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ABSTRACT

This work introduces analytical and numerical approaches to compute the incipient motion of ellipsoidal sediment
particles. Initiation of motion of spherical particles is dominated by rolling mode. However, solutions for initiation
of motion for non-spherical grains have to incorporate rolling, sliding, and mixed modes. The proposed approaches
include wide variety of shapes and inclinations, that represent realistic configuration of sediment bed layers. The
numerical procedure is based on the discrete element method, simulating the micro-mechanics of the sediment as an
aggregate of rigid ellipsoids interacting by contact. Numerical discrete solution covers a range of incipient movements
that can not be covered by the analytical approach. Hence, some trapped modes observed in analytical calculations
are complemented by the numerical computation of threshold stresses. Main results are organised as novel extended
Shields diagrams for non-spherical grains, where non–dimensional critical shear stress is represented in terms of
friction Reynolds number.

Keywords: Bedload; Computational methods in hydro-environment research and fluid dynamics; Discrete
element method; Ellipsoidal particles; Fluid-particle interactions

1 Introduction

Initiation of motion of a grain by the action of flow on a sedimentary bed is a subject of long re-
search, treated since Shields (1936), and Yalin and Karahan (1979), to analytical works of Wiberg
and Smith (1985), James (1990), and Dey (1999), or to recent numerical simulations by Bravo,
Ortiz, and Pérez-Aparicio (2014). Main purpose is to establish the critical shear stress to give rise
to particle motion. Analytical approaches determine the dynamic threshold criterion for a single
particle interacting with its neighbours. Although its basis is simple, theoretical formulation of the
dynamical system is essential to develop the mechanical model for a more complex system of par-
ticles. Numerical models with a continuous basis can predict accurately transport of cohesionless
particles over large–scale layers of sediment as, for instance, sediment grains moving past evolu-
tionary bedforms Ortiz and Smolarkiewicz (2009). However, prediction of critical stress conditions
is often limited to local continuous assumptions (e.g. Appendix A in Ortiz and Smolarkiewicz
(2006)). Instead, a discrete approach suitable for problems with internal discontinuous geometry
is particularly attractive to simulate motions with scale of particle size, as in the case of initial
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and subsequent motion of bed grains.
Prevailing analytical and numerical formulations for inception of sediment motion are developed

for spherical particles, see Chiew and Parker (1994), and Cheng and Chiew (1999), and Dey (2003).
For instance, Ji, Munjiza, Avital, Ma, and Williams (2013), Derksen (2015) and Vowinckel, Jain,
Kempe, and Fröhlich (2016) use a discrete two-way particle-fluid coupled approach to analyse the
bed load transport of spherical particles in an open channel. Two way coupling must be consid-
ered for an accurate modelling of the subsequent stages of transport, particularly for suspension
and saltation modes, for which flow-particles interaction is relevant. For computation of incipient
motion one way coupling is justified, since in this situation motion of the particles is small and
does not modify the flow substantially. This technique is used in Bravo et al. (2014), introduc-
ing extended analytical and numerical shear stress limits with a parametrical dependence on the
compactness of the grains and on the bottom slope.
The assumption of spherical form is a severe constraint taking into consideration shape and

orientation of grains constituting realistic configuration of beds. To consider the effect of more
realistic configurations on the initiation of motion we evaluate the response of ellipsoidal particles.
Ellipsoidal shape allows a broad range of forms, going from spheres to (nearly) discs, and inclination
of the particle. Application of theoretical and discrete formulations to ellipsoidal particles gives a
straightforward explanation of the wide band of experimental results observed by Shields (1936), by
covering to a significant extent its dispersion of shapes, compactnesses and orientations. Extension
of solutions to ellipsoidal forms not only benefits generalisation of threshold stress results but
also aids identification of possible modes of initial particle displacement. Thereby, ellipsoidal grain
starts moving by rolling or sliding but a third case can be recognised when grain detaches from
one contact and slides over other contact point. This sliding mode can be dominant in all regimes
for flaky particles at moderate angles of inclination (Section4).
In this paper we formulate an analytical solution and a discrete approach to establish the dy-

namic conditions for the initiation of motion of an inclined ellipsoidal particle, resting on a bottom
row of unmoving cylinders, and for laminar and turbulent regimes. Particle inclination is consid-
ered in computation of drag and lift forces via a blending function between drag and lift coefficients
for normal and parallel flows, along the lines of Mando and Rosendahl (2010). Theoretical solution
(Section2) distinguishes rolling and the two types of sliding as possible onsets of motion. However,
strict stress limit given by analytical solution is recurrently insufficient because it is not able to
represent states subsequent of starting displacement. After removal, particle can find new confined
equilibrium positions without reaching sensible motion; accordingly, threshold stresses correspond-
ing to these trapped modes must be rejected. Ability of a discrete numerical procedure to reproduce
more complex configurations of either particle equilibrium or particle motion permits to identify
confined modes, and to explore and define mixed modes of incipient transport, as combination
of rolling and the two forms of sliding. It is observed that this mixed type of motion dominates
for particles with small sphericity and large inclinations for the whole range of friction Reynolds
number considered.
To compute the critical shear stress by a numerical approach, we introduce in Section 3 a so-

lution founded on the discrete element method (see e.g. Shi and Goodman (1985) and Bravo,
Pérez-Aparicio, and Gómez-Hernández (2015)). The discrete element method considers the global
behaviour of the particles through the single contribution of each member and the multiple inter-
action of particles by friction and non–penetrating contacts. Resulting momentum balance incor-
porates contact restrictions among particles, and contact with the sedimentary bed modelled as
an aggregate of particles (Fig. 1). The discrete method computes the critical shear stress once the
particle has suffered a continuous finite displacement.
Results of the experiments are discussed in Section4. Section concludes with main results ar-

ranged as critical value of the wall shear stress in function of friction Reynolds number, resembling
original Shields diagram. Previous attempts to extend Shields diagram were focused on a variety of
conditions such as the experiments done on fine granular (silica and mica) solids by Mantz (1977),
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experiments on the intermediate values of particle Reynolds number by Yalin and Karahan (1979),
experiments on an increased range of particle Reynolds number by Miller, Mccave, and Komar
(1977), experiments with inclined beds by Mohtar and Munro (2013), or numerical experiments on
variable entrainment angle and bed slope by Bravo et al. (2014). Here, enhanced diagrams include
parametric dependencies on sphericity and inclination, as well as theoretical bounds for rolling and
sliding modes.

