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Abstract: The development of new measures and algorithms to quantify the entropy or related
concepts of a data series is a continuous effort that has brought many innovations in this regard in
recent years. The ultimate goal is usually to find new methods with a higher discriminating power,
more efficient, more robust to noise and artifacts, less dependent on parameters or configurations,
or any other possibly desirable feature. Among all these methods, Permutation Entropy (PE) is
a complexity estimator for a time series that stands out due to its many strengths, with very few
weaknesses. One of these weaknesses is the PE’s disregarding of time series amplitude information.
Some PE algorithm modifications have been proposed in order to introduce such information into
the calculations. We propose in this paper a new method, Slope Entropy (SlopEn), that also addresses
this flaw but in a different way, keeping the symbolic representation of subsequences using a novel
encoding method based on the slope generated by two consecutive data samples. By means of a
thorough and extensive set of comparative experiments with PE and Sample Entropy (SampEn),
we demonstrate that SlopEn is a very promising method with clearly a better time series classification
performance than those previous methods.

Keywords: permutation entropy; sample entropy; signal classification; symbolic dynamics;
discriminating power

1. Introduction

The capability of entropy or complexity measures to distinguish among time series classes and to
understand the underlying dynamics is very well known [1-3]. Many different formulas, statistics,
algorithms, or methods have been proposed since the introduction of the first method that arguably
became widespread and generally used across a varied and diverse set of scientific and technological
frameworks, Approximate Entropy, ApEn [4].

Most of these methods are based on counting events found or derived from the input time series
under entropy analysis, in order to estimate probabilities from relative frequencies of such events.
These probabilities are finally mapped to a single value that supposedly accounts somehow for the
dynamic behaviour of the time series. These mapping frequently takes place using entropy definitions,
such as Shannon [5], Renyi [6], Tsallis [7], or Kolmogorov-Sinai [8] entropies, among others not so
often used.

The development of new entropy quantification methods is an ongoing and fruitful process.
Since the introduction of ApEn, other derived methods have been proposed, such as Sample Entropy
(SampEn) [9], Fuzzy Entropy (FuzzyEn) [10], Quadratic Sample Entropy (QSE) [11], and many more
based on counting pattern matches in terms of time series subsequences amplitude differences.
In addition, characterization studies related to these measures have also been published in order
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to avoid blind application of such methods or to maximise the performance achieved [12-16].
The concomitant analysis of time series at different temporal scales is also a frequent strategy in
practically any method to gain a better insight into temporal dynamics [17,18].

Another successful line of research is also based on counting pattern matches but using a symbolic
representation of a time series subsequence instead of its original sample amplitude form. A good
representative of this approach is the Lempel-Ziv Complexity (LZC) [19], but due to its simplicity and
robustness, Permutation Entropy (PE) [20] is probably becoming the most used entropy measure in
this group, well above LZC. There are also additional studies devoted to the characterization of these
symbolic methods [21-26] and to implement multiscale temporal analyses [27,28].

As stated above, PE is a very successful entropy statistic, but despite its strengths, it still has a
few, however important, weaknesses. Since PE is based on relative frequencies of ordinal patterns
resulting from sorting subsequences, when equal values are found in such subsequences, there is an
ambiguity in the sorting process that has to be addressed consistently. These equal values or ties can
lead to a misinterpretation of the time series nature [26], although they seem to play a minor role where
classification tasks are concerned [24]. Regardless, several methods have been proposed to address
this potentially detrimental weakness [29,30].

It has also been frequently claimed that not including amplitude information could have an
adverse impact on PE performance, too. Thus, PE variations that consider both ordinal and amplitude
information have been proposed, such as Weighted-PE [31], Amplitude—Aware-PE [29], or Fine
Grained-PE [32]. In this case, the inclusion of amplitude information does seem to improve the
discriminating power of PE in classification tasks [33].

Due to this significance, we tried to devise another method that also combined a symbolic
representation of patterns and amplitude information. We based our idea on methods employed
for syntactic pattern recognition and polygonal approximation of data, successfully used in the past
to classify electrocardiogram (ECG) records [34,35]. The basic idea was to encode the magnitude of
the amplitude differences between consecutive samples in the time series by an alphabet in which
symbols accounted for a range of differences, spanning from 0 to co. The method should also be simple,
efficient in terms of memory requirements and computational cost, and without a strong dependence
on thresholds and parameters.

Based on the scaffolding provided by the standard PE algorithm, we propose in this paper a
new entropy statistic termed Slope Entropy (SlopEn) that satisfies the requirements stated above.
The method uses an alphabet of three symbols, 0, 1, and 2, with positive (+) and negative versions
(—) of the last two. Each symbol covers a range of slopes for the segment joining two consecutive
samples of the input data, and the relative frequency of each pattern found is mapped into a real value
using a Shannon entropy approach [5].

In order to validate the approach proposed, a comprehensive experimental comparative study was
conducted. The comparison took place using PE (ordinal patterns) and SampEn (amplitude patterns),
two of the most representative entropy measures used in the scientific literature, and an experimental
dataset based on publicly available records to ensure reproducibility. The results confirmed SlopEn as
an entropy measure of great potential that outperformed both PE and SampEn under a great disparity
of conditions and experimental settings.

2. Materials and Methods

This study uses two well known entropy methods, PE and SampEn, as the references against
which the new SlopEn method can be validated. The input time series is referred to as the vector
x = {x0,x1,...,xN-1}, where x; is the i—th amplitude sample, and the number of samples is N.
The embedded dimension for all measures is referred to as m.

The experimental dataset contains synthetic and real records. This dataset has been chosen with
two purposes in mind: facilitate the reproducibility of the results by using publicly available data and
analyse records difficult to classify by the standard PE method. It also contains not only biomedical
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data but electricity consumption data, as well as other records successfully classified by PE, in order
to offer a complete and unbiased picture of the SlopEn capabilities and improvements. The methods
stated above and the dataset are described in the next sections.

