to the gene-
for-gene coevolutionary dynamics, fitness costs may appear to
limit the phages to broader their host range without limits; bacte-
ria also suffer of fitness costs that limit their capacity to resist all
possible phages (Jover et al. 2013, 2015; Ashby and Boots 2017).
The gene-for-gene model produces a wide variety of evolutionary
outcomes that include stable genetic polymorphisms either
within a range of infectivity or defense (Segarra 2005) or across
multiple ranges provided direct frequency-dependent selection is
on operation (Tellier and Brown 2007), and fluctuating selection
between narrow- and broad-range specialists and generalists
(Agrawal and Lively 2003).

A popular alternative to the gene-for-gene model is the
matching allele model (Agrawal and Lively 2003; Weitz et al.
2013). In this model, bacteria evolve resistance to a single phage
genotype and lose resistance to other phages. Likewise, muta-
tions in phage genomes confer the ability to infect new evolved
bacterial genotypes while losing the capacity to infect ancestral
bacterial genotypes. Henceforth, bacteria attempt to avoid the
most common phage while phages seek to match the most
common host (Frank 1993). The indirect negative frequency-
dependent selection created by the matching allele model leads
to fluctuating selection between equally highly specific geno-
types. This high specificity between bacterial host and the vi-
ruses that can infect them translates into a modular structure
in the phage-bacteria infection networks (Weitz et al. 2013). In
the extreme case of a one-to-one matching between bacteria
and phages, the resulting infection network is call monogamous
(Korytowski and Smith 2015).

Most empirical evidences support the idea that variation in
hosts and parasites degrees of specialization is in general good
agreement with the expectations from the gene-for-gene model.
This includes evolution experiments (Bohannan and Lenski 2000;
Flores et al. 2011), plants and diverse plant pathogens (Flor 1956;
Thompson and Burdon 1992; Hillung et al. 2014), fruit flies and
the sigma virus (Bangham et al. 2007), and fishes (Vazquez et al.
2005; Mouillot et al. 2008). Modular infection networks have been
also described at higher taxonomic levels, yet with a nested struc-
ture within each module (Flores et al. 2013; Roux et al. 2015).

In this paper, we present a neutral model of bacteria–phage
interaction that provides a minimal framework to address the
problem of what are the requirements for evolving a nested in-
fection network structure. Although other models have been
formulated to that goal (Beckett and Williams 2013; Jover et al.
2013; Haerter et al. 2014; Jover et al. 2015; Korytowski and Smith
2015) they rely on a large number of parameters and required
some special assumptions concerning the shape of interaction
functions. Here we have assumed the smallest amount of com-
plexity by using a quasi-neutral model of bacteria–phage inter-
actions that can account for the emergence of nested webs.

2. Neutral coevolution model

In this section, we define our digital model of host-phage coevo-
lution (all results published in this article are available upon re-
quest). Instead of using a model where a diverse repertoire of
parameters is associated with each potential phenotype (result-
ing from a predefined genotype–phenotype mapping) we take
the most simplifying assumption, namely, a fully neutral sys-
tem where all interactions within each species class in a bipar-
tite network have exactly the same weights, irrespective of the

Figure 1. Many ecological networks are characterized by a pattern of nestedness.

Our mathematical definitions of nestedness are derived from studies of bipartite

networks (or two-mode) networks. A nested network displays a particular pattern

of interactions that we can measure and detect. The left panel shows a bipartite

network with two set of nodes. For example, one set corresponds to bacteria (blue

balls) and the other corresponds to phages (red balls). Links represent interactions

(infections) between pairs of dissimilar types. This bipartite network also accepts a

matrix representation where rows and columns represent the two types of nodes

and the entries of the matrix indicate the presence (white square) or absence

(empty square) of pairwise interactions. The right panel shows an example of per-

fectly nested network, that is, the nonzero elements of each row in the matrix are

a subset of the nonzero elements in the subsequent rows.
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underlying digital genomes involved. In the spirit of other theo-
retical and modeling approaches (Alonso et al. 2006) the
species-level idiosyncrasies are ignored in favor of an
higher-level of description. By using this toy model approach,
we hope to gather insight into the network-level universals.