2 Analytical model

The formulation of the theoretical model for the initiation of motion of a single ellipsoidal particle
resting on the bed starts by defining the bottom layer. Bottom layer is a two dimensional layer with
two rows of particles (left Fig. 1), and is established as a repetition of the pattern shown in right
Fig. 1. Bottom row is constituted by unmoving cylinders (Wiberg and Smith (1985)). Cylinders
are fixed by lateral constraints (represented in right Fig. 1) and have maximum compactness (and
hence touch each other). A scatter of ellipsoidal particles with an initial stable orientation but
able to move forms the top layer. Lower row partially restricts motion of the upper grains and
determines the roughness of the bed surface. Flow is planar, major axis and minor axis of the
ellipsoid of revolution belong to the flow plane, and consequently particle motion is restricted to
the flow plane. Nevertheless, computation of fluid-particle forces and weight requires complete
three dimensional geometry.

1©

2©3©2©3©

Fluid

1©

Figure 1 Sediment bed composed by the repetition of a simple pattern of cylinders and a series of ellipsoids on the top with
stable orientation (right)

The geometry of the bed is specified by the radius R of the cylinders, by the semi–axes of the
ellipsoid, a, b=af1, and c=af2, and by α, angle of inclination of the ellipsoidal particle (see Fig. 2).
We restrict our study to ellipsoids of revolution, hence f1=f2=f . Rest of necessary geometrical
variables depicted in Fig. 2–entrainment angles β12, β13, angles γ12, γ13, and distances d12, d13–are
elucidated in the Appendix.
The ellipsoidal particle initiates its motion by sliding or by rolling. In the sliding mode, particle

moves while maintaining contact with the two neighbouring cylinders is maintained, giving rise to
maximum value of friction force. Instead, rolling mode keeps one contact pivoting point between
the corresponding two bodies. A third case of onset is possible. In this case, the particle detaches
from one contact while slides over the other cylinder (see a sketch in Fig. 3). Top Fig. 2 depicts
geometry and forces acting on an inclined particle submerged in an horizontal flow before the
initiation of motion by any of the three modes. Pitching moment is not considered since uniform
ambient wind has not side component and symmetry about this axis is assumed.

3
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Figure 2 Forces acting on particle (top), submerged weight W , drag force fα

d
, lift force fα

l
, (bottom) normal contact forces

|N21|, |N31| and friction contact forces |fr 21| and |fr 31|.

Figure 3 Initiation of motion by sliding with two contacts, s(left), limit situation (center) and detachment and initiation of
motion by sliding “special case”, sc (right).

In case of sliding, balance equations are

∑
fx = 0 → |fα

d s| − |N21| cos(γ12 + α)− |fr 21| sin(γ12 + α)
+ |N31| cos(γ13 − α) − |fr 31| sin(γ13 − α) = 0 ,

∑
fy = 0 → |fα

l s| − |W |+ |N21| sin(γ12 + α)− |fr 21| cos(γ12 + α)
+ |N31| sin(γ13 − α) + |fr 31| cos(γ13 − α) = 0 ,

∑
M = 0 → |N21| d12 sin(γ12 − β12)− |fr 21| d12 cos(γ12 − β12)

− |N31| d13 sin(γ13 − β13)− |fr 31| d13 cos(γ13 − β13) = 0 ,

(1)

considering a Cartesian coordinate system (x, y) such that x (horizontal) positive axis is aligned
with the flow direction.

∑
fx,

∑
fy, and

∑
M denote the summation of x components of forces,
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the summation of y components of forces and the summation of moments of all applied forces
about the centre C of the ellipsoid (Fig. 2), respectively. In Eqs. (1), fα

d s is the drag force and
fα
l s is the lift force, suffix s for drag and lift forces indicates sliding. |fr 21| = tanψ |N21| and

|fr 31| = tanψ |N31| are the sliding friction Coulomb forces between particles 2 and 1 and between
particles 3 and 1, respectively; |N21| , |N31| are the forces normal to the surface of the particle due
to contact between particles 2 and 1 and between particles 3 and 1 respectively, |W |=Ω(ρsol−ρf )g
is the submerged weight of the ellipsoid, Ω =

4

3
π(abc) is the volume of the ellipsoid, and ψ is the

friction angle; ρsol and ρf are the densities of the solid and fluid respectively, and g=| g |, where
g is the acceleration of gravity. α is the angle defining particle inclination, while angles β12, β13,
γ12, γ13 and distances d12, d13 gives the position of contact points B and D, and the orientations
and mechanical arms of friction and normal forces. Points of application of drag and lift forces are
close to the centre of gravity (e.g. Mando and Rosendahl (2010) estimate a distance smaller than
0.07 a); hence moments of these forces are neglected.
Drag force and lift force can be written explicitly. For instance, drag force in terms of lift force,

weight, and geometrical parameters is

|fα
d s| =

(|fα
l s| − |W |)(A+ B)

C +D ,

where

A = −2d12 sin(α− β12 + γ12 − γ13 − 2ψ) + 2d12 sin(α+ β12 − γ12 − γ13)
−d13 sin(α+ β13 + γ12 − γ13 − 2ψ) + d13 sin(α− β13 + γ12 + γ13 − 2ψ)
−d13 cos(α+ β13 + γ12 − γ13 − 2ψ) + d13 cos(α− β13 + γ12 + γ13 − 2ψ) ,

