

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/155061

Candel-Margaix, F.; Valero Bresó, A.; Petit Martí, SV.; Sahuquillo Borrás, J. (2019). Efficient
Management of Cache Accesses to Boost GPGPU Memory Subsystem Performance. IEEE
Transactions on Computers. 68(10):1442-1454. https://doi.org/10.1109/TC.2019.2907591

https://doi.org/10.1109/TC.2019.2907591

Institute of Electrical and Electronics Engineers

"© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works."

1

Efficient Management of Cache Accesses to
Boost GPGPU Memory Subsystem Performance
Francisco Candel, Alejandro Valero, Salvador Petit, Member, IEEE, and Julio Sahuquillo, Member, IEEE

Abstract—To support the massive amount of memory accesses that GPGPU applications generate, GPU memory hierarchies are
becoming more and more complex, and the Last Level Cache (LLC) size considerably increases each GPU generation. This paper shows
that counter-intuitively, enlarging the LLC brings marginal performance gains in most applications. In other words, increasing the LLC size
does not scale neither in performance nor energy consumption. We examine how LLC misses are managed in typical GPUs, and we find
that in most cases the way LLC misses are managed are precisely the main performance limiter. This paper proposes a novel approach
that addresses this shortcoming by leveraging a tiny additional Fetch and Replacement Cache-like structure (FRC) that stores control and
coherence information of the incoming blocks until they are fetched from main memory. Then, the fetched blocks are swapped with the
victim blocks (i.e., selected to be replaced) in the LLC, and the eviction of such victim blocks is performed from the FRC. This approach
improves performance due to three main reasons: i) the lifetime of blocks being replaced is enlarged, ii) the main memory path is
unclogged on long bursts of LLC misses, and iii) the average LLC miss latency is reduced. The proposal improves the LLC hit ratio,
memory-level parallelism, and reduces the miss latency compared to much larger conventional caches. Moreover, this is achieved with
reduced energy consumption and with much less area requirements. Experimental results show that the proposed FRC cache scales in
performance with the number of GPU compute units and the LLC size, since, depending on the FRC size, performance improves ranging
from 30% to 67% for a modern baseline GPU card, and from 32% to 118% for a larger GPU. In addition, energy consumption is reduced
on average from 49% to 57% for the larger GPU. These benefits come with a small area increase (by 7.3%) over the LLC baseline.

Index Terms—GPU, memory hierarchy, miss management.

F

1 INTRODUCTION

NOwadays, GPU (Graphics Processing Unit) architectures
have acquired a great relevance in the high-performance

computing field. One of the main reasons has been that GPUs are
energetically more efficient [11], [12] when running massively
parallel applications, since they provide a much higher level
of parallelism than their CPU counterparts with a much better
performance to power ratio. In fact, many of the current most
powerful and energy-efficient supercomputers, ranked in both the
Top500 and Green500 lists [37], rely on GPUs.

GPU architectures are optimized to run applications composed
of thousands of logical threads. Given that these applications
demand an ever-increasing amount of computational and memory
resources, successive GPU architectures include more multiproces-
sors (i.e., compute units) and a larger on-chip memory subsystem.
For instance, NVIDIA has continuously enlarged the Last-Level
Cache (LLC) size in 2MB on recent architectures (e.g., LLC sizes
of Maxwell [26], Pascal [27], and Volta [14] GPUs are 2MB,
4MB, and 6MB, respectively). Coupling GPUs with larger memory
subsystems enables a higher Memory-Level Parallelism (MLP).
However, because of the poor data temporal locality of GPU
applications, upon a fast and relatively very long burst of LLC (i.e.,
L2) accesses it is likely that a significant number of accesses miss
in the cache, requiring access to the off-chip memory, which can
severely hurt the system performance.

A straightforward solution consists of drastically increasing the

• F. Candel, S. Petit, and J. Sahuquillo are with the Department of
Computer Engineering, Universitat Politècnica de València, Spain. E-mails:
fracanma@inf.upv.es, {spetit, jsahuqui}@disca.upv.es.

• A. Valero is with the Departmento de Informática e Ingenierı́a de Sistemas,
Instituto Universitario de Ingenierı́a de Aragón, Universidad de Zaragoza,
Spain. E-mail: alvabre@unizar.es.

L2 cache size with the aim of accommodating the entire working
set of the application on chip. Unfortunately, enlarging the L2
cache not only brings much lower performance gains in GPUs than
in CPUs [9], [19], but also translates into a high area overhead
as well as a huge static energy consumption, which aggravates as
transistor size shrinks [15].

In this paper, we look into the reasons explaining the poor
performance gains of GPU memory subsystems, and we find that
a key aspect is the way L2 cache misses are managed in typical
caches. In particular, a typical cache miss management gets clogged
on fast, long bursts of cache misses, which increases memory
latencies and limits MLP. Moreover, the lifetime of memory blocks
is shortened, rising the amount of memory misses even for those
applications with low temporal locality and low cache hit ratio.

The previous rationale means that the L2 cache management
is a key design concern that should be tackled to improve the
GPU performance. This paper proposes an energy-efficient L2
cache design aimed at boosting MLP by adding a tiny Fetch and
Replacement Cache-like structure (FRC) that provides additional
reusable cache lines that help unclog the memory subsystem. The
proposed approach prioritizes the fetch of incoming L2 cache
requests and delays the eviction of the blocks, which helps alleviate
memory latencies and improve the cache hit ratio.

The proposal has been modeled and evaluated in both AMD
Polaris [3] and Vega [4] GPU architectures, although the results
would apply to most of the current GPU architectures provided that
they implement a similar memory subsystem and organization. For
instance, some NVIDIA L2 caches use a replacement algorithm
other than LRU and a 32B line size [21]. However, these charac-
teristics are orthogonal to our proposal. In particular, experiments
consider two Polaris GPU cards, namely RX540 and RX570, with
a different number of compute units and L2 cache sizes to show the

2

SIMD SIMD L1Dn-1SIMD SIMD

SIMD SIMD L1D1SIMD SIMD

MCm-1L2 bankm-1

MC0L2 bank0

L
1
-L

2
n
e
tw

o
rkCU0

CU1

CUn-1

SIMD SIMD L1D0SIMD SIMD

Fig. 1. Diagram of an AMD Polaris GPU.

scalability of FRC in terms of performance and energy, whereas
a Vega64 card is also studied to show how the proposed FRC
approach behaves with an enhanced memory subsystem using
HBM technology and a higher clock frequency.

The proposal has been modeled using the state-of-the-art
Multi2Sim [38] and CACTI [35] simulation frameworks, which
are a cycle-accurate GPU simulator and an analytical model for
both on-chip and off-chip memories, respectively, both widely used
in the academia and the industry. Experimental results show that,
compared to a conventional design, FRC improves the average
system performance (OPC) of the RX540 between 30% and 67%
depending on the FRC size, whereas these percentages rise up to
32% and 118%, respectively, for the larger RX570 GPU. Moreover,
in most applications, the performance achieved by adding a small
FRC is much higher than simply increasing the L2 cache capacity or
associativity. In addition, compared to the conventional approach,
energy savings fall in between 49% and 57% for the RX570
GPU. These benefits come with a small L2 cache area increase by
7.3% over the baseline. Finally, in spite of an improved memory
subsystem with the Vega64 GPU, the FRC approach still boosts
the average OPC from 16% to 54%.

This paper extends the work in [6] in four main ways: i)
a hardware implementation for FRC is presented, ii) FRC has
been modeled and evaluated on the recent AMD Polaris and Vega
GPU architectures, iii) performance scalability has been studied by
analyzing how FRC behaves with an increasing number of compute
units and L2 cache sizes, and iv) energy consumption and area
results are discussed.

The remainder of this work is organized as follows. Section
2 describes the architecture of the AMD Polaris family of GPUs.
Section 3 motivates this work. In Section 4, the proposed approach
is introduced. Section 5 presents the experimental results. Section
6 summarizes related studies about GPU memory subsystems.
Finally, Section 7 summarizes the paper.

