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REPRESENTATION AND FACTORIZATION THEOREMS FOR

ALMOST-Lp-SPACES

J.M. CALABUIG1, O. GALDAMES BRAVO2, M.A. JUAN3, E.A. SÁNCHEZ PÉREZ1

Abstract. We extend the notions of p-convexity and p-concavity for Banach

ideals of measurable functions following an asymptotic procedure. We prove

a representation theorem for the spaces satisfying both properties as the one
that works for the classical case: each almost p-convex and almost p-concave

space is order isomorphic to an almost-Lp-space. The class of almost-Lp-spaces

contains, in particular, direct sums of (infinitely many) Lp-spaces with different
norms, that are not in general p-convex —nor p-concave—. We also analyze

in this context the extension of the Maurey-Rosenthal factorization theorem

that works for p-concave operators acting in p-convex spaces. In this way we
provide factorization results that allow to deal with more general factorization

spaces than Lp-spaces.

1. Introduction

Representation theorems for Banach function spaces and factorization theorems
for operators between these spaces are fundamental tools in the theory of Banach
lattices. Regarding representation theorems, the most classic, the so called Kaku-
tani’s Representation Theorem, states that abstract Lp-spaces are lattice isomorphic
to Lp(µ) for some scalar measure µ. On the other hand, a lattice which is both
p-convex and p-concave is lattice isomorphic to an abstract Lp-space and, therefore,
lattice isomorphic to an Lp-space. This result can be obtained as a consequence
of a general theory that relates these geometric inequalities with factorization of
operators through Lp-spaces.

The objective of this work is to extend these lattice geometric notions to include
in the class of associated spaces others that are not considered in the classical theory.
This is for instance the case of `∞, c0 and direct sums with q-norms of Lp-spaces
for q 6= p. In order to do it, we study the main properties of a class of Banach
ideals of measurable functions. This class of spaces, called almost-Lp-spaces, were
introduced in [9, S.4.1] as a tool for obtaining characterizations of factorization
spaces (see [9, Th.4.1]) for p-th power factorable operators (see [14, Ch.4]). These
almost-Lp-spaces are in some way related to the topic discussed in Chapter IV of [3].
There, complemented subspaces of Lp-spaces associated to direct sums are studied.
However, our spaces are not in general Lp-spaces or subspaces of these spaces,
but nevertheless inherit many good properties of Lp-spaces. Moreover, they act as
factorization spaces for operators “in an Lp-style”. That is, in the manner of the
classic results that nowadays are known as Maurey-Rosenthal Factorization Theory
(see for instance [5, 10, 13, 15]). Recall that the Maurey-Rosenthal Theorems allow
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to factor p-concave operators defined from p-convex Banach function spaces through
Lp-spaces.

Due to the relevance of their applications, the so called variable exponent Lp-
spaces have also been studied recently (see for example [6, 7, 8] and the references
therein). In a sense, they can also be considered as asymptotic versions of the
classical Lebesgue spaces, but their definition is not related to ours. Some other
attempts of asymptotic generalizations of the main lattice geometric properties of
the Lp-spaces —p-convexity and p-concavity— for Banach lattices and operators
between them can be found in [4, 16]. However, the notions appearing there —
mainly based on interpolation construction— are not related to the ideas developed
here.

The paper is divided as follows. After this introductory section, in the next one
we present the class of the almost-Lp-spaces, providing also the canonical examples
of that kind of spaces. In the third section we study the family of almost-Lp-spaces:
first in the general setting (see Theorem 3.2) and secondly by introducing additional
lattice properties as the Fatou property (Proposition 3.5) and the order continuity
property (Proposition 3.6). In particular, we also show that the classical sequence
spaces are almost-Lp-spaces (see Example 3.3). In the fourth and final section we
provide the corresponding factorization theorems in this context (see Proposition
4.1 and Theorem 4.4).

2. Notation and preliminaries

Given a complete finite measure space (Ω,Σ, µ), a Banach function space X(µ)
(B.f.s. for short) is a space of (classes of µ-a.e.) measurable real valued func-
tions such that if f is measurable, g ∈ X(µ) and |f | ≤ |g| then f ∈ X(µ) and
‖f‖X(µ) ≤ ‖g‖X(µ). These spaces are sometimes called Banach ideals of the space

L0(µ), consisting of classes of µ-a.e. equal measurable functions. The closed unit
ball of X(µ) will be denoted by BX(µ). If f is an element of a B.f.s X(µ), we
write supp(f) for its (µ-a.e. defined) support. If X(µ) and Z(µ) are B.f.s., we
write M(X(µ), Z(µ)) for the space of functions that define multiplication operators
between X(µ) and Z(µ). That is the space of all measurable µ-a.e. equal functions
g such that g · X(µ) ⊆ Z(µ). Endowed with the natural operator norm, it is a
Banach function space over µ. The reader can find more information about these
spaces in [2, 17, 18].

