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Efficiency-based design of bending-active tied arches
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Abstract

Active bending is recently attracting considerable attention as a new paradigm

to build lightweight structures both in research and practice. While there are

many references dealing with form-finding methods for bending-active struc-

tures, the literature on their performance in relation to their shape and member

proportioning is still scarce. This paper addresses the relationship between

configuration finding and structural performance in bending-active tied arches:

planar arches composed of a bent (active) rod, lower spanning cables and sec-

ondary struts that are joined to the rod and act as cable deviators. This simple

bending-active arrangement allows to state key relationships between shape,

proportion and performance. Starting from the fact that rod segments between

struts behave as elastica segments, and selecting the mechanical slenderness

of the rod as key parameter, scale-independent relationships between rise-to-

span ratio, rod slenderness and stresses after activation have been established

for a three-strut tied arch. The limitations posed by keeping stresses in ca-

bles after the activation within an acceptable range have been also addressed.

Span-deflection ratios corresponding to Eurocode loads for the serviceability

limit state have been obtained for a set of three-strut configurations using a

non-linear structural model. Results have been represented in terms of rod

slenderness, cable slenderness and rise-to-span ratio. The same procedure has

been used to determine and represent proper utilization ratios for rod cross-
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sections in ultimate limit state. All the results have been combined to show

the design space corresponding to the given constraints and to exemplify how

to extract from it a suitable structural configuration. Finally, we explain how

to extend the proposed method to design bending-active tied arches with an

arbitrary number and proportion of deviators.

Keywords: active bending, elastica, tied arch

1. Introduction

Bending-active structures constitute a structural type in which certain flexi-

ble structural members are initially bent into curved shapes and then stabilized

to form a complete structural system. Because of the geometrical and mechan-

ical properties of the bent (or active) members, they are in general ligthweight5

structures that achieve the desired stiffness due to the curved shape acquired

by active elements and to the action of stabilizing additional members [1]. A

pioneering architectural realization using the bending active principle is the

Mannheim Multihalle (1976) [2] designed by Frei Otto and conceived as a free-

form grid of bent timber members; advantage is taken of the flexibility of the10

timber lathes during the erection process. Otto’s concept meant the birth of

a specific structural type: the elastic gridshell; a surface structure in which a

flat quadrangular mesh of initially straight members with rotation-free joints is

lifted up into the desired configuration and stabilized by means of additional

structural members.15

The interest in bending-active structures has experienced considerable growth

in the last years, both in research and in realizations. A number of examples of

bending-active structures, as pre-bent composite beams [3], gridshells made of

composite materials [4, 5] or timber gridshells [6], have an experimental nature;

others –e.g. Faraday Pavilion [7], ICD/ITKE Research Pavillion [8], Ongreening20

Pavillion [9]– are of ephimeral and/or sculptural nature.

As in the case of tensile structures, the design of bending-active structures

requires an initial form-finding step to determine the initial geometry of the
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system. Comparing, for example, a gridshell with a cable net, there is additional

complexity in the gridshell due to the fact that member bending will also involve25

shear and possibly axial forces, and all these will be present in the interaction

between members once the equilibrium configuration is reached. In addition

to the pure form-finding problem, bending-active structures require tracking

the full deformation path of the structural elements from an initial unstressed

configuration because the target configuration can be considered a post-buckling30

state of the initial state. Once the target shape has been reached and stabilized,

the structural behaviour is considerably influenced by the inherited stress state.

The first proposal to handle the form-finding problem of gridshells was in-

troduced by Otto et al. in [10]; they studied the uniform mesh net with square

cells, explained how to build meaningful physical models for hanging nets and35

proposed the so-called compass method: a geometric method to find Cheby-

shev meshes from a given curved shape. Different authors have recently devel-

oped tools [11, 12, 13] or proposed extensions [14] for this method which is still

used. As starting point, the use of physical models or geometric form-finding

techniques provide admissible geometrical approximations, however, finite el-40

ement models are required to simulate the induced pre-stress state. There-

fore, the development of computational form-finding methods has been nec-

essary to advance in this research field. Among different strategies, numeri-

cal tools based on explicit methods as dynamic relaxation (DR) with differ-

ent underlying mechanical models with 3 to 6 DoFs are the main trend today45

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Alternatively, the availibity of FEM pack-

ages has also led to form-finding procedures based on finite element models,

for example, Lienhard proposed a form-finding method where unstressed mem-

bers reach their target shape by shortening non-linear virtual links [25]. Latest

trends rely on the use of isogeometric finite elements implemented into a CAD50

environment [26, 27].

As it can be seen in the literature, most attention has been directed to solve

the form-finding problem. In contrast, the number of investigations focused on

the assessment of the structural performance and efficiency of bending-active
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structures is limited. Lienhard [28] studied the efficiency of several canonical55

cases of bending-active structures subject to simple loading patterns over a

limited number of cases. Douthe [29] considered strength and stiffness criteria to

assesss the applicability of different materials for active grid-shell members. The

authors [30] analyzed the response of circular and elastica-shaped active arches

subject to a point load, and quantified the relation between geometric stiffness,60

tangent stiffness and the angle at arch ends for different values of the slenderness.

More recently, we presented [31] a preliminary study of the relationship between

structural shape, activation forces and activation stress levels for bending-active

structures considering different structural configurations and loading conditions.

This contribution aims to extend the scope of our previous works to assess65

the relationship between shape and structural performance of canonical planar

bending-active arches.