2.1. Sample Entropy

SampkEn [36] is based on computing the relative frequency of similar amplitude subsequences.
A subsequence starting at sample j, of length m, defined as x}” = {Xj,Xj41,. ., Xj 11}, is compared
with all the other possible subsequences of length m starting at sample 7, extracted from x, except with
itself, thatis, 0 <i,j < N—m+1,i #j.

The distance between x}" and x}" is given by dj; = max(|xjx — xi4|),0 < k < m — 1. In order
to consider two subsequences similar, this distance should be below a predefined threshold, usually
termed r. In this work, r was set to 0.25 in all the experiments.

The number of subsequences similar to x!" is stored in a specific counter, B]m(r). When all the
possible subsequences in x have been processed, a final statistic for the time series is computed as:

1 N-—m—-1

Bm(r):N_m X;) B'(r).
=

The length of the subsequences is then increased by 1, and the previous similarity calculations are
repeated for this new length. In this case, the final statistic is termed B"*1(r). SampEn can then be
computed as:

m+

(r)} . 1)

1
SampEn(x,m,r,N) = —log [Bm(r)

2.2. Permutation Entropy

PE [20] is based on computing the relative frequency of ordinal patterns associated to time series
subsequences. As for SampEn, all possible subsequences x?" are sequentially drawn from x. Then, the
samples in x;” are sorted in ascending order. The original indices of these samples conform another
vector featuring the final location of each sample once they were sorted. This vector is usually defined
as 71'}” = {mo, 701, ..., Tu—1} such that x;; r, < Xj 7, < Xjjn, -+ < Xjyr, - The number of different
ordinal patterns that can emerge from an alphabet of m symbols, is m!. Thus, comparing the ordinal
pattern found, 71';-", with a list of all the possible m! ordinal patterns, it is possible to compute the
relative frequency of each one. Thus, if a certain ordinal pattern has been found c; times, its relative
frequency can be obtained as py = g—k—7. PE can then be computed as the Shannon entropy of the
estimated probabilities:

m!—1
PE = — ) prlog pr, Vpr > 0. 2
k=0

2.3. Slope Entropy

The purpose of SlopEn is to somehow include amplitude information in an otherwise symbolic
representation of the input time series. Similar approaches have used a linear quantization scheme,
with as many thresholds as levels desired, being Lempel-Ziv Complexity (LZC) [19] a good and
generic representative of this approach, based usually on a single threshold and two symbols, 1 and
0. However, these methods are usually very dependent on the specific threshold chosen, and on the
amplitude range of the time series under analysis.

Symbolic dynamics is a field of research that has already been explored in the context of signal
classification. In addition to pattern recognition in ECG records [34,35], it has also been applied to RR
records using a threshold to assign symbols to interbeat intervals [37]. Applied also to RR records,
the method described in [38] represented heart rate accelerations by the symbol 1, and decelerations by
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0. Even the number of forbidden words have been included as a classification feature [39]. However,
these methods are too record specific, and their discriminating power was not very high [39].

We wanted to apply a similar scheme that had to be simple and less dependent on thresholds and
specific amplitude values or records. In this regard, thresholds were based on the gradient between
consecutive samples, instead of absolute values, and second, symbols should be assigned according to
a certain range of differences or slopes, as depicted in Figure 1.

- 99777,
IR
R 0es 054505500,

990955543555275544%%:

-1

Figure 1. Graphical interpretation of the Slope Entropy (SlopEn) approach using three levels. Possible
symbols are +2, +1,0, —1, and —2, depending on the amplitude difference between consecutive samples.

Thus, each subsequence of length m drawn from X, can be transformed into another subsequence
of length m — 1 with the differences of each pair of consecutive samples, x; — x;_1. Then, a threshold
or thresholds must be applied to these differences in order to find the corresponding symbolic
representation. Once these symbols are obtained, a Shannon entropy approach can be applied in a
similar manner as for PE, but instead of normalising by a constant value (the possible number of
ordinal patterns in PE, m!), the factor employed corresponds to the actual number of slope patterns
found. This way, the possible additional information provided by forbidden patterns [40,41], can be
also exploited, although the values obtained can not be considered a true probability value.

The specific SlopEn configuration proposed in the present study is very straightforward.
It considers the horizontal increment between consecutive samples to always be 1, and the differences
(vertical increment) are thresholded by a parameter <, taken as 1 in the present study (45° angle).
The vicinity of the O-difference region is managed by another threshold, termed J, whose chosen value
in this case was 1 x 1073, to account for possible ties [26]. Being x; and x;_1 two consecutive values of
the input time series, the symbols can be assigned according to the following rules:

o Ifx; > x;_1+ 7, thesymbol is +2.

o Ifx; > x;1+¢and x; < xj_1 + 7, below the 45° angle and above the 0 region when v = 1,
the symbol is +1.

o In the vicinity of the 0 difference, when |x; — x;_1| < J, the symbol assigned is 0.

e x; <x_1—0Jandx; > x;_1 — 7, above the —45° angle, and below the 0 region when y = 1,
the symbol is —1.

o Ifx; <xj_1— 1y, thesymbolis —2.

In any method, a resampling of the input sequence can be applied to study the possible
information distribution across other temporal scales. The parameter that accounts for the magnitude
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of this new scale, the embedded delay, is usually represented by 7, with T > 1. In this work, T = 1 for
all the experiments, since it is still the most frequent case [29], except in Section 3.5.