2 BACKGROUND OF GPU ARCHITECTURES

This section provides some background of the architecture of
modern GPUs. Since this paper primarily uses the AMD Polaris
family of GPUs as a driving example, the AMD terminology is
used throughout this work.

Figure 1 depicts a block diagram of an AMD Polaris GPU.
This GPU includes up to 36 Compute Units (CUs), each one
implementing the 4th version of the Graphics Core Next (GCN)
[2] microarchitecture. Internally, a GCN CU consists of 4 Single
Instruction Multiple Data (SIMD) arithmetic logic units.

GPU applications or kernels are composed of a massive number
of threads or work-items. These threads are organized in 64-thread
bundles, named wavefronts, which are allocated to SIMD units.
During most of the execution time of a kernel, the GPU ensures
that each SIMD unit is assigned tens of wavefronts. In this way,
SIMD units can switch among wavefronts in a fine-grain basis,
which helps hide memory latencies.

A SIMD unit executes instructions from threads of a wavefront
in a lockstep manner. That is, at a given point of the execution time
a SIMD unit is performing the same arithmetic instruction in the 64
threads of the same wavefront. Memory reference instructions are
also executed following the SIMD paradigm; that is, a wavefront
can generate up to 64 memory requests at the same time. To reduce
the overall amount of memory requests, those referencing the same
64-byte cache block are coalesced into a single memory request,
which is issued to the memory subsystem.

As in a conventional processor, the memory subsystem is
organized hierarchically. After being coalesced, memory requests
access the L1 data cache of the corresponding CU. Those requests
that miss the L1 cache are forwarded to a multi-banked L2 cache,
acting as the LLC. L2 banks contain interleaved block addresses at
a granularity of 256 bytes, and each bank is connected to a dual-
channel memory controller (MC) that manages the corresponding
off-chip GDDR5 main memory. This design reduces the number of
channel conflicts and increases the memory bandwidth utilization.

3 MOTIVATION

3.1 Conventional Cache Miss Management

The coalesce mechanism reduces the number of requests to
the memory subsystem. However, GPGPU applications generate
enormous amounts of memory traffic; for instance, a typical GPU
can issue thousands of memory requests in a given cycle. These
amounts yield conventional cache organizations to significant
performance losses. The main reason is that the massive number
of threads executing in parallel causes sudden bursts of memory
accesses, which involve a high number of cache replacements. As
a consequence, in a relatively short interval of time, a relatively
high number of cache lines can suffer a long number (e.g., in
the order of tens) of consecutive block replacements, each one
involving different actions such as coherence invalidations or
accesses to lower levels of the memory hierarchy. Since these
actions are serialized at each cache line, the management of cache
replacements becomes a major performance bottleneck, which can
heavily increase memory latencies and reduce the MLP and the L2
hit ratio.

To help understand the problem, Figure 2 plots a time diagram
with the events involved in three consecutive replacements, all of
them targeting the same L2 line. The three requests causing these
replacements have been labeled as Req. B, C, and D, and have been
generated at cycles 0, 90, and 240, respectively, after the requests
miss the L1 cache and are forwarded to the L2 cache.

As can be seen in Figure 2a, which shows the behavior of a
conventional replacement approach, Req. B triggers the replacement
of the currently stored block (block A). From this point forward,
the line storing the victim block is in a transient state (represented
in dashed lines), preventing other requests from accessing the
line. To manage the replacement, depending on the state of A, an
invalidation to the L1 cache and an L2 cache eviction should be

3

CUs events L2 line

Inv. A

Evict A

Fetch B

FRC
0

FRC
1

Req. B

Req. C

Req. D Inv. B

Evict B

Fetch C

Inv. C

Evict C

Fetch D

B
lo

c
k

A
B

lo
c
k

B
B

lo
c
k

C
B

lo
c
k

D

swap

swap

swap

100

200

0

300

400

500

600

Inv. A

Evict A

Fetch B

Fetch C

Inv. B

Evict B

Inv. C

Evict C

Fetch D

Resp. D

Resp. D

L2 line

Resp. B

Resp. C

Resp. C

Resp. B

(a) Conventional (b) FRC approach

T
im

e

Fig. 2. Sequence of events involved in three consecutive replacements
targeting the same L2 cache line for both the conventional and the
proposed approaches.

performed. Once the line is released, the requested incoming block
(B), must be fetched from main memory and written in that line.

While block B is being fetched, Req. C arrives to L2, which
triggers another replacement in the same line. However, because
the line is in a transient state, Req. C must be enqueued. Thus, Req.
C cannot be handled until cycle 210, delaying its completion until
cycle 400. This serialization also affects Req. D at cycle 240.

Delaying requests increases memory latencies and reduces MLP.
Moreover, the hit ratio is also reduced, since i) the invalidation
and eviction of the victim block are performed before fetching
the requested block, and ii) the fetch operation is the longest one
involved in a replacement due to the high main memory latencies.
As an example, even if a complex protocol allows reading the
contents of a cache line while it is in a transient state, a memory
instruction accessing to block A would only hit between cycles 0
and 90, and would miss afterward.

3.2 A Novel Cache Miss Management Approach

The proposed approach is aimed at improving MLP and LLC hit
ratio while reducing miss latencies. With these aims, we implement
a Fetch and Replacement Cache (FRC) in each L2 cache bank. The
FRC provides additional cache lines that allow to i) start fetching
from memory as soon as an L2 miss is detected, which reduces the
miss latency and increases the MLP, and ii) delaying invalidation
and eviction actions until the requested block is fetched, which
enlarges the lifetime of victim blocks and the overall hit ratio.

Figure 2b shows how the FRC can help improve the manage-
ment of consecutive replacements in the same line. By cycle 10,
when Req. B misses in the L2 cache, instead of invalidating the
victim block (i.e., block A), a free FRC entry (FRC0) is allocated
and used to fetch block B. After this block is fetched, the contents
of the line storing block A and FRC0 are swapped. Then, the
invalidation and eviction of block A are performed from FRC0,
which is freed when the eviction is completed. In this way, fetch
actions can be immediately start as long as there are free FRC
entries (e.g., the fetch of block C can start in parallel at cycle
90). To ensure that there are free FRC entries, they are recycled.
Thus, once block A is replaced, FRC0 is freed, which allows this

entry to be used later by Req. D. Recycling entries allows FRC to
be smaller and thus more efficient than conventional approaches
regarding energy consumption and area overhead.

The swap operation guarantees that the line storing the victim
block is never in a transient state (note the lack of dashed lines in
the plot below the L2 line of Figure 2b), and that the invalidation
and eviction of the victim block are performed after the requested
block is fetched. Consequently, FRC supports a higher cache level
parallelism that allows responding to several requests at the same
time. Furthermore, compared to the conventional approach, the
lifetime of the victim block is enlarged when FRC is used.

Overall, as experimental results will show, the FRC has three
main positive impacts on performance: i) reduces the memory
access latency, ii) enlarges the lifetime of L2 cache blocks, and iii)
exploits a higher MLP.

3.3 Potential FRC Performance Benefits
This section explores the potential performance benefits of the FRC
approach and where they come from. To this end, the proposal
is compared against two approaches, a fully-associative (FA) L2
cache and an FA L2 cache working together with a victim cache
(FA+VC). The FA scheme is sized with the same number of entries
as our experimental baseline (see Section 5 for further experimental
details) and it is used to check the benefits coming from reducing
the conflict misses. Notice that FA imposes an upper-bound for
performance with respect to alternative set mapping strategies [25].
On the other hand, the FA+VC scheme is chosen to compare the
potential benefits of a victim cache compared to our approach. In
order to explore the potential performance, experiments assume that
the additional structures (both VC and FRC) have an unbounded
number of entries.