For 1 ≤ p < ∞, a linear mapping T from a Banach space into a Banach lattice
is said to be p-convex if there is a constant M such that∥∥∥∥∥(

N∑
k=1

|T (xk)|p
)1/p∥∥∥∥∥ ≤M(

N∑
k=1

‖xk‖p
)1/p

,

for each finite set of vectors x, . . . , xN in the domain of T . The smallest such M is

denoted by M (p)(T ). In a similar way if for a linear map T from a Banach lattice
into a Banach space the inequality

( N∑
k=1

‖T (xk)‖p
)1/p ≤M ∥∥∥∥∥(

N∑
k=1

|xk|p
)1/p∥∥∥∥∥ ,
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holds for each finite set of vectors x, . . . , xN in the domain of T , the map T is called
p-concave. Now the smallest such M is denoted by M(p)(T ). When the identity
map from a Banach lattice into itself is p-convex (resp. p-concave) then the Banach
lattice is said to be p-convex (resp. p-concave). The reader is referred to [1, 12] for
the unexplained terminology.

Through this paper we will use —often without an explicit explanation— restric-
tions and extensions of Banach function spaces when the support set is restricted
and extended. Let us explain these notions. Let A ∈ Σ. The complement of the
set A is denoted as usual by Ac := Ω \ A. The restriction to A of the measure
space is denoted by (Ω ∩ A,ΣA, µA), where ΣA := {B ∩ A : B ∈ Σ}, which is a
σ-algebra over A, and µA(B) := µ(B), where B ∈ ΣA. Let X(µ) be a B.f.s. The
space X(µA) of functions in X(µ) restricted to A is still a B.f.s. endowed with the
norm ‖f‖X(µA) := ‖fχA‖X(µ). Note that if A ∈ Σ with µ(A) = 0, then X(µ) and

X(µAc) are clearly order isomorphic and isometric.

Now we are ready for giving the main definition of this paper.

Definition 2.1. Let (Ω,Σ, µ) be a finite measure space. A B.f.s. X(µ) is said to
be an almost-Lp-space if for every ε > 0, there exists Aε ∈ Σ with µ(Aε) < ε such
that the restriction X(µAcε) is order isomorphic to an Lp-space. This means that
there is a finite (positive) measure µ̃ supported on Acε and acting in ΣAcε such that
X(µAcε) = Lp(µ̃) with equivalent norms. Note that in this case µ and µ̃ are also
equivalent.

Following the definition, just taking Aε = Ø for all ε > 0, we have that an
Lp-space is also an almost-Lp-space. Now, let us present a class of spaces that are
in a sense the canonical examples of almost-Lp-spaces.

Example 2.2. Consider a Lebesgue measurable disjoint partition (Bn) of [0, 1], µ
Lebesgue measure, and the space X(µ) =

⊕
n L

p(µBn) that is endowed with the
norm

‖f‖X(µ) :=

∞∑
n=1

‖fχBn‖Lp(µBn ), f ∈ X(µ).

Since limr→∞
∑∞
n=r µ(Bn) = 0, we have that for each ε > 0 there exists r0 ∈ N

—depending on ε— such that
∑∞
n=r0

µ(Bn) < ε. Therefore let us take Aε =⋃∞
n=r0

Bn ∈ Σ which satisfies µ(Aε) < ε. Then X(µAcε) is a finite sum of disjoint

Lp-spaces (with the 1-norm), that is order isomorphic to an Lp-space. Consequently,
X(µ) is an almost-Lp-space.

We finish this section with a useful (and well-known) result regarding the repre-
sentation theory of Banach lattices by means of Lp-spaces. The reader can find the
main original results on this point of view for the representation of p-convex and
p-concave Banach lattices in the papers by Krivine [10], Rosenthal [15] and Maurey
[13] (see also [11]).

Remark 2.3. The well known representation theory for the Lp-spaces allows to write
the abstract ones appearing in Definition 2.1 as concrete spaces as Lp(gdµ). Here
g1/p defines a (norm one) multiplication operator belonging to M(X(µ), Lp(µ)).
Although several classical arguments allow to prove this, we prefer the following
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direct one: Corollary 5 in [5] gives that if X(µ) is an order continuous p-convex
Banach function space over µ, a p-concave linear operator T : X(µ) → E can be
extended to such a space Lp(gdµ). Just taking the identity map id: X(µ)→ X(µ)
as operator T , we get that it factors through Lp(gdµ) by means of the identity map.
This leads to the equality of X(µ) and Lp(gdµ) with equivalent norms. That is,
there are constants k,K > 0 such that

k‖f‖X(µ) ≤ ‖f‖Lp(gdµ) ≤ K‖f‖X(µ), f ∈ X(µ).

3. The structure of the almost-Lp-spaces

In this section we will describe the almost-Lp-spaces. Following Example 2.2
we start this section with a result which clarifies the nature of the elements of
the spaces as classes of measurable functions on an almost-Lp-space. Observe that
given a B.f.s. X(µ) and given A ∈ Σ, the decomposition f = fχA + fχAc for all
f ∈ X(µ) provides the decomposition X(µ) = X(µA)⊕X(µAc).

