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Abstract We define here a special type of bipartite graph, called 2-negative, and
prove that any 2-negative graph with total weight equal to zero can be associated
with some fold Gauss maps from a closed orientable surface.
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1 Introduction

The Gauss map on a surface generically immersed in Euclidean 3-space is described
in [2]. The singularities of a stable Gauss map, in Whitney’s sense, being fold curves
with isolated cusp points, are called the parabolic set of the surface. Each parabolic
curve in this set separates a hyperbolic region from an elliptic region of the surface.

In order to study the global behavior of the Gauss maps it is useful to codify all
the information relative to the topological type of the complement of the parabolic
set on the surface in the simplest possible way. In [10], the authors introduce the
study of graphs with weights associated with stable Gauss maps, where it has been
shown that any weighted bipartite graph can be associated to stable Gauss maps
from appropriate closed orientable surfaces.

In the particular case of the parabolic set of stable Gauss map having no cusp
points, which is called a fold Gauss map, they also prove that the number of con-
nected components to the parabolic curve (or equivalently the number of edges of
the associated graph) is even. A natural question at this point is whether there is
a special type of graph that can be associated to stable fold Gauss maps.

Our main objective here is to study the particular case of graphs with a total
weight equal to zero. In Section 3, we introduce the definition of the 2-negative
graph and in Section 5 we show that a connected graph with V vertices, E edges
and total weight equal to zero is a graph corresponding to a fold Gauss map of a
closed orientable surface, with genus E − V + 1, if and only if it is a 2-negative
graph.

∗Work partially supported by CNPq (200921/2012) and FAPEMIG (APQ-00715-14)
†Work parcially supported by DGCYT grant n◦ MTM2015-64013-P
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In order to prove this result we shall use an inductive constructive process start-
ing from simple basic graphs of well known examples and then apply suitable codi-
mension one transitions (see [3]) and surgeries (see [10]), that we describe in Section
4. The codimension one transitions of their singularities are determined through the
study of the families of height functions associated to generic 1-parameter families
of embeddings. The surgery of immersions on a closed surface consists in joining
two elliptic regions by one hyperbolic region. By means of suitable combinations
of surgeries and codimension one transitions, we can produce a required immer-
sions associated to Gauss maps. A useful factor in this process is the existence
of basic graphs with a total weight of zero (Figure 6) and one process of suitable
manipulation of the immersions of a closed orientable surface in Euclidean 3-space
that generates the fold Gauss maps associated to these graphs. These basic graphs
correspond to fold Gauss maps from torus whose two parabolic curves separate a
hyperbolic region from an elliptic disc.

2 Graphs of stable Gauss maps

Let M and P be smooth closed orientable surfaces and f, g : M −→ P smooth
maps between them. The f and g maps are A-equivalent (or equivalent) if there
are orientation-preserving diffeomorphisms, l and k, such that g ◦ l = k ◦ f . A map
f : M −→ N is said to be stable if all maps sufficiently close to f, in the Whitney
C∞-topology (see [4]), are equivalent to f .

A point of the source surface M is a regular point of f if the map f is a local
diffeomorphism around that point and singular otherwise. We denote by Σf the
singular set of a map f and its image f(Σf) is the branch set of f .

The concept of stability for a Gauss maps of a surface immersed in R3 is slightly
different from the general case of maps between surfaces in the sense that it must
depend on perturbations of the immersion rather than on those of the map itself.
Given an immersion f : M → R3 of a closed orientable surface M in R3, let
Nf : M → S2 be its Gauss map. This map Nf is said to be stable if there exists a
neighborhood Uf of f in the space I(M,R3) of immersions of M into R3 such that
for all g ∈ Uf , the Gauss map associated to g Ng is A-equivalent to Nf . It can be
seen that this condition is equivalent to stating that the family of height functions
associated to f :

λ(f) : M × S2 −→ R

(x, v) 7−→ 〈f(x), v〉 = fv(x)

is structurally stable ([2], [11]).
Then we have that two Gauss maps are A-equivalent if and only if their corre-

sponding height functions (generating families) areR+-equivalent ([1]). We observe
that in the particular case of surfaces, the stable germs of Gauss maps correspond,
geometrically, to the following situations:

- Regular points of Nf : elliptic or hyperbolic points of M, i.e. points where
the height function in the normal direction has a stable singularity of Morse type
(A1).