During the conceptual phase, the designer needs to find a compromise be-

tween member strength and magnitude of the pre-deformation: to achieve a

suitable shape, significant member curvatures are often needed; therefore, slen-70

der members are required for stresses to be lower than a certain threshold value

in the target configuration. However, too slender members may be prone to

local buckling and may render a too flexible structure.

In the design of gridshell-like structures, the structural configuration is typ-

ically targeted to obtain dome shapes, for which wind and snow loads are the75

most determinant actions over the structure. However, in the case of footbridges,

they must withstand heavier service loads; therefore, reaching a tradeoff between

member’s strength and curvature may be not evident.

In this paper, we study simple planar structures composed of a continuous

flexible member that is activated by the action of main cables pulling at both80

ends of the rod, and secondary struts that deviate the main cable and act at

certain cross-sections of the rod. We will use the term bending-active tied arch

to refer to them (Fig. 1).

The interest of simple tied arch systems lies in their applicability as individ-

ual structural modules to design lightweight footbridges [32] or roofing appli-85
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Figure 1: Bending-active tied arch

cations [33], these ones favored by moderate loads and less strict serviceability

conditions. The authors have devised a 5 m span prototype of an experimental

lightweight footbridge based on this structural scheme (Fig. 2). The system

is composed of a pair of planar bending-active tied arches that are indepen-

dently activated and connected by hinged links at the level of the main cable90

and horizontal struts at the level of the rods [34].

Figure 2: Experimental lightweight footbridge based on the active bending principle

The results that we have obtained regarding the performance of simple tied

arch systems for pedestrian footbridge applications show that the limits of solu-
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tions for Eurocode footbridge loads are dictated by (a) instability in the active

members, (b) maximum stress after activation and (c) minimum stresses in the95

activation cables and (d) maximum allowable deflections. The resulting design

space is rather narrow, mainly because of the magnitude of the load and the

severe limitations for deflections in serviceability limit states posed by codes.

Additionally to these limitations, aspects such as the durability (creep, re-

laxation or fatigue) or the dynamic behaviour cannot be neglected in the design100

of bending-active structures, especially in those made of composite materials

[5]. In GFRP footbridges it has been observed that the low weight and high

flexibility of the structure have a large influence in the dynamic response of the

structure, since natural frequencies are expected low and may be activated by

pedestrians walking [32]. To complete the study presented in this paper, authors105

are conducting a research based on experimental tests targeted to evaluate the

dynamic behaviour of this kind of structures.

A key observation in this structural system is that the activated member

is composed of individual segments between deviators. Each segment of the

rod behaves as a segment of an inflexional elastica, whose scale is determined110

by the ratio between bending stiffness and compressive force [35]. A second

key observation is that to each elastica segment corresponds a cable segment,

and the (theoretical) axis of the cable segment joins the ideal inflexions of the

corresponding elastica segment (Fig. 3). Thereby, once a configuration is found,

the size of the entire structure can be adjusted by choosing the required flexural115

stiffness and the magnitude of forces for each segment of the rod.

The assumption that each segment of the rod behaves as an elastica segment,

allows us to make use of the exact solution of the elastica to evaluate the bending

effect as well as the influence of the choice of the cross-section and material

properties on the initial stress level. As a result of the study, we have obtained120

a direct relation between shape and activation forces for a given material and

cross-sectional shape in terms of non-dimensional magnitudes, which makes it

applicable to any size of structure and cross-section properties.

In view of the above finding, it is to be expected that bending-active tied
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Figure 3: Full (notional) elastica corresponding to segment i

arches have similar relationships between shape, forces and scalability, and con-125

sequently, the outcomes obtained from a finite number of experiments can be

generalized for flexible members of any length and stiffness.

Thereby, it is possible to find patterns of relationship between structural

shape, activation stress levels, and limits of utilization for bending-active tied

arches with a limited number of computer simulations. For that purpose, we130

use a non-linear finite element commercial software. Starting from a fixed

length and given cross-sections, introducing prestressing forces in cables, dif-

ferent structural configurations that keep deviators perperpendicular to the rod

are created. From these results, we have obtained stress levels after the activa-

tion of the structure as functions of the rise-to-span ratio and the slenderness135

of the active member. Finally, further numerical analysis has led to establish

relations between shape, length and slenderness associated to the serviceability

limit state and the ultimate limit state of the structure.

1.1. Outline of the paper

This work constitutes a considerable extension of the previous contribution140

by the authors [31]. The outline of the paper is as follows: In Section 2, the

problem of the inflexional elastica is briefly reviewed; using these equations,

an analytical expression to evaluate the self-stress after activation in elastica

semi-waves is detailed. The correspondence between the structural behaviour
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of a rod segment between deviators in tied arches and the exact solution of the145

elastica curve is proved in section 3. In section 4 we introduce the concept of

bending-active tied arch and numerical experiments are carry out to evaluate

the structural performance due to activation forces and load models. In section

5 we show as example the design of a particular bending-active tied arch using

the developed methodology. Finally, a procedure to extend the previous results150

to tied arches with an arbitrary number n of deviators is described in section 6.

2. Stress levels after activation in elastica semi-waves

The simulation of the activation process of bending-active structures is of

crucial importance for their design. Due to the non-linearity of the structural

response, it is often not possible to predefine in advance the equilibrium con-155

figuration and computational form-finding methods are required for modelling

the bending effect. However, in the case of bending-active tied arches, the fact

that the rod segments between deviators behave as elastica segments, enables

the use of closed-form expressions to evaluate the stress level due to activation

forces.160

In this section, we propose an analytical expression, based on the equations

of the elastica, to quantify the utilization of the material due to the form-finding

process. Moreover, we examine the influence of the inteverning variables, such

as the slenderness of the rod, the shape of the cross-section or the selected

material.165

In order to simplify the description, we restrict the analysis to the funda-

mental aspects of the elastica problem. The full development of this theory can

be found in the classical work by Love [36].