The model considers two populations of replicators, namely,
phages and bacteria, each represented as a �-dimensional
string. Specifically, we indicate as Si

p and Sj
h, respectively the

digital genomes (bit strings) associated to the i-th and j-th phage
and bacteria genotypes. In other words, we have the strings
given by the bit sequences:

Si
h ¼ ðsi1

h ; . . .; si�
h Þ (1)

Si
p ¼ ðsi1

p ; . . .; si�
p Þ (2)

with Sij
h; S

ij
p 2 f0; 1g where i ¼ 1; . . .; 2m. Both populations repro-

duce and evolve on a two-dimensional space where dynamics
takes place on the faces of a cube, thus defining a lattice with
periodic conditions. By using the appropriate geometric trans-
formation (Tegmark 1996) the resulting dynamics can be dis-
played on the surface of a sphere, as done here. In Fig. 2, we
display the structure of the coupled interaction between phages
and bacteria, which will interact under a genome matching
rule, defined below. As defined, the resulting matrix of (poten-
tial) interactions is a square one. This is of course a limitation of
our approach, since it does not take into account the asymme-
tries resulting from different numbers of species in the bipartite
graph. Future extensions of our model should consider these
more general cases.

The model is intended to define a minimal setting of rules
including a random death of strings at a given rate, which can
be represented as decay reactions, namely,

Si
h!

dh 0 Sj
p!

dp
0 (3)

independent on their specific genome sequence. The bacterial
strains are assumed to replicate leading to two identical copies
with a probability that depends on the mutation rate, namely,

Si
h !rhð1�lÞ�

2Si
h (4)

where ð1� lÞm is the probability that all the bits are properly
copied (no mistakes occur). Any mutation in at least one bit in
the string will lead to a different sequence, namely,

Si
h !

rhWh
ij
Si

h þ Sj
h (5)

where Sj
h will be usually a one-mutation neighbor in sequence

space (provided that mutation rates are small enough) but in gen-
eral the probability associated to a mutation from Si

h to Sj
h will be

Wk
ij ¼ ð1� lÞ��dH ½Sk

i ;S
k
j �ldH ½Sk

i ;S
k
j �;

being dH½Sk
i ; S

k
j � the Hamming distance between two sequences:

dH½Sk
i ; S

k
i � ¼ R

�

i¼1
jsk

i � sk
i j: (6)

The reproduction of the phage requires the infection of a bacte-
rial cell provided that a genome matching occurs. If the

matching is perfect (and thus dH¼ 0) we assume that the inter-
action occurs with probability / ¼ 1, but if dH > 0 the probability
/ will decay linearly with the Hamming distance (since recogni-
tion and matching are less accurate):

/ðdHÞ ¼ 1� dH

�
(7)

Specifically, two strings belonging to a phage Si
p and a host Sj

h

will lead to an error-free reaction:

Si
h þ Sj

p !
rpð1�lpÞ�

2Sj
p (8)

and the alternative scenario with a mutated offspring:

Si
h þ Sj

p !
rpWp

jl
Sj

p þ Sl
p (9)

where the term Wp
jl is defined as before.

The final set of rules involves the spatial dynamics of strings
on the lattice. Each site in this lattice can be occupied by one
string of each class. Host and parasite strings move, indepen-
dently and randomly, to empty neighbor cells with diffusion
probabilities Dh and Dp, respectively. To simplify the analysis,
all the simulations were run with maximum diffusion constants
Dh ¼ Dp ¼ 1, also setting dh ¼ dp ¼ 10�2. In this way, we strongly
reduce the parameter space, considering the diffusion and de-
cay properties of all strings identical, no matter their precise se-
quence. This class of models has been shown to display a
fluctuating dynamics on a broad range of parameter combina-
tions (Solé and Sardanyes, 2014) resulting from the intrinsic
nonlinearities associated to the Red Queen dynamical behavior.
As a consequence, fluctuations in both space and time are ex-
pected to occur.

The rest of the parameters have been chosen as follows. The
mutation rate of the virus must be larger than the one exhibited
by the host. Here we use a mutation rate of l¼ 10–4 for the phage
and l¼ 10–5 for the bacteria. Other parameters have been used
(avoiding very high rates that can lead to an error catastrophe)
and similar results of those reported here have been found.
Finally, the replication parameter r of the host strings is fixed to
r¼ 0.8. An important point to be made here is that our genome-
independent parameters made our model a highly homogeneous
one, that is an effectively neutral model, except for the functional
dependence associated to the matching rule. The lattice was ran-
domly inoculated by either bacteria and phage random se-
quences, starting from an initial condition were 25% of sites are
randomly seeded by phages and the same amount (but different
random sites) for the bacteria. All initial strings are identical, de-
fined by the sequence 1000. As we can see from this model de-
scription, the whole dynamics will lead (if both populations are
present and parameters allows) to an arms race that is limited to
a constant movements through the sequence hypercube.