- Singular points of Nf : parabolic points of M, i.e. points where the height
function in the normal direction has a non stable singularity. In this case we may
have: fold point of Nf , corresponding to an A2 singularity of the height function
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in the normal direction or cusp point of Nf , when the height function in the
normal direction has a singularity of type A3.

So the singular set of Nf (ΣNf ) is the parabolic set of M associated to the
immersion f . By Whitney’s theorem (see [4]), the singular set of any stable smooth
map between two closed orientable surfaces consists of curves of fold points, possibly
containing isolated cusp points. Then, the image of ΣNf , called the branch set of
Nf , consists of a collection of closed curves immersed in S2 with possible isolated
cusps and self-intersections (double points) corresponding to parabolic points with
parallel normals of the same orientation.

This branch set is oriented as follows: as we transverse a branch curve following
the orientation, nearby points on our left have two more inverse images than those
on our right. The non-singular set (which is immersed in the surface S2 by the map
Nf ) consists of a finite number of regions.

Given the orientations of the surfaces M and S2, a region is positive if the map
preserves orientation and it is negative otherwise. We denote by M+ (resp. M−)
the union of all the positive (resp. negative) regions including their boundaries.
Clearly, M+ and M− meet in their common boundary, the singular set of Nf ,
i.e. any singular curve of ΣNf lies on the border of a component of M+ and a
component of M−. Let us denote by E the number of connected components of
ΣNf , by V + (resp. V −) the number of connected components of M+ (resp. M−),
by W+ (resp. W−) the total genus of M+ (resp. M−) and by χ(M+) (resp.
χ(M−)) the Euler characteristic of M+ (resp. M−).

The singular sets of two equivalent maps are equivalent in the sense that there
is a diffeomorphism carrying one singular set onto the other and similarly for the
branch sets. Thus any diffeomorphism invariant of singular sets or of branch sets
will automatically be a topological invariant of the map. Clearly, both the number
of connected components of the singular set and the topological types of the regions
are topological invariants.

This information was coded in a weighted graph in [10], where the pair (M,ΣNf )
may be reconstructed (up to diffeomorphism) (see [7, 8, 9]).

In the weighted graph defined by a stable Gauss map Nf the edges correspond
to the path-components of the parabolic set of M and its vertices to the different
regions of the surface with non vanishing Gaussian curvature. A weight is defined
as the genus of the region that it represents and is attached to each vertex.

A vertex has a positive (or negative) label depending on whether the region
that it represents has positive (or negative) Gaussian curvature.

We must remember that a graph is bipartite if its vertices can be divided into
two disjoint sets (labeled positive and negative in our case) such that every edge
connects vertices with opposite labels. Since M is orientable, each point of the
parabolic set is in the frontier of a positive and a negative region, and consequently
the corresponding graph is bipartite.

Notation: We denote this graph by GW (V,E), where W is the total weight
and V, E are the number of vertices and edges, respectively.

In Figure 1 we illustrate two stable Gauss map of the torus with their corre-
sponding graphs: Nf has the bipartite graph G0(2, 2) and Nh has the tree G1(2, 1).
The branch set of Nf has two curves with 4 cusp points each one with alternate
signs, nevertheless the branch set of Nh has one curve with 6 cusp points (see [2]).
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Figure 1: Example of beaks transition (B-transition).