2.1. The fundamentals of the elastica

The problem of planar bending of an initially straight, non-extensible and170

non-shear deformable rod subject to compressive forces at its ends is known as
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Figure 4: Inflexional elastica

the elastica problem. It was first studied by Euler, based on Bernoulli’s assump-

tion of proportionality between flexural moments M and centreline curvatures

κ at each cross-section.

The constitutive equation for the elastica is M = EI κ where the curvature175

is expressed as κ = dθ/ds, ds is an arc-length parameter, θ is the cross-section

rotation and EI the flexural stiffness. The analytical solution for the arc-length

is

s =
1

2

√
EI

P

∫ θ

−θ0

1√
sin2 θ0

2 − sin2 θ
2

dθ (1)

The applicability of this expression is bounded into the interval−θ0 ≤ θ ≤ θ0,

where θ0 is the cross-section rotation at the inflexion; therefore the solution can-180

not be obtained for rotations over θ0. In order to handle this issue, Love [36]

introduced the variable ω, defined by

ω =
sin θ

2

sin θ0
2

(2)

substituting in 1, the expression for the arc-length reads as follows

s =

√
EI

P

∫ ω

−π/2

1√
1− k2 sin2 ω

dω (3)
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where k = sin θ0
2 is the reference parameter of the dimensionless solution

of the elastica. The integral can reproduce arbitralily long elasticas, because

the new variable ω is not bounded. The solution can be expressed in terms of

the incomplete and the complete elliptic integrals of the first kind

F(ω, k) =

∫ ω

0

dw√
1− k2 sin2 w

K(k) =

∫ 0

−π/2

dw√
1− k2 sin2 w

(4)

as

s(ω, k) =

√
EI

P

(
F(ω, k) + K(k)

)
(5)

2.1.1. Configuration of the elastica

Using the incomplete and complete elliptic integrals of the second kind

E(ω, k) =

∫ ω

0

√
1− k2 sin2 w dw E(k) =

∫ π/2

0

√
1− k2 sin2 w dw (6)

the coordinates of the elastica are expressed as follows

x(ω, k) = 2

√
EI

P

(
E(ω, k) + E(k)

)
− s(ω, k) (7a)

y(ω, k) = 2

√
EI

P
k cosω (7b)

2.1.2. Section forces185

Normal forces and shear forces are obtained as projections of the compressive

force, and bending moments as the product of the compressive force times the

elastica ordinate.

N = −P cos θ (8a)

V = P sin θ (8b)

M = −Py (8c)

They can be expressed in terms of the elastica parameters as

N(ω, k) = −P (1− 2k2 sin2 ω) (9a)

V (ω, k) = −2Pk sinω
√

1− k2 sin2 ω (9b)

M(ω, k) = −2
√
P
√
EIk cosω (9c)
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2.1.3. Scalability of the solution

We introduce the critical length

lc = π

√
EI

P
(10)

defined as the length of a rod with bending stiffness EI for which P is Euler’s

critical load —this definition was introduced by the authors in [35]. Using this

definition, the arc-length and the coordinates of the elastica can be expressed

as dimensionless quantities

ζ = s/lc ξ = x/lc η = y/lc (11)

Therefore, the non-dimensional arc-length parameter is

ζ(ω, k) =
1

π

(
F(ω, k) + K(k)

)
(12)

and the non-dimensional coordinates are

ξ(ω, k) =
2

π

(
E(ω, k) + E(k)

)
− ζ(ω, k) (13a)

η(ω, k) =
2

π
k cosω (13b)

These equations show that the shape of an elastica is fully determined by the

parameter k —or in other words, by the angle at the inflexion (Fig. 5).

On the other hand, the size of the elastica is determined by the critical length

lc, which acts as a scaling parameter.190

Finally, from equation (9) we note that section forces N,V are directly scaled

by the compressive force P , and bending moments M are scaled by the product

of P and the critical length.

To sum up, the shape of the elastica –defined by the parameter k– is fully

determined by the angle at the inflexion θ0, and is totally independent from the195

value of the compressive force P or the bending stiffness EI. Once the shape is

obtained, the size of the elastica can be scaled by means of the critical length

lc (eq. 10). It involves the relation between the bending stiffness EI and the

compressive force P .
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Figure 5: Elastica semi-waves (non-dimensional coordinates) for π
18

(blue) ≤ θ0 ≤ π
2

(red)

For example, once lc has been fixed, the magnitude of the internal forces can200

be chosen by selecting P , and the bending stiffness EI should then be adjusted

to be consistent with lc.