Performance is evaluated for the RX540 GPU in terms of
Operations Per Cycle (OPC) and average number of execution
cycles per wavefront in a kernel. The OPC is a performance metric
analogous to the IPC, which is used to evaluate conventional
processors [5]. An operation refers to the work performed by an
individual thread when executing its corresponding part of a SIMD
instruction. For instance, in our experimental platform, a SIMD unit
can execute instructions from up to 64 threads, each one performing
a scalar operation, which accounts for 64 operations. Regarding
the execution cycles, they are split in two main categories referred
to as compute cycles and memory cycles. The former indicates
the mean time a wavefront is executing instructions and the latter
the mean time a wavefront is blocked because it is waiting for a
memory access.

For illustrative purposes, a pair of benchmarks showing two
common and representative behaviors are presented (see Section 5).
Figure 3 shows the results. As observed, for DCT, the FA cache

B
a
se FA

FA
+

V
C

FR
C

0

20

40

Color

0

500

1000

C
y
cl

e
s

/
W

F

B
a
se FA

FA
+

V
C

FR
C

0

100

200

300

O
P
C

DCT

0

200

400

C
y
cl

e
s

/
W

F

OPC Compute time Memory time

60

O
P
C

Fig. 3. Operations Per Cycle (left Y-axis) and average execution cycles
split in compute and memory cycles (right Y-axis) for the studied
approaches.

4

Serve miss

Does
FRC set have

any free
entries?

Allocate a
free FRCi

entry

Evict
victim
line

Fetch target
block and

store it in the
victim line

L2 miss

Fetch target
block and

store it in the
FRCi entry

Swap FRCi

entry and
victim line

Evict
FRCi

entry

Free
FRCi

entry

No

Yes

Fig. 4. Block diagram with the steps followed on an L2 miss. Those steps
introduced with the FRC are highlighted in gray color.

improves performance (i.e., OPC in the left Y-axis) by 6% over
the baseline thanks to reducing the number of conflict misses. On
the other hand, no performance gains can be observed in Color,
where long bursts of cache accesses many times exceed the cache
capacity, and capacity misses dominate over conflict misses. In this
application, the OPC is improved by 137% over the baseline when
adding the VC, which helps to reduce capacity misses; however, the
VC slightly helps in DCT since capacity misses are not as critical as
in Color. The main reason is that Color is a memory-intensive
kernel, where memory cycles dominate over compute cycles. On
the contrary, in DCT, the compute cycles dominate the execution
time, hence, little can be done by enlarging the cache capacity with
a VC.

To sum up, it can be concluded that to enlarge the L2 cache size
and/or to increase its associativity either directly or indirectly (i.e.,
with an additional memory structure) can improve the performance
in some (especially memory-bounded) applications but it cannot
in some others (compute-bounded). However, looking at the FRC
with the same number of entries as the FA+VC approach but with a
different data management, the system performance is significantly
boosted in both kernels (by 29% and 163% for DCT and Color,
respectively). The main reason is that the primary aim of FRC
is not only to reduce the number of either conflict or capacity
misses but to improve the MLP and to further reduce the memory
access latency. Notice too that, for the FRC, the average time a
wavefront is blocked for memory is smaller with respect to the
other approaches so that, taking into account all the wavefronts of
the kernel together, it turns into significant performance gains.

4 FRC IMPLEMENTATION

Figure 4 illustrates a block diagram with the steps involved on an
L2 cache miss. The highlighted steps in gray color correspond to
the proposed FRC approach. Upon an L2 miss (both in the L2 bank
and the FRC), and if there are free entries in the target FRC set, the
block is assigned to an FRC entry and the access is forwarded to
the lower memory hierarchy level. This process is referred to as an
early fetch. Once the early fetch is performed, the missing data can

L2
tags

Miss

Access L2
data

Hit

FRC
data

F
R

C
v
a
lid

b
it
s

MC

Hit

Miss

F
u
ll

F
R

C
s
e
t

Swap

FRC
tags

Swap

Free
FRC
entry

Fig. 5. FRC hardware block diagram.

be already delivered to the processor. In this way, the victim block
eviction is taken out of the critical path. To manage the eviction
without leaving L2 cache lines in a transient state, the data stored
in the FRC entry and the line storing the victim block (victim line)
are swapped. Thereby, the eviction is handled from the FRC entry.
Once the eviction finishes, the FRC entry is freed and enabled to
handle subsequent L2 misses. In case that there is no free entry in
the target FRC set, the FRC approach works like the conventional
approach.

Figure 5 depicts a hardware block diagram of the FRC approach.
The main focus of this paper is not to deal with the optimal
implementation but on providing some insights on the design. A
refined design for enhanced performance is beyond the scope of
this paper. The FRC is plotted within the gray box, and, similarly to
the L2 cache, includes the FRC tag and data arrays. For illustrative
purposes, the valid bits are plotted in a different box. The access to
the L2 tags and the FRC tags are performed sequentially and this is
the way modeled in the experimental results. In practice, however,
these structures can be indexed with the target block address in
parallel or within the same cycle to avoid any latency penalty.

On an L2 cache access, the tags of the target set are looked up
on a first stage. On an successful tag comparison, the requested
block is retrieved from the L2 data array on a second stage and the
FRC is not used. Otherwise, the FRC tags are looked up. On a miss
in both the L2 and FRC tag array, a free block entry in the target
FRC set is sought. Depending on whether the FRC set has a free
entry or not, the fetched block from main memory is written into
the FRC or the L2, respectively. In the former case, once the fetch
completes, the L2 victim block is swapped with the FRC block. On
the other hand, that is, on a hit in the FRC tag array, the request is
served by the L2 data array. In this case, the request waits until the
swap operation completes.

Finally, note that the FRC approach does not affect the state of
the cache blocks, thus, it does not affect the coherence protocol.

5 EXPERIMENTAL EVALUATION

The FRC approach has been modeled and evaluated with the
Multi2Sim [38] simulation framework. The simulation results
include performance metrics and cache memory statistics required
to compute the overall energy consumption.

We focus on the AMD Polaris GPU architecture. The RX540
GPU [2] has been modeled, including CUs, L1 and L2 caches,
memory controllers, and GDDR5 memory modules [5]. The RX540
consists of 8 CUs, each one implementing the 4th version of the
GCN core. The L2 cache is composed of two 32-way 256KB banks,
which has been used as the baseline configuration.

5

0

40

80

120
O
P
C

2DConv

0

40

80

120
3MM

0

25

50

75
BC

0

25

50

75
Color

0

100

200

300

400

O
P
C

DCT

0

50

100

150
DwtHaar1D

0
100
200
300
400
500

HotSpot

0

50

100

150

200
Kmeans

0

10

20

30

O
P
C

MatrixTranspose

0

100

200

300

400
MersenneTwister

0

10

20

30

40
MIS

0

10

20

30

40
PRK

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0
100
200
300
400
500

O
P
C

QuasiRandomSequence
2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

50

100

150
Reduction

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

50

100

150

200
ScanLargeArrays

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0
100
200
300
400
500

SobelFilter

Fig. 6. Operations Per Cycle (OPC) of the RX540 across the studied applications.

The FRC consists of the L2 conventional cache plus two addi-
tional FRCs (one per bank). We analyze the performance sensitivity
of our approach to the number of FRC entries, ranging from 4
(256B) to 512 (32KB) entries. All the evaluated configurations,
except the smallest one, are organized as 8-way set-associative
caches1. As mentioned above, the FRC is compared to the FA and
FA+VC approaches. Experiments assume a fully-associative 32KB
VC per bank, which matches the tested maximum FRC size. In
addition, two conventional L2 caches consisting of two 32-way
512KB banks and two 32-way 1024KB banks are also evaluated.
All the memory structures implement 64B lines.

To study the FRC performance scalability, we modeled the
RX570 GPU with the same Polaris architecture as the RX540 GPU,
but including up to 32 CUs and 8 L2 cache banks.

CACTI [35] has been used to estimate timing, energy, and area
of the proposal. We have assumed a 32nm technology node and a
1.2GHz clock frequency. All the FRC caches are small enough to
fit their access time within 1 clock cycle, whereas a swap operation
is estimated to take 3 cycles to complete. Despite their fully-
associative geometry, for comparison purposes, we conservatively
assume the access time of the VCs to be the same as the FRCs.
Regarding the L2 cache, it has been modeled with a 10-cycle access
latency regardless of the cache geometry and capacity. The reader
is referred to Section 5.4.1 for further experimental details about
energy consumption.