B = d13 sin(α+ β13 + γ12 − γ13) + d13 sin(α− β13 + γ12 + γ13)
+d13 cos(α+ β13 + γ12 − γ13)− d13 cos(α− β13 + γ12 + γ13) ,

C = −2d12 cos(α − β12 + γ12 − γ13 − 2ψ) + 2d12 cos(α+ β12 − γ12 − γ13)
+d13 sin(α+ β13 + γ12 − γ13 − 2ψ)− d13 sin(α− β13 + γ12 + γ13 − 2ψ)
−d13 cos(α+ β13 + γ12 − γ13 − 2ψ) + d13 cos(α− β13 + γ12 + γ13 − 2ψ) ,

D = −d13 sin(α+ β13 + γ12 − γ13) + d13 sin(α− β13 + γ12 + γ13)
−d13 cos(α+ β13 + γ12 − γ13) + d13 cos(α− β13 + γ12 + γ13) ,

(2)

or, in concise form

|fα
d s| = (|W | − |fα

l s|)K1 , (3)

where K1=−(A + B)/(C + D) is a parameter containing all the geometric data of the ellipsoid
resting on two cylinders.
In rolling, particle rotates respect to point D and detaches from point B (Fig. 2); therefore,

|N31|=|fr 31|=0. Balance equations for rolling are

∑
fx = 0 → |fα

d r| − |N21| cos(γ12 + α)− |fr 21| sin(γ12 + α) = 0 ,

∑
fy = 0 → |fα

l r| − |W |+ |N21| sin(γ12 + α)− |fr 21| cos(γ12 + α) = 0 ,

∑
M = 0 → |N21| d12 sin(γ12 − β12)− |fr 21| d12 cos(γ12 − β12) = 0 ,

(4)

where now subscript r in drag force and lift force indicates rolling, while friction force–lower than
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in sliding–is unknown.
Drag in terms of lift, weight, and geometry can be written as

|fα
dr| =

(|W | − |fα
l r|)

tan(α+ β12)
= (|W | − |fα

l r|)K2 , (5)

where K2=1/(tan(α+ β12)) contains the geometrical data.
Third situation–denoted by subscript sc–gives rise to particle detachment from point B and its

sliding over cylinder 2© (Fig. 2). Here, balance of forces is almost identical as Eqs. (1),

∑
fx = 0 → |fα

d sc| − |N21| cos(γ12 + α)− |fr 21| sin(γ12 + α) = 0 ,

∑
fy = 0 → |fα

l sc| − |W |+ |N21| sin(γ12 + α)− |fr 21| cos(γ12 + α) = 0 ,

∑
M = 0 → |N21| d12 sin(γ12 − β12)− |fr 21| d12 cos(γ12 − β12) = 0 ,

(6)

with (maximum) sliding friction Coulomb friction force |fr 21| = |N21| tanψ.
By recasting Eqs.(6), drag force is expressed in analogous form as Eqs. (3) and (5),

|fα
d sc| = − (|fα

l sc| − |W |)
tan(α+ γ12 − ψ)

= (|W | − |fα
l sc|)K3 (7)

where K3=1/(tan(α+ γ12 − ψ).

Initiation of motion occurs when force
∣
∣
∣fα

d−l

∣
∣
∣=|fα

d + fα
l | satisfies either Eqs. (1) or Eqs. (4) or

Eqs. (6) (or two/three of the systems simultaneously), such that

∣
∣fα

d−l

∣
∣ = min(|fα

d s + fα
l s| , |fα

d r + fα
l r| , |fα

d sc + fα
l sc|) . (8)

Drag and lift forces are given by

|fα
d | = Cα

d

2
Sep ρf (U

α
f )

2 , |fα
l | = Cα

l

2
Sep ρf (U

α
f )

2 , (9)

where Cα
d and Cα

l are the drag and lift coefficients, respectively, for an ellipsoid with inclination α;

Sep=
π

4
�

2
eq is the projected surface of the equivalent sphere of diameter �eq=

(
6Ω

π

)1/3

, and Uα
f is

the value of mean velocity (x direction) around the inclined grain. Notation in Eqs. (9) highlights
the dependence of mean velocity, drag coefficient, and lift coefficient on the particle inclination. To
consider the particle inclination in the computation of drag, we use a blending function between
drag coefficient for flow normal and for flow parallel to the major axis of the ellipsoidal particle,
see Mando and Rosendahl (2010),

Cα
d = C0◦

d + (C90◦

d − C0◦

d ) sin3 α . (10)

To evaluate the drag coefficients for α = 0◦ and α=90◦ in Eq. (10), we apply the correlation formula

6
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proposed by Holzer and Sommerfeld (2008) (see Eq. (9) therein), resulting in

C0◦

d =
8

Re

1√
Φl

+
16

Re

1√
Φ

+
3√
Re

1

Φ3/4
+ 0.42 · 10

0.4(− log Φ)0.2
1

Φc ,

C90◦

d =
8

Re

1√
Φc

+
16

Re

1√
Φ

+
3√
Re

1

Φ3/4
+ 0.42 · 10

0.4(− logΦ)0.2
1

Φl .

(11)

Here, Φ=Seq/S, Φl=Sep/(S/2−Slp), and Φc=Sep/Stp are the sphericity, the lengthwise sphericity,
and the crosswise sphericity, respectively; Seq=π�

2
eq is the surface of the equivalent sphere, S is

the surface of the ellipsoid, calculated by the approximate formula of Klamkin (1971),1, Slp=πac
is the surface obtained by the longitudinal projection of the surface of the ellipsoid, and Stp=πbc
is the surface obtained by the transverse projection of the surface of the ellipsoid.
Computation of lift coefficient (see Mando and Rosendahl (2010)), is given by

Cα
l = Cα

d sin2 α cosα . (12)

The formula results in zero lift–as in symmetrical particles–for α=0 and for α=90◦. Dependence on
the flow of drag and lift coefficients is incorporated in Eqs. (11) by means of the Reynolds number
of the flow over the equivalent sphere, Re = ρfU

α
f �eq/ν, where ν is the dynamic viscosity of the

fluid.