For example, a subsequence {4.4,3.6,5.3} would result in a vector of differences {—0.8,1.7},
whose SlopEn symbolic representation is 1/)?20 = {—1, +2}, with vector components ¢y = —1 and
Y1 = +2. There is a complete and detailed SlopEn computation example in Appendix A, with source
code in Appendix B. All the SlopEn computation steps are listed in Algorithm 1.

Algorithm 1 Slope Entropy (SlopEn) Algorithm

Input: Time series x, embedded dimension m > 2,length N > m+1,6,v > ¢

Initialisation: SlopEn < 0, slope pattern counter vector ¢ <— {@}, slope patterns relative frequency vector p < {@}, list of
slope patterns found ¥" + {@}

forj<«<0,...,N—mdo > For all the samples in the input time series
fori«j+1,...,j+m—1do > Examine samples in a subsequence of length m
if (Xl' - Xi,1) € [—5, (5} then
Yi_(j+1) <0 > Add symbol 0 to pattern vector tp;”
end if
if (x,- — X[_l) E}(S, ’}’] then
PYi_(j41) < +1 > Add symbol +1 to pattern vector 1/)}”
end if
if (x; — xj_1) €], 00 then
Pi_(j41) < +2 > Add symbol +2 to pattern vector tp}”
end if
if (x; — x;_1) € [, —J[ then
Pi(ip1) < 1 > Add symbol —1 to pattern vector tp}”
end if
if (x; — xj_1) €] — oo, y[ then
i (jr1) < —2 > Add symbol —2 to pattern vector 1[);7’
end if
end for
bFound < false
fori<0,...,sizeof (¥") —1do > Search on list of patterns already found for current pattern Ui
if zp]r." =Y/ then > A match for 1[;]’." found in ¥}
cici+1 > Update frequency counter for tp}”
bFound < true
break > Stop search
end if
end for
if not bFound then > Slope pattern $J" not found in ¥
b = tp;” > Append pattern tp;” to list ¥}
ce=1 > Append and initialise pattern count
end if
end for
fori<0,...,sizeof (¥") —1do
p <= pi m > Append probability normalised by number of actual patterns found
SlopEn <« SlopEn+(—p;log p;) > Compute Shannon entropy
end for
Output: SlopEn(x,m, N, 7, ) > Return result

Algorithm 1 can easily be optimised. For example, consecutive slope patterns overlap in the last
samples, and it would not be necessary to compute the entire pattern for each subsequence. However,
the algorithm is proposed in a generic and basic form, and optimisations are left for future studies.

2.4. Experimental Dataset

The experimental dataset was composed of synthetic and real records. These datasets are
described next:

e Random records. There is a clear synthetic case where PE failed to find differences between
two classes: random time series with Gaussian or uniform amplitude distributions. This is a
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Uniform

Gaussian

representative example of what happens when classes under analysis have the same temporal
correlations but differ in amplitude: PE discriminating power gets lost [42]. A dataset of this
case was included in the experiments in order to find out if SlopEn was capable of overcoming
this known weakness of PE. Two classes were generated using Gaussian or uniform amplitude
distributions, with 100 records each, with a length of 5000 samples. An example of records
from each class is shown in Figure 2. This dataset will be referred to in the paper as the
RANDOM dataset.

f]l[

0 1000 2000 3000 4000 5000
Samples

Figure 2. Example of generated synthetic records for the RANDOM database.

Electroencephalographic records (EEGs) are the focus of many studies using entropy
measures [43-45]. They have been used for a variety of purposes, such as to assess the mental
status of a subject, driver’s fatigue, depth of anaesthesia, to detect a neurological disorder, or to
predict the onset of epileptic seizures. There is also a great public availability of EEG records.
For its good results using PE and SampEn in previous works, and due to the fact that it is probably
the most widely known and analysed EEG database, we chose the University of Bonn EEG
database [46]. There are five record classes in this database, but we only used the seizure—free and
seizure—included records of classes D and E, respectively (100 records each one, uniform length of
4096 samples), easily separable, in principle. An example of class D record is plotted in Figure 3a,
and in Figure 3b for class E.

Amplitude (Normalised)
Amplitude (Normalised)

y

3000 4000 0 1000

0 1000 20 3000 4000

00 2000
Samples Samples
(a) Electroencephalographic records (EEGs) records  (b) EEG records containing seizure activity.
from the epileptogenic zone but without seizure Class E.

activity. Class D.

Figure 3. Examples of EEG records from the two classes used in the experiments.

Another type of biomedical records extensively analysed using non-linear methods are series
of time durations between consecutive R-waves in the electrocardiogram (ECG), or RR
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intervals [47-49]. We chose a publicly available RR database from the PhysioBank [50], the well
known Fantasia database [51]. This database contains 20 young (21-34 years old) and 20 elderly
(68-85 years old) healthy subjects data whose ECG signal was recorded during 120 min while
in continuous supine resting. Examples of records from the elderly and young population are
shown in Figure 4a,b, respectively.

Amplitude (Normalised)
Amplitude (Normalised)

0 2000 4000 6000 8000 0 2000 4000
Samples Samples

(a) RR example record from an elderly subject in (b) RR example record from a young subject in the
the Fantasia database. Fantasia database.

6000 8000

Figure 4. Examples of signals from the two classes of the RR database.

e Entropy measures are also very popular in other time series domains, beyond the very successful
one of biomedical records. Along this line, we looked for other publicly available datasets
featuring a complete different kind of time series, and we found the varied and diverse repository
at www.timeseriesclassification.com [52]. Within this repository, we chose two classes of data from
the Personalised Retrofit Decision Support Tools for UK Homes Using Smart Home Technology
(REFIT) project [53]. The first class contains data related to aggregate usage of electricity
(Figure 5a), and the second one to aggregate usage of electricity of some specific home appliances
(Figure 5b). This dataset contains 20 records from each class, with a uniform length of 1022 samples.
We used this dataset in a previous study [33] where PE was unable to find significant differences
between the two classes. Therefore, this should be considered a difficult dataset for entropy
measures based only on ordinal patterns. We will refer to this dataset across the paper as the
ENERGY dataset.

