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Highlights: 

- Existing formulas to estimate Pow and maximum individual wave overtopping volume are usually 

based on tests with large Pow; this study is focused on mound breakwaters subjected to Pow 

<0.2. 

- The new estimators proposed in this study improve the predictions of Now and maximum 

individual wave overtopping volumes on conventional mound breakwaters designed under low 

wave overtopping conditions. 

- The mean value of the Weibull distribution fitted to the highest individual wave overtopping 

volumes may be different from the measured 𝑉𝑉� .  
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- New 2-parameter Weibull and Exponential distributions are proposed with unbiased 

estimations of Vmax* with rMSE=10.4% and 10.6%, respectively.  

- Using the quadratic utility function and the estimated q and Now, Vmax* was estimated by the 

Weibull and Exponential distributions with rMSE=31.6% and 33.3%, respectively. 

Abstract 

Conventional mound breakwaters are usually designed to withstand low mean wave overtopping 

discharges and a low proportion of overtopping waves (Pow). Existing formulas to estimate Pow and 

maximum individual wave overtopping volume are usually based on tests with high Pow; this study is 

focused on mound breakwaters subjected to Pow < 0.2. The performance of the 2-parameter Weibull and 

Exponential distributions is examined in order to describe individual wave overtopping volumes of 

mound breakwaters in non-breaking wave conditions. A new methodology is applied to 164 small-scale 

2D physical tests to identify the number of overtopping waves, and the corresponding individual wave 

overtopping volumes. Utility functions are used to consider the relative relevance of the observed data: 

in this study, a quadratic utility function depending on all the individual wave overtopping volumes and 

step utility functions with 10%, 30% and 50% of the highest volumes are used to fit the Weibull and 

Exponential distributions. In this study, a new estimator of Pow is proposed to improve the predictions 

required to estimate the maximum individual wave overtopping volume. Existing estimators of Pow 

underpredict the largest values of Pow measured in the physical tests. The parameters fitted to the 

Weibull and Exponential distributions using the quadratic utility function provide estimations of the 

dimensionless maximum individual wave overtopping volume with relative mean squared errors 

rMSE=10.4% and 10.6%, respectively. When CLASH Neural Network-estimated mean overtopping rates 

are used to predict the maximum individual wave overtopping with the quadratic utility function, the 2-

parameter Weibull and Exponential distributions provide rMSE=31.6% and rMSE=33.3%, respectively. 
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The new estimators proposed in this study improve the predictions of Pow and maximum individual wave 

overtopping volumes on conventional mound breakwaters designed for low wave overtopping rates. 

1. Introduction 

Crest elevation of conventional mound breakwaters must ensure wave overtopping discharge below 

acceptable limits for pedestrians, buildings, operations, etc. There is an extensive literature background 

related to mean overtopping discharge on mound breakwaters, q(m3/s/m), with several prediction tools 

such as those given by EurOtop [1, 2], Van Gent et al. [3] and Molines and Medina [4, 5]. However, the 

maximum individual wave overtopping volume, Vmax(m3/m), may be much higher than the mean 

individual wave overtopping volume. Franco et al. [6] suggested using the largest individual wave 

overtopping volume instead of the mean overtopping discharge to evaluate direct hazards, because the 

largest overtopping volume during a storm will probably produce the most relevant damage to 

structures, cranes and buildings.  

In the literature, individual wave overtopping volumes on coastal structures and defenses are usually 

fitted using variants of the Weibull distribution initially proposed by Van de Meer and Janssen [7] and 

Franco et al. [6]. Studies of this kind have been done by Besley [8], Lykke Andersen et al. [9], Victor et al. 

[10], Zanuttigh et al. [11] and Nørgaard et al. [12]. Most of these studies are based on 2D small-scale 

tests, but very few of them analyzed in detail the methodology used to identify, in test runs of Nw waves, 

the number of overtopping waves (Now) or the proportion of overtopping waves (Pow=Now/Nw) and the 

individual overtopping volumes (V) given a continuous experimental record of accumulated overtopping 

volume.  

The 2-parameter Weibull distribution given by Eq. [1] and used by Van der Meer and Janssen [7] among 

others are usually related by means of the measured mean individual wave overtopping volume, 

𝑉𝑉�(m3/m), so there is only the shape factor as the free parameter to fit the Weibull distribution to the 
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observed individual wave overtopping volumes. The Weibull scale factor is obtained by forcing the mean 

value of the Weibull distribution to be equal to 𝑉𝑉� . Depending on the author, this Weibull free parameter 

is fitted as a constant value (see Van der Meer and Janssen [7]) or using different explanatory variables 

such as the relative crown wall crest freeboard and the slope angle (see Victor et al. [10]) or the 

dimensionless wave overtopping discharges (see Zanuttigh et al. [11]). However, Pan et al. [13] and 

Gallach [14] pointed out that the two parameters of the Weibull distribution may not be related by the 

mean individual wave overtopping volume (𝑉𝑉�) and hence both parameters of the Weibull distribution 

should be fitted through the measured individual wave overtopping volumes.  

Pan et al. [13] highlighted that the criterion to select the data used to fit the Weibull parameters is not 

always the same in the literature and there is no justification in the chosen criteria. For instance, Victor 

et al. [10] and Zanuttigh et al. [11] analyzed smooth impermeable low-crested structures and, 

conventional and low-crested mound breakwaters, respectively, using the individual overtopping 

volumes higher than the mean value to better represent the largest volumes; Nørgaard et al. [12] 

analyzed conventional mound breakwaters in breaking conditions using the 30% highest individual wave 

overtopping volumes to maintain a sufficient accuracy in the determination of individual overtopping 

volumes in the model tests with lowest amount of overtopping. Both Hughes et al. [15] and Gallach [14] 

analyzed smooth impermeable low-crested structures using the 10% highest individual wave 

overtopping volumes. 

𝑉𝑉�  depends both on the total overtopped volume and also the number of overtopping waves (Now), which 

is not a reliable variable since Now is difficult to measure in laboratory tests, especially for low individual 

wave overtopping volumes. In this study, a new methodology is developed to identify low individual 

wave overtopping volumes and Now from an accumulated overtopping volume recorded in 2D physical 

tests. The two parameters of the Weibull and Exponential distributions are fitted using the 10%, 30% and 

50% of the highest individual wave overtopping volumes and a quadratic utility function with 100% of 
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the individual wave overtopping volumes. Special attention is paid to represent the highest individual 

wave overtopping volume (Vmax) of each test, because Vmax is a relevant variable when designing coastal 

structures. 

This paper is structured as follows. Firstly, the literature on individual wave overtopping volumes (V) is 

reviewed. Secondly, the performance of existing estimators for the number of overtopping waves (Now) 

and maximum individual wave overtopping volume (Vmax) is analyzed. Thirdly, the 2D physical model 

tests are described. Fourthly, a new methodology to identify individual wave overtopping volumes (V) is 

developed. Fifthly, the 2-parameter Weibull and Exponential distributions are studied in order to fit the 

distribution F(V) using four utility functions. Sixthly, the performance of the new estimators of Now and 

Vmax is assessed using measured wave overtopping discharges. Seventhly, the Now and Vmax are examined 

using estimated wave overtopping discharges. Finally, general conclusions are drawn. 

2. Literature review on individual wave overtopping volumes 

2.1  Weibull distribution to estimate individual wave overtopping volumes 

The Weibull distribution was introduced by Van der Meer and Janssen [7] and Franco et al. [6] to describe 

the distribution of individual wave overtopping volumes for dikes and vertical breakwaters, respectively. 