Theorem 3.1. Let µ be a finite measure and X(µ) an almost-Lp-space for 1 ≤
p <∞. Then there exist

(1) a disjoint partition (Bn) ⊆ Σ of Ω, and
(2) a sequence (gn) ⊆ L1(µ) satisfying that supp(gn) ⊆ Bn for all n ∈ N,

such that each f ∈ X(µ) is a µ-a.e. limit of a series defined by a disjoint sequence
(fn), where fn ∈ Lp(gndµ) for all n ∈ N.

Proof. Let ε > 0. Then there exists Aε ∈ Σ with µ(Aε) < ε so that X(µAcε) is order
isomorphic to an Lp-space. If δ > 0 is any other real number then there exists also
a measurable set Aδ ∈ Σ so that µ(Aδ) < δ and X(µAcδ) is also order isomorphic to
an Lp-space.

Claim. If Aε∩Aδ = Ø, then X(µ) is order isomorphic to an Lp-space. Let us prove
that. Since it is trivial that

X(µ) = X(µAε)⊕X(µ(Aε∪Aδ)c)⊕X(µAδ),

it will be enough to study the different situations that can occur regarding the
values of the measure over the sets involved. Suppose that µ(Aε) = 0; then X(µ)
and X(µAcε) are order isomorphic and the claim is done. The case for µ(Aδ) = 0 is
analogous. If µ(Aε) ·µ(Aδ) 6= 0, since X(µAε) ⊆ X(µAcδ) and X(µAδ) ⊆ X(µAcε), it
is clear that both, X(µAε) and X(µAδ), are order isomorphic to Lp-spaces, and so
the same happens with the direct sum of these spaces. Thus, the study reduces to
the behavior of X(µ(Aε∪Aδ)c). Now, if µ(Aε ∪Aδ)c = 0, then X(µ) is order isomor-
phic to X(µAε)⊕X(µAδ) and again the proof is done. Finally, if µ(Aε ∪Aδ)c 6= 0,
taking into account that (Aε ∪ Aδ)c ⊆ Acε, we have that X(µ(Aε∪Aδ)c) ⊆ X(µAcε).
Thus, X(µ) is order isomorphic to a (finite) direct sum of Lp-spaces, and then order
isomorphic to an Lp-space.

Let us continue with the proof. Since the case when X(µ) is order isomorphic
to an Lp-space is trivial, we will assume that X(µ) is not (order isomorphic to) an
Lp-space. Therefore, taking into account the claim we can assume that Aε∩Aδ 6= Ø
for every ε 6= δ and ε, δ > 0. Consider the sequence given by εn = 1/n for all n ∈ N.
Then there exists a sequence of measurable subsets (An) ⊆ Σ such that µ(An) < εn
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and X(µAcn) is order isomorphic to an Lp-space.

Step 1. Let us define µ1 := µAc1 and B1 = Ac1. Then we have the decomposition

X(µ) = X(µ1)⊕X(µA1),

where X(µ1) is order isomorphic to an Lp-space, say Lp(µ̃1).

Step 2. Consider now µ2 := µA1\A2
and B2 = A1 \ A2. Hence X(µ2) is order

isomorphic to an Lp-space, say Lp(µ̃2), since it is easy to check that it is p-convex
and p-concave (see Remark 2.3).

Step 3. Using these arguments, we obtain the following decomposition for X(µ),

X(µ) = X(µA2\A1
)⊕X(µ(A1∪A2)c)⊕X(µA1\A2

)⊕X(µA1∩A2
)

= X(µ1)⊕X(µ2)⊕X(µA1∩A2).

Thus, X(µ) is order isomorphic to Lp(µ̃1)⊕Lp(µ̃2)⊕X(µA1∩A2
), where µ̃1 and µ̃2

are disjoint measures supported in the disjoint measurable sets B1 and B2.

Step 4. We can apply this procedure inductively and obtain a sequence of spaces(
Lp(µ̃n)

)
, where the measures µ̃n are mutually disjoint to each other and supported

on Bn. Observe that the set A =
⋂∞
n=1An ∈ Σ is µ-null —since µ(A) ≤ µ(An) <

1/n, for all n ∈ N— and then also X(µ⋂∞
n=1 An

) is so. Therefore we can write

each function in X(µ) as a direct sum of disjoint functions of
⊕

n L
p(µ̃n). But

since each measure µ̃n is absolutely continuous with respect to µn (actually they
are equivalent) then the Radon-Nikodym Theorem gives a sequence of functions
(gn), each gn being a µn integrable function, such that µ̃n = gnµn. Hence all the
elements in X(µ) are (classes of µ-a.e. equal) functions that can be written as sums
of series that converge µ-a.e. Hence they are elements of