Definition 2.1. A cusp point x ∈ ΣN is called positive (resp. negative) if its local
mapping degree, in a neighborhood Ux of x is +1 (resp. −1) with respect to the
given orientations. Let us denote by C+ (resp. C−) the number of positive cusp
points (resp. negative cusp points) and by C the total number of cusps.

Definition 2.2. A Gauss fold map is a Gauss stable map with zero cusp points.

Definition 2.3. Let GW (V,E) be a graph associated to a stable Gauss map N :
M −→ S2, where M is a closed orientable surface in R3. By using the above
notations we define by:

θC = C+ − C−, θV = V + − V −, θW = W+ −W−.

Definition 2.4. We said that a graph GW (V,E) can be realized by a Gauss map
of a surface M if and only if there exists an immersion f : M → R3 whose Gauss
map Nf has GW (V,E) as its associated graph.

The following results from stable Gauss maps were given in [10]:

Theorem 2.5 ([10]). Any weighted graph GW (V,E) can be realized by a Gauss
stable map of a closed orientable surface M in R3, with g(M) = 1 − V + E + W .
Any graph can be realized by a Gauss stable map of an embedded sphere if and only
if it is a tree with weight zero at each vertex.

By applying the degree formulae ([5]): d = 1− g(M), where g(M) is the genus
of M, we have:

Proposition 2.6. ([10]) If GW (V,E) is a graph of a stable Gauss map then

θV − θW = 1− g(M)− θC
2
.

Consequently, θC = 4 (V − −W−)− 2E.

An immediate consequence of Proposition 2.6 is the following corollary:

Corollary 2.7. If GW (V,E) is a graph of a fold Gauss map then θC = 0 and

E = 2 (V − −W−).

4



3 Special bipartite graphs: 2-negative

We pursue the necessary and sufficient conditions so that a graph can be associated
with a fold Gauss map of some closed orientable surface in R3. The Corollary 2.7
gives us a necessary condition for general graphs. We analyze in this section some
special types of bipartite graphs, in order to find a sufficient condition at least for
weight zero graphs.

Definition 3.1. A closed walk of a graph consists of a sequence of vertices and its
corresponding adjacent edges starting and ending at the same vertex. A cycle is
defined as a closed walk without repetitions of vertices. A graph without cycles is
called a tree.

Remark 3.2. A set of independent cycles is any set of cycles in a graph such
that each cycle contains at least one edge that does not belong to other cycles in
this graph. The maximum number of independent cycles in a graph is know as the
first Betti number. In the particular case of a connected graph GW (V,E) the first
Betti number is given by β(G) = V − E + 1.

Definition 3.3. The degree of a vertex v in a graph is the number of edges incident
to it. A vertex v is said to be extremal if v has degree one.

Definition 3.4. A bipartite graph, labeled positive and negative in its vertices,
without extremal vertices or all of which are positive is called a positive graph
and is called 2-negative if all its negative vertices have degree two.

Figure 2 shows three examples of 2-negative graphs: (a) tree, (b) bipartite
graph with 13 cycles and (c) bipartite graph with 15 independent cycles.

a)                        b)                                 c)

Figure 2: Examples of 2-negative graphs.

Below we analyze some of the properties of this type of graphs:

Lemma 3.5. A bipartite graph is 2-negative if and only if it is positive and E =
2V −.

Proof. All the extremal vertices of a 2-negative bipartite graph are positive by
definition. We will prove that any 2-negative bipartite graph satisfies the identity
E = 2V − by induction on the number of negative vertices. If k = 1, the 2-negative
bipartite graph has two possible configurations: one with two extremal positive
vertices and the other with one positive vertex of degree two, and both of them
have E = 2, then we have proved the base case. We now assume that the assertion
is true for any 2-negative bipartite graph with k negative vertices and suppose that
G is a 2-negative bipartite graph with k + 1. By removing a negative vertex and
the two corresponding edges, we obtain a 2-negative bipartite graph with k vertices
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G′, then E(G′) = 2k. We need to add two edges to construct a 2-negative bipartite
graph with a k+1 negative vertex, then in this case E = 2k+2. Inversely, a positive
bipartite graph with E = 2V − is 2-negative because none of its negative vertices
has degree 1.