Results have been obtained for 29 benchmarks from the
OpenCL SDK [1], Rodinia [8], Pannotia [7], and PolyBench [29]
benchmark suites. For illustrative purposes, a subset of 16 bench-
marks are shown. All the benchmarks are run until completion.

5.1 System Performance Analysis
Figure 6 shows the OPC achieved by the RX540 GPU for the
studied benchmarks. The red bar on the left side of each plot

1. Higher associativity has been explored for enhanced performance. How-
ever, the marginal performance gains do not compensate the extra energy
and area consumption. Therefore, all the presented results assume 8-way
associativity.

represents the 2×256KB L2 baseline cache, and the four red bars
on the right side represent the 2×256KB FA L2 cache, the FA L2
cache with a 2×32KB VC (FA+VC), the 2×512KB L2 cache, and
the 2×1024KB L2 cache, respectively. The black bars show results
of the proposal varying the number of entries per FRC from 4 to
512, labeled as +Ne, where N indicates the number of entries.

The proposed approach achieves, across most of the studied
applications (14 out of 16), OPC improvements higher than
10% over the baseline, reaching improvements up to 200% in
applications such as Kmeans and PRK. It can be observed that
OPC improves, in general, as the number of entries increases up
to 64 or 128, where it saturates in most applications. In most
of the benchmarks, the proposal performs better than blindly
increasing the L2 cache associativity and capacity. Enlarging the
cache capacity enhances the performance over a higher number of
ways in benchmarks like Color, PRK, and Reduction.

According to the FRC performance, three behaviors can be
appreciated:

• Smooth OPC increase. The OPC of applications exhibiting
this behavior, which is the common case, gradually in-
creases with additional FRC entries until a given saturation
point, which is achieved with a small FRC of 64 or 128
entries. Examples are DCT, MatrixTranspose, and
ScanLargeArrays.

• Sharp OPC increase. This behavior show a significant
performance increase with just 4 FRC entries, but no
remarkable OPC improvement is observed with additional
entries. This is the case of Kmeans.

• Similar OPC. Applications in this category experience the
same performance across all the studied cache approaches.
This is the case of 3MM and HotSpot, mainly due
to their relatively low number of memory accesses, as
shown in Section 5.2. Of course, the OPC of this type of
applications is neither affected when either enlarging the
cache associativity or capacity.

Overall, FRC boosts the OPC between 30% (+4e) and 67%

6

0

1

2

3

M
P
K
O

2DConv

0

0.25

0.5

0.75
3MM

0

2.5

5

7.5
BC

0

10

20

30
Color

0

0.25

0.5

0.75

1

M
P
K
O

DCT

0

1

2

3
DwtHaar1D

0

0.1

0.2

0.3
HotSpot

0

2.5

5

7.5

10
Kmeans

0

2.5

5

7.5

M
P
K
O

MatrixTranspose

0

0.25

0.5

0.75
MersenneTwister

0

5

10

15

20
MIS

0
10
20
30
40
50

PRK

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

0.1

0.2

0.3

0.4

M
P
K
O

QuasiRandomSequence
2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0
1
2
3
4
5

Reduction

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

0.5

1

1.5

2
ScanLargeArrays

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

0.25

0.5

0.75
SobelFilter

Fig. 7. Misses Per Kilo-Operation (MPKO) in the L2 cache of the RX540.

(+512e) on average compared to the baseline. These values drop
to 20% and 27% for the 512KB and 1024KB caches, respectively,
and they are less than 10% for the FA schemes.

5.2 Memory Subsystem Performance Analysis
To provide insights into the OPC trend shown by the RX540 GPU,
this section evaluates the memory hierarchy performance.

5.2.1 Misses Per Kilo-Operation
Misses per Kilo-Operations (MPKO) can be defined with analogous
meaning to the MPKI (Misses Per Kilo-Instruction), widely used
to study the cache hierarchy of the CPU counterparts. Figure 7
depicts the results. By adding FRC entries, the MPKO is reduced
on average between 23% (+4e) and 31% (+512e) compared to
the baseline approach. Moreover, the MPKO can be completely or
mostly eliminated in applications like Kmeans and PRK. Note that
in both benchmarks, FA+VC provides significantly lower MPKO
reductions than FRC. This is because FRC does not only enlarge
the lifetime of victim blocks (as a victim cache does) but also
because it keeps them in a non-transient state. As a consequence,
the number of hits improves over the conventional approaches.

Overall, an inverse correlation between OPC and MPKO
can be appreciated. For kernels with a near-zero MPKO, (e.g.,
below 1) one might expect that increasing the number of hits
would not improve the OPC. Examples are 3MM and HotSpot.
However, there are applications with an MPKO lower than
1 like DCT, QuasiRandomSequence, MersenneTwister,
and SobelFilter, which improve their OPC with FRC. In
order to explain this behavior, memory latency and bandwidth
consumption are analyzed below.

5.2.2 Memory Latency and Bandwidth Consumption
L2 cache misses can be handled by either normal cache entries
or FRC entries, however, FRC handles misses faster than the L2
cache since, part of the main memory latency is hidden by moving
eviction and invalidation actions out of the critical path. In other

words, the higher the number of misses handled by FRC the better
the performance.

Figure 8 plots the average L2 miss latency results (excluding
the actual DRAM access time without contention), quantified in
clock cycles. The miss latency is split in three main components
according to its causes (see Figure 2): invalidations, evictions, and
fetches (L2 to MM). The former category is due to invalidating
and writing back (if necessary) the L1 copies of the blocks that are
evicted from L2. The eviction category accounts for the latency due
to evicting L2 blocks and writing back their data to main memory.
Finally, the fetch latency refers to the time fetching target blocks
but excluding the actual DRAM access time. That is, its value is
only affected by main memory contention.

The use of FRC entries reduces the average L2 miss latency
in some applications. Especially, the latency caused by evictions
is removed in most applications with 512 FRC entries. The figure
shows that the FRC approach also improves performance due to
latency reduction. In particular, BC, MersenneTwister, and
QuasiRandomSequence, which do not benefit from MPKO
improvement, present a significant reduction in memory latencies
ranging from 84% to 93% over the baseline. In contrast, in some
applications like 2DConv, DCT, DwtHaar1D, Reduction, or
ScanLargeArrays the miss latency increases, in spite of
removing the eviction latency.

To provide insights on this increase, Figure 9 shows the traffic
in bytes per cycle from the L2 cache to main memory and vice
versa. It can be seen that the traffic rises in these applications with
the number of FRC entries. This is because adding more entries
enables a higher MLP. In turn, such an MLP increases memory
contention and L2 to memory latency, but also improves OPC since
the memory latency growth can be partially hidden by the GPU
massive parallelism, while the higher MLP enhances the system
throughput.

7

0

25

50

75

L
a
te
n
c
y

2DConv

0

10

20

30
3MM

0
50

100
150
200
250

BC

0

250

500

750
Color

0
10
20
30
40
50

L
a
te
n
c
y

DCT

0

100

200

300

400
DwtHaar1D

0

5

10

15

20
HotSpot

0

250

500

750

1000
Kmeans

0

10

20

30

40

L
a
te
n
c
y

MatrixTranspose

0

100

200

300
MersenneTwister

0

100

200

300

400
MIS

0

250

500

750

1000
PRK

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

600

1200

1800

L
a
te
n
c
y

QuasiRandomSequence

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

150

300

450

600
Reduction

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

100

200

300
ScanLargeArrays

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

25

50

75
SobelFilter

Fig. 8. Average L2 miss latency (excluding main memory access time) in processor cycles for the RX540.