Later, the 2-parameter Weibull distribution was considered to study the overtopping volume per wave 

for many types of coastal structures, such as smooth slopes analyzed by Victor et al. [10] and mound 

breakwaters analyzed by Nørgaard et al. [12]. The 2-parameter Weibull cumulative distribution function 

is given by: 

𝐹𝐹(𝑉𝑉) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝑉𝑉
𝑎𝑎
�
𝑏𝑏
�               (1) 

where 𝐹𝐹(𝑉𝑉) is the probability of the individual wave overtopping volume per wave being less than or 

equal to 𝑉𝑉, a is the scale factor and b is the shape factor. Eq. (1) is commonly rewritten with a= 𝐴𝐴𝑉𝑉� , 
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where A is the dimensionless scale factor and 𝑉𝑉�  is the measured mean individual wave overtopping 

volume. 

If the measured data followed a perfect Weibull distribution and all the data were used for the analysis, 

the mean value of a Weibull distribution, µ, would be given by Eq. (2), equal to the mean individual wave 

overtopping volume (µ=𝑉𝑉�). Under the previous conditions, Eq. (3) would provide the relationship 

between the parameters A and b, where Γ is the gamma function, Γ(𝑧𝑧) = ∫ 𝑡𝑡𝑧𝑧−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑∞
0 . 

µ = A 𝑉𝑉�Γ �1 + 1
𝑏𝑏
�                  (2) 

A = 1

Γ�1+1𝑏𝑏�
                   (3) 

Van der Meer and Janssen [7] and Franco et al. [6] recommended a shape factor b=0.75 for dikes and 

vertical breakwaters in non-breaking wave conditions. Based on these two studies, EurOtop [1] 

recommended a shape factor of b=0.75 for dikes and mound breakwaters whatever the geometrical 

characteristics. According to Eq. (3), the scale factor corresponding to the shape factor b=0.75 is A=0.84.  

Besley [8] conducted a detailed analysis on the individual wave overtopping volumes for vertical walls, 

sloped structures and composite structures. Besley [8] also reported the tests of Franco [16] who had 

noticed an influence of the wave steepness on the shape factor (b) for vertical caissons ranging from 

b=0.66 when s0p=0.02 to b=0.82 when s0p =0.04, where s0p=2πHm0/(gTp2) is the deep water wave 

steepness. Franco [16] also indicated that the shape factor (b) for sloped structures was generally higher 

than that corresponding to vertical structures (b=0.76 if s0p=0.02 and b=0.92 if s0p =0.04). Besley [8] then 

analyzed sloped structures and provided a shape factor b=0.853 as the average value of all tests. 

According to Eq. (3), the scale factor corresponding to b=0.853 is A=0.921.  



7 

 

Bruce et al. [17] conducted 2D small-scale tests of wave overtopping on mound breakwaters with 

different armor units. The authors fitted a shape factor b=0.74 and found that the type of armor and 

number of layers in the armor had no significant influence on b. Victor et al. [10] conducted 2D small-

scale tests to study the distribution of individual wave overtopping volumes on steep, low-crested 

smooth structures with 0.1 ≤ Rc/Hm0 ≤ 1.69, 0.36 ≤ cotα ≤ 2.75 and 0≤Pow ≤1 where Pow=Now/Nw is the 

proportion of overtopping waves, Now is the number of overtopping waves and Nw is the total number 

of incident waves in the test. These authors examined the influence of the slope angle (cotα), relative 

crest freeboard (Rc/Hm0) and wave steepness (s-1,0) on the shape factor (b), in which Rc is the crown wall 

crest freeboard, Hm0 is the significant wave height and s-1,0=2πHm0/(gT-1,02). They found a significant 

influence of cotα and Rc/Hm0 on the shape factor (b) but no clear effect of s-1,0 on b. Victor et al. [10] 

proposed Eq. (4) to estimate the shape factor. 

𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−2.0 𝑅𝑅𝑐𝑐
𝐻𝐻𝑚𝑚0

� + 0.56 + 0.15𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐        (4) 

Hughes et al. [15] re-analyzed the tests with smooth slopes reported by Van der Meer and Janssen [7], 

Hughes and Nadal [18] and Victor et al. [10], using different numbers of data to better determine the 

shape factor of the Weibull distribution, to fit the largest individual overtopping volumes. Hughes et al. 

[15] concluded that the best fit to the extreme tail of the individual wave overtopping volume 

distribution was obtained using only the top 10% of the individual wave overtopping volumes while 

sacrificing accuracy for the lower volumes. Hughes et al. [15] then proposed Eq. (5) to estimate the shape 

factor in the range -2<Rc/Hm0<4 and 0≤ Pow≤1. 

𝑏𝑏 = �𝑒𝑒𝑒𝑒𝑒𝑒 �−0.6 𝑅𝑅𝑐𝑐
𝐻𝐻𝑚𝑚0

��
1.8

+ 0.64         (5) 

Zanuttigh et al. [11] studied the shape factor (b) of smooth-slope and rubble mound breakwater 

distributions. These authors concluded that rubble mound structures show more scatter in the shape 
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factor (b) than smooth slopes and suggested relating the shape factor (b) to the dimensionless mean 

wave overtopping discharges (q) instead of the relative crest freeboard (Rc/Hm0), since mean overtopping 

discharge implicitly includes information such as wave steepness or slope angle. EurOtop [2] 

recommended the formula proposed by Zanuttigh et al. [11] given by Eq. (6) to estimate the shape factor 

of conventional and low-crested mound breakwaters with 0<Rc/Hm0<2 and 0.004≤ Pow≤1. 

𝑏𝑏 = 0.85 + 1500 � 𝑞𝑞
𝑔𝑔𝐻𝐻𝑚𝑚0𝑇𝑇−1,0

�
1.3

         (6) 

Nørgaard et al. [12] conducted 2D small-scale physical tests with rock armored mound breakwaters with 

structure slope cotα =1.5 to analyze the distribution of individual wave overtopping volumes in depth-

limited wave breaking conditions. Eq. (7) is valid for 0.19≤Hm0/h≤0.55, 0.9≤Rc/Hm0≤2.0, 

3.3≤Irm=cotα/[2πHm0/(gTm2)]0.5≤4.6, 0.006≤ Pow≤0.12, 7.73·10-7≤q/(TmgHs)≤6.19·10-5 where Tm is the 

mean period, Pow is the proportion of overtopping waves and q is the mean overtopping discharge. In 

this study Tm=T01=m0/m1, in which mi is the ith spectral moment. 

𝑏𝑏 = �
0.75                                             for 𝐻𝐻𝑚𝑚0 𝐻𝐻 1

10
� ≤ 0.848  or 𝐻𝐻𝑚𝑚0 ℎ⁄ ≤  0.2

−6.1 + 8.08𝐻𝐻𝑚𝑚0 𝐻𝐻 1
10

�               for 𝐻𝐻𝑚𝑚0 𝐻𝐻 1
10

� > 0.848  and 𝐻𝐻𝑚𝑚0 ℎ⁄ >  0.2
    (7) 

where Hm0=4(m0)1/2 is the significant wave height and H1/10 is the average of the top 10% highest waves. 

Pan et al. [13] examined the influence of the proportion of the largest overtopping events selected 

before fitting the Weibull parameters over a levee under negative crest freeboard. These authors 

considered selecting 100% (all overtopping events), the largest 50% and the largest 10%. Pan et al. [13] 

recommended selecting all individual wave overtopping volumes to fit the Weibull parameters in order 

to achieve a better performance in the estimation of individual wave overtopping volumes. Pan et al. 

[13] also proposed estimators for the shape and scale factors depending on the number of data selected 
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for the analysis (100%, 50% and 10%); the relationship between the shape and scale factors was not the 

mean individual wave overtopping volume (𝑉𝑉�) given by Eqs. (2) and (3). Pan et al. [13] then used the 

methodology of Hughes and Nadal [18] to identify individual wave overtopping waves for levees with 

negative crest freeboards under overflow and wave overtopping. The methodology used a script to 

analyze a wave sensor on the breakwater crest to identify waves as the number of time steps from one 

wave trough to the following trough. Small waves with periods of less than one second (at prototype 

scale) were discarded from the analysis since those could be perturbations on the signal. The discarded 

waves had small volumes in the range 5 to 10% of the average wave volume for the corresponding 

experiment. 