Amplitude (Normalised)
Amplitude (Normalised)

e S
0 200 400 600 8300 1000 0 200 400 600 800 1000
Samples Samples

(a) Example of time series corresponding to (b) Example of time series corresponding to

aggregate usage of electricity at home. Class 1. aggregate usage of electricity of some specific home
appliances at home. Class 2.

Figure 5. Example of time series from the two classes included in the ENERGY experimental dataset.

e  The scientific and medical interest on Electromyograms (EMGs) and entropy measures is raising
due to the recent availability of inexpensive continuous portable monitoring devices and the
insight they provide into a number of important pathologies and motor disorders. They have been
used to assess Parkinson’s disease [54], the neuromuscular impact of strokes [55], and muscular
performance [56,57], to name just a few. The well-known site of Physionet [50] provides examples
of EMGs, which we have used in previous classification studies, easily separable [22]. From three
very long records of healthy, myopathy and neuropathy patients, we created three datasets by
extracting non-overlapping epochs of 5000 samples. As a result, this dataset contains 10 healthy
5000 samples records (class 0), 22 myopathy 5000 samples records (class 1), and 29 neuropathy
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5000 samples records (class 2). Examples of each class are shown in Figure 6a—c, respectively.
This dataset will be referred to as the EMG dataset.

-

==

Amplitude (Normalised)

Amplitude (Normalised)
o
o

Amplitude (Normalised)

o

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Samples Samples Samples
a) EMG records co?responding to (b) EMG records Coiresponding to (c) EMG records cogresponding to

—
—~

the healthy dataset, class 0. the myopathy dataset, class 1. the neuropathy dataset, class 2.
Figure 6. Examples of Electromyogram (EMG) records from the three classes used in the experiments.

All records were normalised (zero mean and unit variance) before computing SampEn and PE.
They were not normalised for SlopEn in order to assess the possible influence of the amplitude,
given that the thresholds were constant and the same for all records. For example, differences in
the RR dataset ranged mainly between 0 and 100 ms, between 100 and 200 pV for the EEG records,
and between 0 and 20 uV for the EMG time series, and SlopEn should be able to deal with these
differences. A normalised amplitude is less challenging in terms of input parameter dependence
or configuration, and that will be analysed in future studies along with more specific guidelines for
parameter selection.

3. Experiments and Results

3.1. Classification Accuracy Tests

This test was devised to find the classification accuracy achieved by each method using all datasets
for m between 3 and 8. The average performance is shown in Table 1.

Table 1. Classification accuracy average results for all datasets. Statistically significant results are
shown in bold. SampEn r = 0.25.

Accuracy
PE SampEn SlopEn

RANDOM  0.62+£0.055 0.62+0.063 0.97£0.047
ENERGY 0.64+0.013 0.81+0.013 0.85+0.094

EEG 090+0.014 0.70+0.034 0.86+0.140

RR 0.62+0.031 0.69+0.036 0.78 +0.081
EMG(0,1) 1+0.000 0.74 £0.063 0.91-+0.164
EMG(0,2) 0.78+0.171 0.86+£0.098 0.98+0.026
EMG(1,2) 1+0.000 0.89+0.048 0.94+0.112

Dataset

3.2. Embedded Dimension Influence Tests

The influence of m in the performance of PE and SampEn is a well known issue [58]. Although
some efforts have been devoted to minimise this influence [59], it still plays an important role, and its
impact should be characterised, and compared. To this end, the classification experiments were
repeated for m values ranging from 3 up to 8. These results are plotted in Figure 7.
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(a) Evolution of classification performance with m
using the RANDOM dataset. Only Slope Entropy
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achieve statistically significant results in this case
for any m value. Confidence intervals are so narrow
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(b) Evolution of classification performance with
m using the ENERGY dataset. Results using PE
are not shown since it did not achieve statistically
significant results in this case for any m value.
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(d) Evolution of classification performance with
m using the RR dataset. Results using PE are
not shown since it did not achieve statistically
significant results in this case for any m value.
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3 4 5 . 6 7 8
(f) Evolution of classification performance with m
using the EMG dataset. Classes under comparison
0 and 2.

Figure 7. Evolution of classification performance with m for all the experimental datasets, and the
three methods tested: PE, SampEn (r = 0.25), and SlopEn.

3.3. Length Influence Tests

The length influence was assessed using

the classification accuracy achieved at lengths

n € {50,100, 150, 200, 250, 500, 750, 1000, 1250, 1500}. The first n samples of each record were used
in these experiments instead of the entire records. The results are shown graphically in Figure 8.
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Figure 8. Classification accuracy evolution as length increases for the records in the dataset and the
three entropy methods assessed, including the new method proposed, SlopEn (m = 3). Red symbols
represent statistically non-significant results. SampEn r = 0.25.

3.4. Noise Influence Tests

Robustness against noise has always been a very desirable property of non-linear measures.
Some methods have failed to be widely used precisely because they were too sensitive to noise, no
matter how high was their discriminating power when the records were clean. In order to avoid a
similar fate for SlopEn, classification tests were repeated adding synthetic random uniform noise to the
records in the experimental datasets, with signal-to-noise (SNR) ratios of 30dB, 20dB, 10dB, and 0dB,
and m = 3. It was not possible to know the initial SNR, therefore the synthetic SNR was computed
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against the baseline records, in its original state in the database. The evolution of the classification

accuracy for each case is plotted in Figure 9.
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Figure 9. Classification accuracy evolution as noise level increases. The starting SNR, before the

synthetic noise was added, was considered to be co. All the experiments used m = 3. Confidence

intervals are not shown due to their small size, around 0.002-0.003.