3. Spatial dynamics and the emergence of
bacteriaphage bipartite nested networks

The degree of interaction among species is not randomly dis-
tributed and captures different ecological and evolutionary fac-
tors. Disentangling these components requires a combination
of empirical measurements and of theoretical models (see be-
low). How do ecological, genetics, and epidemiological
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processes interact to generate and maintain structural varia-
tion? What is the general structure of bacteria–virus infection
networks? Empirical and theoretical studies have shown that
bipartite networks can be (i) nested, that is, the interactions be-
tween nodes can be represented as subsets of each other (Flores
et al. 2011), (ii) modular, that is a network composed of densely
connected groups of nodes, and (iii) multi-scale, that is, the net-
work shows different features depending on whether the whole
or smaller components are under consideration (Flores et al.
2013). In this study, we are particularly interested in how the
spatial component influences the emergence of nestedness (see
next section).

An infection network involves two disjoint subsets of spe-
cies, that is, bacterial hosts and viruses. Any pair of species is

always related ði; jÞ 2 E provided that pathogen j can infect host
i. The set of links of this network can be described with the (bi-
nary) adjacency matrix A¼ [Aij] in which Aij¼ 1 (presence) if the
nodes i and j are connected or Aij¼ 0 (absence), otherwise. The
degree of a species

ki ¼ R
j

Aij

is the number of connections attached to this node. Now, as-
sume that hosts are indexed 1,2,.,NH and viruses are labeled NH

þ1;NH þ 2; . . .;NH þNV where NH is the number of bacterial spe-
cies, NV is the number of virus species, and N ¼ NH þNV is the
total number of species in our system. Using this vertex labeling

Figure 2. Coevolution in coupled landscapes associated to a phage-bacteria model based on a digital genomes representation. Each individual is described by means of

a digital genome of length �. The model dynamics is defined on a two-dimensional surface (a) where the color of each site indicates (in this case) the presence of differ-

ent strings. In (b), an expanded area shows the presence of local patchiness where each site (c) can be occupied by one string of each class. Strings can move randomly

to neighboring free sites, as indicated by the grey arrows. From the point of view of the genotype space, we have two coupled sequence hypercubes (here �¼4) where

similarity between phage and bacteria recognition sequences (i.e. the matching allele model or recognition, determines the probability of interaction. Two different hy-

percubes are shown, one for phages (left) and another (right) for bacteria. One given virus (like 1110) will be able to interact with those bacteria whose genome is closer

(the probability of this interaction is indicated by weighted gray lines). The basic rules used in the model are summarized in (e–h). These are: (e) sequence removal

(death), (f) replication of host string, which can be accurate H! 2H or inaccurate H! Hþ H0 , for the phage–bacteria interaction.
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approach, we can show the adjacency matrix has a block off-
diagonal form as follows:

A ¼
0 BNV � NH

BT
NH
�NV 0

" #
(10)

where B is the NH � NV incidence matrix, 0 is the all-zero matrix
that reflects the bipartite constraint, that is, we only allow inter-
actions between alike species.

Reliable nestedness measurement takes into account the
strength of infections in the bipartite network. For example,
previous studies have shown that ubiquitous nestedness of bi-
nary adjacency matrices (Flores et al. 2011) is not always repro-
duced by quantitative studies (Staniczenko et al. 2013). The
entries of a quantitative incidence matrix B take values different
from 1 or 0, like the number of infected individuals. In both the
binary and quantitative cases, an incidence matrix is perfectly
nested when its rows and columns can be sorted such that

Bij � minðBi;j�1;Bi�1;jÞ

with B1;j > 0 and Bi;1 > 0 for all 1 � i � NP and 1 � j � NV , that
is, the set of edges in each row i contains all the edges in row
iþ 1 while the set of edges in column j contains the set of edges
in column jþ 1.

The above suggests a costly approach to the maximal nest-
edness that searches for the optimal arrangement of matrix ele-
ments (Atmar and Patterson, 1993). This algorithm has several
computational disadvantages and it is, in fact, the basis for
many published methods. Different metrics extend the analysis
of nestedness to quantitative species preferences. This recog-
nizes the fact that nestedness is a relative value that depends
both on the size and the density of interactions. For example,
we can define weighted versions of nestedness based on com-
mon neighbors (CMNB) (Bastolla et al. 2009), overlap and de-
creasing fill (WNODF) (Almeida-Neto and Ulrich 2011), and
weighted-interaction nestedness estimator (WINE) (Galeano

et al. 2009). Here, we use the metric proposed by Allesina and
co-workers, which is quantitative measure of nestedness based
on the spectral properties of bipartite networks (Staniczenko
et al. 2013). The spectral radius q(B) (or the dominant eigen-
value) gives a natural scale for nestedness, with higher spectral
radius corresponding to more nested configurations. The spec-
tral radius of the incidence matrix has two useful properties: (i)
matrix eigenvalues are independent of arbitrary permutations
of rows and columns and (ii) this quantity can be derived for
both binary and quantitative infection networks.