We observe that only one of the above conditions, i.e. to be positive or E =
2V −, does not guarantee a 2-negative graph.

Theorem 3.6. A connected bipartite graph is 2-negative if and only if it is positive
and θV = 1− β, where β denotes the first Betti number of the graph.

Proof. By using the definition of Betti number of a connected graph GW (V,E)
given by V − E + 1 = β and applying the Lemma 3.5 we obtain that a connected
bipartite graph is 2-negative if and only if it is positive and θV = 1− β.

4 Tools for constructing fold Gauss maps

In order to analyze the graph associated to fold Gauss maps, we shall use transitions
in one-parameter families of height functions and surgeries in the immersions of the
corresponding surface M associated to it.

4.1 Lips and Beaks Transitions

The generic transitions in one-parameter families of height functions (defined by
generic one-parameter families of embeddings) together with their effects on the
corresponding Gauss maps have been described in [3] both in the local and multi-
local situation. According to this study, the local codimension 1 phenomena are
the following:

1. Morse transitions of the parabolic curve at a non-versal A3. This corresponds
to lips and beaks transitions in the Gauss map.

2. Birth/annihilation of a pair of cusps of the Gauss map on a smooth parabolic
curve (at an A4 point of the height function). This corresponds to a swal-
lowtail type singularity in the Gauss map.

3. Cone sections at a D±4 point of the height function (flat umbilic). Corre-
spondingly, we have the purse and the pyramid transitions for the Gauss
map.

Figure 1 illustrates a Morse transition that alters the cusp number. Here we
are interested in those transitions affecting the graphs of the Gauss maps, namely,
the beaks and the lips (see description below).

Let be M a closed orientable regular surface and N its corresponding Gauss
map. The lips transition, that we denote by L, corresponds to a Morse transition
of maximum or minimum type in the parabolic curve. It may be done in a region
of positive (or negative curvature, respectively) X of M, giving rise to a new region
with negative (positive, respectively) curvature Z. Their common boundary is a
connected component of the parabolic set whose image through the Gauss map
is a closed curve with two cusp points in S2. The effect of this on the graph of
N is to add a new edge attached to the positive (negative, respectively) vertex
corresponding to the initial region, now renamed X1 (see Figure 3).
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Figure 3: Lips and beaks transition.

Figure 4 below shows lips transitions on an embedding of the sphere with no
parabolic points. The initial graph consists of a unique positive vertex, the second
graph being made of an edge, corresponding to the newly created parabolic curve,
attached to two vertices (one positive and one negative). The branch set of this
second maps is a closed curve with two cusps.

Figure 4: Realization of the graph G0(3, 2).

The beaks transitions correspond to a Morse transition of saddle type in the
parabolic set. Such a transition occurs when we approach two arcs of the parabolic
set until they join in a common point beaks point and break again giving rise to a
new pair of arcs and as a result, a couple of cusp points are introduced in the branch
set. This process, in the sense of increasing the cusp points, can be separated into
three different cases (see Figure 3): B+-transition increases by 1 the number of
regular regions, i.e. adds a vertex and an edge on the graph of N , B−-transition
decreases by 1 the number of regular regions, therefore removes 1 vertex and 1
edge on the graph and B-transition maintains the number of regular regions but
increases the number of edges by 1 and also the weight by 1 .

Figure 4 illustrates beaks transitions (B+, B−) in a surface, starting with an
elliptical and two hyperbolic regions and ending up with two elliptical regions and
a hyperbolic region. It also shows the effect of this transition on the graph.