0

5

10

15

20

b
y
te

s
 p

e
r

c
y
c
le 2DCONV

0
1
2
3
4
5

3MM

0

10

20

30

40
bc

0

10

20

30
color

0

5

10

15

20

b
y
te

s
 p

e
r

c
y
c
le DCT

0

10

20

30
DwtHaar1D

0
1
2
3
4
5

hotspot

0

10

20

30
kmeans

0

2.5

5

7.5

10

b
y
te

s
 p

e
r

c
y
c
le MatrixTranspose

0

5

10

15
MersenneTwister

0

10

20

30

40
mis

0

10

20

30
prk

2
5

6
K

B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

F
A

F
A

+
V

C

5
1

2
K

B

1
0

2
4

K
B

0

2.5

5

7.5

10

b
y
te

s
 p

e
r

c
y
c
le QuasiRandomSequence

2
5

6
K

B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

F
A

F
A

+
V

C

5
1

2
K

B

1
0

2
4

K
B

0

10

20

30
Reduction

2
5

6
K

B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

F
A

F
A

+
V

C

5
1

2
K

B

1
0

2
4

K
B

0

10

20

30
ScanLargeArrays

2
5

6
K

B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

F
A

F
A

+
V

C

5
1

2
K

B

1
0

2
4

K
B

0

5

10

15

20
SobelFilter

Fig. 9. Traffic from the L2 to main memory and vice versa on the RX540.

5.3 Impact on Performance of Increasing the Number
of Compute Units

The previous sections have focused on the performance of the
RX540 GPU consisting of 8 CUs and 2 L2 cache banks. FRC,
however, is expected to behave better compared to the other
approaches with additional computational power and memory
subsystem capabilities, since a higher L2 contention is expected.
This section studies the FRC performance in the RX570 GPU,
which implements 4× more compute units (32 CUs) and L2 cache
banks (8 banks).

Figure 10 presents the OPC results. As expected, this GPU
outperforms the smaller RX540 GPU. Results also show that,
compared to the same baseline, OPC improvements of the proposal
are higher than those achieved by the RX540 GPU. In most
benchmarks, OPC improvements range from 40% to 300%,
whereas these percentages fall down to 10% and 200%, respectively,
for the RX540 GPU. To sum up, these results point out that the
FRC approach performs even better with a larger L2 and potentially
higher memory level parallelism.

Overall, FRC improves OPC between 32% (+4e) and 118%

8

0
100
200
300
400
500

O
P
C

2DConv

0

100

200

300

400
3MM

0

50

100

150

200
BC

0

50

100

150

200
Color

0

500

1000

1500

O
P
C

DCT

0
100
200
300
400
500

DwtHaar1D

0

400

800

1200

1600
HotSpot

0

250

500

750
Kmeans

0

10

20

30

40

O
P
C

MatrixTranspose

0

400

800

1200
MersenneTwister

0

25

50

75

100
MIS

0

50

100

150
PRK

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

500

1000

1500

2000

O
P
C

QuasiRandomSequence
2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

100

200

300

400
Reduction

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

250

500

750
ScanLargeArrays

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

500

1000

1500

2000
SobelFilter

Fig. 10. Operations Per Cycle (OPC) of the RX570 across the studied applications.

0

1

2

3

M
P
K
O

2DConv

0

0.05

0.1

0.15
3MM

0

4

8

12
BC

0
5

10
15
20
25

Color

0

0.4

0.8

1.2

M
P
K
O

DCT

0
1
2
3
4
5

DwtHaar1D

0

0.5

1

1.5
HotSpot

0

2.5

5

7.5

10
Kmeans

0

10

20

30

M
P
K
O

MatrixTranspose

0

0.5

1

1.5

2
MersenneTwister

0

10

20

30

40
MIS

0

10

20

30

40
PRK

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

0.25

0.5

0.75

M
P
K
O

QuasiRandomSequence

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

2.5

5

7.5

10
Reduction

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

1

2

3

4
ScanLargeArrays

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

0.5

1.0

1.5
SobelFilter

Fig. 11. Misses Per Kilo-Operation (MPKO) in the L2 cache of the RX570.

(+512e) on average with respect to the baseline cache. These
percentages are by 22% and 50% for the 512KB and 1024KB
caches, respectively. Note that all these configurations also improve
the mean OPC achieved by RX540. However, as the next section
will show, such a performance boost comes at the cost of a greater
energy consumption and area overhead. For the FA schemes, the
OPC improvement remains below 10%. To find out the reason
why the RX570 GPU gets a higher improvement than the RX540,
the MPKO and memory latencies for this GPU have been also
studied. Figure 11 shows the MPKO results. Although the total
cache capacity increases with the number of CUs, the MPKO rises
in a high number (11 out of 16) of kernels with respect to the
RX540 GPU because of the higher level of parallelism. Despite

this fact, MPKO values of the FRC approach are similar to those of
the RX540 GPU, with average MPKO reductions from 20% (+4e)
to 48% (+512e) over the baseline.

Memory latencies are reduced in the RX570 GPU, as shown in
Figure 12, because the memory traffic is distributed among more
memory controllers. As a consequence, this GPU brings higher
OPC improvements. Moreover, in the RX570, the FRC approach
almost eliminates the eviction related latency and, in general, it is
able to drop latency close to zero across most of the applications
(remember that this latency does not include the main memory
module access time). Therefore, memory contention is not an issue
in the RX570, which enables further throughput improvements
thanks to the MLP increase achieved by the proposal.

9

0
10
20
30
40
50

L
a
te
n
c
y

2DConv

0

5

10

15

20
3MM

0

25

50

75

100
BC

0

25

50

75

100
Color

0

10

20

30

40

L
a
te
n
c
y

DCT

0

25

50

75

100
DwtHaar1D

0

2

4

6
HotSpot

0

50

100

150

200
Kmeans

0

40

80

120

L
a
te
n
c
y

MatrixTranspose

0

200

400

600
MersenneTwister

0
50

100
150
200
250

MIS

0

50

100

150

200
PRK

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

100

200

300

400

L
a
te
n
c
y

QuasiRandomSequence

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

150

300

450
Reduction

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

50

100

150
ScanLargeArrays

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0
10
20
30
40
50

SobelFilter

Fig. 12. Average L2 miss latency (excluding main memory access time) in processor cycles for the RX570.

5.4 Energy Consumption

This section presents the methodology used to estimate both
static and dynamic energy. Then, energy results are discussed
for the larger RX570 GPU. We restrict the study to such a GPU
because its size helps understand the impact of our proposal in
high-performance computing.

5.4.1 Methodology

The three main FRC operations are accesses, fetches, and swaps.
The FRC is accessed on every L2 tag miss, which triggers an
FRC tag look-up. Upon a hit, the requested block is read from
the L2 data array. A fetch operation causes a write operation of
the fetched block from main memory to either the FRC or the L2
cache, depending on whether the target FRC set has free entries
to allocate the incoming block or not, respectively. Note that such
a write operation involves writing both the tag and data arrays.
Finally, a swap operation is performed after an FRC fetch, and
involves four steps: i) reading the victim block from L2, ii) reading
the fetched block from the FRC, iii) writing the FRC block to L2,
and iv) writing the L2 block to the FRC.

CACTI has been used to quantify the dynamic energy of each
type of operation. Then, these numbers are multiplied by the
number of times that each operation occurs during the entire kernel
execution. Static energy overheads of L2 and FRC caches are
quantified considering the execution time. Execution related events
have been gathered from Multi2Sim simulations.

5.4.2 Results

Figure 13 plots the total energy consumption (in mJ) of the baseline,
FRC, 2× sized, and 4× sized L2 caches. The L2 and FRC energy
contributions are split into static and dynamic energy. The FRC
dynamic energy is in turn divided into access, fetch, and swap
expenses. In addition, the dynamic energy of a 2GB GDDR main
memory (MM) module is also studied.

Compared to the energy consumption of the L2 and FRC caches,
the consumption of the main memory represents a significant
fraction of the overall consumption in most benchmarks and cache
configurations. By reducing the number of accesses to this device,
the FRC approach reduces such expenses over the conventional
schemes. Some benchmarks showing this behavior are Color,
MersenneTwister, and Reduction. Moreover, this energy
contribution is mostly eliminated in Kmeans and PRK.