EI = P
( lc
π

)2
(14)

Alternatively, EI may be prescribed and the magnitud of the forces will be

given by

P = π2EI

l2c
(15)

2.2. Evaluation of the utilization ratio

According to the EN 1993-1-1 (Eurocode 3) and as a conservative approx-

imation, the linear summation of the utilization ratio for each stress resultant

may be used to verificate the ultimate strength of the cross-section (see equation

(6.2) in [37]). This criterium can be written as

N

Nu
+

M

Mu
≤ 1 (16)

where N and M are the section forces produced by bending of a initial straight

rod; Nu and Mu are the design values of the ultimate axial forces and bending
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moments respectively, without considering buckling reduction factors. Substi-

tuting (9) in (16) leads to the expression of the utilization ratio in terms of

elastica parameters
P

fuA
g(ω, k) +

P lc
fuW

h(ω, k) (17)

where fu is the ultimate strength of the selected material, A is the cross-sectional

area and W is the elastic section modulus. The functions g(ω, k) and h(ω, k)205

read as follows

g(ω, k) = 1− 2k2 sin2 ω (18a)

h(ω, k) =
2

π
k cosω (18b)

We introduce the parameter Ψ as the shape factor of the cross-section: a

dimensionless value that characterizes the cross-sectional shape and points out

the relationship between the moment of inertia and the cross-sectional area of

the active member210

Ψ =
I

A r2
(19)

where r is the distance from the neutral axis to the outermost fibre. Table 1

provides shape factors for typical cross-sections used in the design of bending-

active structures. The shape factor for rectangular cross-sections is equal to

Ψ = 0.33 regardless of the proportion between height and width. For circular

solid cross-sections, the shape factor is equal to Ψ = 0.25. Shape factors for215

circular hollow cross-sections depend on the thickness of the cross-section; the

thinner the thickness, the higher the shape factor. Lienhard [28] points out an

optimal ratio De/Di = 2 for circular hollow cross-sections, where the stiffness is

close to the maximum value and the cross-sectional area is minimized, getting

light members easy to manipulate during construction. In addition, the use of220

a very thin wall increases the risk of local buckling under the effect of external

point-loads. Therefore, the most appropriate cross-sectional shape will be the

one that avoids local phenomena as crushing or local buckling.
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The parameter λ̄ is used to characterize the slenderness of the rod. This

interpretation is inherited from the definition of mechanical slenderness stated

in the Eurocode 3 (see equation (6.5) in [37]). It takes into account: the length

of a semi-wave of elastica; the shape of the cross-section and the mechanical

properties of the material

λ̄ =
l

π

√
A

I

√
fu
E

(20)

Using the definition of slenderness, the utilization ratio (17) can be rearranged

as follows (
l

lc

)2
1

λ̄2
g(ω, k) +

l

lc

√
E

fu

π√
Ψ

1

λ̄
h(ω, k) (21)

The quotient l/lc can be stated in terms of the parameter k by means of the

non-dimensional arc-length parameter ζ(ω, k). Concerning the problem of the

inflexional elastica, the length between inflexions is obtained when ω = π
2 ,

thereby ζ(π2 , k) = 2
πK(k)

4

π2
K(k)2

1

λ̄2
g(ω, k) + 2K(k)

√
E

fu

1√
Ψ

1

λ̄
h(ω, k) (22)

This expression provides the utilization ratio of any desired cross-section

(defined by ω) in terms of the slenderness, the material properties and the shape

of the cross-section. The non-dimensional expression of the utilization ratio of

the cross-section located at midspan –where higher stresses are expected– is

obtained by setting ω = 0

4

π2
K(k)2

1

λ̄2
+

4k

π
K(k)

√
E

fu

1√
Ψ

1

λ̄
(23)

Additionally, a maximum allowable stress can be introduced to limit normal

stresses under the form-finding stage. It is estimated that limiting the utiliza-

tion ratio after activation to 30 % avoids further problems caused by long-term

dynamic loading

4

π2
K(k)2

1

λ̄2
+

4k

π
K(k)

√
E

fu

1√
Ψ

1

λ̄
≤ 0.3 (24)
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For example, equation (24) allows to select the minimum slenderness of the

flexural member compatible with a prescribed stress level of 30 % by choosing:225

the material (E, fu), the cross-sectional shape (Ψ) and the shape (k).

Figure 6 depicts the utilization ratio for the particular case of a elastica semi-

wave with rectangular cross-section with a shape factor Ψ = 0.33; E = 30 GPa

and fu = 400 MPa, in terms of the angle of the tangent to the elastica at the

inflexion θ0 and the rod slenderness. It can be seen that low values of the rod230

slenderness lead to higher utilization ratios.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
θ0/π

0.0

0.2

0.4

0.6

0.8

1.0

N
/

N
u

+
M

/
M

u

λ̄ = 2
λ̄ = 4
λ̄ = 6
λ̄ = 8
λ̄ = 10

Figure 6: Utilization ratio of elastica semi-waves with rectangular cross-section, angle at the

inflexion θ0 and different values of rod slenderness λ̄

Figure 7 shows how the cross-sectional shape Ψ influences on the utilization

ratio of elastica semi-waves, for the same material properties chosen before and

for different values of the rod slenderness. According to the diagrams, high shape

factors are more advantageous for keeping self-stresses low, however and, as235

mentioned before, very thin-walled cross-sections may be crushed when applying

external loads.

Figure 8 shows the relative weight of the effect of axial forces on the uti-

lization ratio for different rod slenderness. For low values of the cross-section

rotation at the inflexion, the effect of axial forces is the most limiting. However,240
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Figure 7: Influence of the shape factor Ψ on the utilization ratio of elastica semi-waves with

rectangular cross-section, angle at the inflexion θ0 and different values of rod slenderness λ̄

0.00 0.05 0.10 0.15 0.20 0.25 0.30
θ0/π

0.0

0.2

0.4
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0.8

1.0
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N
u
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[N
/

N
u

+
M

/
M

u
]
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λ̄ = 4
λ̄ = 6
λ̄ = 8
λ̄ = 10

Figure 8: Influence of the term relative to axial forces on the utilization ratio of elastica

semi-waves with rectangular cross-section, angle at the inflexion θ0 and different values of rod

slenderness λ̄

as the curvature of the rod increases, stresses produced by bending moments

play a more prominent part. As expected, low values of rod slenderness lead to

higher utilization ratios due to axial forces. Assuming that the bent rod sup-

ports the deck of a footbridge, the maximum gradient of the deck is restricted

to 10% due to functional requirements, which approximately matchs with an245

angle at the inflexion θ0 = 0.1. Therefore, the effect of axial forces is low but

cannot be fully neglected in the analysis.