Remark 4.1. If G0(V,E) is a graph of a fold Gauss map with weight zero in
all vertices, by using the Corollary 2.7 we know that E = 2V −, or equivalently
θV = 1−β, with β the first Betti number of G0(V,E), and also the graph is positive
(by lips transitions).

Then by using the Theorem 3.6 we have that
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Theorem 4.2. Any graph with weight zero at each vertex associated to a fold Gauss
map of a closed and orientable surface is 2-negative.

4.2 Surgeries of fold Gauss maps

We shall now describe the surgery on the immersions, as defined in [10], that alter
the singular set of their Gauss maps, and hence their graphs, in suitable ways.

The Surgery on one closed surface M consists of joining two elliptic regions of
M with an intermediary hyperbolic region. This process is carried out by removing
two discs, one in each elliptic region and connecting a hyperbolic tube to their
boundaries and clearly this process can be done smoothly.

Remark 4.3. We observe that a lip transition L followed by a beak transition
−B− adds one hyperbolic region and two connected components to the parabolic
curve without cusp points, so that this is equivalent to applying surgery. To join
two elliptic regions, we can then use surgery (i.e. adding a hyperbolic region between
the elliptic regions). To remove this negative region, it is enough to apply a beak
transition B− which joins the singular curves and adds two cusp points, and then
using a lips transition −L to remove these cusp points.

Notation: We denote the surgery as H1 when it connects two elliptic regions
of the same connected surface and as H0 when it connects two elliptic regions of
disjoint connected surfaces.

The surgery adds two connected components but no cusp points to the parabolic
curve. This process is illustrated in Figure 5, which also shows the effect of these
surgeries on the graphs.

Figure 5: Surgeries H0 and H1 of fold Gauss maps.

We will now show how the 2-negative graph G0(2, 2) realizes through an embed-
ded torus which has a fold Gauss map (see Figure 6), where the map h indicates
the composition of all shown transitions:

a) We start by making two surgeries (H0 and H1) to two ellipsoids. This in-
troduces four new parabolic curves, which are the boundary of the two new
hyperbolic regions, and leads to a 2-negative graph G0(4, 4) (see Figure 6
(a)).

b) By applying a beak transition B− which joins two singular curves and two
hyperbolic regions, we add two cusp points in this case.

8



1
1

h

b)                                        c)                             d)

        a)                                                         e)

Figure 6: Realization of the graph G0(2, 2) by a fold Gauss map of a torus.

c) Again applying a beak transition B, we add two cusp points, join two singular
curves and introduce genus one to the hyperbolic region, and thus obtain a
torus with one hyperbolic region and two simple regions (homeomorphic to
the disc) with positive curvature.

d) We approach two cusp points through the hyperbolic region, one of each
component of the parabolic curve, and apply a −B− transition to remove
them.

e) By one −B transition we remove the genus of the hyperbolic region, trans-
forming the positive and negative region into a cylinder.

Figure 7 show four examples of 2-negative graphs realized by fold Gauss maps
of closed orientable surfaces:

a) We consider the embedded sphere in R3, by applying two transitions as in
Figure 4, and obtain a parabolic set with 4 regular curves.

b) The double torus with 8 singular curves, can be obtained by two H1 surgeries
on the embedding (a).

c) This closed orientable surface of genus 4, can be obtained by two H0 surg-
eries between the embedding of type (b) and Figure 6 (e), adding two new
hyperbolic regions and 4 singular curves.

d) This last embedding can be obtained by two B− beaks in (c), joining two sin-
gular curves and adding two cup points, and two −L lip transitions, eliminat-
ing two singular curves and its cusp points (reverse path Figure 4, removing
the two hyperbolic regions inserted by the H0 surgeries).
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a)                     b)                        c)                           d)

Figure 7: Examples of graphs realized by different Gauss fold maps.

5 Realization of weight zero graph by fold Gauss
map

This section contains and analysis of the reverse of Theorem 4.2, i.e. the existence
of some immersed surface whose fold Gauss map has a prefixed 2-negative graph
of weight zero at each vertex. We will start by considering the particular case of
trees.

