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Abstract

In this paper, we analyze the stability of a parametric family of iterative methods with memory for solving nonlinear
equations. This family is obtained from an optimal class of fourth-order schemes without memory designed by means
of weight functions procedure. By studying the real fixed and critical points of the rational function resulting from
the application of the family with memory on quadratic polynomials, the best elements of the family, in terms of
absence of chaotic behavior, are selected. Finally, a numerical study is performed verifying the dynamical theoretical
results.
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1. Introduction

Nonlinearity is ubiquitous in physical phenomena as fluid and plasma mechanics, gas dynamics, elasticity,
relativity, chemical reactions, combustion, ecology, biomechanics, economics modeling problems, transport theory
and many other problems that are modeled by nonlinear equations. So, the design of fixed point iterative methods
for solving nonlinear equations f(x) = 0 is a challenging task in Numerical Analysis.

The iterative methods with memory use information from the current iteration and the previous ones. The key
point of this kind of methods is the increasing of the order of convergence of the original scheme without adding
new functional evaluations. This is often based on the existence of accelerating parameters that are involved in the
error equation of the original methods.

The first method with memory including accelerators is based on Steffensen’s method [1] and was designed by
Traub in [2]. He developed a method with memory with slight but significant changes of Steffensen’s method,
resulting in an order of convergence of 2.41.

Despite there are methods with memory that include expressions with derivatives (see, for example [3, 4, 5]), the
most common practice is to design derivative-free iterative methods with memory. There is an extensive literature
of this sort of schemes, standing out the papers of Petković and Džunic ([6, 7, 8, 9]), or by other authors such as
Lotfi, Soleymani, Sharma or Zafar ([10, 11, 12, 13, 14, 15]) by using similar techniques.

The main goal of this study is the in-depth analysis of the real dynamics of a new iterative family of methods
with memory designed in this work.
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Taking King’s family of optimal fourth-order iterative methods as a starting point,

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(xk) + αf(yk)

f(xk) + (α− 2)f(yk)

f(yk)

f ′(xk)
,

(1)

where α is a free real parameter, we introduce a family of derivative-free methods using the weight function technique.
The error equation of this class allows us to construct a family with memory by estimating the accelerated parameter,
in each iteration, by means of available information. In order to analyze its convergence we use the following result
[16].

Theorem 1. Let ψ be an iterative method with memory that generates a sequence {xk} of approximations to the
root x∗, and let this sequence converge to x∗. If there exists a nonzero constant K and nonnegative numbers ri,
i = 0, 1, . . . , R, such that the inequality

|ek+1| ≤ K
R∏
i=0

|ek−i|ri

holds, then the R-order of convergence of the iterative method ψ satisfies the inequality

OR(ψ, x∗) ≥ v∗,

where v∗ is the unique positive root of the equation

vR+1 −
R∑
i=0

riv
R−i = 0.

The paper is organized as follows. In Section 2, a family of iterative methods without memory is introduced
and its fourth-order convergence is proven. Moreover, some particular cases are stated. Section 3 is devoted to the
design of a family of iterative methods with memory starting from the previous without memory partner. In Section
4 a real dynamical analysis is performed to check the behavior of these schemes with memory and select those with
better stability properties. Finally, Section 5 covers the numerical experience on different tests functions.

2. Families of iterative methods without memory

From King’s family (1), replacing the derivative by different first-order divided differences, and considering the
first factor of the second step as a weight function H(t), we introduce the schemes

yk = xk −
f(xk)

f [xk, wk]
,

xk+1 = yk −H(tk)
f(yk)

f [yk, wk]
,

(2)

where H(t) is the weight function of variable t = f(y)/f(x) and w = x+ γf(x), being γ a nonzero parameter. Its
order of convergence is established in the following result.

Theorem 2. Let us suppose that f : I ⊂ R → R is a sufficiently differentiable function in an open interval I and
x∗ ∈ I is a simple root of f(x) = 0. If the initial approximation x0 is close enough to x∗ and function H(t) satisfies
the conditions H(0) = H ′(0) = 1 and H ′′(0) < ∞, then the iterative schemes in (2) have optimal fourth-order of
convergence, for all nonzero γ, being in this case the error equation

ek+1 = −c2
2

(1 + γf ′(x∗))
2 [

(−6 + γf ′(x∗)(H ′′(0)− 2) +H ′′(0)) c22 + 2c3
]
e4k +O(e5k), (3)

where ek = xk − x∗, k = 0, 1, . . . and cj = 1
j!
f(j)(x∗)
f ′(x∗) .
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Proof. By expanding f(xk) in Taylor series,

f(xk) = f ′(x∗)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k

]
+O(e5k).