The relationship between the ultimate strength fu and the Young’s modulus

E has been widely used to measure how adequate a material is for bending-active

17



structures.250

Figure 9 shows the influence of different ratios fu/E on the utilization ratio

of elastica semi-waves, with rectangular cross-section and for different values of

rod slenderness.
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Ashby [38] represented in form of a diagram this relationship for different

materials; he gathered them by material classes and introduced guidelines to255

define design regions for certain applications. According to previous works by

Lienhard [28] and La Magna [39], suitable materials for bending-active struc-

tures have a ratio fu/E > 2.5 (with fu in MPa and E in GPa). This requirement

is fulfilled by certain types of timber and GFRPs, having the latter ones a ratio

fu/E > 10. As reflected in the diagrams, the use of materials with a high ratio260

fu/E allows to keep activation stresses low.

Figure 9: Influence of the ratio fu/E on the utilization ratio of elastica semi-waves with

rectangular cross-section, angle at the inflexion θ0 and different values of rod slenderness λ̄

3. Shape of the rod between deviators after activation

The assumption that a rod segment between deviators can be modeled as a

part of an elastica is one of the keys of this work. It enables the use of closed-

form expressions (see equations from 21 to 24) to evaluate the stress level at265

the tensioning stage, and allows to measure how the form-finding parameters

influence on the structural configuration. However, this key observation requires

some clarifications which are included in the following.

We assume that the rod is non-extensible and non-shear deformable, and

we consider the in-plane bending of the rod neglecting self-weight. The first re-270

striction may be adopted without loss of generality for the form-finding problem

and will result in a simpler procedure. The non-deformability under shear is a

physical consequence of the high slenderness of the rod required for this kind of

elements.
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Each rod segment i is an elastica segment where a force T i that equals the275

cable force and bending moments acts at ends. At each end, the force T i is

decomposed into axial and shear forces, whose value will be distinct, because of

the orientation of the centreline is not tangent. These forces at ends, together

with the forces of the next segment will be in equilibrium at joining nodes (Fig.

10). In Fig. 10, the red line is the cable segment that corresponds to the part280

of the elastica i, and the (theoretical) axis that joins the ideal inflexions of the

elastica wave (Fig. 3).

Figure 10: Equilibrium of nodes and elastica segments
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Kirchhoff and Love noted that the equations of in-plane equilibrium of an

initially straight, non-extensible and non-shear-deformable rod subject only to

forces and/or moments at the end sections are analogue to the equation of

movement of a planar pendulum with no restriction on the amplitude of the

oscillation. This fact is known as Kirchhoff’s kinetic analogy [36]. The cor-

responding analogues for the inflexional elastica expressed in terms of section

forces are

M2

2EI
+N = H (constant) N2 + V 2 = P 2 (constant) (25)

where H is related with the potential energy density, P is the compressive force

and M , N and V are the section forces in the rod.

On the basis of the Kirchhoff’s kinetic analogy and using a self-stressed con-285

figuration, it is possible to prove that the invariants predicted by the Kirchhoff’s

kinetic analogy are kept for a segment of rod between deviators.

Figures 11, 12 and 13 show the section forces (N , M , V ) obtained in a FE

model. Bending stiffness of the rod equals EI = 23.72 kN m and the force

in cables is equal to T = 50 kN. Table 2 shows the values corresponding to290

the section forces and invariants at different nodes of the rod segment A-E. As

can be seen, static invariants remain practically constant along the rod segment

(percent errors are below 0.5%). This error can be attributed to the fact that

the software calculation model is not the Euler-Bernoulli beam model.

Figure 11: Axial forces N due to activation process
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Figure 12: Shear forces V due to activation process

Figure 13: Bending moments M due to activation process

4. Numerical tests on bending-active tied arches with three deviators295

The term bending-active tied arch refers to a simple planar structure com-

posed of a continuous flexible rod that is activated by cables and deviators, no

matter whether they work under compression or under tension. The structural

concept is a hybrid between a tied arch and a cable beam and is suited to

withstand self-weight and service loads.300

During the activation phase, there is a strong interaction between struc-

tural proportions, material properties, applied forces and constraints, involving

large displacements and rotations of the cross-sections of the rod. Numerical

procedures based on non-linear analysis are required in order to simulate the

tensioning process, since the activated system cannot be define ’a priori’.305

In this section we carry out a set of simulations using specific dimensions

of members and materials properties. As rod segments behave as segments

of elastica, whose scale is determined by the critical length lc =
√
EI/T , the

ratio l0c/l
1
c between critical lengths of the outer and inner rod segments defines

the shape of the structure. Consequently, the shapes and forces obtained for310
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a certain definition of members and materials can be scaled by increasing the

critical lengths of each segment while keeping their ratio. Thereby, it is possible

to generalize the relation between force and shape for flexible members of any

length and stiffness basing on particular results.