2.1 Velocity field and threshold stress

We establish a nondimensional form of the critical shear stress τ as a function of friction Reynolds
number Re

⋆ resembling a diagram of Shields (1936), but for an ellipsoidal particle. Thus nondi-
mensional critical stress is defined as τ⋆ = τ/((ρsol − ρf )g�eq) = u⋆2ρf/((ρsol − ρf )g�eq), where

u⋆=
√

τ/ρf is the friction velocity, and friction Reynolds number corresponds to the equivalent

sphere, Re⋆= ρfu
⋆
�eq/ν. As a result of the general geometrical and dynamical bases determined

in previous Section, limiting conditions can be expanded into a wide variety of sphericities and
inclinations of the ellipsoidal particles. Sequence of calculation is as follows. We compute the
mean velocity Uα

f for a prescribed flow and geometry of the particle, and for low and high fric-

tion Reynolds number regimes (as detailed below). Mean velocity determines drag and lift forces,
according toEqs. (9). By inserting Eqs. (9) into conditions given by Eqs. (3), (5), and (7), these
conditions can be concisely rewritten as

Cα
d

2
SepρfU

α 2
f = (|W | − Cα

l

2
SepρfU

α 2
f )Ki ; i = 1, 2, 3 (13)

where i=1 for rolling mode and i=2,3 for sliding modes. Equations (13) constitute a system of six
equations, three equations for laminar regime and three equations for turbulent regime. The lowest
value of stress solution of the system corresponds to the relation τ⋆-Re⋆ for initiation of motion.
Mean velocity is computed as the average flow velocity over the area of an ellipse, obtained as

the projection of the ellipsoid on a normal plane (y, z) to the flow direction (see Figs. 4, 5 and 6).
Hence,

Uα
f =

1

Sα
p

∫

Sα
p

u(y, z) dS′ , (14)

1Surface of the ellipsoid: S ≈ 4π((apbp + apcp + bpcp)/3)1/p ; p=1.6075.
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where u(y, z) is the flow velocity distribution and z is the coordinate normal to the plane (x, y);
Sα
p = πbpy/2 is the area of the ellipse, py is the value of the length of its semi–axis in the y

direction, dS′ = 2z(y)dy and

z(y) =

√

b2
(

1− 4(y − py/2)
2

p2y

)

.

By simple geometrical considerations (see Appendix), py can be computed as

py
a

= 2

[

cos

(

arctan

(
f

tanα

))

sinα+ f sin

(

arctan

(
f

tanα

))

cosα

]

. (15)

δ
⋆

d1by

xVirtual level

∆1

R

3©

π − β1t

α

P1b

γ1b

α

d1t

γ13 β13

P1t

γ1t

β1b

1©

d13

py

δ
∆2

γ13−α

Figure 4 Vertical projection py, position of the virtual level δ and position δ⋆ of the bottom of the particle respect to δ.
Horizontal tangents defined by the highest and lowest points (thick points) of the ellipse.

Limits of integration for Eq. (14) are from y=δ⋆ to y=δ⋆+py (see Figs. 4 and 5 and Dey, Sarker,
and Debnath (1999)), where δ⋆ is the distance between the virtual level (zero velocity level) and
the lowest point of the ellipsoid; δ⋆ is calculated as

δ⋆ = ξ2R
︸︷︷︸

δ

−R(1− sin(γ13 − α))
︸ ︷︷ ︸

∆1

− (d1b sin(β1b + α)− d13 sin(β13 − α))
︸ ︷︷ ︸

∆2

, (16)

where δ is the distance from the top level of the particles on the bed to the virtual level (see
thorough geometrical description in Fig. 4). Following Rijn (1984), δ=ξ2R and ξ=0.25.
For low Reynolds number (about Re⋆<1) laminar flow conditions result in linear velocity distri-

bution around the particle (see Fig. 5),

u(y, z)

u⋆
=
yu⋆

ν

with mean velocity

Uα
f =

1

Sα
p

∫

S′

u(y, z)dS′ =
1

Sα
p

∫ y=δ⋆+py

y=δ⋆

yu⋆2

ν
2z(y)dy =

pyu
⋆

ν
. (17)

8

Rafael Bravo




May 29, 2017 Journal of Hydraulic Research main
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α

W
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Figure 5 Velocity distribution for low particle Reynolds number.

For large particle Reynolds number (Re⋆≥30) velocity distribution around the particle (Fig. 6)
is

u(y, z)

u⋆
=

1

κ
log

y

y0
≈ 2.5 log

y

y0
,

where κ=0.41 is the von Karman constant and y0 is an equivalent bed roughness length. Typical
range of bed roughness length is y0 ∈ [2R/30, 2R/10], see Rijn (1984).
Mean velocity is

Uα
f =

1

Sα
p

∫

S′

u(y, z)dS′ =
1

Sα
p

∫

S′

u⋆

κ
log

(
y

y0

)

dS′ =
1

Sα
p

∫ y=δ⋆+py

y=ε

u⋆

κ
log

(
y

y0

)

2z(y)dy (18)

where ε=y0 if δ⋆<y0 (left Fig. 6), or ε=δ⋆ if δ⋆≥y0 (right Fig. 6). The integral is evaluated numer-
ically, since there is not an explicit expression.