The expansion of the divided difference f [xk, wk] is

f [xk, wk] = f ′(x∗)
[
1 + (2 + γf ′(x∗))c2ek +

(
γc22f

′(x∗) + c3(3 + 3γf ′(x∗) + γ2f ′(x∗)2)
)
e2k

+(2 + γf ′(x∗))(2c2c3γf
′(x∗) + c4(2 + 2γf ′(x∗) + γ2f ′(x∗)2))e3k

]
+O(e4k),

and the error in the first step yields

yk − x∗ = c2(1 + γf ′(x∗))e2k +
[
−c22(2 + 2γf ′(x∗) + γ2f ′(x∗)2) + c3(2 + 3γf ′(x∗) + γ2f ′(x∗)2)

]
e3k

+
[
c32
(
4 + 5γf ′(x∗) + 3γ2f ′(x∗)2 + γ3f ′(x∗)3

)
− c2c3

(
7 + 10γf ′(x∗) + 7γ2f ′(x∗)2 + 2γ3f ′(x∗)3

)
+c4 (3 + 6γf ′(x∗)+) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3

)]
e4k +O(e5k).

The Taylor expansion of f(yk) results in

f(yk) = f ′(x∗)
[
c2(1 + γf ′(x∗))e2k +

(
−c22(2 + 2γf ′(x∗) + γ2f ′(x∗)2) + c3(2 + 3γf ′(x∗) + γ2f ′(x∗)2)

)
e3k

+
(
c32
(
5 + 7γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3

)
− c2c3

(
7 + 10γf ′(x∗) + 7γ2f ′(x∗)2 + 2γ3f ′(x∗)3

))
+c4

(
3 + 6γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3

))
e4k
]

+O(e5k).

Assuming that xk is sufficiently close to the zero x∗ of f , then tk is close enough to 0, so we expand H(t) about 0,

H(t) ≈ H(0) +H ′(0)t+
1

2
H ′′(0)t2.

By direct division, we get

f(yk)

f(xk)
= c2(1 + γf ′(x∗))ek +

[
−c22

(
3 + 3γf ′(x∗) + γ2f ′(x∗)2

)
+
(
2 + 3γf ′(x∗) + γ2f ′(x∗)2

)]
e2k

+
[
c32(8 + 10γf ′(x∗) + 5γ2f ′(x∗)2 + γ3f ′(x∗)3)− 2c2c3(5 + 7γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3)

+c4(3 + 6γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3)
]
e3k +O(e4k),

so H(t) yields

H(t) = H(0) + c2H
′(0)(1 + γf ′(x∗))ek

+
[
c22
2

(
H ′′(0)(1 + γf ′(x∗))2 − 2H ′(0)(3 + 3γf ′(x∗) + γ2f ′(x∗)2)

)
+ c3H

′(0)(2 + 3γf ′(x∗) + γ2f ′(x∗)2)
]
e2k

+
[
c32(H ′′(0)(3 + 6γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3) +H ′(0)(8 + 10γf ′(x∗) + 5γ2f ′(x∗)2 + γ3f ′(x∗)3))

+c2c3(H ′′(0)(1 + γf ′(x∗))2(2 + γf ′(x∗)) + 2H ′(0)(5 + 7γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3))
+c4H(0)(3 + 6γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3)

]
e3k +O(e4k).

A previous step for obtaining the error equation, is the calculation of f [yk, wk] as follows

f [yk, wk] = f ′(x∗)
[
1 + c2(1 + γf ′(x∗))ek +

(
c22(1 + 2γf ′(x∗)) + c3(1 + γ2f ′(x∗)2)

)
e2k

+
(
−c32(2 + 2γf ′(x∗)γ2f ′(x∗)2) + c2c3(3 + 8γf ′(x∗) + 4γ2f ′(x∗)2) + c4(1 + γf ′(x∗))3

)
e3k
]

+O(e4k).

Therefore, the error equation is

ek+1 = −c2(H(0)− 1)(1 + γf ′(x∗))e2k +
[
−c22

(
2 + 2γf ′(x∗) + γ2f ′(x∗)2 +H ′(0)(1 + γf ′(x∗))2

−H(0)(3 + 4γf ′(x∗) + 2γ2f ′(x∗)2)
)
− c3(H(0)− 1)(2 + 3γf ′(x∗) + γ2f ′(x∗)2)

]
e3k

+
[
− c

3
2

2

(
−8 +H ′′(0)− 10γf ′(x∗)− 3H ′′(0)γf ′(x∗)− 6γ2f ′(x∗)2

+3H ′′(0)γ2f ′(x∗)2 − 2γ3f ′(x∗)3 +H ′′(0)γ3f ′(x∗)3 + 2H(0)(7 + 11γf ′(x∗) + 8γ2f ′(x∗)2 + γ3f ′(x∗)3)
−2H ′(0)(6 + 13γf ′(x∗) + 10γ2f ′(x∗)2 + 3γ3f ′(x∗)3)