Focusing exclusively on the L2 and FRC caches, the static
expenses dominate over dynamic expenses in most applications.
This is mainly due to dynamic energy is consumed only upon
a cache access, whereas static energy is consumed along time
regardless of the cache is being accessed or not. In addition, the
accesses to the tag and data arrays of both the L2 and FRC caches
are serialized, meaning that the data array is only accessed in case
of tag hit, which helps mitigate dynamic energy.

As expected, static energy increases with the L2 cache size. In
comparison, the much smaller and less associative FRCs present
low static energy consumption. In fact, FRC configurations present
much lower static energy than the baseline in some applications
like DwtHaar1D and MatrixTranspose. This is because the
FRC approach highly improves the system performance in such
kernels (see Section 5.3); thus, the number of execution cycles and
static energy are significantly reduced over the baseline. In addition,
FRC configurations with 256KB L2 caches consume much less
static energy per cycle than conventional schemes with 512KB and
1024KB caches.

Compared to the baseline approach, those kernels with a
heavy use of FRC entries like 2DCONV and MersenneTwister
increase the dynamic consumption with the number of FRC entries,
especially due to swaps, which translate to up to 4 different cache
operations as mentioned above. Nevertheless, notice that, despite
FRCs consuming more dynamic energy than the baseline, the
total consumption is very similar (e.g., 2DCONV) or even reduced
in some kernels (e.g., MersenneTwister) thanks to energy

10

0

10

20

30

40

E
n
e
rg

y
 (

m
J)

2DConv

0

20

40

60

80
3MM

0

0.2

0.4

0.6
BC

0

2.5

5

7.5

10
Color

0

10

20

30

40

E
n
e
rg

y
 (

m
J)

DCT

0

5

10

15
DwtHaar1D

0

0.1

0.2

0.3
HotSpot

0

100

200

300
Kmeans

0

10

20

30

40

E
n
e
rg

y
 (

m
J)

MatrixTranspose

0

1

2

3
MersenneTwister

0

1

2

3

4
MIS

0

100

200

300
PRK

2
5

6
K

B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

5
1

2
K

B

1
0

2
4

K
B

0

2

4

6

E
n
e
rg

y
 (

m
J)

QuasiRandomSequence
2

5
6

K
B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

5
1

2
K

B

1
0

2
4

K
B

0

10

20

30
Reduction

2
5

6
K

B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

5
1

2
K

B

1
0

2
4

K
B

0

20

40

60
ScanLargeArrays

2
5

6
K

B

+
4

e

+
8

e

+
1

6
e

+
3

2
e

+
6

4
e

+
1

2
8

e

+
2

5
6

e

+
5

1
2

e

5
1

2
K

B

1
0

2
4

K
B

0

1

2

3

4
SobelFilter

Fig. 13. Energy consumption of the RX570 including the L2 cache banks and the main memory.

15.46 15.71 15.76 15.86 16.02 16.06 16.13 16.3116.59

28.47

54.39

15

20

25

30

35

40

45

50

55

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

5
1
2
K
B

1
0
2
4
K
B

A
re
a
(m
m
2
)

Fig. 14. Area (in mm2) of the cache configurations for the RX570 GPU.

savings in both the dynamic main memory and static L2 energy.
Furthermore, the total energy of FRC caches does not surpass that
of 512KB and 1024KB caches.

Overall, the FRC approach obtains energy savings from 49%
(+4e) to 57% (+512e) on average with respect to the baseline
cache. Compared to the 512KB L2 cache, these percentages grow
up to 62% and 67%, respectively.

5.5 Area Estimation

This section analyzes the area requirements of the proposed
FRC approach. The area numbers include not only the tag and
data arrays of the modeled caches, but also the cache controller
peripherals (e.g., comparators, decoders, multiplexers, and sense
amplifiers). Figure 14 shows the area (in mm2) of the studied cache
configurations. The presented numbers are for the RX570 GPU
and refer to the 8 L2 cache banks plus the coupled FRC caches
with each bank (if any).

The area overhead of the FRC schemes ranges from 1.6%
(+4e) to 7.3% (+512e) compared to the baseline L2 cache without
FRC. Nevertheless, these overheads are largely reduced compared
to those of the much larger 512KB and 1024KB caches, whose
cache capacities would translate into 4096 and 8192 FRC entries,

respectively, per bank. The area overheads of these caches are up
to 84.2% and 251.9%, respectively, over the baseline scheme.

5.6 Impact on Performance of Improved Memory Sub-
system and Clock Frequency
In the Vega architecture [4], the most recent GPU generation from
AMD to date, the GDDR5 main memory modules from the Polaris
architecture are replaced with HBM modules in the GPU package.
The HBM technology offers a higher memory bandwidth compared
to GDDR5. In addition, the recent trend in new GPU generations
is not only to improve the memory subsystem but also the GPU
clock frequency.

This section evaluates the performance behavior of the FRC
approach under a Vega64 GPU, which consists of 64 CUs, 16 L2
cache banks, and a clock frequency of 1.5GHz. This study not
only evaluates scalability under additional computational power
and memory subsystem capabilities (see Section 5.3) but also an
improved memory subsystem and a higher clock frequency has
been considered.

Figure 15 shows the OPC results for the Vega64 GPU. The
Vega64 presents better OPC values with respect to the RX540
and RX570 across all the studied benchmarks thanks to the
improved computational and memory capabilities and higher
memory bandwidth. This fact does not prevent the FRC from
boosting the OPC over the baseline cache in most applications.
Although the average OPC improvements are not as high as those
from the RX540 and RX570 GPUs, the FRC still boosts the OPC
from 16% (+4e) to 54% (+512e) compared to the 256KB L2
cache. In this study, the 4× sized cache also reaches an average
OPC improvement of 54% over the baseline. However, such a
performance would be achieved with a greater energy consumption
and area as discussed above.

6 RELATED WORK

Prior work focusing on the GPU memory subsystem can be
classified into works aimed at primarily improving either system
performance or energy consumption, which are summarized in this
section.

11

0

200

400

600

800
O
P
C

2DConv

0

150

300

450

600
3MM

0

100

200

300
BC

0

100

200

300
Color

0

500

1000

1500

2000

O
P
C

DCT

0

250

500

750

1000
DwtHaar1D

0

1000

2000

3000

4000
HotSpot

0

250

500

750

1000
Kmeans

0

50

100

150

O
P
C

MatrixTranspose

0

500

1000

1500
MersenneTwister

0

50

100

150

200
MIS

0

50

100

150
PRK

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

1000

2000

3000

O
P
C

QuasiRandomSequence
2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

500

1000

1500
Reduction

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

500

1000

1500
ScanLargeArrays

2
5
6
K
B

+
4
e

+
8
e

+
1
6
e

+
3
2
e

+
6
4
e

+
1
2
8
e

+
2
5
6
e

+
5
1
2
e

F
A

F
A
+
V
C

5
1
2
K
B

1
0
2
4
K
B

0

1000

2000

3000

4000
SobelFilter

Fig. 15. Operations Per Cycle (OPC) of the Vega64 across the studied applications.

6.1 System Performance

The GPU memory subsystem performance has been widely
analyzed in recent years from different perspectives including cache
bypassing techniques [18], [20], [28], and optimization techniques
of the memory subsystem design [17], [10], [24], [39], [13]. This
section summarizes prior work in this regard.

Elastic-Cache [17] supports fine-grained L1 cache line man-
agement for kernels with irregular memory access patterns that
do not efficiently exploit cache space. Auxiliary tags for fine-
grained cache line management are stored in unused shared memory
space, which is not fully occupied by many kernels. Gebhart et
al. [10] propose to dynamically adjust the storage partitioning
among registers, primary caches, and scratchpads depending on
the kernel memory requirements, resulting in a reduction of the
on-chip access latencies. IBOM [24] is an integrated architecture
that leverages unused register file entries with lightweight ISA
support to enlarge the L1 cache size. With enough cache capacity,
a set balancing technique exploits underutilized sets to improve
cache usage.