⊕
n L

p(gndµ), where the
direct sum is understood as a µ-a.e. disjoint sum. �

The result above gives a description of the elements of an almost-Lp-space. The
natural topology for such a space X(µ) is given by its norm. But, in general, the
closure of the functions having their support in a finite collection of the Bn’s does
not give the whole space X(µ). In what follows we will give some concrete results
characterizing almost-Lp-spaces under some Banach lattice assumptions. Let us
start with a metric result, that relates an almost-Lp-space with a weighted space
Lp(gdµ). In such a case we write that X(µ) is an almost-Lp-space with respect
to the space Lp(gdµ). In the next result —and in the rest of the paper— we will
use the following abuse of notation. Let g =

∑∞
n=1 gn be a µ-measurable function

defined as a sum (pointwise µ-a.e) of disjoint µ-integrable functions. Although g
may not be µ-integrable, the set function Σ 3 A 

∑∞
n=1

∫
A
gndµ defines a σ-finite

measure. For the sake of simplicity, we will write µg(·) :=
∫
· gdµ for this measure.

Theorem 3.2. Let X(µ) be a Banach function space over a finite measure µ. The
following statements are equivalent.

(i) X(µ) is an almost-Lp-space.
(ii) There are sequences (qn), (Qn) ⊆ ]0,∞[ and a disjoint sequence of integrable

functions (gn) supported on a partition (Bn) of Ω such that for all f ∈ X(µ)
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and k ∈ N,

( k∑
n=1

qn‖fχBn‖
p
X(µ)

)1/p ≤ ∥∥fχ∪knBn∥∥Lp(gdµ)
≤
( k∑
n=1

Qn‖fχBn‖
p
X(µ)

)1/p
,

where the measurable function g =
∑∞
n=1 gn is defined pointwise µ-a.e.

Notice that since the formula µg(A) :=
∑∞
n=1

∫
A
gndµ, A ∈ Σ, defines a σ-finite

measure which is equivalent to µ, we have that L0(µ) = L0(gdµ).

Proof. (i) ⇒ (ii). Assume that X(µ) is an almost-Lp-space and let us take f ∈
X(µ). By using Theorem 3.1 we can write f =

∑∞
n=1 fχBn , µ-a.e. where fn =

fχBn ∈ Lp(gndµ) and being gn measurable functions with support equal to Bn —
(Bn) a disjoint partition of Ω—. Moreover, by the description given in the proof of
Theorem 3.1 we have that X(µBn) is order isomorphic to Lp(gndµ). Then for each
n ∈ N there are positive constants qn and Qn such that

qn
∥∥fχBn∥∥pX(µ)

≤
∥∥fχBn∥∥pLp(gndµ)

≤ Qn
∥∥fχBn∥∥pX(µ)

.

Consider the finite sum
∑k
n=1 fn, k ∈ N. Then

k∑
n=1

qn‖fχBn‖
p
X(µ) ≤

k∑
n=1

‖fχBn‖
p
Lp(gndµ) ≤

k∑
n=1

Qn‖fχBn‖
p
X(µ) .

Consequently, since for every f ∈ X(µ) we have that

‖fχ∪knBn‖
p
Lp(gdµ) =

∫
Ω

∣∣fχ∪kn=1Bn

∣∣p( ∞∑
m=1

gm
)
dµ =

k∑
n=1

∫
Ω

∣∣fχBn ∣∣pgndµ
=

k∑
n=1

‖fχBn‖
p
Lp(gndµ),

we obtain the result.
(ii) ⇒ (i). Since µ is finite, for each ε > 0 we find a finite number nε such that
µ(Cnε) < ε for Cnε :=

⋃∞
n=nε+1Bn. The inequalities in (ii) together with Holder’s

inequality give that

min{qn : n = 1, . . . , nε} · ‖fχCcnε‖X(µ) ≤
nε∑
n=1

qn‖fχBn‖X(µ)

=

nε∑
n=1

q1/p
n q1/p′

n ‖fχBn‖X(µ) ≤
( nε∑
n=1

qn
)1/p′ · ( nε∑

n=1

qn‖fχBn‖
p
X(µ)

)1/p
≤
( nε∑
n=1

qn
)1/p′ · ‖fχCcnε‖Lp(gdµ),

where p′ is the conjugate exponent of p which is defined by 1/p+ 1/p′ = 1.
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On the other hand,

‖fχCcnε‖Lp(gdµ) ≤
( nε∑
n=1

Qn‖fχBn‖
p
X(µ)

)1/p
≤ (

nε∑
n=1

Qn)1/p ·max
{
‖fχBn‖X(µ) : n = 1, . . . , nε

}
≤ (

nε∑
n=1

Qn)1/p · ‖fχCcnε‖X(µ)
.