)
+ c2c3

(
−7− 10γf ′(x∗)− 7γ2f ′(x∗)2

−2γ3f ′(x∗)3 − 2H ′(0)(1 + γf ′(x∗))2(2 + γf ′(x∗)) + 2H ′(0)(5 + 9γf ′(x∗) + 7γ2f ′(x∗)2 + 2γ3f ′(x∗)3)
)

−c4
(
(H(0)− 1)(3 + 6γf ′(x∗) + 4γ2f ′(x∗)2 + γ3f ′(x∗)3)

)]
e4k +O(e5k).
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Setting H(0) = 1 the error equation gets

ek+1 = −c22(H ′(0)− 1)(1 + γf ′(x∗))2e3k
− c22

[
(1 + γf ′(x∗)

(
c22(6 + 6γf ′(x∗) + 4γ2f ′(x∗)2 +H ′′(0)(1 + γf ′(x∗))2 − 2H ′(0)(6+

+7γf ′(x∗) + 3γ2f ′(x∗)2)) + 2c3(1 + γf ′(x∗))(−3− 2γf ′(x∗) + 2H ′(0)(2 + γf ′(x∗)))
)
)
]
e4k +O(e5k),

and assuming also H ′(0) = 1,

ek+1 = −c2
2

(1 + γf ′(x∗))
2 [

(−6 + γf ′(x∗)(H ′′(0)− 2) +H ′′(0)) c22 + 2c3
]
e4k +O(e5k).

Let us remark that (1 + γf ′(x∗)) also appears as a factor in the term of order five.

Every method of family (2) is optimal in the sense of the conjecture of Kung and Traub [17]. Related to
Ostrowski’s efficiency index I [18], the family has I = 41/3 ≈ 1.587.

Many functions H(t) satisfy the conditions of Theorem 2, such as

1. H(t) = 1 + t+ αt2,

2. H(t) =
1 + αt

1 + (α− 1)t
,

3. H(t) =
α+ t+ t2

α+ (1− α)t
,

where α is a free parameter in every case.

3. Iterative methods with memory

Focusing on the error equation (3), methods with memory can be obtained choosing suitable values of parameter
γ. The order of convergence increases if γ = − 1

f ′(x∗) , with independence of the weight function. Then the error

equation becomes
ek+1 = (2c52 − c32c3)e6k +O(e7k),

so the order of convergence has increased in two units.
Nevertheless, the value of f ′(x∗) is unknown, so it needs to be approximated. By applying Newton’s interpolation

polynomial of first degree, N(t) = f(xk) + f [xk, xk−1](t − xk), f ′(x∗) ≈ N ′(xk) = f [xk, xk−1] and, therefore,
γk = − 1

f [xk,xk−1]
. The algorithm of the family with memory M(α) is summarized below:

• x0, γ0 are known,

• wk = xk + γkf(xk), k = 0, 1, 2, . . .,

• yk = xk − f(xk)
f [xk,wk]

,

• xk+1 = yk −H(tk) f(yk)
f [yk,wk]

,

• γk = − 1
f [xk,xk−1]

.

where α is a disposable parameter. The order of convergence is set in the following result.

Theorem 3. Let x∗ be a simple zero of a sufficiently differentiable function f : I ⊆ R → R in an open interval
I. If x0 is close enough to x∗ and γ0 is given, then the R-order of family M(α) is at least 2 +

√
6 ≈ 4.45 that

corresponds to the positive root of polynomial p2 − 4p− 2, and its error equation is

ek+1 = (2c52 − c32c3)e4ke
2
k−1 +O7(ek, ek−1), (4)

where O7(ek, ek−1) indicates that the sum of the exponents of ek and ek−1 in the rejected terms of the development
is at least 7.
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Proof. The expansion of f(xk) and f(xk−1) is

f(xk) = f ′(x∗)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k + c5e

5
k + c6e

6
k

]
+O(e7k),

f(xk−1) = f ′(x∗)
[
ek−1 + c2e

2
k−1 + c3e

3
k−1 + c4e

4
k−1 + c5e

5
k−1 + c6e

6
k−1
]

+O(e7k−1).