Other works have proposed additional memory structures to
improve GPU performance. Taylor and Chang [22] investigate the
effectiveness of adding a victim buffer to the L1 cache, and show
that victim buffers with a relatively low number of lines obtain the
same performance as doubling the L1 cache size. Wang et al. [39]
incorporate a victim cache between L1 and L2 that presents the
same capacity and associativity as the L1 cache. Reused blocks are
kept in the L1 cache by enabling swap operations with the victim
cache. Since a victim cache so large would impact on energy and
area, unused entries from the register file and shared memory are
proposed as an alternative to holding data that otherwise would
remain in the victim cache. MRPB [13] is a memory-request
priorization buffer that allows reordering and bypassing memory
requests before they access the L1 cache. After being captured by
the MRPB buffer, memory requests are released into the cache in a
cache-friendly order to reduce cache thrashing and stalls.

Other research work has focused on memory and wavefront

scheduling strategies [23], [34], [31].

6.2 Energy Consumption

Research addressing energy consumption in on-chip GPU caches
has been done from different points of view including adaptive
cache management techniques such as bypassing, thread throt-
tling, indexing schemes, fine-grained fetching, and power-gating
techniques [36], [9], [16], [30], [40], using alternative memory
technologies to SRAM for on-chip storage [15], [32], and the
proposal of additional on-chip memory structures [33].

Tian et al. [36] prevent streaming one-time-use blocks into
the L1 cache with a dynamic bypass prediction technique. The
proposed technique saves energy by avoiding useless cache
insertions and evictions. Chen et al. [9] propose to protect the
memory hierarchy from contention with a bypass policy based
on reuse distance. Besides, this policy is combined with a thread
throttling technique that dynamically controls the active number of
threads in order to mitigate the contention and resource congestion.
Reducing both the memory hierarchy contention and congestion
translates into energy savings with respect to a conventional
approach. IACM [16] is an integrated architecture combining
Chen’s bypassing and thread throttling techniques with an L1
cache indexing scheme. IACM dynamically determines the cache
indexing bits that can mitigate cache thrashing and contention
based on the runtime information of GPU kernels. LAMAR [30]
is a technique that facilitates a fine-grained control of DRAM
data fetches for those blocks with low spatial and temporal
locality, reducing the energy-hungry traffic between on- and off-
chip memory. This technique is combined with a bloom-filter
predictor to adjust the fetching granularity at runtime. Wang et
al. [40] mitigate the leakage energy consumption by putting both
L1 and L2 caches in a state-retentive sleep mode when there are no
ready threads to be scheduled and no memory requests, respectively.
The effectiveness of the mechanism lies in the fact that the power
on/off latencies are completely hidden.

12

Alternative high-density and low-leakage memory technologies
have been used to implement energy-efficient GPU memory
subsystems. Jing et al. [15] implement the GPU register file, shared
memory, and L1 cache with eDRAM technology. The refresh
penalty introduced by eDRAM is mitigated with the proposal
of refresh mechanisms assisted by the compiler. Samavatian et
al. [32] use STT-RAM technology to implement L2 caches. The
main shortcomings of STT-RAM are the high energy and latency
of write operations, which are addressed by reducing the data
retention time thanks to the kernel data behavior.

Finally, additional memory structures have been also used
for energy efficiency. In [33], the authors propose to allocate
TinyCaches between each lane in a CU and the L1 cache to filter
out memory requests to lower memory levels and save on-chip
energy. By leveraging intrinsic characteristics of GPU programming
models, these caches are kept non-coherent to avoid incurring
additional overheads.

7 CONCLUSIONS

This paper has shown that the way Last-Level Cache (LLC) misses
are handled in typical GPUs acts as a major performance limiter.
To deal with this shortcoming, this work has presented a novel
GPU cache subsystem design that leverages a tiny Fetch and
Replacement Cache-like structure (FRC) between the LLC and
the main memory. The design provides additional cache lines that
allow prioritizing the fetch of incoming LLC cache blocks over
the replacement of victim blocks. The proposed design boosts
the system performance by increasing the MLP, improving the
lifetime of the victimized blocks and removing eviction latencies
from the critical path. Moreover, the small size of the FRC
provides additional benefits regarding energy consumption and
area compared to merely enlarging the LLC size.

The FRC attacks by design three main cache performance
related issues, which results in a much better LLC cache manage-
ment: i) it reduces the number of MPKO by keeping victim blocks
in cache until fetch actions are completed, ii) it reduces the miss
latency by starting the fetch actions from main memory as soon as
a cache miss rises, and iii) it increases the MLP by unclogging new
block requests whose target line is already being replaced.

Experimental results have shown that, compared to a conven-
tional LLC design, the FRC increases the average OPC by 67%.
In addition, the proposal also presents a high scalability, since it
provides more performance benefits in a larger GPU, whose average
OPC grows up to 118% over the baseline. Moreover, compared
to a GPU using the recent HBM technology to implement the
main memory modules, FRC improves the average OPC up to 54%
over the conventional design. Such benefits come from a reduction
of MPKO due to a higher availability of the contents of victim
blocks as well as a reduction of miss latencies due to removing
unnecessary serializations and eviction penalties from the critical
path. We also found that in some kernels, latency increases because
of the higher MLP, which causes additional contention accessing
main memory. Nevertheless, this latency increase is not enough
to constrain the performance improvements given by the MLP
growth.

Results have also shown that the energy overhead of adding a
small FRC with just tens of entries is largely compensated by its
effectiveness, reaching energy savings up to 57% compared to the
conventional design. These savings come with less than a 7.3% of
LLC area increase.

Finally, evaluating the FRC approach considering also private
L1 caches is planned as for future work.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministerio de Ciencia,
Innovación y Universidades and the European ERDF under Grants
T-PARCCA (RTI2018-098156-B-C51), and TIN2016-76635-C2-
1-R (AEI/ERDF, EU), by the Universitat Politècnica de València
under Grant SP20190169, and by the gaZ: T58 17R research group
(Aragon Gov. and European ESF).

REFERENCES

[1] AMD. AMD Accelerated Parallel Processing (APP) Software Develop-
ment Kit (SDK) . http://developer.amd.com/sdks/amdappsdk/, 2011.

[2] AMD. AMD Graphics Cores Next (GCN) Architecture White Paper.
https://www.amd.com/documents/gcn architecture whitepaper.pdf, 2012.

[3] AMD. RadeonTM. Dissecting the Polaris Architecture. http://radeon.com/
downloads/polaris-whitepaper-4.8.16.pdf, 2016.

[4] AMD. Radeon’s next-generation Vega architecture. https://en.wikichip.
org/w/images/a/a1/vega-whitepaper.pdf, 2017.

[5] F. Candel, S. Petit, J. Sahuquillo, and J. Duato. Accurately Modeling
the On-chip and Off-chip GPU Memory Subsystem. Elsevier Future
Generation Computer Systems, 82:510–519, 2018.

[6] F. Candel, S. Petit, A. Valero, and J. Sahuquillo. Improving the GPU
Cache Hierarchy Performance with a Fetch and Replacement Cache. In
Proceedings of the 24th International European Conference on Parallel
and Distributed Computing, pages 235–248, 2018.

[7] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron. Pannotia:
Understanding Irregular GPGPU Graph Applications. In Proceedings of
the IEEE International Symposium on Workload Characterization, pages
185–195, 2013.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing.
In Proceedings of the IEEE International Symposium on Workload
Characterization, pages 44–54, 2009.

[9] X. Chen, L. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W. Hwu.
Adaptive Cache Management for Energy-Efficient GPU Computing. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 343–355, 2014.

[10] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally.
Unifying Primary Cache, Scratch, and Register File Memories in a
Throughput Processor. In Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 96–106, 2012.

[11] A. Glenis and S. Petridis. Performance and Energy Characterization
of High-performance Low-cost Cornerness Detection on GPUs and
Multicores. In Proceedings of the 5th International Conference on
Information, Intelligence, Systems and Applications, pages 181–186, 2014.