We now investigate the temporal evolution of nestedness in
our model. In our model, the number of species N it is bounded by
the fixed genome lengths. On the other hand, link density is a key
parameter defined by the network connectance C, or the propor-
tion of possible network connections, that is C ¼ L=N2, where the
number of links K is simply L ¼ Ri ki. It has been proposed that the
stability of dynamical processes constraints the possible values of
connectance (May 1972). In our computational simulations, we
have observed that connectance reaches an average value C� 0.45
(Fig. 3). A detailed analysis of interactions reveals a highly dynami-
cal system where connections among species are constantly
added or removed while keeping the same average connectance.

In general, there is a contribution gðxi; x
!Þ to the growth of

population i from interactions with other species in the system
x
! ¼ ðx1; x2; . . .xNÞ, where xi is the population density of individual
species (Staniczenko et al. 2013). We can further divide the in-
teraction between any pair of species (i, j) in two components:
the frequency of interactions ci;jxixj and the effect of each inter-
action hðxi; x

!Þ. Then,

gðxi; x
!Þ ¼ R

j
ci;jxixjhðxi;! xÞ (11)

where xixj is a mass action term ci,j indicates the relative proba-
bility of interaction compared to mass action. Assuming the
mass action hypothesis, the expected number of interactions is
proportional to the product of the densities xi and xj of the pair
of species. Other factors like the spatial component, consumer
search efficiency, or handling time are aggregated in the prefer-
ence matrix c ¼ ½ci;j�. This matrix measures pairwise interaction
preferences: ci;j > 1 indicates the interaction is more likely to oc-
cur than expected, ci;j < 1 denotes a less favorable interaction
and ci,j¼ 1 is exactly the expectation based on mass action.

When measuring nestedness in our system, we first adjust for
the mass action effect (xixj) to isolate interaction preferences. The
incidence matrix B is related to the preference matrix by the follow-
ing: Bi;j ¼ ci;jxixj. We compare the nestedness value in the prefer-
ence matrix with an ensemble of random matrices having similar
properties (Beckett and Williams 2013; Weitz et al. 2013). We use
the null model proposed by (Staniczenko et al. 2013), which keeps
the structural features of the network while swapping the order of
weighted links (so-called ‘binary shuffle’) across the binary struc-
ture. Among the possible set of null models, this is the adequate
when evaluating the statistical significance of weighted nested-
ness. Specifically, the Z-score defines the statistical significance:

Z ¼ qðBÞ � hqi
rq

(12)

where hqi and rq are the average value and the standard devia-
tion of the network measure in a random ensemble, respec-
tively. In this study, we will consider that host–phage
interactions are significantly nested whenever the correspond-
ing Z> 2 (i.e. P< 0.05 using the Z-test).

Figure 3. Temporal dynamics of connectance in a typical run of the model. The

connectance stabilizes around a well-defined average value C�0.45. This den-

sity of links allows for a high diversity of possible system configurations. From

left to right, the snapshots (whose location is pointed with stars in the curve)

display an evolving pattern of spatial heterogeneity. Here, we use the same pa-

rameters described in the main text.

S. Valverade et al. | 5

Downloaded from https://academic.oup.com/ve/article-abstract/3/2/vex021/4061239
by CSIC user
on 29 January 2018

Deleted Text: i.e.
Deleted Text: s
Deleted Text: i. e.
Deleted Text: see 
Deleted Text: u
Deleted Text: Weitz et<?A3B2 show $146#?>al. 2013; 
Deleted Text: '
Deleted Text: -
Deleted Text: ,
Deleted Text: <italic>p</italic>


Figure 4 shows the statistical significance of nestedness in
the c-matrix tends to a high, well-defined value. In the absence
of space, the same model does not tend to a pattern of signifi-
cant nestedness (Fig. 5). Interestingly, the average connectance
is also close to the reported value for the spatial simulation
(C� 0.45), and thus suggesting that nestedness is largely a con-
sequence of spatial correlations associated to (transient) simi-
larities between spatially close genomes. This result is
consistent with empirical studies of fish-parasite networks sug-
gesting a spatial origin of nestedness (Poulin and Guégan 2000).
The main difference is that our model is neutral, that is, it does
not consider any of the selection pressures that have influenced
the evolution of real fish-parasite networks.