To limit the number of cases and the complexity of the study, we focus on315

symmetric structures with three equally spaced perpendicular deviators which

remain perpendicular to the rod. The following common data have been con-

sidered: the upper rod is 4 m long continuous member with circular hollow

cross-section with thickness equal to 10% of the radius; the deviator lengths

are: hq = 0.3 m at quarters and hm = 0.4 m at midspan. The ratio between320

deviator lenghts hq/hm = 0.75 has been selected after carrying out a paramet-

ric study; this ratio provides practically equal axial forces in the deviators after

activation and lower deflection under a frequent service load [34].
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Figure 14: Definition of the input parameters

We have chosen GFRP for the rod (material properties of GFRP are E = 30 GPa,

fu = 500 MPa). Cables are not continuous; therefore, cable forces can be dif-325

ferent in each cable segment. Steel is used for cables; the material properties of

the selected cables are: Es = 110 GPa, fus = 1570 MPa (Fig. 14).

4.1. Relationship between shape and activation forces

In a first step, we generate six different configurations for a bending-active

tied arch with three equally spaced and perpendicular deviators. The cross-330

section of the upper rod is a circular hollow cross-section with EI = 23.72 kN

m2. Each self-stressed configuration is obtained introducing a force T 0 in the

outer cable; perpendicularity between rod and deviators is achieved selecting the

corresponding force T 1. Table 3 shows the values of activation forces and the

obtained geometric ratios for each structure (Fig. 15). Simulations are carried335

out using the non-linear FE software SOFiSTiK.

(a) (b) (c)

(d) (e)
(f)

Figure 15: Different configurations for bending-active tied arches with three equally spaced

deviators
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Ψ = 0.25 Ψ = 0.31 Ψ = 0.55 Ψ = 0.71

Table 1: Shape factor for circular hollow cross-sections

0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03
T1/T0

0.05

0.10

0.15

0.20

f/
a

0.05

0.10

0.15

0.20

h/
a

Figure 16: Relation between activation force ratios and non-dimensional shape ratios
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N [kN] V [kN] M [kN m] H P [kN]

A -6.97 1.05 2.09 -6.88 49.68

B -7.03 0.98 2.29 -6.87 49.68

C -7.03 0.91 2.47 -6.87 49.84

D -7.02 0.77 2.73 -6.87 50.2

E -7.03 0.69 2.82 -6.86 49.91

Table 2: Section forces and static invariants of the rod segment A-E

a b c d e f

T 0 [kN] 2.475 7.211 11.678 15.892 19.890 23.629

T 1/T 0 0.967 0.977 0.988 1.000 1.012 1.027

a [m] 3.996 3.975 3.935 3.875 3.798 3.703

f/a 0.016 0.048 0.080 0.113 0.146 0.1811

Table 3: Values of activation forces and resulting geometric ratios for each bending-active tied

arch

Figure 16 shows the relation between the non-dimensional shape ratio and

the activation force ratio in cables T 1/T 0. Because of the scalability of elastica

solutions, these results can be generalized for flexible members of any length

and stiffness, as long as deviators are equally spaced and perpendicular to the340

rod, where the length of central deviator equals 10% of the length of the rod

and the length of lateral deviators equals 75% of the central deviator.

Using figure 16 and the results in table 3, the configuration associated to

a desired shape and size can be easily determined. For example, a 10 m span

and 1.5 m rise arch (f/a = 0.15) has a force ratio T 1/T 0 = 1.014. For this f/a345

ratio, in the original structure, a = 3.770 m and T 0 = 20.35 kN. The scaling

factor for the desired structure will be 10/3.77 = 2.65; therefore EI/T 0 should

be 2.652 = 7.0225 times larger than in the original one. This can be done with

a 2.65 · 4 = 10.6 m long rod, using a stronger cross-section, or decreasing the

activation force, or a combination of both.350

26



4.2. Stress levels in the rod after activation

The maximum normal stress (in absolute value) acting on the midspan cross-

section of the rod after activation has been evaluated for 20 values of rod slender-

ness λ̄ = s
π

√
A
I

√
fu
E (from λ̄ = 0.2 to λ̄ = 2.5) and 40 values of the rise-to-span

ratio (from f/a = 0.01 to f/a = 0.2), with s = 1 m (the length of the rod355

segment between deviators).

The evaluation of the stresses takes into account the axial force and the

bending moment produced by the bending effect at midspan, where the curva-

ture reaches its maximum and therefore the bending moment too. In figure 17

we have represented curves corresponding to several ratio of stress-to-ultimate-360

strength that have been elaborated using the stress values provided by the simu-

lations. Once the shape and size of the structure have been defined, the diagram

allows to select the minimum slenderness of the flexural member compatible with

a prescribed stress level.

Figure 17: Stress ratio levels after activation in terms of rod slenderness and rise-to-span of

the structure
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4.3. Structural performance of cables365

The selection of the activating cables is crucial in the behaviour of the whole

structure. Cables must be carefully designed since oversized cross-sections lead

to insufficient cable stresses after the activation stage and undersized cross-

sections may result in overall excessive flexibility.

Among different commercial typologies of steel cable, we choose a wire rope

7x19+0: 6 individual strands made up of 19 steel wires wrapped around a core

made up of the same strand. For the selected wire rope typology, the size of the

cable is selected in terms of slenderness. We introduce the following definition

of cable slenderness

λ̄c =
s

d

√
fus

Es
(26)

where s keeps being the length of the rod segment between deviators and d the370

external equivalent diameter of the cable.