Theorem 5.1. Any 2-negative tree with weight zero at each vertex can be realized
by a fold Gauss map on an embedded sphere.

Proof. If the tree has a unique vertex (0 negative vertices), obviously it can be
realized by the identity Gauss map associated to the standard embedding of S2 in
R3. When V = 3 (2-negative tree with 1 negative vertex), this graph can be realized
by using a H0 surgery between two spheres embedded in R3. We observe that the
H0 surgery between a surface associated to a fold Gauss map and the embedded S2

associated to the identity Gauss map add two vertices to the original graph (with
the corresponding edges), one negative of degree 2 (corresponding to the hyperbolic
tube) and one extremal (corresponding to the S2). So we assume that the assertion
is true for any 2-negative tree with weight zero and at least k negative vertices
and we assume that A is a 2-negative tree with weight zero and k + 1 negative
vertices. By removing one negative vertex joined to an extremal vertex (and the
corresponding edges), we obtain a 2-negative tree A′ with k negative vertex and
by using the induction hypothesis we know that A′ is realized by a fold Gauss map
N1 : S2 −→ S2. Then by using the H0 surgery between the sphere associated to
the fold Gauss map N1 and the S2 associated to the identity Gauss map we obtain
a new embedding f : S2 −→ R3 whose fold Gauss map N : S2 −→ S2 corresponds
to the graph A.

Lemma 5.2. Any 2-negative graph with total weight equal to zero such that its
cycles have at least 4 edges, can be realized by a fold Gauss map of a closed orientable
surface M, with g(M) = β, where β is the Betti number of the graph.
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Proof. Given a 2-negative graph G0(V,E) with a maximum of c independent cycles,
such that its cycles have at least 4 edges, we remove one negative vertex (degree
2) of each of these c cycles and thus we obtain a 2-negative tree A with V − c
vertices. Then, by using Theorem 5.1, A can be realized by a fold Gauss map
N1 : S2 −→ S2 and the graph G0(V,E) by a fold Gauss map of a closed orientable
surface M , obtained by applying c surgeries, of type H1, to the elliptical regions
corresponding to the positive vertex of A, which realize the c independent cycles.
Then we obtain that g(M) = c = β.

Theorem 5.3. Any 2-negative graph with total weight equal to zero can be realized
by a fold Gauss map of a closed orientable surface M, with g(M) = β, where β is
the Betti number of the graph.

Proof. Given a 2-negative graph G0(V,E), we assume that this graph has r cycles
with only two edges. By removing a negative vertex (degree 2) of each of these r
cycles, we obtain a 4-bipartite 2-negative graph G′0(V −r, E−2r). By using Lemma
5.2, this graph can be realized by a fold Gauss map N1 : M1 −→ S2 from the closed
orientable surface M1 where g(M1) = 1 − V + E − r. By applying r surgeries, of
type H0, between the surface M1 and the torus associated to the graph G0(2, 2) (see
Figure 6 (c)), we obtain a new immersion f2 : M2 −→ R3 associated to a fold Gauss
map N2 : M2 −→ S2, where M has genus 1 − V + E and the associated graph is
G0(V + c, E+ 2c) (see Figure 7 (c)). Finally, to obtain the immersion f : M −→ R3

associated to a fold Gauss maps N : M −→ S2 associated to G0(V,E), we can
remove the r hyperbolic regions (introduced to make the r surgeries) with B−

beak transitions which join two singular curves and −L transitions which remove
the hyperbolic region and the singular curve with 2 cusp point in it (reverse path
Figure 4).

Finally, by combining the Theorems 4.2 and 5.3, we obtain:

Theorem 5.4. G0(V,E) is a graph corresponding to a fold Gauss map of a closed
orientable surface if and only if G0(V,E) is a 2-negative graph.
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