Gallach [14] conducted thousands of 2D small-scale tests on smooth and very steep slopes and vertical 

structures as well as on very low crest freeboards with 0≤ Pow≤1. He proposed a shape factor dependent 

on cotα and Rc/Hm0 to improve the prediction reported by Victor et al. [10] for the case of zero freeboard. 

Gallach [14] found that the shape factor (b) is not affected by the roughness of the structure slope. 

Gallach [14] also noticed that the best fitted scale factor (A) for each test was not the same as the scale 

factor given by Eq. (3); he provided a 90% confidence band to characterize the uncertainty in the 

estimation of the scale factor A given a shape factor b. 

2.2  Number of overtopping waves and maximum individual wave overtopping volume 

on mound breakwaters 

In order to assess the exceedance probability of a set of values, Makkonen [19] suggested that the 

Weibull plotting position formula given by Eq. (8) may be used for any underlying continuous function.  

1 − 𝐹𝐹(𝑉𝑉) = 𝑖𝑖
𝑁𝑁𝑜𝑜𝑜𝑜+1

           (8) 



10 

 

where F(𝑉𝑉) is the probability of observing an individual wave overtopping volume larger than or equal 

to 𝑉𝑉; i is the position of the sorted volumes in descending order, where i=1 corresponds to the maximum 

overtopping volume (Vmax) and Now is the number of overtopping events.  

Using Eq. (8), Lykke-Andersen et al. [9] expressed the Weibull distribution function as: 

𝑉𝑉𝑖𝑖 = 𝐴𝐴𝑉𝑉� �−𝑙𝑙𝑙𝑙 � 𝑖𝑖
𝑁𝑁𝑜𝑜𝑜𝑜+1

��
1/𝑏𝑏

= 𝐴𝐴𝑉𝑉�[ln(𝑁𝑁𝑜𝑜𝑜𝑜 + 1) − ln(𝑖𝑖)]1/𝑏𝑏   i=1 to Now  (9) 

The maximum individual wave overtopping volume (Vmax) can be estimated by setting i=1 in Eq. (9) which 

leads to Eq. (10). This equation is similar to Eq. (11) proposed by Besley [8] and EurOtop [1, 2] except 

that Eq. (10) uses Now+1 instead of Now. Lykke-Andersen et al. [9] pointed out that Eq. (11) would predict 

Vmax=0 for Now=1, which is an undesirable inconsistency. 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑉𝑉�[ln(𝑁𝑁𝑜𝑜𝑜𝑜 + 1)]1/𝑏𝑏          (10) 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑉𝑉�[ln(𝑁𝑁𝑜𝑜𝑜𝑜)]1/𝑏𝑏          (11) 

The estimated maximum individual wave overtopping volume given by Eq. (10) and Eq. (11) depends on 

the number of overtopping waves (Now). Besley [8] proposed Eq. (12) to estimate the number of 

overtopping waves (Now) for simple slopes and Eqs. (13) to consider more complex sloped structures 

which include berms or return walls. 

𝑃𝑃𝑜𝑜𝑜𝑜 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐾𝐾1 � 𝑅𝑅𝑐𝑐
𝑇𝑇𝑚𝑚�𝑔𝑔𝐻𝐻𝑠𝑠

1
𝛾𝛾𝑓𝑓
�
2
�         (12) 

𝑃𝑃𝑜𝑜𝑜𝑜 = 55.4𝑄𝑄∗0.634             𝑓𝑓𝑓𝑓𝑓𝑓 0 <  𝑄𝑄∗ < 8 · 10−4       (13a) 

𝑃𝑃𝑜𝑜𝑜𝑜 = 2.50𝑄𝑄∗0.199             𝑓𝑓𝑓𝑓𝑓𝑓 8 · 10−4 ≤ 𝑄𝑄∗ < 10−2       (13b) 

𝑃𝑃𝑜𝑜𝑜𝑜 = 1                                𝑓𝑓𝑓𝑓𝑓𝑓 𝑄𝑄∗ ≥ 10−2        (13c) 
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where Pow is the proportion of overtopping waves, g is the gravity acceleration, Hs is the significant wave 

height, Tm is the mean period, Q* = q/(TmgHs) and q is the dimensionless and dimensional mean wave 

overtopping discharge. In this study, Tm=T01=m0/m1, and K1=37.8 and 63.8 for structure slope cotα =2 

and 1, respectively. 

Nørgaard et al. [12] proposed Eqs. (14) to estimate Now based on estimations given by Eqs. (13), 

Now[Eq.(13)]. 

𝑁𝑁𝑜𝑜𝑜𝑜 = 𝐾𝐾2𝑁𝑁𝑜𝑜𝑜𝑜[𝐸𝐸𝐸𝐸. (13)]          (14a) 

𝐾𝐾2 = �
1                                                     for 𝐻𝐻𝑚𝑚0 𝐻𝐻 1

10
� ≤ 0.848  or 𝐻𝐻𝑚𝑚0 ℎ⁄ ≤  0.2

−6.65 + 9.02𝐻𝐻𝑚𝑚0 𝐻𝐻 1
10

�               for 𝐻𝐻𝑚𝑚0 𝐻𝐻 1
10

� > 0.848  and 𝐻𝐻𝑚𝑚0 ℎ⁄ >  0.2
    (14b) 

To estimate the number of overtopping waves, EurOtop [1, 2] proposed Eqs. (15) and (16) for 

breakwaters with and without a permeable crest berm (Ac>Rc), respectively. 

𝑃𝑃𝑜𝑜𝑜𝑜 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− � 𝐴𝐴𝑐𝑐𝐷𝐷𝑛𝑛
0.19𝐻𝐻𝑚𝑚0

2 �
1.4
�          (15) 

𝑃𝑃𝑜𝑜𝑜𝑜 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− �√−𝑙𝑙𝑙𝑙0.02 𝑅𝑅𝑐𝑐
𝑅𝑅𝑢𝑢2%

�
2
�         (16) 

where Ru2% is the run-up exceeded by 2% of the waves, Ac is the armor crest freeboard and Dn is the 

nominal diameter of the armor unit. EurOtop [1, 2] also proposed Eqs. (17) to estimate the Ru2%. 

𝑅𝑅𝑢𝑢2%
𝐻𝐻𝑚𝑚0

= 1.65𝛾𝛾𝑓𝑓𝛾𝛾𝛽𝛽𝐼𝐼𝐼𝐼−1,0                     (17a) 

With max�𝑅𝑅𝑢𝑢2%
𝐻𝐻𝑚𝑚0

� = min (1.00𝛾𝛾𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛾𝛾𝛽𝛽 �4.00 − 1.50
�𝐼𝐼𝐼𝐼−1,0

� , 2.0)                           (17b) 

where 𝛾𝛾𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛾𝛾𝑓𝑓+(𝐼𝐼𝐼𝐼−1,0−1.8)(1−𝛾𝛾𝑓𝑓)/8.2, γβ is the reduction factor to account for the oblique wave 

attack, and Ir0,-1= tanα/[2πHm0/(gT-1,02)]0.5. 
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Victor et al. [10] and Gallach [14] suggested different estimators to calculate Pow for low-crested 

structures depending on the slope angle and the dimensionless crest freeboard with 0≤ Pow≤1. Hughes 

and Nadal [18] investigated the probability distribution of individual overtopping volumes for dikes 

subjected to wave overtopping and storm surge overflow with -2<Rc/Hm0<0 and Pow=1. 

3. Experimental data 

Smolka et al. [20] carried out small-scale tests in the wave flume of the Laboratory of Ports and Coasts 

at the Universitat Politècnica de València (LPC-UPV). The LPC-UPV wave flume (1.2x1.2x30m) has a piston 

wave-maker with AWACS active wave absorption system.   