To evaluate the structural response of the rod and cables in order to satisfy

the design limit states, we use the loading value for footbridges defined by the

Eurocode [37]. For the evaluation of the serviceability limit state, a distributed

load corresponding to 40% of 5 kN/m2 has been applied (frequent value of the375

service load). The loading pattern consists in a uniform load on a width that

we choose to be 10% of the developed length of the rod (Fig. 18).

Figure 18: Loading model
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Two series of numerical experiments are carried out: in the first one the

cable has been selected so that its slenderness be 15 times the rod slenderness;

in the second, the cable slenderness is 5 times the rod slenderness. Within each380

set, stresses in the rod and cables have been evaluated for 20 values of rod

slenderness (from λ̄ = 0.2 to λ̄ = 2.5) and 40 values of the rise-to-span ratio

(from f/a = 0.01 to f/a = 0.2).

Results have been elaborated and summarized in figure 19. It shows the

region of the slenderness-shape diagram where for a selected rise-to-span ratio,385

the diagram allows to choose the cable-rod slenderness ratio compatible to reach

at least 10% of the maximum allowable stress in cables after activation –in order

to avoid cable slack– and at most 70% because of service loads. As can be

seen, the choice of the cable-rod slenderness ratio restricts the choice of the rod

slenderness for a given rise-to-span ratio: higher cable-rod slenderness ratios390

allow to select large slenderness rods, which may imply low global stiffness, in

contrast, lower cable-rod slenderness ratios lead to oversized rod cross-sections,

that are incompatible with keeping activation stresses low.

Figure 19: Region where stresses in cables are in the interval between 10% and 70% of the

maximum allowable stress
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4.3.1. Performance for serviceability limit state (SLS)

For checking the vertical displacement serviceability limit state, midspan de-395

flections have been evaluated using the same previous set of simulations. Results

are summarized in figure 20. Using the diagram, for a selected rod slenderness,

the cable can be chosen to achieve a threshold value of deflection. As expected,

higher values of rod slenderness lead to larger deflections for a given cable-rod

slenderness ratio.400

For example, setting a rise-to-span ratio equals f/a = 0.10 and a threshold

value for the deflection equal to L/500 –where L is the developed length of the

rod–, two configurations are exemplified, each one corresponding to one of the

studied cable-to-rod slenderness ratios: a) a rod slenderness λ̄ = 2 with a cable

slenderness λ̄c = 10 or b) a rod slenderness λ̄ = 1.15 with a cable slenderness405

λ̄c = 17.25. However, solution a) is incompatible with a proper level of stresses

in cables.

Figure 20: Dimensionless deflections from L/200 to L/1000 for different cable-rod slenderness

ratios and a given load in terms of slenderness and shape

30



4.4. Performance for ultimate limit state (ULS)

A similar study has been carried out to assess the ultimate limit states, using

the same set of previous structural proportions and cross-section dimensions.410

To obtain the design load value, the characteristic load value defined by the

Eurocode (5 kN/m2) is multiplied by the partial factor for actions γ = 1.35. The

self-weight is not considered in the simulations aiming at simplifying the analysis

by isolating the effect of external loads. We have checked normal forces and

bending moments in the rod, performing third order analysis of the structural415

model.

Figure 21 shows the region of the slenderness-shape diagram where according

to the Eurocode 3 the utilization ratio is less than 1, for different configurations

and a given design load. The shape of the graph is understood as follows: For

more slender members the admissible region is reduced by the active member420

being prone to instability. Low values of the slenderness mean that activation

is consuming a large part of the strength, and therefore the admissible region

becomes also more limited. The larger values of the rise-to-span ratio corespond

to a slenderness of 1.6.

Figure 21: Region where the utilization ratio in the rod is less than 1 for the ultimate limit

state
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5. Example425

In this section we show an example of how the configuration associated to a

desired shape and size can be easily determined using the results presented in

the previous section.

The design of the bending-active tied arch is based on the following re-

quirements: bending-active rods are designed as 10 m long continuous GFRP430

members with thin-walled circular hollow cross-section, the height at midspan

should be close to 10% of the rod length (hm = 1 m), the rise-to-span ratio is

restricted to 5%, the maximum deflection for frequent loading must be lower

than L/500 and the structure has to bear a service load of 5 kN/m2. The me-

chanical properties of GFRP rod and steel cables correspond to the same setup435

as in section 4.

As shown in figure 22, for the selected rise-to-span ratio and choosing the

cable slenderness as 15 times the rod slenderness, the maximum rod slenderness

should be in the range of 1. Nonetheless, multiple solutions are possible; any

point within the intersecting region (dark red) represents a feasible configura-440

tion. It is worth noting that for lower cable-rod slenderness ratios the structure

becomes stiffer, but the stress level in the cables restricts considerably the range

of solutions; figure 22 also shows the case where selecting a low value for the

cable-rod slenderness ratio (λ̄c/λ̄ = 5) may lead to incompatible performances

of rod and cables.445

Using the definition of slenderness 20, the target configuration is achieved

using a circular hollow cross-section with an outer diameter of 190 mm and

a thickness of 9.5 mm. Keeping the established structural proportions, the

resulting steel cable is a wire rope 7x19+0 with a nominal diameter of 20 mm.

6. Procedure to design bending-active tied arches with n deviators450

In this section we describe a method to design bending-active tied arches

with n deviators of any length, based on the results obtained in section 4.
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Figure 22: Design diagram for the example

The following procedure is a sequence of orderly steps to reach a feasible

solution. As shown in the example in section 5, the problem may have multiple

solutions and an iterative calculation would be necessary to reach the best of455

them. The process is as follows:

1. Define the mechanical properties E, fu, for the rod and cables. Deviators

can be initially considered as rigid bodies.