Since this holds for every ε > 0 this proves the isomorphism, and therefore X(µ) is
an almost-Lp-space. �

Example 3.3. Let (N, 2N, µ) be a finite measure space. Then `p(µ) is an almost-
Lq-space, with respect to the space `q(µ), for every 1 ≤ q, p < ∞. Observe that
χ{k}(j) is 1 if j = k and 0 in other case, hence |xkχ{n}|pµ({k}) = 0 whenever
k 6= n. Therefore for each x = (xn) ∈ `p(µ) and each n = 1, 2, . . . we have that

|xn|qµ({n}) =
(
|xn|p

)q/p
µ({n}) = µ({n})1−q/p (|xnχ{n}|pµ({n})

)q/p
= µ({n})1−q/p (|x1χ{n}|pµ({1}) + · · ·+ |xnχ{n}|pµ({n}) + · · ·

)q/p
= µ({n})1−q/p ‖xχ{n}‖

q

`p(µ)
.

This implies that

‖x‖`q(µ) =

( ∞∑
n=1

|xn|qµ({n})

)1/q

=

( ∞∑
n=1

µ({n})1−q/p ‖xχ{n}‖
q

`p(µ)

)1/q

.

In this case taking Bn := {n} and Qn = qn := µ(Bn)1−q/p in the previous theorem,
for x ∈ `p(µ) we obtain( ∞∑

n=1

qn ‖xχBn‖
q
`p(µ)

)1/q

≤ ‖x‖`q(µ) ≤

( ∞∑
n=1

Qn ‖xχBn‖
q
`p(µ)

)1/q

.

Note that the inequalities above are actually equalities.

In the case when the space X(µ) has particular lattice properties —as order
continuity or the Fatou property—, more convenient characterizations are suitable.
Recall that a B.f.s. X(µ) has the Fatou property if for every increasing sequence
of positive functions (fn) in X(µ) with sup ‖fn‖ < ∞ it follows that there exists
f = sup fn in X(µ) and ‖f‖ = sup ‖fn‖ < ∞. Also, the space X(µ) is said to be
order continuous if for every decreasing sequence of positive functions (fn) in X(µ)
that converges to 0 µ-a.e., it follows that ‖fn‖ ↓ 0.

Let us remark first that almost-Lp-spaces are, in general, neither order continu-
ous nor Fatou.

Remark 3.4. (1) Consider the finite measure space (N, 2N, µ), where µ is defined as

µ(A) :=
∑
n∈A

1/2n, A ∈ 2N.

Note that `∞ and c0 are Banach function spaces over µ with the usual supremum
norm. Moreover, for 1 ≤ p <∞, let us see that both of them are almost-Lp-spaces
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with respect to the space `p(µ). Indeed, consider the partition given by the atoms,
i.e. Bn = {n}, n ∈ N. Clearly, if k ∈ N and f ∈ `∞, we have∥∥fχ{1,...,k}∥∥`∞ ≤ 2k/p ·

∥∥fχ{1,...,k}∥∥`p(µ)

≤ 2k/p · (
k∑

n=1

1/2n)1/p ·max
{
|f(n)| : n = 1, ..., k

}
= 2k/p · (

k∑
n=1

1/2n)1/p · ‖fχ{1,...,k}‖`∞ .

Since for every ε > 0 we find a natural number nε such that µ({n ≥ nε}) < ε, we
obtain that `∞ is an almost-Lp(µ) space. Therefore, we have a Banach function
space that is an almost-Lp-space and has the Fatou property, but is not order con-
tinuous. Exactly the same computations show that c0 is also an almost-Lp-space;
in this case, it is order continuous, but it does not satisfy the Fatou property.

(2) The situations given in Example 3.3 and in (1) can be extended to the class of
all sequence spaces. Let (N, 2N, µ) be a finite measure space and take any sequence
space `(µ) over µ. Then `(µ) is an almost-Lq-space with respect to the space `q(µ)
for each 1 ≤ q <∞. To see this, let ε > 0. Since µ is finite there exists nε ∈ N such
that µ(Aε) < ε where Aε = {nε+1, nε+2, . . . }. Observe that `(Acε) = `({1, . . . , nε})
is finite dimensional. In consequence it is isomorphic to the finite dimensional space
`q(Acε) which is an Lq-space, that is, `(µ) is an almost-Lq-space.

Part (1) of Remark 3.4 motivates the following two results. They describe the
elements of the almost-Lp- spaces under the assumption of specific lattice properties
of the spaces involved. We assume in them the description provided by Theorem
3.2 of the function g as a sum of a disjoint sequence (gn).

Proposition 3.5. Let X(µ) be an almost-Lp-space with respect to Lp(gdµ) with
the Fatou property. Then the following assertions are equivalent for a measurable
function f .

(i) The function f belongs to X(µ).
(ii) There is a disjoint sequence (fn) ⊆ Lp(gndµ) such that f =

∑∞
n=1 fn µ-a.e.

and supk
∥∥∑k

n=1 fn
∥∥
X(µ)

<∞.