The cross-section shown in Figure 1 corresponds to cube- and Cubipod-armored mound breakwaters in 

non-breaking wave conditions with a crown wall and no toe berm; the armor slope was cotα=1.5, and 

the armor crest berm width was Gc[Cubipod armors]=3Dn and Gc[Cube armor]=2Dn. Two water depths 

were tested in the model zone, h(m)=0.50 and 0.55. Two crown-walls were tested with heights of 0.20 

and 0.26 m, 0.203≤Rc(m)≤0.263. The model was designed to avoid significant damage to the armor layer. 

Three armor layers with concrete armor units, ρCubipod(kg/cm3)=2.29 and ρCube(kg/cm3)=2.23, were 

tested: (1) conventional double-layer cube armor with Dn(cm)=6.00 and ф=1.26 , (2) single- and (3) 

double-layer Cubipod armor with Dn(cm)=3.82 and ф=0.61 and 1.18, respectively (see Figure 1), where 
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ф is the packing density. 

 

Figure 1. Cross-section tested by Smolka et al. [20]. Dimensions in centimeters.  

During the tests, wave overtopping, crown wall stability (see Molines et al. [21]) and armor layer damage 

were analyzed. Eight capacitance wave gauges sampled at 20 Hz were used in these experiments to 

separate incident and reflected waves (Figure 2); one group of four wave gauges was placed in front of 

the wave maker, h(m)=0.75 and 0.80, and the other group of four wave gauges was placed near the 

model, h(m)=0.50 and 0.55, both groups on horizontal bottoms. A 4% bottom slope transition reduced 

the water depth at the model area, Δh(m)=0.25, from that of the wave generation zone. An isolated 0.20 

m-width chute collected the overtopping discharge and the accumulated volume was obtained by 

weighing the collecting tank at frequency 5Hz. The sensitivity of the overtopping measurement system 

was 0.01 kg; for tests with high mean overtopping discharge, pumping operations were necessary 

because of the limited volume of the collecting tank. Pumping operations were manually conducted 

during the tests by a trained operator when no overtopping was expected. Figures 5a and 5b show a 

gross signal in the scale including pumping operations and the corrected scale signal, respectively. 
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Figure 2. Longitudinal cross-section of the wave flume of the LPC-UPV. Dimensions in centimeters. 

  

Figure 3. Gross record of accumulated overtopping volume: (a) with pumping operations and (b) 

eliminating pumped volume. 

The model was tested with regular and irregular waves, increasing the incident wave height while 

maintaining approximately constant the Iribarren number Irm=tanα/(Hm0/Lm)0.5=2.0, 2.5, 3.0, 3.5 and 4.0 

until armor damage or massive overtopping occurred, where Lm is the local mean wavelength at the toe. 

1000 irregular waves were generated following the JONSWAP spectrum with γ=3.3. The LASA-V method 

(Figueres and Medina [22]) was applied to separate the incident and reflected waves. To this end, wave 

gauges were separated in the range Lm/4 to Lm/8 in the generation and model areas.  

In all, 164 irregular tests of double-layer randomly-placed cube armor and single- and double-layer 

Cubipod armors were used in the present study; the characteristics are summarized in Table 1. 

Armor 
type 

No.  
tests  

Hs 

(m) 

T01 

(s) 

Rc 

(m)  

Ac 

(m) 

Gc 

(m)  

cot α h 

(m) 

(a) (b) 
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Cube  

(2L) 

39 0.078-
0.162 

0.947-
2.330 

0.203-
0.263 

0.19-
0.240 

0.120 1.50 0.500-
0.550 

Cubipod  

(2L) 

66 0.055-
0.149 

0.871-
2.366 

0.203-
0.263 

0.150-
0.200 

0.120 1.50 0.500-
0.550 

Cubipod  

(1L) 

59 0.064-
0.152 

0.881-
2.351 

0.203-
0.263 

0.110-
0.160 

0.120 1.50 0.500-
0.550 

Table 1. Dimensions and wave conditions of the tests described by Smolka et al. [20]. 

4. Methodology to identify individual wave overtopping volumes 

Continuous overtopping measurements of accumulated overtopping volume are usually recorded during 

the 2D small-scale tests using (1) wave gauges inside the collecting tank to measure variations in water 

level or (2) load cells below the collecting tank to weigh variations in mass. On the one hand, 

measurements with wave gauges require collecting tank sections small enough to be accurate since 

measurements are affected by oscillations during overtopping events. On the other hand, weigh 

measurement with load cells may be affected by an added apparent mass generated by the largest 

overtopping discharges. A sound identification method of the individual wave overtopping volumes from 

a recorded time series of accumulated overtopping volume is crucial for repeatability and to avoid errors 

when analyzing the number of overtopping waves and the individual volume of each overtopping event. 

A variety of methods based on relevant subjective elements is described in the literature.  

Besley [8] reported a methodology based on two steps. First, wave gauges were placed at the structure 

crest to identify the individual wave overtopping events. Second, if load cells were used, the difference 

in water volume in the collecting tank between two successive overtopping events was the individual 

wave overtopping volume (considering a time delay between the detected overtopping wave on the 

crest and the increase in the accumulated overtopping volume in the collecting tank). If water level 

gauges were used, Besley [8] proposed taking the average of the level readings over the last few seconds 



16 

 

before the arrival of the next overtopping event as the baseline to evaluate individual wave overtopping 

volumes. Nørgaard et al. [12] used water level gauges in a small collecting tank with an algorithm to 

identify rapid changes in the volume of water therein and compared the results of the algorithm with 

visual inspections of the time series of the accumulated overtopping volume after each test. Studies such 

as those by Victor et al. [10] or Zanuttigh et al. [11] did not describe any specific methodology to identify 

the number of overtopping waves or to measure the individual wave overtopping volumes. 

The methodology used to determine the number of overtopping waves (Now) affects the estimation of 𝑉𝑉�  

and Vmax. When a low individual wave overtopping event occurs, it is difficult to separate it from water 

falling in the collecting tank after a large overtopping event or noise generated by dynamic loads. 

Conventional mound breakwaters are usually designed to allow low overtopping discharges with very 

few overtopping waves; a robust measurement of Now is relevant in this case. In this study, a new 

methodology is developed to measure the number of overtopping waves and the individual wave 

overtopping volumes using the continuous record of the accumulated overtopping volume in the 

collecting tank. In this study, a load cell below the collecting tank was used to weigh variations in mass. 

The methodology is described in ten steps which are detailed below. 

Step 1 

The mass record of the load cell, W(kg), is transformed into volume, Vo1(l). Only tests with W(kg)>0.01 

(related to the load cell sensitivity) are considered in the analysis. In this study, the sampling frequency 

is 5Hz. 

Step 2 
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The accumulated overtopping volume, Vo2(l), is obtained from Vo1(l) taking into account the manual 

pumping operations; Vo2(l) is a non-decreasing corrected record, Vo2(ti)≥Vo2(ti-1). Later, the accumulated 

volume, Vo2(l), is corrected to consider the width of the chute, C(m)=0.2, Vo3(ti)= Vo2(ti)/C. 

Step 3 

A continuous record of the derivative of the volume, q1(l/s/m), is obtained from the volume corrected 

accumulated overtopping  Vo3(l/m) as: 

𝑞𝑞1(𝑡𝑡𝑖𝑖) =
𝑉𝑉𝑜𝑜3�𝑡𝑡𝑖𝑖+

𝑇𝑇01
2 �−V𝑜𝑜3(𝑡𝑡𝑖𝑖) 
𝑇𝑇01
2

   i=1……L1 with L1=max(i)-round(5T01/2) (18) 

Eq. (18) was calculated for intervals T01/2 because overtopping events discharge water during the crest 

phase of the wave, which roughly corresponds to half the mean wave period (T01). Time series of 

q1(l/s/m) have local peak values near the starting points of possible overtopping events. 