3.5. Embedded Delay Influence Tests

The embedded delay 7 in PE is frequently assumed to be 1 [29]. However, sometimes information
about the time series dynamics is scattered across different time scales, and values T > 1, T € N, have
been proven to be very useful in those cases [60]. That is also the case for SampEn [61].

The experiments in this section were devised to assess the possible influence of T on SlopEn,

as it does on PE and SampEn. In practical terms, T > 1 corresponds to a downsampling process,
where the output time series is obtained from the input one sampled at every T samples, x[nT] —
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x[ntT],n € NT, but without applying a low—pass filter in order to avoid a possible aliasing [29].
The specific time scales employed in the experiments were {2,4,8,16,32}. For example, for T = 2,
the initial data {xo, x1, X, x3, X4, ...} will become {xg, X2, x4, .. .}. The results are shown in Figure 10.
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Figure 10. Classification accuracy as a function of embedded delay 7. All the experiments used m = 3.

3.6. SlopEn Parameters Influence Tests

The addition of more parameters to an entropy estimator method can be seen as a disadvantage,
since, in principle, it increases the configuration effort for optimal performance. On the other hand,
more parameters can also provide more flexibility for adaptation to the problem under analysis,
provided the dependence on specific parameter values is low. This was the case, for example, for the
evolution of SampEn to FuzzyEn [10]. The experiments in this section were devised to assess the
robustness of SlopEn against changes in its specific parameters, v and 6. The results are shown
in Table 2.
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Table 2. SlopEn performance variation when parameters 7y and J are modified (m = 3). The first
column of data corresponds to the baseline configuration, that used in all the previous experiments.

¥ 1 3 6 5 5 1 2

b 1x1073 1x1073 1x103 1 1x1073 1x107? 1x10°
RR 0.70 0.70 0.82 0.85 0.70 0.70 0.70
EEG 0.93 0.94 0.94 0.95 0.95 0.93 0.94
ENERGY 0.90 0.87 0.57 0.60 0.62 0.90 0.92
EMG 1,1,1 1,1,1 1,0.88,0.88 0.51,1,1 0.93,1,1 1,1,1 1,1,1

4. Discussion

The classification accuracy achieved with SlopEn was the highest in all cases tested (Table 1).
Since the datasets were chosen from previous works where PE exhibited some limitations due to
its inability to include amplitude information [33,42], its results were the worst of the three metrics,
as expected. PE only found significant differences for EEG and EMG records. On the contrary, SampEn
and SlopEn classification accuracy was significant in all cases, with SampEn performing best for m = 3,
as usually recommended for SampEn and ApEn [4,36]. The performance for SlopEn was perfect
for the RANDOM and EMG datasets, and very high for the other three. As hypothesised, SlopEn
seems to take advantage of symbolic and amplitude information simultaneously, since it improves the
individual results of both PE and SampEn. Cases where significant classification was not achieved in
any experiment configuration were omitted in the subsequent tests.

The variation of this classification with the embedded dimension m yields a disparity of
performances (Figure 7). In principle, SlopEn seems to have a greater variability with m than PE
and SampEn, for datasets ENERGY (Figure 7b), EEG (Figure 7c), RR (Figure 7d), and the first case
of the EMG dataset (Figure 7e). However, SlopEn is very stable for the RANDOM (Figure 7a) and
the EMG dataset, second configuration (Figure 7f). Anyway, this is a similar behaviour exhibited by
amplitude-based PE derived methods [33], and the performance of PE and SampEn is usually well
below that of SlopEn for most of the m values tested, being SlopEn the only one achieving statistical
significance in all cases.

It is important to note that the results in this paper can be compared with other in previous studies,
since some experimental datasets are the same. For example, in [33], the classification performance of
PE, along with improved PE versions, such as Weighted—-PE [31], Fine Grained-PE [32], and Amplitude
Aware-PE [29], was assessed too for datasets ENERGY, RR, and EEG. The best classification accuracy
for these datasets in [33] was 0.87, achieved using Fine Grained-PE, 0.87, achieved using Weighted-PE,
and 0.91, using Fine-Grained PE. The other method analysed in that study, Amplitude Aware-PE,
achieved an accuracy of 0.62, 0.75, and 0.85 for those datasets. Using SlopEn, the results obtained
in the present paper were 0.92, 0.87, and 0.96, using the same measure in the three cases. Therefore,
SlopEn was able to outperform Weighted-PE, Fine Grained-PE, and Amplitude Aware-PE methods,
too without customising the  and J parameters, or the number of thresholds.

The comparative results of the length analysis shown in Figure 8a—d indicate that SlopEn is
reasonably robust against short datasets. The classification performance provided by PE has already
been demonstrated to be robust in these terms [22], and SampEn has also been claimed to exhibit less
dependence on length than other very successful methods like ApEn [58]. In this context of already
robust methods, SlopEn was capable of outperforming them, with an even more stable behaviour,
in addition to higher accuracy performances, discussed in other experiments. For Energy consumption
records (Figure 8a), SlopEn stabilised at N = 500, approximately, with performances above 0.8 at
N = 250. SampEn also needed some 500 samples, and PE was not able to achieve statistical significance
for any length studied. The results in Figure 8b for EEG records show that the three methods become
stable at N = 250, but SlopEn achieves the maximum accuracy exhibited at N = 1500, at that point
already, whereas the other two still need more points. The stability for the classification of Fantasia RR
records (Figure 8c) is quantitatively very similar among the three methods but not qualitatively since
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the results for the shortest lengths were not significant for SampEn, requiring at least 250 samples,
and PE was unable to find significant differences. The experiment using EMG records is probably
where the differences were most prominent (Figure 8d). With only 150 samples, SlopEn achieved the
maximum performance, whereas PE needed 750 samples, the same for SampEn to achieve statistical
significance. The last two length analysis experiments showed an even superior performance of SlopEn
(Figure 8e,f).