3 Discrete element method

Analytical solution determines conditions of initial particle motion, but it is unable to reproduce
displacements subsequent to the precise initiation. Before the potential occurrence of saltation
or suspension modes, the moving particle can still be in contact with neighbouring grains (see
Fig. 3 and comments on it in Section4). To describe these incipient motions and their consequent
multiple contacts and evolutionary forces we apply a discrete element procedure.
Consider two bodies i and k. To prescribe the condition of non–penetration for the two bodies

we define the constraint

gN ik(X) =
[
X − Y (X)

]
nik ≥ 0 ,

whereX, Y designate the location of the set of points belonging to bodies i and k respectively, and
gN ik(X) is a gap function such that points are either nearby to the contrary body, gN ik(X) > 0,
or in contact, gN ik(X) ≈ 0. Closest points of the set X, Y define a local coordinate system where
nik=−nki is the normal unit vector and tik is the tangential unit vector at contact point (see
Fig. 7 and Appendix). Motion of contact points along the tangential direction is described by the
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Figure 6 Velocity distribution for large particle Reynolds number.

tangential gap gT ik as

gT ik(X) =
[
X +Qi(X)− Y (X)−Qk

(
Y (X)

)]
tik ,

where Qi(X) and Qk

(
Y (X)

)
are the displacements of the contact points of the bodies i and k,

respectively, along the tangential direction for a given time. To specify X, Y for ellipsoidal and
spherical particles we use the algorithm given by Wellmann, Lillie, and Wriggers (2008).
Contact force fc ik imposes dynamically the non–penetration condition and is written as

fc ik = |Nik| nik + |fr ik| tik .

Here, Nik and fr ik are the normal and tangential components of the contact force, respectively
(as described in Section2 and represented in Fig. 2). The sliding and rolling modes–symbolised in
Section2 by subindexes r, s and sc–are distinguished by the discrete element method through the
frictional Coulomb’s law,

Ξik = |fr ik| − µ |Nik| , (19)

where µ |Nik| is the force that produces the sliding (maximum friction force) and µ = tanψ is the
friction coefficient. Sliding arises if Ξik ≥ 0, while rolling occurs if Ξik < 0.
Contact constitutive equations relate contact force and gap functions. To model constitutive

equations we employ penalisation techniques (see Laursen (2002) and references therein). Penal-
isation techniques introduce two high stiffness elastic springs located in the contact points along
the normal and tangential directions, with stiffness KN and KT respectively (see Fig. 7) and
hence contact forces are |Nik| = KN gN ik and |fr ik| = KT gT ik (rolling), or Nik = KN gN ik

and |fr ik| = µ |Nik| (sliding). The procedure allows a little interpenetration between bodies, and
requires tuning of stiffness parameters. However, the approach is efficient since it does not need
additional unknowns (see Ch. 10 of Belytschko, Liu, and Moran (2000) for discussion). Hence, the
method reduces computational costs for problems with large number of contacts in compare with
the Lagrange multipliers technique (Belytschko and Neal (1991)).
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fc ki

gN ik(X)

g T
ik
(X

)

nki Y

X

k©

i©

KN

KT

fc ik

tki

Figure 7 Contact between two bodies: gN ik defines the maximum penetration and gT ik defines the tangential displacement.

The equations of motion for a system of nbd interacting bodies are formulated by Hamiltonian
mechanics and are solved by the discrete element method. The Equations of motion for each body
are expressed via the Hamiltonian function H defining the total energy of the system,

H
(
Qi(x, y, t),Pi(x, y, t)

)
=

nbd∑

i=1

[
K
(
Pi(x, y, t)

)
+ V

(
Qi(x, y, t)

)]
,

K
(
Pi(x, y, t)

)
=

1

2

∫

Ωi

Pi(x, y, t)
2

ρsol
dΩ ,

where Pi(x, y, t) is the linear momentum of any point at (x, y) at time t of body i, K(Pi(x, y, t)) is
the kinetic energy and V(Qi(x, y, t)) is the potential energy. Motion corresponds to the minimum
energy of the system and is given by the solution (Qi(x, y, t), Pi(x, y, t)) of the Hamiltonian
canonical equations,

Q̇i =
∂H
∂Pi

=
Pi

ρsol
; Ṗi = − ∂H

∂Qi

= −∇V
(
Qi

)
. (20)

The method approximates Eqs. (20) by a linear discrete representation of displacements and
linear momentum with nodal shape functions Ni(x, y) such that for each body i,

Qi = Niqi; Pi = Nipi . (21)

Discrete variables qi and pi are values of displacements and momentum at the centroid of the
particle. Nodal shape functions are defined as

Ni(x, y) =

[
1 0 −(y − yi)
0 1 (x− xi)

]

where (xi, yi) are the coordinates of the centroid. By replacing Eqs. (21) in Eqs. (20), we accomplish
the following discrete system of equations

q̇i = M
−1

i pi ; ṗi = fc i + fd i + fl i +Wi , i = 1, . . . , nbd , (22)

representing the discrete counterpart in Hamiltonian form for a system of particles of the analytical
balance equations given by Eqs. (1), (4), or (6). In Eqs. (22) Mi is the lumped mass matrix
containing the mass of particle i and its corresponding virtual mass, and q̇i and ṗi are the time
derivatives of the displacement and linear momentum, respectively. Time integration of Eqs. (22)
is performed by an implicit one step algorithm proposed by Bravo, Pérez-Aparicio, and Laursen
(2012). The resultant of contact forces acting on body i, fc i, and the flow-particle forces fd i and

11

Rafael Bravo




May 29, 2017 Journal of Hydraulic Research main

fl i are updated every time step since contacts, position and orientation of the particles vary in
time.