2. Define the length of each segment of the rod si, for i ∈ {1 . . . n}, and the

lengths of deviators hi, for i ∈ {1 . . . n−1}460

3. Select the cross-sectional shape Ψ and slenderness λ̄ for the rod. This

choice can be supported by the diagram 17 in a first step.

4. Select the typology and size of steel cables in terms of relative slenderness

with the rod λ̄c = k · λ̄, being k the multiplying factor. It is suggested

that k ranges from 10 to 20.465

5. Obtain the configuration associated to a desired shape f/a by means of

increasing or decreasing the activation force T 0. Perpendicularity between

rod and deviators can be achieved with a suitable ratio T 0/T 1 (Fig. 16).

6. Check stresses in the rod σFF,r and cables σFF,c after the activation pro-
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cess. Oversized cables cross-sections can lead to an insufficient stress level470

(cable slack) at the activation stage and the active member must be slen-

der enough to keep stresses low and limit further problems due to cycling

long-term loading. As explained in sections 2.2 and 4.3, it is suggested

that stresses be around 30% of the material strength in the rod and over

10% of the cable strength after activation.475

7. Simulate the load models and check the serviceability limit state and

the ultimate limit state for the rod and cables. Maximum deflections

at midspan v(L/2) and stresses σULS,r, σULS,c must be lower than the

threshold value posed by codes.

Figure 23 shows the process outlined in a flow chart.480
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Figure 23: Procedure to design a bending-active tied arch with an arbitrary number of devi-

ators
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7. Concluding remarks

The design of bending-active structures is a challenging problem due to

the non-linearity of the activation process, the coupling between: cross-section

dimensions, structural shape and initial stress state, and the deformability and

buckling sensitivity inherent to the resulting lightweight configurations.485

In this paper, the activation process and the structural performance under

external loads of bending-active tied arches with three perpendicular deviators

have been studied by independent reasonings.

First of all, general non-dimensional relations between activation forces and

structural shapes have been established in terms of non-dimensional geometric490

ratios and rod slenderness. The exact solution of the elastica has been used for

the evaluation of self-stresses and the influence of the governing variables, after

activation in elastica semi-waves (section 2). The paper shows that since the

elastica can be scaled as a function of the critical length, and the bending-active

tied arch is a sequence of elastica segments, by choosing certain conditions, the495

whole structure has also scalability properties. Due to the scalability of the

solution, the obtained results are applicable to the design of bending-active

structures of any size and stiffness. These outcomes have served as a basis to

carry out the numerical tests in bending-active tied arches shown in section 4.

Secondly, the serviceability limit state and the ultimate limit state have been500

studied separately by means of two series of numerical experiments using the

non-linear FE software SOFiSTiK, the results of which are expressed as a func-

tion of the external load. Maximum deflections and stresses in the rod and

cables have been evaluated according to the limitations posed by the Eurocode

for footbridges. With the outcomes of the study, general non-dimensional dia-505

grams have been obtained for further designs of bending-active tied arches with

three deviators of any size and shape. The results show that the design space is

limited, mainly because the magnitude of the load and limitations for deflections

in serviceability limit states posed by codes are very restrictive. Less restrictive

limitations would allow for wider design possibilities.510
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Section 5 shows an example that illustrates the way to obtain a feasible

configuration compatible to a desired shape and size of a bending-active tied

arch with three deviators, for the chosen materials and structural proportions.

Finally, a procedure to extend the previous results to tied arches with different

number and proportions of deviators has been detailed.515
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40

http://www.sciencedirect.com/science/article/pii/S0141029617338695
http://www.sciencedirect.com/science/article/pii/S0141029617338695
http://www.sciencedirect.com/science/article/pii/S0141029617338695
https://doi.org/https://doi.org/10.1016/j.engstruct.2018.05.002
https://doi.org/https://doi.org/10.1016/j.engstruct.2018.05.002
https://doi.org/https://doi.org/10.1016/j.engstruct.2018.05.002
http://www.sciencedirect.com/science/article/pii/S0141029617338695
http://www.sciencedirect.com/science/article/pii/S0141029617338695
http://www.sciencedirect.com/science/article/pii/S0141029617338695
https://doi.org/10.2495/MAR140091
http://www.theses.fr/2007ENPC0728
http://www.theses.fr/2007ENPC0728
http://www.theses.fr/2007ENPC0728


doctorat dirigée par Caron, Jean-François Matériaux et structures Marne-

la-vallée, ENPC 2007 (2007).

URL http://www.theses.fr/2007ENPC0728620

[30] C. Lázaro, S. Monleón, J. Bessini, Tangent stiffness in point-loaded elastica

arches, in: Proceedings of the IASS Annual Symposium 2017, Hamburg,

2017.

[31] C. Lázaro, J. Bessini, S. Monleón, Shape and performance of bending-active

tied arches, in: Proceedings of the IASS Annual Symposium 2018, Boston,625

2018.

[32] J.-F. Caron, S. Julich, O. Baverel, Selfstressed bowstring footbridge in frp,

Composite Structures 89 (3) (2009) 489 – 496. doi:https://doi.org/10.

1016/j.compstruct.2008.11.009.

[33] K. Noda, Y. Kanebako, Structural design of pre-bent dimensional lum-630

ber suspenarches, in: Proceedings of the IASS Annual Symposium 2018,

Boston, 2018.
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