[12] S. Huang, S. Xiao, and W. Feng. On the Energy Efficiency of Graphics
Processing Units for Scientific Computing. In Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing, pages
1–8, 2009.

[13] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory Request
Prioritization for Massively Parallel Processors. In Proceedings of the
IEEE 20th International Symposium on High Performance Computer
Architecture, pages 272–283, 2014.

[14] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting the
NVIDIA Volta GPU Architecture via Microbenchmarking. CoRR, 2018.

[15] N. Jing, L. Jiang, T. Zhang, C. Li, F. Fan, and X. Liang. Energy-
Efficient eDRAM-Based On-Chip Storage Architecture for GPGPUs.
IEEE Transactions on Computers, 65(1):122–135, 2016.

[16] K. Y. Kim, J. Park, and W. Baek. IACM: Integrated Adaptive Cache Man-
agement for High-Performance and Energy-Efficient GPGPU Computing.
In Proceedings of the IEEE 34th International Conference on Computer
Design, pages 380–383, 2016.

[17] B. Li, J. Sun, M. Annavaram, and N. S. Kim. Elastic-Cache: GPU
Cache Architecture for Efficient Fine- and Coarse-Grained Cache-Line
Management. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, pages 82–91, 2017.

[18] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou.
Locality-driven Dynamic GPU Cache Bypassing. In Proceedings of the
29th International ACM Conference on Supercomputing, pages 67–77,
2015.

13

[19] Y. Liang, X. Xie, G. Sun, and D. Chen. An Efficient Compiler Framework
for Cache Bypassing on GPUs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 34(10):1677–1690, 2015.

[20] Y. Liang, X. Xie, Y. Wang, G. Sun, and T. Wang. Optimizing Cache
Bypassing and Warp Scheduling for GPUs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(8):1560–
1573, 2018.

[21] X. Mei and X. Chu. Dissecting GPU Memory Hierarchy Through
Microbenchmarking. IEEE Transactions on Parallel and Distributed
Systems, 28(1):72–86, 2017.

[22] E. M.Taylor and D. W.Chang. Studying Victim Caches in GPUs. In
Proceedings of the 26th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, pages 394–398, 2018.

[23] S. Mu, Y. Deng, Y. Chen, H. Li, J. Pan, W. Zhang, and Z. Wang.
Orchestrating Cache Management and Memory Scheduling for GPGPU
Applications. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(8):1803–1814, 2014.

[24] S. Mu, Y. Deng, Y. Chen, H. Li, J. Pan, W. Zhang, and Z. Wang. IBOM:
An Integrated and Balanced On-Chip Memory for High Performance
GPGPUs. IEEE Transactions on Parallel and Distributed Systems,
29(3):586–599, 2018.

[25] C. Nugteren, G. van den Braak, H. Corporaal, and H. Bal. A Detailed
GPU Cache Model Based on Reuse Distance Theory. In IEEE 20th
International Symposium on High Performance Computer Architecture,
pages 37–48, 2014.

[26] NVIDIA. NVIDIA GeForce GTX 980 Whitepaper.
https://international.download.nvidia.com/geforce-com/international/
pdfs/GeForce GTX 980 Whitepaper FINAL.PDF, 2014.

[27] NVIDIA. NVIDIA Tesla P100 Whitepaper. https://images.nvidia.com/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf, 2016.

[28] Y. Oh, K. Kim, M. K. Yoon, J. H. Park, Y. Park, W. W. Ro, and
M. Annavaram. APRES: Improving Cache Efficiency by Exploiting
Load Characteristics on GPUs. In Proceedings of the 43rd International
Symposium on Computer Architecture, pages 191–203, 2016.

[29] L.-N. Pouchet. Polybench: The Polyhedral Benchmark Suite. http:
//web.cse.ohio-state.edu/∼pouchet.2/software/polybench/.

[30] M. Rhu, M. Sullivan, J. Leng, and M. Erez. A Locality-Aware Memory
Hierarchy for Energy-Efficient GPU Architectures. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 86–98, 2013.

[31] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-Conscious
Wavefront Scheduling. In Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 72–83, 2012.

[32] M. H. Samavatian, M. Arjomand, R. Bashizade, and H. Sarbazi-Azad.
Architecting the Last-Level Cache for GPUs Using STT-RAM Technol-
ogy. ACM Transactions on Design Automation of Electronic Systems,
20(4):55:1–55:24, 2015.

[33] A. Sankaranarayanan, E. K. Ardestani, J. L. Briz, and J. Renau. An Energy
Efficient GPGPU Memory Hierarchy with Tiny Incoherent Caches. In
Proceedings of the International Symposium on Low Power Electronics
and Design, pages 9–14, 2013.

[34] A. Sethia, D. A. Jamshidi, and S. Mahlke. Mascar: Speeding up GPU
Warps by Reducing Memory Pitstops. In Proceedings of the IEEE 21st
International Symposium on High Performance Computer Architecture,
pages 174–185, 2015.

[35] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi.
A Comprehensive Memory Modeling Tool and its Application to the
Design and Analysis of Future Memory Hierarchies. In Proceedings
of the 35th Annual International Symposium on Computer Architecture,
pages 51–62, 2008.

[36] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A. Jiménez.
Adaptive GPU Cache Bypassing. In Proceedings of the 8th Workshop on
General Purpose Processing Using GPUs, pages 25–35, 2015.

[37] Top500.org. Top500 Supercomputer Sites, http://top500.org.
[38] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A

Simulation Framework for CPU-GPU Computing. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques, pages 335–344, 2012.

[39] J. Wang, F. Fan, L. Jiang, X. Liang, and N. Jing. Incorporating Selective
Victim Cache into GPGPU for High-performance Computing. Wiley
Concurrency and Computation: Practice and Experience, 29(24):1–11,
2017.

[40] Y. Wang, S. Roy, and N. Ranganathan. Run-Time Power-Gating in Caches
of GPUs for Leakage Energy Savings. In Proceedings of the Design,
Automation Test in Europe Conference Exhibition, pages 300–303, 2012.

Francisco Candel received the BS and MS
degrees in computer engineering from the Uni-
versitat Politècnica de València (UPV), Spain,
in 2012 and 2014, respectively. He is currently
working towards a PhD degree at the Department
of Computer Engineering (DISCA) of the same
university. His PhD research focuses on GPU
modeling and efficient memory hierarchies for
future GPUs.

Alejandro Valero received the Ph.D. degree
in Computer Engineering from the Universitat
Politècnica de València, Spain, in 2013. From
2013 to 2015, he was a Visiting Researcher with
Northeastern University, Boston, Massachusetts,
and the University of Cambridge, United Kingdom.
Since 2016, he has been an Assistant Profes-
sor with the Department of Computer Science
and Systems Engineering at the University of
Zaragoza, Spain. His current research interests
include GPU architecture, memory hierarchy de-

sign, energy efficiency, and reliability. In 2012, Dr. Valero received the
Intel Doctoral Student Honor Program Award.

Salvador Petit (M’07) received the PhD de-
gree in computer engineering for the Universitat
Politècnica de València (UPV), Spain. Since 2009,
he has been an Associate Professor with the
Computer Engineering Department, UPV, where
he has been teaching several courses on com-
puter organization. He has authored over 100
refereed conference and journal papers. His cur-
rent research interests include multithreaded and
multicore processors, memory hierarchy design,
GPU architecture, and resource management. Dr.

Petit is a member of the IEEE Computer Society. In 2013, he received
the Intel Early Career Faculty Honor Program Award.

Julio Sahuquillo (M’04) received the BS, MS,
and PhD degrees from the Universitat Politècnica
de València, Spain, all in computer engineer-
ing. He is a Full Professor with the Depart-
ment of Computer Engineering at the Universitat
Politècnica de València. He has taught several
courses on computer organization and architec-
ture. He has authored over 150 refereed confer-
ence and journal papers. His current research
interests include multi- and manycore proces-
sors, memory hierarchy design, cache coherence,

GPU architecture, and architecture-aware scheduling. Dr. Sahuquillo is a
member of the IEEE Computer Society.