Step 4 

The derivative of the volume q1(l/s/m) was filtered using a triangular moving average function given by: 

𝑞𝑞2�𝑡𝑡𝑗𝑗� = 0.25𝑞𝑞1�𝑡𝑡𝑗𝑗−1� + 0.5𝑞𝑞1�𝑡𝑡𝑗𝑗� + 0.25𝑞𝑞1(𝑡𝑡𝑗𝑗+1) j=2……L2-1 with L2=max(j)  (19) 

Eq. (19) eliminates frequency noise higher than 3Hz in the derivative of the volume, q1(l/s/m), due to 

dynamic loads generated by water falling into the collecting tank. The time of the local peaks of q2(l/s/m) 

roughly corresponds to the beginning of possible overtopping events (Figure 4). The number of local 

peaks of q2(l/s/m) is denoted as Np1. 

Step 5 

The individual wave overtopping volumes, V1(l/m), are calculated using Eq. (20) and Vo3(l) from Step 2: 



18 

 

𝑉𝑉1(𝑡𝑡𝑘𝑘) = 𝑉𝑉𝑜𝑜3(𝑡𝑡𝑘𝑘+1) − 𝑉𝑉𝑜𝑜3(𝑡𝑡𝑘𝑘)    k=1……Np1   (20) 

where tk is the time when q2(l/s/m), given in Step 4, shows a local peak and a possible overtopping event. 

The higher values of V1(l/m) always correspond to real overtopping events, but not all the small values 

of V1(l/m) correspond to a real overtopping event. Small values of V1(l/m) may be generated by water 

continuously falling into the collecting tank after a large overtopping event or generated by a small real 

wave overtopping event (see Figure 4).  

Step 6 

During the tests, it was observed that individual wave overtopping volumes higher than 0.25 l/m always 

corresponded to real overtopping waves. Therefore, the individual wave overtopping volumes, V1(l/m), 

were compared with a low threshold VT(l/m)=0.25. If V1(tk)> VT, then V1(tk) was considered a real 

overtopping event. Volumes under the threshold level V1(tk)< VT may correspond to water falling in the 

collecting tank after a large overtopping event or a small real overtopping event. In the next steps, tk 

identifies both the real and possible overtopping events. 

Considering a scale 1/50, the value of the threshold VT at prototype scale is 0.25x(503/50)=625 l/m, near 

the acceptable limits of 600 l/m for pedestrians suggested by EurOtop [2].  

Step 7 

When V1(tk)< VT, two scenarios may occur: (1) small overtopping events with local peaks of q2(tk)= 

q2(tk+1)= q2(tk+2)=… with an increasing time delay between peaks, and (2) small overtopping events with 

a local peak of q2(tk), higher than the surrounding local peaks. Both cases are analyzed separately: 

(1) When a small V1(tk) with local peaks of q2(tk)= q2(tk+1)= q2(tk+2)=… is caused by water falling after a 

large overtopping event, q2(tk), q2(tk+1), q2(tk+2),… show an increasing time delay (tk+1–tk≤tk+2-tk+1) and the 
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time delay between peaks can be used to identify the starting time of a real overtopping event. The time 

position tk(s) may be a real overtopping event if a decreasing time delay is observed between two local 

peaks.  

(2) There is also small real overtopping event at tk(s) if a local peak value of q2(tk) is higher than the 

surrounding local peaks, q2(tk) > q2(tk-1) and q2(tk) > q2(tk+1).  

Step 8 

The individual wave overtopping volumes, V2(l/m), are calculated using Eq. (21): 

𝑉𝑉2(𝑡𝑡𝑚𝑚) = 𝑉𝑉𝑜𝑜3(𝑡𝑡𝑚𝑚+1) − 𝑉𝑉𝑜𝑜3(𝑡𝑡𝑚𝑚)    m=1……Np2  (21) 

where tm(s) and Np2 are the time positions and the number of real overtopping events obtained after 

Steps 6 and 7. 

Step 9 

Small real overtopping events from Step 7 were added to the large overtopping events detected in Step 

6. Thus, the time delay between all real overtopping events is analyzed in Step 9. V2(l/m) is sorted in 

descending order, with V2(t1)=max(V2 (tm); tm=1 to Np2). Starting with V2(t1), if an overtopping event was 

closer than 0.8T01, |tm-t1|<0.8T01, the overtopping event at tm(s) was eliminated, since it is not possible 

to have two waves closer than T01.  

Step 10 

The individual wave overtopping volumes, V(l/m), are calculated using Eq. (22): 

𝑉𝑉(𝑡𝑡𝑛𝑛) = 𝑉𝑉𝑜𝑜3(𝑡𝑡𝑛𝑛+1) − 𝑉𝑉𝑜𝑜3(𝑡𝑡𝑛𝑛)    n=1……Now  (22) 

where tn(s) and Now are the time positions and the number of overtopping events obtained after Step 9. 
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The total V03 (l/m) obtained after the volume detection provided r2≈1 when compared to the total 

measured V03 (l/m). Figure 4c compares the measured V03 (l/m) and the reconstructed V03 (l/m) for 

Test#41 following the methodology described herein.  
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Figure 4. Time series of corrected accumulated overtopping volume (Vo3) and filtered derivative of the 

volume (q2) of Test #41 with Pow=0.076, Hm0(m)=0.12 and Tp(s)=2.53: a) interval between 1010 s and 

1060 s, b) interval between 250 s and 550 s and c) comparison of Vo3measured (l/m) and Vo3estimated (l/m) 

reconstructed following the methodology described in Section 5 between 250 s and 550 s. 

(a) 

(b) 

(c) 
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5. Analysis of data 

5.1  Weibull parameter fittings 

Given Eq. (1) with a= 𝐴𝐴𝑉𝑉� , the Weibull plot can be generated by taking logarithms on both sides twice: 

𝑙𝑙𝑙𝑙 (− 𝑙𝑙𝑙𝑙�1 − 𝐹𝐹(𝑉𝑉)�) = 𝑏𝑏(𝑙𝑙𝑙𝑙(𝑉𝑉/𝑉𝑉�) − 𝑙𝑙𝑙𝑙(𝐴𝐴))       (23) 

Thus, the Weibull plot can be represented considering 𝑙𝑙𝑙𝑙 (− 𝑙𝑙𝑙𝑙�1 − 𝐹𝐹(𝑉𝑉)�) in the y-axis and 𝑙𝑙𝑙𝑙(𝑉𝑉/𝑉𝑉�) in 

the x-axis. When the data are represented in a Weibull plot, the slope and the intercept of the fitted line 

allow to estimate the shape and scale factors of the Weibull distribution, respectively. 

The literature review showed that the shape factor (b) of the Weibull distribution is usually fitted to the 

data as the slope of the straight line in the Weibull plot, and the scale factor (A) is calculated using Eq. 

(3). Authors such as Pan et al. [13] or Gallach [14] pointed out that the fitted scale factor (A) cannot be 

the same as that obtained by Eq. (3), since substantial differences were observed between measured 

and estimated scale factors. 

The Weibull distribution is usually fitted to the highest individual wave overtopping volumes (V), for 

instance, 10% or 30% of the highest V. However, if Eq.(2) is used to estimate the scale factor (A), the low 

individual wave overtopping volumes and the number of overtopping waves (Now) are relevant to 

estimate A because 𝑉𝑉� = 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑁𝑁𝑜𝑜𝑜𝑜. Now and 𝑉𝑉�  are not variables easily measured in laboratory tests (see 

Section 5); Now and 𝑉𝑉�  are subjected to a high uncertainty and are affected by low V, which are not 

relevant for most practical applications. In order to provide a good representation of the distribution of 

the highest individual wave overtopping volumes, both the shape and scale factor (b and A) must be 

obtained from the Weibull plot, although the mean value µ given by Eq. (2) may be different from 

measured 𝑉𝑉� . 
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L1 represented in Figure 5 corresponds to the Weibull distribution with A and b parameters fitted to the 

highest 10% of individual wave overtopping volumes (Test #32 with Hm0(cm)=12.5 and Tp(s)=1.69). If the 

condition µ=𝑉𝑉�  is imposed and Eq. (3) is used to estimate the scale factor (A), L1 changes to L2; Figure 5 

illustrates how the intercept of the straight line L2 changes from I1 to I2, decreasing the goodness of fit 

to the highest individual wave overtopping volumes. The slope of the lines L1 and L2 is the same, but L2 

does not describe the highest individual wave overtopping volumes as well as L1. 