Since γ = − 1
f [xk,xk−1]

,

f [xk, xk−1] = f ′(x∗)
[
1 + c2ek−1 + c3e

2
k−1 + c4e

3
k−1 + c5e

4
k−1 + c6e

5
k−1

+
(
c2 + c3ek−1 + c4e

2
k−1 + c5e

3
k−1 + c6e

4
k−1
)
ek

+
(
c3 + c4ek−1 + c5e

2
k−1 + c6e

3
k−1
)
e2k +

(
c4 + c5ek−1 + c6e

2
k−1
)
e3k

+ (c5 + c6ek−1) e4k + c6e
5
k

]
+O6(ek, ek−1),

then,

wk − x∗ =
[
c2ek−1 + (−c22 + c3)e2k−1 + (c32 − 2c2c3 + c4)e3k−1 + (−c42 + 3c22c3 − c23 − 2c2c4 + c5)e4k−1

+ (c52 − 4c32c3 + 3c22c4 − 2c3c4 + c2(3c23 − 2c5) + c6)e5k−1
]
ek

+
[
(−c22 + c3)ek−1 + (2c32 − 3c2c3 + c4)e2k−1 + (−3c42 + 7c22c3 − 2c23 − 3c2c4 + c5)e3k−1

+
(
4c52 − 13c32c3 + 7c22c4 − 4c3c4 + c2(8c23 − 3c5) + c6

)
e4k−1

]
e2k

+
[
(c32 − 2c2c3 + c4)ek−1 + (−3c42 + 7c22c3 − 2c23 − 3c2c4 + c5)e2k−1

+
(
6c52 − 18c32c3 + 8c22c4 − 5c3c4 + c2(11c23 − 3c5) + c6

)
e3k−1

]
e3k

+
[
(−c42 + 3c22c3 − c23 − 2c2c4 + c5)ek−1 +

(
4c52 − 13c32c3 + 7c22c4 − 4c3c4 + c2(8c23 − 3c5) + c6

)
e2k−1

]
e4k

+
[(
c52 − 4c32c3 + 3c22c4 − 2c3c4 + c2(3c23 − 2c5) + c6

)
ek−1

]
e5k +O7(ek, ek−1).

The divided difference is

f [xk, wk] = f ′(x∗)
[
1 + c2

(
1 + c2ek−1 + (−c22 + c3)e2k−1 + (c32 − 2c2c3 + c4)e3k−1

− (c32 − 3c22c3 + c23 + 2c2c4 − c5)e4k−1
)
ek +

(
c3 + (−c23 + 2c2c3)ek−1

+ (2c42 − 3c22c3 + c23 + c2c4)e2k−1 + (−3c52 + 6c32c3 − 3c22c4 + c3c4 + c2(−2c23 + c5))e3k−1
)
e2k

+
(
c4 + (c42 − 3c22c3 + c23 + 2c2c4)ek−1 + (−3c52 + 7c32c3 − 3c22c4 + 2c3c4 + c2(−3c23 + c5))e2k−1

)
e3k

+
(
c5 + (−c52 + 4c32c3 − 3c22c4 + 2c3c4 + c2(−3c23 + 2c5))ek−1

)
e4k + c6e

5
k

]
+O6(ek, ek−1),

so the first step results in

y − x∗ =
[
c2
(
c2 + (−c22 + c3)ek−1 + (c32 − 2c2c3 + c4)e2k−1 − (c42 − 3c22c3 + c23 + 2c2c4 − c5)e3k−1

)
+
(
−2c32 + 2c2c3 + (2c42 − 4c22c3 + c23 + c2c4)ek−1 + (−2c52 + 6c32c3 − 4c22c4 + c3c4 + c2(−2c23 + c5))e2k−1

)
ek

+
(
3c42 − 6c22c3 + c23 + 2c2c4 + (−2c52 + 8c32c3 − 4c22c4 + 2c3c4 + c2(−5c23 + c5)ek−1)

)
e2k

+ 2(−c52 + 6c32c3 − 3c22c4 + c3c4 + c2(−3c23 + c5))e3k
]
e2kek−1 +O7(ek, ek−1).

The next divided difference is

f [yk, wk] = f ′(x∗)
[
1 + c2

(
c2 + (−c22 + c3)ek−1 + (c32 − 2c2c3 + c4)e2k−1

)
ekek−1

+ c2
(
c3 + (c32 − c2c3 + c4)ek−1

)
e2kek−1 +

(
−c42 + c2c4

)
e3k
]

+O5(ek, ek−1),

then, the error equation is

ek+1 = (2c52 − c32c3)e4ke
2
k−1 +O7(ek, ek−1).

Since the lower term of the error equation is (2c52 − c32c3)e2k−1e
4
k, applying Theorem 1, the powers of ek and ek−1

are 4 and 2, respectively, so the polynomial whose real roots give the R-order of the method is p2 − 4p+ 2 and the
order of the method is, at least, 2 +

√
6.
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Although the order of convergence of the methods with memory does not depend on the selected weight function,
the analysis of the stability is different depending onH(t). So, from now on, we use the tools of real discrete dynamics
on the subclass described by the previous algorithm using H(t) = 1 + t+ αt2.