4 Analysis

To attempt results for realistic configurations of sedimentary beds we compute analytical and
discrete solutions for a variety of inclinations, particle shapes, and friction Reynolds numbers,
covering both laminar and turbulent regimes. Shape is selected by prescribing f , α, and a, while
Reynolds number is adjusted by rescaling its components. Initial bed layout (Fig. 1) is the same
for analytical and numerical solutions. Numerical solution computes critical stresses by prescribing
shear velocity, increasing its value until inception of movement is detected. Detection requires
specification of a criterion to initiation of motion. Threshold is established when particle has
passed its neighbour limit, hence rejecting any confined displacements (see Fig. 8).
Boundary layer flow of the fluid (air, ρf=1 kg/m3 and ν=10−5m2/s) is undisturbed by the

moving particle; g=9.81 m/s2, ρsol=2500 kg/m3, ψ=15◦ between particles and ψ=40◦ between
particles and boundaries (latter friction is augmented to resemble unmoving cylinders). Therefore
the small ratio between density of air and particle permits to neglect the virtual mass force. Time
increment for integration of Eqs. (22) is ∆t=0.0025 s, total number of time steps is 5000, increment
of shear velocity for each calculation is ∆u⋆=0.001m/s, bed roughness length is y0=2R/25, and
KN=KT=106N/m. Minimum length of larger semiaxis is a=5×10−5m to avoid ill–conditioned
system of equations of the discrete solution. To simulate very small Re⋆ number conditions, the
fluid viscosity is increased to ν=10−3m2/s. Figures 9 and 10 constitute an extract of the series
of numerical calculations to illustrate discussion of results. These figures show limiting stress for
the initiation of motion in terms of particle shape–via f and angle of inclination α–for several
friction Reynolds number belonging to laminar and turbulent regimes. Figures 11 and 12 plot a
selection of numerical and analytical answers superimposed to scrutinise differences between both
solutions. Figures 13–16 include analytical and numerical answers as modified Shields diagrams,
where nondimensional critical shear stress is plot in terms of friction Reynolds number, for values of
f=1.0, 0.75, 0.50, 0.25 and for values of α=0◦, 15◦, 25◦, 35◦. In the first of Fig. 13, the experimental
envelopes by Shields (1936), Miller et al. (1977), Buffington and Montgomery (1997) and the
experimental points of the previous reference complement the diagrams. For clarity, the rest of the
figures the analytical and numerical results are only compared with the widely used experimental
envelope of Shields (1936).

Confinement Stop Motion higher u⋆

Figure 8 Initiation of motion in confined situation (left). Equilibrium in a new confined situation (centre). Continuation for
higher u⋆ (right).

4.1 Results and Discussion

Area of the particle exposed to the flow is determinant of critical stress value. Area exposed
increases once inclination increases, resulting in larger average flow velocity over the area (Eqs. (14)
and (15)), and in an augmentation of drag coefficient through Eq. (10). Value of f is also relevant
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Figure 9 Critical stress in terms of f for Re
⋆=0.1, 0.5, 1. Numerical results

to the growth of exposed area, particularly for the lowest range of values of α. However, effects of f
and α are not restricted to the increase of the windswept area. Variations of shape and inclination
are also accompanied by variation of mechanical arm, significant for rolling mode, and by the
manifest change of location of forces.
Figure 9 plots numerical critical stress for three representative values of friction Reynolds number

in the laminar range, Re⋆=0.1, 0.5, and 1. For f '0.75 rolling mode determines initial motion, while
for f /0.6 mixed mode combining partial rolling, sliding and sc sliding dominate (Table 1 shows a
brief guide of critical shear stresses and an indicator of the mode). In rolling region, increase of stress
for decreasing values of f and for low inclinations is mainly ascribable to decrease of mechanical
arm once particle becomes flaky (but not enough to prevent rolling!). Instead, higher values of
inclination (α ' 15◦) contribute dominantly to enlarge mechanical arm and hence, contribute to a
reduction of stress needed to roll the particle. A monotone decrease of critical stress with increase
of angle for f '0.75 is also consistent with the corresponding increment of angle of attack, reducing
the force needed to move the particle by rolling or by sliding. This consequence is manifest for
high values of α. Furthermore, for f /0.6 the required threshold stress diminishes with decreasing
f (Fig. 9). In this range, decrement of f gives rise to a considerable reduction of the diameter of
the equivalent sphere and hence to a considerable increase of shear velocity for a given friction
Reynolds number. Ergo a reduction of critical stress value ensues from the significant growth of
mean velocity (see Eq. (17) and Fig. 5).
Figure 10 plots critical shear stress in terms of f , for different values of α, and for three friction

Reynolds number values prototypical of turbulent range, Re⋆=500, 1000, and 1500. Table 2 shows
the guide of critical shear stresses and indicators of the mode. For values of f '0.8 stress behaves
as in the laminar case, including the decrease of critical stress value for high values of α. If
f /0.8 the origin of motion occurs by a mixed mode of rolling, sliding and sc sliding, and limiting
stress grows monotonically for α < 25◦, while the starting of growth for α > 25◦ takes place for
0.5<f<0.75 (Fig. 10). This increase of demanded stress with decreasing values of f comes from
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Table 1 Limiting stress for Re
⋆=1. R rolling, M

mixed mode combining rolling, sliding, and SC slid-
ing.Numerical results.

f α = 0◦ α = 15◦ α = 25◦ α = 35◦

1.00 R 0.047 R 0.047 R 0.047 R 0.047
0.90 R 0.055 R 0.050 R 0.047 R 0.043
0.80 R 0.067 R 0.053 R 0.046 R 0.038
0.70 M 0.068 R 0.059 R 0.044 R 0.033
0.60 M 0.060 R 0.063 R 0.041 R 0.026
0.50 M 0.052 SC 0.059 M 0.038 M 0.022
0.40 M 0.045 SC 0.051 M 0.036 M 0.023
0.30 M 0.043 M 0.046 M 0.041 M 0.028
0.25 M 0.039 M 0.043 SC 0.045 M 0.030
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α = 35◦
α = 25◦
α = 15◦
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⋆

1 0.75 0.5 0.25

0.1
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0.05
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(b)
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α = 15◦
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0.075

0.05

0.025

(c)