 

 

Figure 5. Measured and estimated individual wave overtopping volumes of Test #32 with Pow=0.033. 

The shape and scale factors in Figure 5 depend on the number of data used to fit the Weibull distribution. 

As seen in the literature review, there is no consensus as to the number of data to be selected when 

fitting the parameters of the probability distributions of individual wave overtopping volumes. 100%, 

30% and 10% of the highest individual wave overtopping volumes have been used by different authors. 

b 

1 

I1 

L1 

L2 
I2 
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In this study, the concept of utility function is used in the next section to better describe the data used 

to fit the shape and scale factors, b and A. 

5.2  Utility function 

Utility functions, f(u), are used to consider the relative relevance of the observed data; the weights used 

to fit a mathematical model to a set of data depends on the f(u). Considering the utility function concept, 

only step utility functions are considered in the literature (see Figure 6a) with a different cut-off 

threshold 0≤VP<Vmax (where P is the percentage of Vi above the threshold, Vi>VP). However, it is not easy 

to justify why individual volumes slightly lower than VP are discarded from the analysis while individual 

volumes slightly higher than VP are used; a discontinuous utility function (e.g. step function) is not 

consistent. On the contrary, a continuous and monotonically increasing utility function is recommended 

for a problem in which the higher the Vi, the higher the relevance for practical applications. Nevertheless, 

the selection of the best utility function depends on the specific application which is not always known 

in advance. A continuous and monotonically increasing f(u) avoids the inconsistency in the step utility 

function but not the subjectivity in selecting the utility function. 

In this study, a quadratic utility function depending on the individual wave overtopping volume is used 

to fit the parameters of the probability functions. The quadratic utility function uses all measured 

individual wave overtopping volumes (Vi), but the larger Vi have a higher relative weight in the fitting 

process.  

In this section, the step utility functions with VP=V10, V30 and V50 and the quadratic utility function are 

considered. Using a 2-parameter Weibull plot, the Weibull distribution was fitted by weighted least 

squares method; this is represented by a straight line. When the step utility functions were used, each 

Vi was represented by one point in the Weibull plot; when the quadratic utility function was used, each 
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Vi was represented by a number of virtual points proportional to its weight. Figure 6a illustrates the step 

utility function, f(u)=0 if 0≤Vi<VP, and f(u)=1 if VP≤Vi≤Vmax, and Figure 6b illustrates the quadratic utility 

function, f(u)=(V/Vmax)2, 0≤Vi≤Vmax. In Figure 6, the x-axis represents the sorted individual wave 

overtopping volumes (Vi) in ascending order. 

 

  

Figure 6. Utility function: (a) step function, and (b) quadratic function. 

Figure 7 illustrates the difference in the shape and scale factors (b and A) of the best-fitting of the Weibull 

distribution of measurements corresponding to Test #32, depending on the utility function.  

(a) (b) 
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Figure 7. Measured and estimated individual wave overtopping volumes corresponding to Test #32 with 

Pow=0.033 using the quadratic utility function f(u)=(V/Vmax)2 and the step utility functions with V10, V30 

and V50. 

The Mean Squared Error (MSE) and the relative Mean Squared Error (rMSE) given by Eqs. (24) and (25), 

respectively, are used in this study to measure the goodness of fit between estimated and measured 

data. rMSE measures the proportion of variance in the observations “o” not explained by the estimator 

“e”. The lower the rMSE, the better.  

( )

N

YoYe
MSE

N

i
ii∑

=

−
= 1

2

          (24) 

)(YoVar
MSErMSE =            (25) 

where “e” refers to the estimator; Ye and Yo are the estimated and observed values, respectively; N is 

the total number of data, and i is the data index (i=1,2,….,N).  
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6. Number of overtopping waves, Now. 

6.1 Estimated Now with methods given in the literature 

In this section the performance of the formulas to estimate Now given in Section 2 are analyzed. Most of 

the existing formulas are not valid for low Pow= Now/Nw; however, they were applied here to obtain 

information about its performance with low Pow, which is the common case in conventional mound 

breakwaters protecting harbors. In the following analysis, Now is the number of overtopping waves 

measured value in a given test.  

Figure 8 compares the measured and estimated Now using different estimators valid for conventional 

mound breakwaters. In this study, Rc>Ac, and Eq. (15) was not applicable. Eq. (12) given by Besley [8] and 

Eq. (16) given by EurOtop [2] were used with γf [cube, 2-layer]=0.50, γf [Cubipod, 1-layer]=0.46 and γf 

[Cubipod, 2-layer]=0.44 proposed by Smolka et al. [20]. Eq. (12) given by Besley [8] was used with 

K1=50.8 for the armor slope cotα =1.5, interpolated from values given for armor slopes cotα =2 and cotα 

=1. 

Eq. (12) and Eq. (16) provided poor Now (Nw=1000) predictions while Eq. (13) given by Besley [8] and Eq. 

(14) given by Nørgaard et al. [12] agreed quite well with experimental data in this study. However, Eqs. 

(13) and (14) underpredicted Now if measured Now>30 and overpredicted Now if measured Now<10. The 

rMSE on all data of Eqs. (13) and (14) in Figure 8 are rMSE=11.3% and 11.9%, respectively. According to 

Eq. (10), the larger the Now, the larger the Vmax; a new estimator is developed in Section 7 to better 

calculate the number of overtopping waves (Now).  



28 

 

 

Figure 8. Comparison between measured and estimated Now. 

6.2  A new method to estimate Now 

In this study, the parameters G1 and G2 in Pow=G1 Q*G2, similar to Eq. (13a), were calibrated minimizing 

MSE of ln(Now). Figure 9 illustrates the goodness of fit of Eq. (26) with rMSE=6.7%. 

𝑃𝑃𝑜𝑜𝑜𝑜 = 𝑁𝑁𝑜𝑜𝑜𝑜
𝑁𝑁𝑤𝑤

= 480𝑄𝑄∗0.8          (26) 

where Q*= q/(gT01Hs) is the dimensionless mean overtopping discharge, Pow is the proportion of 

overtopping waves, Nw is the number of waves and Now is the number of overtopping events. In this 

study, the variance was not considered as constant as in Herrera and Medina [23]. Thus, following the 

methodology given by Herrera and Medina [23], the error (ε) may be considered as Gaussian distributed 

with 0 mean and variance estimated by: 

𝜎𝜎2(𝜀𝜀) = −0.042𝑙𝑙𝑙𝑙𝑁𝑁𝑜𝑜𝑜𝑜 + 0.23         (27) 

The 5% and 95% percentiles for the Now estimations given by Eq. (26) may be obtained by: 
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𝑙𝑙𝑙𝑙𝑁𝑁𝑜𝑜𝑜𝑜|5%
95% = 𝑙𝑙𝑙𝑙𝑁𝑁𝑜𝑜𝑜𝑜 ± 1.65�−0.042𝑙𝑙𝑙𝑙𝑁𝑁𝑜𝑜𝑜𝑜 + 0.23      (28) 

The range of application of Eq. (26) is 0.001≤ Pow <0.200 and 7.0·10-8≤ Q* ≤6.4·10-5, in the lowest part 

of the range of application of Eq. (13a).  

 

Figure 9. Comparison between Now measured and estimated by Eq. (26) and 90% confidence interval. 