SlopEn is also reasonably robust against noise. Except for the energy records (Figure 9a),
the results achieved by SlopEn kept significance at lower SNR than SampEn and PE. For the EEG
records (Figure 9b), the SlopEn response was quite flat, like that of PE, but with higher classification
performance. SampEn lost significance at 0dB. In the case of RR results in Figure 9c, SampEn and
SlopEn trends were fairly similar but significance was, again, better kept by SlopEn. It is also important
to note that the experiments used m = 3, at which SampEn achieved the maximum accuracy but not
SlopEn (Figure 7d). With other m values, the SlopEn response was even better, but in order to maintain
the homogeneity of the experiments, m was kept constant. EMG records exhibited the same behaviour,
as can be seen in Figure 9d.

The embedded delay T analysis results point in the same direction of SlopEn being superior
to SampEn and PE. In all the cases tested and reported in Figure 10, the discriminating power of
SlopEn was above that of the other two methods, except in the case of EMG records, classes 0 and
1, plotted in Figure 10d. Unless the time series exhibits a specific behaviour at a certain temporal
scale, which is mainly not the case in the experimental dataset used in this study, the discriminating
power is expected to fall with greater T values since some signal information is lost when samples
are removed. The response of SlopEn, along with that of SampEn, was reasonably flat in this regard,
being PE response more oscillating. Moreover, there were several non-significant results for PE in
all cases except Figure 10e,f, for SampEn except in Figure 10f. SlopEn only failed to find significant
differences for T = 16,32 in Figure 10a,d. Although, as stated above, none of the records exhibited
a clear temporal multiscale behaviour, it is important to note that methods that were unable to find
differences for the baseline case, T = 1, were capable at other embedded delay values, such as PE with
ENERGY (Figure 10a, T = 4,16) and RR records (Figure 10c, T = 2,4, 8).

Table 2 shows the classification accuracy achieved for m = 3 but with changes in SlopEn
parameters 7y and J. Despite significant variations in these parameters, the performance was fairly
stable, except for ENERGY records with great - values. It seems that highest accuracy can be achieved
provided 0 is close to 0, and v is relatively low, in the vicinity of 1 or 2. The key issue for SlopEn
is arguably to distinguish between steep and gentle slopes in a fuzzy way, the exact values do not
matter much. For example, the classification accuracy for RR records was the same, 0.70, for v = 1,3, 5.
For EEG records was almost constant (around 0.94) for all the different v and J combinations tested,
and results for EMG dataset were also fairly stable, except for § = 1. ENERGY was one of the
most difficult to classify cases, and that is reflected by a higher sensitivity to parameter values. This
specific dataset required 7 values below 4. It is also important to note that SlopEn was applied
to not normalised records, with a great disparity in amplitudes. For optimal performance, a grid
search could be conducted [14], and after a normalisation process, it could also be found out which
parameter values are optimal for each dataset. Thus, further studies will be required to fine tune
the use of the parameters, the number of thresholds, and to define a more uniform scheme using
signal normalisation.

In a few tests where classification accuracies were not significant, this significance seemed
sometimes not to be clearly correlated, or follow a uniform relationship pattern with classification
accuracy. For example, in Figure 8e, using SlopEn, results were significant for length 50, with an
accuracy of 0.83, then became non-significant for length 100, accuracy 0.72, and then significant again
for length 150 and onward, with an accuracy at that point of 0.66, below the previous non-significant
one of 0.72. Although this might seem counter-intuitive, it is actually relatively frequent due to the
following reasons:
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1. Accuracy is a kind of average between sensitivity and specificity, and a higher accuracy does
not ensure significance because it can be the result of an unbalanced average. In this case,
with a length of 100 samples, sensitivity was 0.51, and specificity 0.80, the average 0.72 was
not significant because despite its high value, it came from a very low sensitivity. The same
average for another test was achieved with a sensitivity of 0.80, and specificity of 0.68, but in this
case, it was statistically significant. For length 150, the sensitivity was 1 and the specificity 0.57,
significant for an accuracy of 0.66 but borderline.

2. There are many methods for equal mean hypothesis testing, each one with its strengths and
weaknesses [62]. We used the Bootstrap method, since no assumptions about the input data have
to be made [63]. However, the size and distribution of the data may influence its results, mainly
when significance is borderline. For example, in the previous 0.72 and 0.66 example, the test
prioritised specificity over sensitivity due to the size differences of the input classes, 10 and
29, respectively.

3.  Rejecting the equal hypothesis is not a demonstration that it is completely false, or the other
way round. Again, this is specially true in borderline cases where a minor random change can
completely reverse the results.

4. There are many factors than can influence the differences between time series. They are usually
considered stationary, but in reality, they might exhibit some temporal changes. For example,
border effects are quite common in biomedical records [14], and this impacts the results in a
length influence analysis. Other well-known effects are the stochastic resonance [64,65], whereby
more noise does not necessary imply less discriminating power, just the opposite. Regarding
the temporal scale given by 7, a regular trend should not be expected in all cases because the
classification performance depends on the information content of the temporal scale analysed.
These scales could be completely independent in terms of this information content.

5. Conclusions

We proposed in this paper a new entropy estimator termed Slope Entropy (SlopEn). It is based on
the relative frequency of symbolic patterns, where each symbol is assigned according to the difference
between consecutive samples of the input time series. The algorithm is very simple and easy to
implement, with a lot of room for improvements and customisations in further studies.