Proof. (i) ⇒ (ii) is a consequence of Theorem 3.1 and the fact that ‖ · ‖X(µ) is a
lattice norm. Indeed, this theorem gives the sequence (fn) of disjoint functions for
which we have for all k ∈ N∥∥ k∑

n=1

fn
∥∥
X(µ)

=
∥∥| k∑
n=1

fn|
∥∥
X(µ)

=
∥∥ k∑
n=1

|fn|
∥∥
X(µ)

≤ ‖|f |‖X(µ) = ‖f‖X(µ).

(ii) ⇒ (i) is a direct consequence of the Fatou property; since X(µ) is an almost-

Lp-space, each function hk =
∑k
n=1 fn belongs to X(µ). The sequence (|hk|) is

then order bounded by the measurable function |f | and converges to it pointwise;
taking into account that supk ‖hk‖X(µ) <∞, we obtain that f ∈ X(µ). �

Proposition 3.6. Let X(µ) be an order continuous almost-Lp-space with respect
to Lp(gdµ). The following assertions are equivalent for a measurable function f .

(i) The function f belongs to X(µ).
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(ii) There is a disjoint sequence (fn) ⊆ Lp(gndµ) such that f =
∑∞
n=1 fn µ-a.e.

and limk,m ‖
∑m
n=k fn‖X(µ) = 0.

Proof. (ii) ⇒ (i). The sequence of the functions hk :=
∑k
n=1 fn converges in X(µ),

since it defines a Cauchy sequence by the condition given in (ii). It converges also
µ-a.e. to its limit, which belongs to X(µ) due to the fact that X(µ) is a Banach
function space and so there is a subsequence converging almost everywhere to f . In
particular, this implies that the limit of the sequence (hk) is f, and then it belongs
to X(µ).
(i) ⇒ (ii) is a consequence of Theorem 3.1 and the order continuity of X(µ). Since
f ∈ X(µ), this theorem gives the sequence of disjoint functions (fn) such that
f =

∑∞
n=1 fn µ-a.e. Consider the sequence of the functions rk :=

∑∞
n=k fn ∈

X(µ). The decreasing sequence formed by the positive functions |rk| :=
∑∞
n=k |fn|

converges to 0 µ-a.e. Therefore, by the order continuity of X(µ), limk ‖rk‖X(µ) =
limk ‖|rk|‖X(µ) = 0, and so the sequence is Cauchy, which gives (ii). �

4. Factorization of operators through almost-Lp-spaces

In this section we will consider a B.f.s. X(µ), a Banach space E and 1 ≤ p <∞.
The lattice X(µ) is almost-p-convex if for every ε > 0 there exist Aε ∈ Σ and Kε > 0
such that µ(Aε) < ε and for all every finite choice of functions {f1, . . . , fn} ⊆ X(µ),∥∥∥∥∥∥∥

 n∑
j=1

|fjχAcε |
p

1/p
∥∥∥∥∥∥∥
X(µ)

≤ Kε

 n∑
j=1

‖fjχAcε‖
p

X(µ)

1/p

.

For a given ε > 0 and an associated measurable set Aε, the infimum of all Kε

satisfying the previous inequality will be denoted by M(p)(A
c
ε, X(µ)).

Let T : X(µ) → E be an operator. Suppose that for a given ε > 0 there exist
Aε ∈ Σ and Qε > 0 such that µ(Aε) < ε and the inequality n∑

j=1

‖T (fjχAcε)‖
p

E

1/p

≤ Qε

∥∥∥∥∥∥∥
 n∑
j=1

|fj |p
1/p

χAcε

∥∥∥∥∥∥∥
X(µ)

,

holds for every finite choice of functions {f1, . . . , fn} ⊆ X(µ). Then T is said to
be almost-p-concave. For ε > 0 and an associated Aε, the smallest possible value
of the constants Qε above is denoted by M (p)(Acε, T ). As usual for concavity type
properties, a B.f.s. X(µ) is said to be almost-p-concave if the identity map on X(µ)
is almost-p-concave.

As in the classical case of p-concave operators defined on order continuous p-
convex B.f.s. (see for instance [10, 13, 15]), the following characterization occurs in
our context.

Proposition 4.1. Let X(µ) be an almost-p-convex order continuous Banach func-
tion space over the finite measure µ, where 1 ≤ p <∞. For a Banach space valued
operator T : X(µ)→ E, the following statements are equivalent.

(i) The operator T is almost-p-concave.
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(ii) For every ε > 0 there is a measurable set Cε such that µ(Cε) < ε and the
restriction of T to X(µCcε ) can be extended as

X(µCcε )
T |X(µCcε

)

//

iε &&

E

Lp(gεdµCcε )

Tε

::

for some function 0 ≤ gε such that g
1/p
ε ∈M(X(µCcε ), Lp(µCcε )) with norm

in this space less or equal to 1.