7. Maximum individual wave overtopping volume, Vmax. 

7.1  Estimated Vmax with methods given in the literature. 

In this section the performance of the formulas to estimate Vmax given in Section 2 is analyzed. Most of 

the existing formulas are not valid for low Pow= Now/Nw, but they were applied here to obtain information 

about its performance with low Vmax, which is the common case in conventional mound breakwaters 

protecting harbors. In the following analysis, q, Now, Vtotal and Vmax are measured values in a given test, 

q(l/s/m) is the mean overtopping discharge, Now is the number of overtopping waves, Vtotal(l/m) is the 

total accumulated overtopped volume and Vmax(l/m) is the highest individual wave overtopping volume. 
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Figure 10 compares the measured and estimated dimensional Vmax and dimensionless 

Vmax*=Vmax/(gHsT012) using various formulas, valid for conventional mound breakwaters with 𝑉𝑉� =

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑁𝑁𝑜𝑜𝑜𝑜 where Vtotal(l/m) and Now are measured values. The scale factor of the Weibull distribution 

(A) is estimated using Eq. (3) as suggested in the literature. The existing estimators of Vmax* 

underpredicted Vmax* if Vmax*<10-4 or Vmax*>10-3 with rMSE on all data of  15%<rMSE<22%. The 2-

parameter Weibull and Exponential distributions are analyzed in Sections 7 and 8 to better estimate 

Vmax*. 

  

Figure 10. Comparison between measured and estimated (a) Vmax (l/m) and (b) Vmax*=Vmax/(gHsT012). 

7.2  A new method using the Weibull distribution to estimate Vmax 

The maximum individual wave overtopping volume is evaluated using Eq. (10); Vmax depends on Now, b, 

A and 𝑉𝑉� = 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑁𝑁𝑜𝑜𝑜𝑜. The shape and scale factors (b and A) of the Weibull distribution derived from 

each test are analyzed here depending on the utility function f(u) used to fit them.  

(a) (b) 
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Figure 11a illustrates the relationship between Q* and b and the least-squares fitting given by Eq. (29a). 

Figure 11b illustrates the relationship between 1/b and A and the least-squares fitting given by Eq. (29b). 

Figures similar to Figure 11 were obtained using the step utility function with 10%, 30% and 50% of the 

highest individual wave overtopping volumes. Hereafter, A[V2] and b[V2] are the estimated Weibull 

parameters considering f(u)=(V/Vmax)2; A[V50] and b[V50] are those considering a step utility function 

with VP=V50; A[V30] and b[V30] are those considering a step utility function with VP=V30 and A[V10] 

and b[V10] are those considering a step utility function with VP=V10. 

  

Figure 11. Relationship with explanatory variables and least-squares fitting using f(u)=V2 of (a) Weibull’s 

shape factor, b[V2], and (b) Weibull’s scale factor, A[V2]. 

Eqs. (29) to (32) provide the estimation of A and b for the utility functions used in this study: 

𝑏𝑏[𝑉𝑉2] = 0.63 + 1.25exp (−3.0 ∙ 105𝑄𝑄∗)         (29a) 

𝐴𝐴[𝑉𝑉2] = 1.4 − 0.4 1
𝑏𝑏[𝑉𝑉2]

           (29b) 

𝑏𝑏[𝑉𝑉50] = 0.58 + exp (−2.6 ∙ 105𝑄𝑄∗)         (30a) 

(a) (b) 
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𝐴𝐴[𝑉𝑉50] = 1.3 − 0.4 1
𝑏𝑏[𝑉𝑉50]

           (30b) 

𝑏𝑏[𝑉𝑉30] = 0.63 + 3.5exp (−8.5 ∙ 105𝑄𝑄∗)         (31a) 

𝐴𝐴[𝑉𝑉30] = 1.3 − 0.36 1
𝑏𝑏[𝑉𝑉30]

           (31b) 

𝑏𝑏[𝑉𝑉10] = 0.79 + 14.5exp (−1.0 ∙ 106𝑄𝑄∗)         (32a) 

𝐴𝐴[𝑉𝑉10] = 1.3 − 𝑙𝑙𝑙𝑙 � 1
𝑏𝑏[𝑉𝑉10]

�           (32b) 

where Q*= q/(gT01Hs). The range of application for Eqs. (29) to (31) is 0.010≤ Pow ≤0.200 and 1.1·10-6≤ Q* 

≤6.4·10-5 and for Eq. (32) is 0.020≤ Pow ≤0.200 and 2.0·10-6≤ Q* ≤6.4·10-5. 

Regardless of the utility function used, the shape factor (b) depends on the dimensionless wave 

overtopping discharge Q*= q/(gT01Hs), and the scale factor (A) depends on 1/b. To avoid inconsistencies 

in tests with low Now when using the quadratic utility function and the step utility functions with VP=V30 

and VP=V50, only tests with Now≥10 (Pow≥0.01) were considered to fit A and b. When using the step utility 

function with VP=V10, only tests with Now≥20 (Pow≥0.02) were considered in the analysis. 

Figure 12 illustrates the performance of Eq. (10) to estimate Vmax*=Vmax/(gHsT012) with measured Now and 

𝑉𝑉�  and using Eqs. (29) to (32) to estimate A and b. Figure 12 shows that Eqs. (29) to (31) improve the 

prediction of Vmax* compared to the existing methods (see Figure 10), especially for small and large Vmax*. 

Eq. (29) corresponding to the quadratic utility function provides the lowest rMSE=10.4% on all data. 

Assuming a Gaussian error distribution with constant variance, the 90% confidence interval of Eq. (29) is 

given by 𝑙𝑙𝑙𝑙𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚∗ |5%
95% = 𝑙𝑙𝑙𝑙𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚∗ ± 0.57. Eq. (32) with a step utility function with VP=V10 clearly 

overpredicts Vmax* for low values of Vmax* associated with Pow <0.01<0.02, beyond the range of 

application of Eqs. (32).  
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Figure 12. Comparison between measured and estimated Vmax*= Vmax/(gHsT012) by the Weibull 

distribution using different utility functions. 90% confidence interval refers to the quadratic utility 

function. Solid symbols correspond to data with 0.20>Pow≥0.01 and empty symbols correspond to data 

with Pow<0.01. 

7.3  A new method using the Exponential distribution to estimate Vmax 

Distributions different from the 2-parameter Weibull one may be used to fit the larger individual wave 

overtopping volumes; in this study the performance of the 2-parameter Exponential distribution is 

analyzed. The 2-parameter Exponential distribution is given by Eq. (33), where c and d are the two free 

parameters.  

𝐹𝐹(𝑉𝑉) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝑉𝑉−𝑐𝑐
𝑑𝑑
��                (33) 
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Eq. (33) can be rewritten using the dimensionless parameters C= 𝑐𝑐/𝑉𝑉�  and D= 𝑑𝑑/𝑉𝑉� , where 𝑉𝑉�  is the 

measured mean individual wave overtopping volume. An Exponential plot can be generated considering 

logarithms on both sides of Eq. (33). 

− 𝑙𝑙𝑙𝑙�1 − 𝐹𝐹(𝑉𝑉)� = 𝑉𝑉/𝑉𝑉�

𝐷𝐷
− 𝐶𝐶

𝐷𝐷
          (34) 

Thus, the Exponential plot can be represented considering − ln�1 − 𝐹𝐹(𝑉𝑉)� in the y-axis and 𝑉𝑉/𝑉𝑉�  in the 

x-axis. Like Eq. (10) for the Weibull distribution, the maximum overtopping volume of an Exponential 

distribution is given by: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐷𝐷𝑉𝑉�[ln(𝑁𝑁𝑜𝑜𝑜𝑜 + 1) + 𝐶𝐶/𝐷𝐷]         (35) 

The parameters C and D of the Exponential distribution were calibrated following the same methodology 

described in Section 7.2: 

𝐷𝐷[𝑉𝑉2] = 2.6 − 2.6exp (−3.0 ∙ 105𝑄𝑄∗)         (36a) 

𝐶𝐶[𝑉𝑉2] = 1.2 − 𝐷𝐷[𝑉𝑉2] − 0.2𝐷𝐷[𝑉𝑉2]2          (36b) 

𝐷𝐷[𝑉𝑉50] = 2.1 − 2exp (−3.5 ∙ 105𝑄𝑄∗)         (37a) 

𝐶𝐶[𝑉𝑉50] = 1.4 − 1.4𝐷𝐷[𝑉𝑉50]           (37b) 

𝐷𝐷[𝑉𝑉30] = 2.3 − 2.5exp (−4.5 ∙ 105𝑄𝑄∗)         (38a) 

𝐶𝐶[𝑉𝑉30] = 1.7 − 1.7𝐷𝐷[𝑉𝑉30]           (38b) 

𝐷𝐷[𝑉𝑉10] = 2.7 − 7exp (−5.0 ∙ 105𝑄𝑄∗)         (39a) 

𝐶𝐶[𝑉𝑉10] = 2.8 − 2.5𝐷𝐷[𝑉𝑉10]           (39b) 
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The range of application for Eqs. (36) to (38) is 0.010≤ Pow <0.200 and 1.1·10-6≤ Q* ≤6.4·10-5, and for Eq. 