Figure 10 Critical stress in terms of f for Re
⋆=500, 1000, 1500. Numerical results

the reduction of resultant applied force, attributable to the relevant reduction of exposed area and
to the logarithmic distribution of velocity (see Eq. (18) and Fig. 6). Otherwise, Fig. 10 shows that
in the range of low values of f and high values of α, a small increment of inclination yields to
significant reduction of critical stress.
Deviations of numerical answers from analytical answers are revealed in Fig. 11 (laminar regime)

and Fig. 12 (turbulent regime). Figures 11 and 12 plot the analytical limiting stress for rolling,
sliding and sc sliding modes along with numerical results. In the case of null or small angle of
inclination, analytical solution of critical stress for rolling, sliding, and sc sliding intersect at a point,
and minimum stress turns from rolling to sliding for decreasing values of f . Numerical solution
follows analytical rolling mode for f>0.75 (α=0◦) and for f>0.6 (α≥15◦). In both analytical and
numerical methods, range of rolling expands slightly to lower values of f with increasing α, since
mechanical arm grows. For high inclinations, rolling region in the laminar regime extends to lower
values of f than turbulent, also detailed in Tables 1 and 2. In case of small value of f , particle
starts moving by rolling and reaches an intermediate position of equilibrium; rolling puts grain
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Figure 11 Critical stress τ⋆ in terms of f and α for Re
⋆ = 1. For α = 0◦ (a), α = 15◦ (b), α = 25◦ (c) and α = 35◦ (d)
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Figure 12 Critical stress τ⋆ in terms of f and α for Re
⋆ = 1000. For α = 0◦ (a), α = 15◦ (b), α = 25◦ (c) and α = 35◦ (d)
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Table 2 Limiting stress for Re
⋆=1000. R rolling, M

mixed mode combining rolling, sliding, and SC slid-
ing. Numerical results.

f α = 0◦ α = 15◦ α = 25◦ α = 35◦

1.00 R 0.038 R 0.038 R 0.038 R 0.038
0.90 R 0.040 R 0.036 R 0.033 R 0.030
0.80 R 0.049 R 0.040 R 0.034 R 0.028
0.70 R 0.054 R 0.047 R 0.035 R 0.025
0.60 SC 0.053 R0.056 R 0.036 M 0.023
0.50 M 0.054 SC 0.059 M 0.039 M 0.022
0.40 M 0.057 SC0.063 M 0.044 M 0.025
0.30 SC 0.072 SC 0.071 M 0.054 M 0.036
0.25 M 0.079 SC 0.079 M 0.065 M 0.054

in a more horizontal position, reducing the exposed area (see sketch in Fig. 8). Subsequent states
can not be captured by analytical solution. However, numerical simulation continues until particle
passes its neighbour limit, resulting in limiting stresses higher than analytical solution. Numerical
critical stress is also higher than pure sliding, and mostly lower than sc sliding analytical stress
value.
Apart from potential practical usage, Shields’ type diagrams help to compare numerical and

analytical results with experimental results. Shields’ type diagrams are represented in Figs. 13
to 16, where critical stresses τ⋆ are plot in terms of Re⋆. To cover a wide range of shapes and
inclinations, each diagram is plot for f=1.0, 0.75, 0.5, and 0.25, while inclinations are α=0◦,
15◦, 25◦, 35◦, for Figs.13, 14, 15, and 16, respectively. Diagrams show stresses from analytical
results for each mode, from numerical results, and from experiments by Shields (1936) and their
corresponding experimental extensions from Miller et al. (1977) and Buffington and Montgomery
(1997) (for clarity, the last two experimental results are only exposed in the first of Fig. 13).
Experimental results are depicted as several bands enclosed by two curves corresponding to the
statistical limit stress values measured in the experimental cloud of points.
Two regions can be identified in Figs. 13–16, the low particle Reynolds number (left) and the

high particle Reynolds number (right). Between both regions, a range defined approximately as
4<Re⋆<30 specifies a transition region, where the representation of drag and lift given by Eqs. (9)
is not adequate due to a poor velocity profile assessment. For all orientations numerical solution
is adequately close to experimental limits if particles are nearly spherical (f '0.75). For high
inclinations, discrete computation matches laboratory results up to f '0.5. Nevertheless, once
particle becomes flaky discrete solution differs substantially from experiments. Experiments by
Shields and their subsequent extensions by other authors were performed with nearly spherical
particles, while orientation of the particle was, presumably, very difficult to control during set–up.
Similarities among stress answers are noticeable for high values of f by comparing Fig. 13(a)

(repeated as 14(a), 15(a), and 16(a) for clarity) with Fig. 14(b), Fig. 15(b), and Fig. 16(b). For
low Reynolds number numerical stress coincides with rolling analytical results, as well as for
high Reynolds number. In both regimes discrete limiting stress and analytical limiting stress by
rolling are below sliding and sc sliding analytical modes, therefore extending characteristics shown
previously to the whole range of Re

⋆ considered here. In case of low values of f , Shields type
curves also overview stresses features. In turbulent range numerical results have as upper bound
sc sliding threshold. For small inclinations, the calculations are over analytical sliding, while for
big inclinations the calculations are below analytical sliding. For laminar region, limiting stress
is again close to sc analytical mode for null or small values of inclination. For higher values of α
results have as upper limit sc sliding mode. It is interesting to observe the change produced in the
analytical rolling mode and the analytical sliding mode for turbulent range when very flat particles
get severe inclinations (see Figs. 14 (d) and 15 (d)). When inclination increases, rolling mode turns
to lower values than the two possible sliding modes, caused by a significant augmentation of the
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mechanical arm and of the exposed area.
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Figure 13 Re
⋆, τ⋆ relation for α = 0◦ and f=1.0, 0.75, 0.50, 0.25, (a), (b), (c), (d) respectively. The analytical and numerical

results compared with the experimental envelopes and points from Miller et al. (1977) and Buffington and Montgomery (1997)
for f = 1.0.