Proof. (i) ⇒ (ii). Fix an ε > 0. Then by definition there are measurable sets
Aε and Bε such that µ(Aε) < ε/2 and µ(Bε) < ε/2, and out of Aε the space is
p-convex —i.e. X(µAcε) is p-convex— and out of Bε, the operator T is p-concave.
Take Cε := Aε ∪ Bε ∈ Σ. Therefore, µ(Cε) < ε and in Ccε := (Aε ∪ Bε)c we have
a p-concave operator T |X(µCcε ) on the p-convex order continuous Banach function

space X(µCcε ). The arguments given in Remark 2.3 provide the desired extension.
For the converse, take ε > 0. Then there is Cε ∈ Σ such that µ(Cε) < ε and satisfies
the properties given in (ii). Therefore, for each finite family f1, . . . , fn ∈ X(µ), we
have  n∑

j=1

‖T (fjχCcε )‖p
E

1/p

≤ ‖Tε‖

 n∑
j=1

‖fjχCcε‖
p

Lp(gεdµCcε )

1/p

= ‖Tε‖

 n∑
j=1

∫
Ccε

|fj |pχCcεgεdµCcε

1/p

= ‖Tε‖

∫
Ccε

( n∑
j=1

|fj |p
)
gεχCcεdµCcε

1/p

= ‖Tε‖

∥∥∥∥∥∥∥
 n∑
j=1

|fj |p
1/p

g1/p
ε χCcε

∥∥∥∥∥∥∥
Lp(µCcε )

≤ ‖Tε‖

∥∥∥∥∥∥∥
 n∑
j=1

|fj |p
1/p

χCcε

∥∥∥∥∥∥∥
X(µ)

,

and the result follows. �

Corollary 4.2. An order continuous Banach function space is an almost-Lp-space
if and only if it is almost-p-convex and almost-p-concave.

Proof. Assume that the Banach idealX(µ) is almost-p-convex and almost-p-concave
and consider the identity map id: X(µ)→ X(µ). By using Proposition 4.1 for ev-
ery ε > 0 we find a measurable set Aε such that µ(Aε) < ε and satisfying the
factorization diagram —for the operator id—. This gives the order isomorphism
between X(µAcε) and Lp(gεdµAcε) —where gε is the function provided by the quoted
proposition—. Since the converse is obvious, this gives the result. �



REPRESENTATION OF ALMOST-Lp-SPACES 11

Definition 4.3. Let Z(µ) be a Banach ideal of µ-measurable functions. We say
that an operator T : X(µ)→ E almost extends to Z(µ), if for each ε > 0 there is a
measurable set Aε such that
• µ(Aε) < ε,
• X(µAcε) is included in Z(µ) with inclusion iε, and
• T |X(µAcε ) = T0 ◦ iε for an operator T0 : Z(µ)→ E.

Note that this definition is equivalent to the one that is obtained when the
requirements are imposed only for the constants εn > 0 of a null sequence (εn).

Theorem 4.4. Let X(µ) be an order continuous almost-p-convex Banach function
space over the finite measure µ for 1 ≤ p <∞. For a Banach space valued operator
T : X(µ)→ E the following statements are equivalent.

(i) The operator T is almost-p-concave.
(ii) There is an almost-Lp-space, Z(µ), such that T almost extends to Z(µ).

Proof. (i) ⇒ (ii). Let T be an almost-p-concave operator. Consider the sequence
(1/n) and use Proposition 4.1 to find a sequence of measurable sets Cn such that
µ(Cn) < 1/n and provides a sequence of extensions of X(µCcn) through Lp(gndµCcn)
of T |X(µCcn ) as

X(µCcn)
T |X(µCcn

)

//

in &&

E

Lp(gndµCcn)

Tn

::

for functions 0 ≤ gn such that g
1/p
n ∈ M(X(µCcn), Lp(µCcn)). It can be easily seen

that the sequence of sets (Cn) can be chosen to be decreasing, just taking in each
step n the next corrected Cn as C1∩ . . .∩Cn−1. Note that this intersection could be
empty for some n; but in such a case X(µ) is actually an Lp-space (see the Claim
in the proof of Theorem 3.2) and the result is trivial. For the aim of clarity, let us
denote M(p)(C

c
n, X(µ)) by M(n) and M (p)(Ccn, T ) by M (n). It can be found as an

application of Corollary 5 of [5] that each extension satisfies that

(4.1) ‖T (fχCcn)‖E ≤M(n)M
(n)
( ∫

Ccn

|f |pgndµ
)1/p

,

where gn, n ∈ N, are the functions appearing in Proposition 4.1; recall that g
1/p
n

define multiplication operators of norm less or equal to one. Define now the mea-
surable sets Bn = Ccn \ Ccn−1, n ∈ N, where Cc0 = Ø. Since (Cn) is supposed to
be decreasing, (Bn) is a well defined sequence of disjoint measurable sets satisfying
Bn ↓ Ø. Let us consider now the set

Z(µ) =

{
f ∈ L0(µ) :

∞∑
k=1

M(k)M
(k)
( ∫

Bk

|f |pgkdµ
)1/p

<∞

}
.