4. Dynamical analysis

The dynamics of the family of iterative methods with memory M(α) is analyzed in this section. Some funda-
mentals about memory dynamics are introduced below. Further information can be found in [19, 20].

4.1. Fundamentals on dynamics of methods with memory

The standard form of an iterative method with memory of first order is

xk+1 = φ(xk, xk−1), k ≥ 1,

where x0 and x1 are the initial estimations. As a function defined from R2 to R can not have fixed points, we define
an auxiliary vectorial function Φ by means of

Φ(xk−1, xk) = (xk, xk+1) = (xk, φ(xk−1, xk)), k = 1, 2, . . . .

Then, (xk−1, xk) is a fixed point of Φ if Φ(xk−1, xk) = (xk−1, xk) and, consequently, xk+1 = xk and xk = xk−1.
Therefore, the discrete dynamical system Φ : R2 → R2 is defined such that

Φ(~x) = Φ(z, x) = (x, φ(z, x)),

where φ is the operator of the iterative scheme with memory. Below some basic definitions are recalled.
The orbit of a point ~x0 is defined as the set {~x0,Φ(~x0),Φ2(~x0), . . . ,Φn(~x0), . . .}. A point ~x0 = (z, x)0 is a

fixed point ~xF0 = (z, x)F0 of Φ if z = x and x = φ(z, x). If a fixed point ~xF of operator Φ is different from (r, r),
where r satisfies f(r) = 0, it is called strange fixed point. A point ~xT is T-periodic if ΦT (~xT ) = ~xT and
Φt(~xT ) 6= ~xT , for t < T .

The stability of a periodic point ~xT is defined from its asymptotical behavior. For this purpose, Theorem 4 of
[21] is shown.

Theorem 4. Let Φ from Rn to Rn be C2. Assume ~xT is T-periodic. Let λ1, λ2, . . . , λn be the eigenvalues of Φ′(~xT ).
Then,

1. If all the eigenvalues λj have |λj | < 1, then ~xT is attracting.
2. If one eigenvalue λj0 has |λj0 | > 1, then ~xT is unstable, that is, repelling or saddle.
3. If all the eigenvalues λj have |λj | > 1, then ~xT is repelling.

In addition,

(a) If all the eigenvalues λj have |λj | 6= 1, the T-periodic point is hyperbolic.

(b) If there exist an eigenvalue λi : |λi| < 1 and another eigenvalue λj : |λj | > 1, then the hyperbolic point is
recalled as saddle point.

(c) If all the eigenvalues are equal to zero the T-periodic point is superattracting.

A critical point ~xC satisfies det(Φ′(~xC)) = 0. The basin of attraction of a T-periodic point ~x∗, is defined as the
set of pre-images of any order such that

A(~x∗) = {~x0 ∈ Rn : Φm(~x0)→ ~x∗,m→∞} .

The drawing tool to represent the basins of attraction is the dynamical plane [22, 23]. For real dynamics with
memory, the horizontal axis is devoted to the current iteration xk while the vertical one represents the last iteration
xk−1. The method is analysed over a mesh of values of xk and xk−1 as initial guesses. Each attracting point is
represented with a non-black colour. If the orbit of these initial guesses tends to an attracting fixed point, the initial
guess (xk, xk−1) is depicted in the corresponding colour; otherwise, the initial guess is depicted in black.

Moreover, there exist other ways to represent the real dynamics, such as the bifurcation diagram (also known
as Feigenbaum diagram) or the convergence plane [24].
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4.2. Dynamics of M(α) on quadratic polynomials

The dynamical behavior of the family M(α) is studied when it is applied on quadratic polynomials f(x) =
x2 + {−1, 0, 1} as it is usual (see [25]).

When M(α) is applied on f(x) = x2 − 1, the fixed point operator results in

M−1(z, x, α) =
N15(z, x, α)

D14(x, z, α)
,

where N15(x, z, α) and D14(z, x, α) stand for polynomials of degrees 15 and 14, respectively, that depend on the
variables z and x and the parameter α.

We define the operator Φ−1 : R2 → R2 as

Φ−1(z, x) = (x,M−1(z, x, α)) .

The fixed points of this vectorial rational function can be calculated by solving the system formed by equations
x = M−1(z, x, α) and z = x. In this way, it is obtained that there exist 7 real fixed points of Φ−1(z, x):

• (z, x)F1,2 = (∓1,∓1), whose components are the roots of the polynomial.