5 Conclusions

Analytical and discrete methods were developed to study the influence of shape and inclination
of ellipsoidal particles in the initiation of motion, by assessing threshold shear stress and mode of
movement. Both methods consider realistic beds by including particle micromechanics based on
contact and friction. Interaction with flow is simulated by drag and lift forces, taking into account
ellipticity and inclination of the particles.
Computed stresses fall in the band of results by Shields, consistent with the wide variety of shape

and inclination of real particles employed in the experiments. Analytical approach is essential
to understand underlying physics of the incipient motion. It is too restricted, since it models
the breakage of the equilibrium without taking into account the subsequent movements. Discrete
approach is a necessary complement to model the initiation and subsequent stages of particle
motion, circumventing the limitations of analytical at these complex configurations, where trapped
positions are frequent. Hence, discrete method assures the completion of the criterion of motion
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Figure 14 Re
⋆, τ⋆ relation for α = 15◦ and f=1.0, 0.75, 0.50, 0.25, (a), (b), (c), (d) respectively.

taking into account the change of mode of movement and shear stresses due to the variation of
orientation and position of the particle. Numerical approach has shown that subsequent kind of
motion is independent of the flow regime and is usually a combination of modes due to the change
of kinematics of the particle.
The discrete approach can be improved by using two way coupling between particle model and

flow model. To consider multiple layers of particles with random orientations and shapes, a refined
updating of dynamical conditions is necessary once relevant shape changes occur in the domain.
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Figure 15 Re
⋆, τ⋆ relation for α = 25◦ and f=1.0, 0.75, 0.50, 0.25, (a), (b), (c), (d) respectively.
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Figure 16 Re
⋆, τ⋆ relation for α = 35◦ and f=1.0, 0.75, 0.50, 0.25, (a), (b), (c), (d) respectively.
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Notation

a, b, c = Length largest, intermediate and shortest semiaxis of the ellipsoid (m)
d = Distance (m)
f = Ratio between a and b or c (–)
gN ik(X), gT ik(X) = Normal gap function and relative motion between bodies i and k at point X (m)
nbd = Total number of bodies (–)
py = Vertical projection of the large semiaxis (m)
u⋆ = Friction velocity (ms−1)
u(y, z) = Velocity distribution around the particle (ms−1)
y0 = Equivalent bed roughness (m)
xi, yi = Coordinates of point i (m)
Cα
d ,Cα

l = Drag and lift coefficients for an ellipsoid inclined an angle α (–)
Ki = Parameter containing geometric information (–)
KN , KT = Normal and tangential penalty parameters (Nm−1)
R = Radius bottom spherical particles (m)
Re, Re∗ = Reynolds and dimensionless particle Reynolds number of the equivalent sphere (–)
S = Surface (m2)
Uα
f = Mean velocity around the grain inclined an angle α (ms−1)

A, B, C, D = Dimensionless scalars containing geometrical information (–)
H, K(P ), V(Q) = Hamiltonian function, kinetic and potential energy (J)
f = Force (N)
g = Acceleration of gravity (ms−2)
nik, tik = Normal and tangent vector at contact point (–)
p, q = Momentum and displacement at centroid of particle (kgms−1)
M = Mass matrix (kg)
N = Normal contact force (N)
N = Shape function
Pi(x, y, t), Qi(x, y, t) = Momentum and displacement at point x,y and instant t particle i (m)
W = Weight of the particle (N)
X,Y = Vector with coordinates of contact point at both bodies (m)
α, βij , φij , γij = Angles (◦)
δ, ξ, ∆ = Parameters used to define the position of the virtual level (m)
�eq = Diameter of equivalent sphere (m)
ε = Limit of integration for computation of Uα

f (m)

κ = Von Karman constant (–)
ν = Dynamic viscosity of the flow
µ, ψ = Friction coefficient (–) and angle (◦)
ρ = Density (kgm−3)
τ , τ∗ = Shear and dimensionless shear stress (Nm−2), (–)
Ω = Volume of the particle (m−3)
Φ = Sphericity (–)
∑

= Summation (–)
Ξ = Coulomb’s law parameter (–)
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Appendix A. Geometry of the ellipsoid resting over two cylinders

The unknown angles β12, β13, γ12, γ13, and distances d12 and d13, from Eqs. (1), (4), and (6) are
computed by imposing that distances AB, BC, CD, DE, and EA form a polygon (Fig. 2),

R cos(γ13 − α) + d13 cos(β13 − α) + d12 cos(β12 + α) +R cos(γ12 + α) = 2R
R sin(γ13 − α) + d13 sin(β13 − α)− d12 sin(β12 + α)−R sin(γ12 + α) = 0

}

. (A1)

The system of equations is complemented with the following relations (Fig.A1),

βij = arctan (f tanφij) ; γij = arctan

(
1

f
tanφij

)

; βij = arctan
(
f2 tan γij

)
;

dij = a
√

cos2 φij + f2 sin2 φij =
a sec βij

√

1 +
tan2 βij
f2

= a

√

1 + f4 tan2 γij
1 + f2 tan2 γij

;
(A2)

where φij is an auxiliary angle not used in the balances of forces. By combining Eqs. (A1) and
(A2), coordinates of the centre of i particle can be written as

xi = R cos(γ13 − α) + d13 cos(β13 − α); yi = R sin(γ13 − α) + d13 sin(β13 − α) . (A3)

Pij

nij

y

x

a

b
α

y′

tij

x′

xi, yi

φij
βij

dij

xij , yij

γij

Figure A1 Geometry of an ellipse defined by semiaxis a, b, inclination α.

The value of py, distance between two horizontal tangents (see Fig. 4) is calculated by imposing
γ1t = π/2 − α and γ1b = −π/2− α, and by using the second of Eqs. (A2), φ1t = arctan(f/ tanα),
and φ1b = arctan(−f/ tanα). Finally, py = y1t − y1b, where y1t = a(cos φ1t sinα + f sinφ1t cosα),
and y1b = a(cosφ1b sinα+ f sinφ1b cosα), respectively.
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