Note that Z(µ) is actually
⊕∞

k=1 L
p(g̃kdµ) for g̃k =

(
M(k)M

(k)
)p
gk, which is a

Banach ideal in L0(µ), where the direct sum is endowed with the 1-norm,

‖f‖Z(µ) =

∞∑
k=1

‖f‖Lp(g̃kdµ) =

∞∑
k=1

M(k)M
(k)
( ∫

Bk

|f |pgkdµ
)1/p

.
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Moreover, (Z(µ), ‖ · ‖Z(µ)) is an almost-Lp-space. Write g =
∑∞
n=1 gnχBn . Indeed,

take f ∈ Z(µ) and put qn = Qn = (M(n)M
(n))−p for each n ∈ N. Hence for all

k ∈ N we have

k∑
n=1

qn‖fχBn‖
p
Z(µ) =

k∑
n=1

Qn‖fχBn‖
p
Z(µ) =

k∑
n=1

Qn(M(n)M
(n))p

∫
Bn

|f |pgndµ

=

k∑
n=1

∫
Bn

|f |pgndµ =
∥∥fχ∪kn=1Bn

∥∥p
Lp(gdµ)

.

Therefore, thanks to Theorem 3.2, Z(µ) is an almost-Lp-space. In order to finish
this first part of the proof let us see that T almost extends to Z(µ). Consider the
sequence (Cn). Then if ε > 0 we find a natural number n such that
• µ(Cn) < ε,
• X(µCcn) is included in Z(µ). Indeed, take f ∈ X(µCcn) and recall that Lp(gndµ)
contains X(µCcn) —see the diagram above—, so we obtain

‖f‖Z(µ) =

n∑
k=1

M(k)M
(k)
( ∫

Bk

|f |pgkdµ
)1/p

=

n∑
k=1

M(k)M
(k)
∥∥fχBkg1/p

k

∥∥
Lp(µCcn )

≤
n∑
k=1

(
M(k)M

(k) ‖g1/p
k ‖M(X(µCc

k
),Lp(µCc

k
))‖fχBk‖X(µCcn )

)
≤
( n∑
k=1

M(k)M
(k)
)
‖f‖X(µCcn ).

• Finally, by using (4.1) for each f ∈ Z(µ) one has

‖T (f)‖E ≤
∞∑
n=1

‖T (fχBn)‖E =

∞∑
n=1

‖T
(
(fχBn)χCcn

)
‖
E

≤
∞∑
n=1

M(n)M
(n)
( ∫

Ccn

|fχBn |pgndµ
)1/p

= ‖f‖Z(µ).

Consequently, the operator T can be defined and is continuous in the domain Z(µ).

(ii)⇒ (i). Fix ε > 0 and assume that T almost extends to an almost-Lp-space, Z(µ).
Hence we can find two measurable sets Aε and Bε, positive constants αε, βε, γε and
a positive measurable function 0 ≤ gε such that
• µ(Aε) < ε/2 and µ(Bε) < ε/2,

• g1/p
ε ∈M(Z(µAcε), L

p(µAcε)) and

(4.2) αε‖f‖Z(µAcε ) ≤ ‖f‖Lp(gεdµ) ≤ βε‖f‖Z(µAcε ), f ∈ Z(µAcε),

• T |X(Bcε) = T0 ◦ iε and

(4.3) ‖f‖Z(µ) ≤ γε‖f‖X(µBcε ), f ∈ X(µBcε ).
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We define now Cε = Aε ∪ Bε, which satisfies µ(Cε) < ε. Take f1, . . . , fn in X(µ).
Using (4.2) and (4.3) we get

( n∑
j=1

‖T (fjχCcε )‖p
E

)1/p
=
( n∑
j=1

‖T0 ◦ iε(fjχCcε )‖p
E

)1/p ≤ ‖T0‖
( n∑
j=1

‖fjχCcε‖
p

Z(µ)

)1/p
≤ ‖T0‖α−1

ε

( n∑
j=1

‖fjχCcε‖
p

Lp(gεdµ)

)1/p
= ‖T0‖α−1

ε

( ∫
Ccε

(

n∑
j=1

|fj |p)gεdµ
)1/p

= ‖T0‖α−1
ε

∥∥∥∥∥∥(
n∑
j=1

|fj |p
)1/p

χCcε

∥∥∥∥∥∥
Lp(gεdµ)

≤ ‖T0‖
βε
αε

∥∥∥∥∥∥(
n∑
j=1

|fj |p
)1/p

χCcε

∥∥∥∥∥∥
Z(µ)

≤ ‖T0‖
βεγε
αε

∥∥∥∥∥∥(
n∑
j=1

|fj |p
)1/p

χCcε

∥∥∥∥∥∥
X(µ)

.

Consequently, T is almost-p-concave as can be seen just taking Qε = ‖T0‖βεγε/αε.
This finishes the proof. �
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19(3) (2008) 359–378.

3. J. Bourgain, New classes of Lp-spaces, Springer, Berlin, 2006.
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11. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974.

12. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin, 1979.
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