4. Discussion

Host–virus ecological networks are characterized (among other
things) by the presence of a nested organization. Since nested-
ness has been proposed as a key attribute with a relevant role in
community stability and diversity, it is especially important to
understand its origins. Previous work using available host–
phage networks has shown that nestedness appears to be a
very common trait in most cases. What is less obvious is to de-
termine the causal origins of this particular feature. A specially
elegant piece of work in this context is the study by (Beckett and
Williams 2013) on the coevolutionary diversification of bacteria
and phage using a lock-and-key model. In their analysis, these
authors explored the origins of both nestedness and modularity
using a multi-strain chemostat system where the coevolving
strains use a single resource. Genotypes were represented by
means of a single scalar value, thus lacking our genotype space
described by an explicit sequence hypercube. Importantly, the
genetic matching was mediated by predefined functional

correlations between ‘genotype distance’ and key traits such as
adsorption rates of phages on hosts.

In our analysis, we have followed a rather different direction,
by introducing a coevolution process where the specific choices
of parameters (allowing populations to persist) is not relevant, ge-
notypes are introduced in an explicit way and phenotypes are the
same (as described by the kinetic parameters) for all genomes.
What is the connection between spatially limited interactions
and the enhanced presence of nested structures? In our study,
the limited interactions among digital genomes associated to the
presence of space play a key role in enhancing correlations and
nestedness. We should expect that digital host genomes in a
given neighborhood will also be relatively close among them
through recent mutation events (in terms of Hamming distance)
and exhibit closer ties with their parasites, which will also appear
locally correlated. This necessarily helps enforcing the kind of
correlations expected for nested graphs. The multiplicative na-
ture of the arms race process necessarily creates spatial correla-
tions that pervade nestedness. The most common string will also
be more likely to be the target of a large number of close digital
genomes, thus exhibiting a large number of links. Those nearest
mutants will have less edges (given their smaller populations)
but they are likely to be a subset of the most abundant string.
This relationship can be extended to all levels in the cloud of digi-
tal genomes, and ultimately explains the observed pattern (a the-
oretical model will be presented elsewhere).

Despite its limitations, it is remarkable that such a simple set
of assumptions recovers the nested organization of these antago-
nistic systems. As it occurs with other relevant properties, spatial
dynamics makes a difference when explicitly included in the de-
scription of ecosystem interactions. The loss of nestedness when
global mixing is allowed clearly supports our conjecture. Future
work should consider different extensions of our model, includ-
ing spatial heterogeneity (which could lead to modularity) or the-
oretical developments that might help determine the validity and
implications of our neutral approximation. In particular, mean

Figure 4. Temporal dynamics of the statistical significance of nestedness. After an

initial transient period, the global organization of the c-matrix settles in stable

nested patterns (the average Z�5). The top row shows several snapshots of the

bacteria–phage interaction network taken at different evolutionary stages (whose

location is given by stars in the curve). Both the binary structure and the quantita-

tive preference matrix are significantly nested. The matrix at time t has been ob-

tained by first counting the frequency of interactions Bi,j observed in the time

period [t– Dt,t] (here Dt¼2000 time steps) and then discarding the mass action

term (xixj). In each matrix, darker colors represent higher interaction preferences.

Tests for nestedness are based in the null model described in the main text.

Figure 5. In the absence of space, the model does not tend to a pattern of signifi-

cant nestedness (the average Z�0). The top row shows several snapshots of the

host–phage interaction network taken at different evolutionary stages (whose

location is given by stars in the curve). The binary structure of these matrices is

nested but the quantitative preferences are found to be distributed in an anti-

nested manner. The matrix at time t has been obtained by aggregating the inter-

actions observed in the time period [t– Dt,t] (here Dt¼2000 time steps). In each

matrix, darker colors represent higher preference of interactions. Tests for nest-

edness are based in the null model described in the main text.

6 | Virus Evolution, 2017, Vol. 3, No. 2

Downloaded from https://academic.oup.com/ve/article-abstract/3/2/vex021/4061239
by CSIC user
on 29 January 2018

Deleted Text: see 
Deleted Text: -
Deleted Text: s
Deleted Text: s
Deleted Text: o
Deleted Text: -
Deleted Text: ''
Deleted Text: ''
Deleted Text: u
Deleted Text: s


field models using homogeneous parameter sets (and thus effec-
tively neutral couplings) should be studied. Since continuous
models implicitly consider very large populations, the potential
effects of fluctuations associated to our discrete and finite system
could be analyzed.
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