• (z, x)F3 = (0, 0).

• The equal components of (z, x)F4−7 are real roots of the polynomial p(s) = s12(α + 495) + s10(1266 − 6α) +
s8(15α+ 1381) + s6(716− 20α) + s4(15α+ 201) + s2(34− 6α) +α+ 3 for some values of parameter α. (z, x)F4,5
are real fixed points for α < −3, while (z, x)F6,7 are real fixed points for α < −495.

In order to deduce the stability of the fixed points, we calculate the Jacobian matrix associated to Φ−1,

Φ′−1(z, x) =

[
0 1

∂M−1(z,x,α)
∂z

∂M−1(z,x,α)
∂x

]
,

and its eigenvalues are denoted by λ1, λ2.
For (z, x)F1,2 = (∓1,∓1), λ1 = λ2 = 0, so the fixed points are superattracting. For (z, x)F3 = (0, 0), λ1 =

4−α−
√
28+12α+α2

2 and λ2 = 4−α+
√
28+12α+α2

2 , so the absolute values of λ1 and λ2 are both lower than 1 for α ∈
(−4,−3) and, therefore, (z, x)F3 is only attracting in this region of α. From a similar study we can conclude that
(z, x)F4−7 are unstable for every value of α. Table 1 summarizes the behaviour of every fixed point.

α (z, x)F1,2 (z, x)F3 (z, x)F4,5 (z, x)F6,7
< −495 A R R S

∈ (−495,−4) A R S X
∈ (−4,−3) A A S X
∈ (−3, 720) A S X X
> 720 A S X X

Table 1: Behaviour of fixed points of Φ−1(z, x, α). A: attracting, R: repelling, S: saddle, X: not a real fixed point.

Now, we present the bifurcation diagrams of the map associated to M(α) family on quadratic polynomial f(x),
by using as a starting point each one of the strange fixed points of the map and observing the ranges of the parameter
α where changes of stability or other behaviors happen. This allows us to check the studied dependence of the
stability of these points on the parameter.

To draw Feigenbaum diagrams, 700 elements of the orbit of each strange fixed point are calculated, plotting the
last 200, for each value of parameter α (after a partition of the analyzed interval in 3000 subintervals).

The bifurcation diagram of the strange fixed points is shown below. This diagram represents the possible orbits
of a point in the neighborhood of the strange point.
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Figure 1: Bifurcation diagram of (z, x)F3−7

Figure 1 (a) shows that (z, x)F3 = (0, 0) is an attracting point for α ∈ (−4,−3), as mentioned before. Moreover,
the fixed point bifurcates into a 4-periodic orbit when α < −4 and when α is closed to -5 is bifurcates again and a
chaotic region is observed. Figures 1 (b) and (c) show that (z, x)F4−7 are unstable, since every point tend to one of
the roots for all the analyzed values of α for which they are fixed points.

The dynamical planes represent a single method of the complete family, selected by choosing a value of α.
Some dynamical planes are represented in Figure 2. Each value of α is selected in a region where behaviour of
the fixed points is different. Orange points represent convergence to (z, x)F1 = (−1,−1), while blue ones tend to
(z, x)F2 = (1, 1). Green points represent the basin of attraction of (z, x)F3 = (0, 0). Black points are reserved for
those that do not converge to any of the previous basins of attraction. Each dynamical plane is obtained by applying
a mesh of 300×300 initial guesses. Further information about the generation of dynamical planes can be found in
[22].

The dynamical planes confirm the expected behaviour. Figures 2(a,b,e,f) only have convergence to the fixed
points corresponding to the roots of the polynomial. In Figure 2(c), a region without convergence to any root can be
found. As deduced from Figure 1, these points remain in a 4-period orbit, as the yellow orbit of Figure 2 describes.
Finally, Figure 2(d) shows a case in which the origin is an attracting fixed point.

Applying M(α) over the polynomial f(x) = x2, the fixed point operator is

M0(z, x, α) =
xz
(
x5 + 10x4z + 39x3z2 + 75x2z3 − (α− 72)xz4 − (α− 28)z5

)
(x+ 2z)5(2x+ 3z)

.

In this case, we analyze the existence of fixed points of Φ0(z, x) = (x,M0(z, x, α)) in a similar way as it has been
done for Φ−1(z, x). Firstly, it can be proven that (z, x)F1 = (0, 0) is a fixed point as is the root of f(x). On the
other hand, we can prove that, for α = −495, there exist a line of critical points (z, x)F2 = (τ, τ), ∀τ ∈ R.