Although SlopEn requires two new parameters, y and J, the classification accuracy is very stable
for a wide range of these parameters but best for 6 — 0 and y ~ 1, 2. For normalised records, -y just
needs to be rescaled in the range |4, 1], approximately. The goal is to somehow detect and account for
abrupt differences between consecutive samples in the time series, combining the positional or ordinal
information of these differences, and their magnitude: high (£2 symbol), low (£1 symbol), and ties
(0 symbol).

A thorough and fair comparative study was conducted to assess the goodness of the new method
proposed. Two of the most used entropy quantification methods were included in the experiments for
comparative purposes: PE, as a good representative of ordinal-based approaches, and SampEn, based
on amplitude differences. The experimental dataset included usual biomedical records in classification
studies: EEG and RR records, records where PE achieved very good classification accuracy, EMG
records, and synthetic and real records where PE has failed because amplitude information was a key
distinguishing feature: Gaussian and uniform random noise [42], and energy consumption records [33].
This way, the study was also not constrained to just biomedical records.

In absolute terms, and using a default and stable parameter configuration for SlopEn,
the classification accuracy achieved by this new measure was higher than that achieved by PE or
SampEn. Even for the difficult cases where PE was unable to achieve statistically significant differences,
SlopEn performance was between 87% and 100%. Not reported in this paper, but probably the focus
of future studies, preliminary tests on other biomedical records, including RR, temperature, blood
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pressure, or blood glucose records, have shown the same trend of superior performance by SlopEn
without any fine tuning at all, just using the baseline configuration proposed in the present study.

The additional tests for parameter dependence and noise robustness have also demonstrated
that SlopEn is a very promising method for a myriad of classification applications in the near
future and in different contexts. Specifically, SlopEn seems to be more dependent on m than PE
or SampEn but yields a higher accuracy in most of the cases. On the contrary, SlopEn is more
robust against length N than the other two methods, with significant results with just 50 samples
in almost all cases tested. The dependence on its specific parameters, v and J, is low, and with a
better customisation of these parameters, the performance of SlopEn in all tests would have been
even higher. Anyway, normalisation should be considered a more robust approach, and in future
works parameter customisation should be studied in the context of normalised records to ensure even
better results. The embedded delay T had a negligible influence on SlopEn for the temporal scales and
records employed. SlopEn was also robust against different levels of noise.

Further studies will be required in order to find out the possible relationship between normalised
amplitudes and thresholds for optimal performance. Moreover, the number of thresholds could also
be characterised for a specific time series. Other works should be devised to design classifiers based
on SlopEn in order to confirm its superior accuracy for a particular application and data. Due to
its simplicity and good performance, SlopEn could become a successful and widespread entropy
quantifier method similar to SampEn or PE.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Example of SlopEn Computation

Let x be an input time series series defined by x = {8.2, 8.1, 4.4,3.6,5.3,5.4,8.3,1.9,3.7,8.6,9.6,9,
6,8.7,6.7,33,2,25,2.7,46,9.1,1,3.1,1.7,4.1,3.8,6.4,1.3,5.7,3.4,2.4,2.1, 42}. For m = 3, N = 33,
and the default configuration described in Section 2.3, the computation of SlopEn is as follows:

e  Extract first subsequence from x, X;-’:O = {8.2,8.1,4.4}. Compute the corresponding slope pattern,

l[);-’:O = {—1,-2},since 8.1 — 8.2 € [-1,—-0.001], and 4.4 — 8.1 < —1. Append pattern {—1, -2}
to the list of patterns found ¥° and initialise its counter to 1: ¥> = { {{-1,-2},1} }

e  The next subsequence from x is xjg’:l = {8.1,4.4,3.6}. Pattern lli?zl = {—2,—1}. This pattern is

not in ¥3. Append it, and initialise its counter to 1: ¥° = {{ {-1,-2},1},{{-2,-1},1} }
e  Subsequence x;o-’zz = {4.4,3.6,5.3}. Pattern 1[;13’:2 = {—1,2}. This pattern is not in ¥°. Append it,
and initialise its counter to 1: ¥ = { { {~1,-2},1}, { {-2,~1},1}, { {-1,2},1} }.

e  Subsequence x? 5 = {3.6,5.3,5.4}. Pattern 1[)3?’:3 = {2,1}. This pattern is not in ¥3. Append it,

and initialise its counter to 1: ¥ = {{ {~1,-2},1},- -, {{-1,2},1}, { {21}, 1} }.

e  Subsequence x;’: 4 = 1{5.3,5.4,8.3}. Pattern 1[]?2 4 = 11,2}. This pattern is not in ¥3. Append it,
and initialise its counter to 1: ¥ = {{ {~1,-2},1},- -, {{2.1},1}, { {1.2}, 1} }.

e  Subsequence X?ZS = {5.4,8.3,1.9}. Pattern 1[]?15 = {2, —2}. This pattern is not in ¥3. Append it,
and initialise its counter to 1: ¥ = {{ {~1,-2},1},- -, { {1,2},1}, { {2 -2}, 1} }.

e Subsequence x;_, = {8.3,1.9,3.7}. Pattern 1/}?’16 = {—2,2}. This pattern is not in ¥°. Append it,

]
and initialise its counter to 1: ¥ = {{ {~1,-2},1},- -, { {2 =2},1}, { {-2,2}, 1} }.
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e  Subsequence x]“?'=7 = {1.9,3.7,8.6}. Pattern ¢]3'=7 = {2,2}. This pattern is not in ¥°. Append it,
and initialise its counter to 1: ¥ = { { {~1,-2},1}, -, { {~2,2},1}, { {2.2},1} }.

e  Subsequence x?zg = {3.7,8.6,9.6}. Pattern 1[)?28 = {2,1}. This pattern is already in ¥>. Update
its counter to 2: ¥ = {{{~1,-2},1},---, { {~1,2},1}, {{21},2},--- }.