(39) is 0.020≤ Pow <0.200 and 2.0·10-6≤ Q* ≤6.4·10-5. 

Figure 13 illustrates the performance of Eq. (35) to estimate Vmax*=Vmax/(gHsT012) with measured Now and 

𝑉𝑉�  and using Eqs. (36) to (39) to estimate the two parameters of the Exponential distribution. Figure 13 

shows that Eqs. (36) to (38) improve the prediction of Vmax* compared to existing methods (see Figure 

10) and provide predictions similar to the 2-parameter Weibull distribution (see Figure 11). Eq. (36) 

corresponding to the quadratic utility function provides rMSE=10.6% on all data. Assuming a Gaussian 

error distribution with constant variance, the 90% confidence interval of Eq. (36) is given by 

𝑙𝑙𝑙𝑙𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚∗ |5%
95% = 𝑙𝑙𝑙𝑙𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚∗ ± 0.57. Eq. (39) with a step utility function with VP=V10 clearly overpredicts Vmax* 

for low values of Vmax* associated with Pow <0.01<0.02, beyond the range of application of Eqs. (39). 

 

Figure 13. Comparison between measured and estimated Vmax*= Vmax/(gHsT012) by the Exponential 

distribution using different utility functions. 90% confidence interval refers to the quadratic utility 
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function. Solid symbols correspond to data with 0.20>Pow≥0.01 and empty symbols correspond to data 

with Pow<0.01. 

7.4  Estimation of Now and Vmax using the CLASH Neural Network 

During the design stage, the geometry of the breakwater and the design storm (Hs and T01) are given. 

Thus, q and Now can be estimated with formulas given in the literature, and  𝑉𝑉�  can be calculated as 𝑉𝑉� =

𝑞𝑞𝑇𝑇01𝑁𝑁𝑤𝑤/𝑁𝑁𝑜𝑜𝑜𝑜. In this section, the CLASH Neural Network (see Van Gent et al. [3] and CLASH [24]) is used 

to estimate q with the roughness factors proposed by Molines and Medina [5]; Now is estimated using 

Eq. (26), and Vmax is estimated by Eq. (10) using the Weibull parameters (A and b) -given by Eq. (29), and 

Eq. (35) with the Exponential parameters (C and D) given by Eq. (36). 

Figure 14a illustrates the goodness of fit of the CLASH Neural Network to estimate Q* with rMSE=30% 

and Figure 14b illustrates the goodness of fit of Eq. (26) to estimate Now with rMSE=31%.  

  

Figure 14. Comparison between measured and estimated values of (a) Q* using the CLASH Neural 

Network and (b) Now using Eq. (26). 

(a) (b) 
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Figure 15 illustrates the performance of Eqs. (10) and (35) to estimate Vmax based on estimated Now and 

𝑉𝑉� . Eqs. (29) and (36) were used to estimate the Weibull and Exponential parameters associated to the 

quadratic utility function, respectively. Vmax* estimated by the Weibull and Exponential distributions 

show rMSE=31.6% and 33.3%, respectively. Using estimated values of q and Pow, Figure 15 shows that 

the prediction error of Vmax* is higher than that using measured q and measured 𝑉𝑉� . 

  

Figure 15. Comparison between measured and estimated Vmax*= Vmax/(gHsT012) with 90% confidence 

intervals using the mean wave overtopping rate (q) predicted by the CLASH Neural Network and (a) 

Weibull distribution and (b) Exponential distribution. 

8.  Conclusions 

Conventional mound breakwaters are usually designed with a crest freeboard level that allows low mean 

wave overtopping discharges (q), low maximum individual wave overtopping volumes (Vmax) and a low 

proportion of overtopping waves (Pow=Now/Nw). Existing formulas to estimate Pow are usually based on 

tests with large Pow; this study is focused on mound breakwaters with low Now (Pow < 0.2). This research 

analyzes the performance of the Weibull and Exponential distributions to estimate the individual wave 

(b) (a) 
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overtopping volumes. To this end, a new methodology was developed to identify the Now and the 

individual wave overtopping volumes based on a continuous record of accumulated overtopping 

volumes in 2D physical tests. The methodology was applied to 164 small-scale 2D tests carried out by 

Smolka et al. [20] to propose a new estimator for the number of overtopping waves (Now) and to fit 2-

parameter Weibull and Exponential distributions for individual wave overtopping volumes, F(V). A 

quadratic utility function f(u)=(V/Vmax)2, using all the data, and a step utility function using only 10%, 30% 

and 50% of the highest individual wave overtopping volumes were considered to fit the 2-parameter 

Weibull and Exponential distributions. 

When compared to experimental observations, Eqs. (13) and (14) given by Besley [8] and Nørgaard et al. 

[12] were the best estimators of Now, yet both formulas underpredicted Now if Now>30 and overpredicted 

Now if Now<10. In this study, a new estimator of Now given by Eqs. (26) and (28) is proposed with 

rMSE=6.7%. 

In the literature, the scale factor (A) of the Weibull distribution is usually related to the shape factor (b) 

using the measured mean individual wave overtopping volume, 𝑉𝑉� . However, 𝑉𝑉�  considers low individual 

wave overtopping volumes, which are not easily measured during laboratory tests and are not relevant 

for most practical applications. Estimators given by Besley [8], EurOtop [1, 2] and Nørgaard et al. [12] 

underpredicted the observed Vmax*= Vmax/(gHsT012) if Vmax*<10-4 or Vmax*>10-3. The new 2-parameter 

Weibull and Exponential distributions provide unbiased estimations of Vmax* with rMSE=10.4% and 

10.6%, respectively, when using the quadratic utility function.  

The 2-parameter Weibull and Exponential distributions may be used to estimate the larger individual 

wave overtopping volumes. Eqs. (29) to (31) and (36) to (38) can be used to estimate the parameters of 

the distributions; predictions for Vmax* using those parameters gave good agreements except the 

parameters fitted to the top highest 10% individual wave overtopping volumes, which provided 
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unreliable overestimations for both the Weibull and Exponential distributions when Pow<0.01. The use 

of the highest 10% of volumes to fit the Weibull or Exponential distribution is only relevant when Now is 

sufficiently large. Using a low Now to fit the statistical distribution (e.g. the highest 10% overtopping 

waves) might lead to poor predictions. 

When measured q and Now are not available, coastal engineers can estimate these variables using 

formulas given in the literature. The CLASH Neural Network was used in this study to estimate q on the 

164 small-scale tests. Using the new estimator for Now given by Eq. (26) with q predicted by the CLASH 

Neural Network, estimations of Now have rMSE=31%. Using the quadratic utility function and the 

estimated q and Now, Vmax* was calculated by the Weibull and Exponential distributions with rMSE=31.6% 

and 33.3%, respectively. Using estimated q and Pow=Now/Nw, the prediction error of Vmax* is higher than 

that using measured q and measured 𝑉𝑉�  due to the estimation error of q. 
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