The dynamical behaviour is analysed from Φ0(z, x) = (x,M0(z, x)). The Jacobian matrix of a generic fixed
point (z, x)F = (t, t) is

Φ′0(t, t, α) =

[
0 1

1215−47α
18225

2160+17α
18225

]
,

whose eigenvalues are λ1 = −
√
289α2−3352860α+93239100+17α+2160

36450 and λ2 =
√
289α2−3352860α+93239100+17α+2160

36450 . If we
analyze the values of α such that |λ1| < 1 and |λ2| < 1, we obtain the open interval α ∈

(
− 9585

32 , 1944047

)
where every

fixed point of Φ0(z, x) is attracting.
Figure 3 illustrates the different behaviours. In Fig. 3(a), (z, x)F2 = (τ, τ) and α = −495; the eigenvalues of

these strange fixed points are λ1 = −1.34321, λ2 = 1, so they are not hyperbolic and their behavior cannot be
predicted. Figure 3(b) show the attracting behaviour of (z, x)F1 ; as this fixed point correspond to a multiple root,
the convergence is linear, as it can be deduced from the dark orange appearing in the dynamical plane.
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Figure 2: Dynamical planes of single members of the family M−1(z, x, α).

Finally, the study is completed applyingM(α) on the polynomial f(x) = x2+1, whose associate multidimensional
rational function is Φ1(z, x) = (x,M1(z, x, α)), where

M1(z, x, α) =
N15(z, x, α)

D14(z, x, α)
,

where, as in the f(x) = x2 − 1 case, N15(z, x, α) and D14(z, x, α) stand for polynomials of degrees 15 and 14,
respectively, that depend on the variables z and x, and the parameter α.

As the roots of f(x) are complex, only strange fixed points of Φ1(z, x) can appear as they must be real.
(z, x)F1 = (0, 0) is fixed in the complete domain of α. (z, x)F2−5 are the real roots of q(t) = t12(α+ 495) + t10(6α−
1266) + t8(15α+ 1381) + t6(20α− 716) + t4(15α+ 201) + t2(6α− 34) + α+ 3, and they are real fixed points only
in some regions of α. Finally, for α = −3, (z, x)F6,7 = (∓1.17384,∓1.17384).

The eigenvalues λ1 and λ2 of the Jacobian matrix Φ′1(z, x) determine the behaviour of each of these fixed points.

For (z, x)F1 = (0, 0), the eigenvalues are λ1 = 4+α−
√
28+12α+α2

2 and λ2 = 4+α+
√
28+12α+α2

2 . The absolute value of
both eigenvalues is lower than one for α ∈ (−4,−3). Related to (z, x)F2 , it is saddle for the values of α in which it
is a fixed point. The stability of (z, x)F3 is attracting for α in the interval (−3,−2.493), being repulsive or saddle
in the rest of its domain as fixed point. However, the other two real roots of q(t), (z, x)F4,5, are attracting for

α ∈ (−3,−2.493). Finally, the eigenvalues of (z, x)F6,7 are λ1 = 14.75 and λ2 = −0.4, so they are saddle. Table 2
collects all the information.

Figure 4 represents the bifurcation diagrams of the attracting strange fixed points. As can be observed, the orbits
tend to 0 for α ∈ (−4,−3) and it bifurcates into two of the attracting strange fixed points for α ∈ (−3,−2.493),
verifying the analytical study. We can also find periodical orbits around α = −2.4 and chaotic behaviour from
α = −2.3 forward. The bifurcation diagram of (z, x)F3 is similar to that of (z, x)F4,5 and, therefore, it is omitted.

Once we have computed a set of dynamical planes, we only show three of them that behaves in a different way,
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Figure 3: Dynamical planes of single members of the family M0(z, x, α).

α (z, x)F1 (z, x)F2 (z, x)F3 (z, x)F4 (z, x)F5 (z, x)F6,7
≤ −495 R X X X X X

∈ (−495,−5− 2
√

5) R S S X X X

= −5− 2
√

5 R X X X X X

∈ (−5− 2
√

5,−4) R S S X X X
∈ [−4,−3) A S S X X X

= −3 S X X X X S
∈ (−3,−2.493] S S A A A X
∈ (−2.493,−1.91) S S R R S X

∈ (−1.91,−5 + 2
√

5) S S S S S X

= −5 + 2
√

5 S S X X S X

∈ (−5 + 2
√

5, 0) S S S S S X
≥ 0 S X X X X X

Table 2: Behaviour of fixed points of Φ1(z, x). A: attracting, R: repelling, S: saddle, X: not a fixed point.

as deduced from Table 2. These behaviours are attraction to (z, x)F1 , attraction to (z, x)F3,4, and no attraction, as
Figures 5(a,b,c) show, respectively. Related to the bifurcation diagram of Fig. 4, we have chosen a value of α in
which a periodic orbit can be found, as the yellow path of Fig. 5 (c) shows.

A very small region of convergence to (0, 0) can be observed in Figure 5(a), meanwhile a pair of periodic orbits
can be seen in Figure 5(c) for α = −2.4.

5. Numerical performance

Finally, we introduce the numerical experiment obtained by applying some new and presented methods on the
following nonlinear functions:

• f1(x) = sinx− x2 + 1,

• f2(x) = x2 − exp(x)− 3x+ 2,

• f3(x) = cosx− x,

• f4(x) = (x− 1)3 − 1,

• f5(x) = x3 − 10,

• f6(x) = cosx− x exp(x) + x2,
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Figure 5: Dynamical planes of single members of the family M1(z, x, α).

• f7(x) = x3 + 4x2 − 10,

• f8(x) = arctan(x).

For the sake of comparison, we apply methods without and with memory on the same functions. On the one hand,
the schemes without memory are Newton’, Ostrowski’ and Jarratt’s methods, denoted by NEW, OST and JAR,
respectively. On the other hand, the methods with memory are the equations (15) and (21) of [7]

yk = xk −
γkf

2(xk)

f(xk + γkf(xk))− f(xk)
,

xk+1 = yk − h(sk, vk)
γkf(xk)f(yk)

f(xk + γkf(xk))− f(xk)
,

where the accelerating parameter is γk = f [xk, xk−1] and the weight functions are

• h1(s, v) = 1+s
1+v ,

• h2(s, v) = 1
(1+s)(1+v) ,

• h3(s, v) = 1 + s+ v + v2,

• h4(s, v) = s+ 1
1−v ,
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where s = f(y)/f(x) and v = f(y)/f(x+ γf(x)). These methods are denoted by PDP1, PDP2, PDP3 and PDP4,
where the final number stands for the applied weight function.

The numerical analysis is performed of the introduced family is analyzed for the members M(−1), M(0.5),
M(−495) and M(720), whose notations are CCT1, CCT2, CCT3, and CCT4, respectively. The election of the
values of α is related to their dynamical behaviour. On the one hand, for α ∈ {−1, 0.5} the fixed points associated
to the roots of the polynomial are attracting. On the other hand, values α ∈ {−495, 720} are bifurcation points,
wherein the behaviour is modified.

Tables 3-5 gathers the information of the numerical experience. The analysis is performed by using variable
precision arithmetics with 2000 digits of mantissa in Matlab2015a. The stopping criterion is |f(xk)| < 10−500. For
methods with memory, the initial guesses are x−1 = x0 + 0.05 and x0. The data collected in Tables 3-5 are the
difference between the two last iterations |xk−xk−1|, the evaluation of the function in the last iteration |f(xk)|, the
number of iterations iter and the approximated computational order of convergence ACOC [26], whose expression
is

ACOC =
ln
(
|xk+1−xk|
|xk−xk−1|

)
ln
(
|xk−xk−1|
|xk−1−xk−2|

) .
ACOC is defined as a vector. The value of ACOC collected in the numerical results refers to the final value if the
vector is stable.

The numerical results uphold both the analysis of the convergence and the dynamical study. CCT1 and CCT2
show better results in terms of number of iterations than CCT3 and CCT4, since they are related to stable and
unstable values of α, respectively. Furthermore, the performance of the methods with stable values of α show a
similar behavior to PDP1 to PDP4. Finally, the with-memory methods obtain the solution of the nonlinear equation
in less number of iterations than the without-memory methods, as expected.
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Test x0 Method ||xk − xk−1|| |f(xk)| iter ACOC
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PDP4 3.30e-277 1.70e-1230 6 4.4468
CCT1 4.16e-294 8.12e-1306 6 4.4480
CCT2 4.97e-304 5.56e-1350 6 4.4461
CCT3 9.06e-444 8.92e-1972 8 4.4446
CCT4 8.53e-348 9.18e-1545 7 4.4406

f8 0.5

NEW 3.29e-289 2.37e-866 8 3
OST 4.16e-302 2.75e-1508 6 5
JAR 1.61e-361 1.78e-1605 6 5

PDP1 2.15e-119 2.94e-678 5 5.7371
PDP2 2.28e-119 4.10e-678 5 5.7371
PDP3 2.31e-119 4.38e-678 5 5.7371
PDP4 2.31e-119 4.35e-678 5 5.7371
CCT1 2.03e-119 2.11e-678 5 5.7372
CCT2 2.22e-119 3.47e-678 5 5.7371
CCT3 6.88e-180 1.85e-1022 5 5.8234
CCT4 3.77e-108 2.75e-614 5 5.7108

Table 5: Numerical comparison for f7 and f8.
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