e  Subsequence x]3:9 = {8.6,9.6,9}. Pattern ([)?:9 = {1,—1}. This pattern is not in ¥°. Append it,
and initialise its counter to 1: ¥ = {{ {~1,-2},1},- -, {{2,2},1}, { {1, -1}, 1} }.

e  Subsequence x?:m ={9.6,9,6}. Pattern tp}?’:w = {—1,—2}. This pattern is already in ¥°. Update
its counter to 2: ¥3 = {{ {-1,-2},2},--- }

e  Subsequence x?:n = {9,6,8.7}. Pattern 1[;]3:11 = {—2,2}. This pattern is already in ¥°. Update
its counter to 2: ¥3 = {{ {-1,-2},2},--- ,{{-2,2},2},--- }

e  Subsequence x;’:u = {6,8.7,6.7}. Pattern tp;’:u = {2, —2}. This pattern is already in ¥°. Update
its counter to 2: ¥° = {{ {-1,-2},2},---,{{2,-2},2},--- }

it, and initialise its counter to 1: ¥3 = {{ {-1,-2},2}, - {{1,=1},1}, { {2, —2},1}}.

e  Subsequence x?_lS = {8.7,6.7,3.3}. Pattern 1[1?213 = {~2, —2}. This pattern is not in ¥°. Append

e  Subsequence x?zl 4 = {6.7,3.3,2}. Pattern 1[;?:14 = {—2,-2}. This pattern is already in ¥°.
Update its counter to 2: ¥° = {{ {-1,-2},2},---, {{1,—-1},1},{{-2,-2},2} }

e  Subsequence x]3215 = {3.3,2,2.5}. Pattern 1[)?215 = {~2,1}. This pattern is not in ¥°. Append it,
and initialise its counter to 1: ¥ = {{ {—-1,-2},2},--, {{-2-2},2}, {{—21},1} }

e  Subsequence X?:m = {2,2.5,2.7}. Pattern lp]3-:16 = {1,1}. This pattern is not in ¥°. Append it,
and initialise its counter to 1: ¥ = {{ {~1,-2},2}, -, { {~2,1},1}, { {1,1},1} }.

e  Subsequence x]3=17 = {2.5,2.7,4.6}. Pattern 1[)]3-=17 = {1,2}. This pattern is already in ¥>. Update
its counter to 2: ¥° = { { {~1,-2},2},--+, {{1,2} 2}, }.

e  Subsequence x;?:18 = {2.7,4.6,9.1}. Pattern ‘I’}O'):w = {2,2}. This pattern is already in ¥>. Update
its counter to 2: ¥ = {{{~1,-2},2},---, { {2.2},2}, - }.

e  Subsequence x?:w = {4.6,9.1,1}. Pattern 1[;}7’:19 = {2, —2}. This pattern is already in ¥°. Update
its counter to 3: ¥ = {{{~1,-2},2},---, {{2,-2},3}, - }.

e  Subsequence x?:zo ={9.1,1,3.1}. Pattern 1[]3?’:20 = {—2,2}. This pattern is already in ¥°. Update
its counter to 3: ¥ = {{ {~1,-2} ,2},---, {{-2,2},3},- - }.

e  Subsequence x;’:ﬂ = {1,3.1,1.7}. Pattern 1[]?’:21 = {2, —2}. This pattern is already in ¥°. Update
its counter to 4: ¥3 = {{ {-1,-2},2},---,{{2, -2} ,4},--- }

e  Subsequence x?zzz = {3.1,1.7,4.1}. Pattern 1[;57":22 = {-2,2}. This pattern is already in ¥°.
Update its counter to 4: ¥° = {{ {-1,-2},2},-- , {{-2,2} ,4},--- }
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e  Subsequence xj3=23 = {1.7,4.1,3.8}. Pattern 1,013':23 = {2, —1}. This pattern is not in ¥°. Append
it, and initialise its counter to 1: ¥° = {{ {~1,-2} .2}, -+, { {1,1},1}, { {2, -1}, 1} }.

e  Subsequence x]3:24 = {4.1,3.8,6.4}. Pattern 1[)]3’:24 = {—1,2}. This pattern is already in ¥°.
Update its counter to 2: ¥° = {{ {-1,-2},2},---, {{-1,2},2},- - }

e  Subsequence x?:25 = {3.8,6.4,1.3}. Pattern 1[)3?’:25 = {2,—-2}. This pattern is already in ¥°.

Update its counter to 5: ¥° = {{ {-1,-2},2},---, {{2,-2},5},- - }
e  Subsequence x?:% = {64,1.3,5.7}. Pattern 1[]3?’:26 = {-2,2}. This pattern is already in ¥°.
Update its counter to 5: ¥° = {{ {-1,-2},2},---,{{-22},5}, - }

e  Subsequence x;’:27 = {1.3,5.7,3.4}. Pattern 1[]?:27 = {2,-2}. This pattern is already in ¥°.
Update its counter to 6: ¥° = {{ {-1,-2},2},---,{{2,-2},6},--- }

e  Subsequence X?:zs = {5.7,3.4,2.4}. Pattern 1[;;’:28 = {—2,—1}. This pattern is already in ¥°.
Update its counter to 2: ¥° = {{ {-1,-2},1},{{-2,-1},2}--- }

e  Subsequence x;’zzg = {3.4,24,2.1}. Pattern 1[1?229 = {—1,—1}. This pattern is not in ¥>. Append
it, and initialise its counter to 1: ¥3 = {{ {-1,-2},2}, - {{2,—1},1},{ {—1,—1},1}}.

e  Subsequence x/3230 = {2.4,2.1,4.2}. Pattern 1/)13230 = {—1,2}. This pattern is already in ¥°.
Update its counter to 3: ¥° = {{ {-1,-2},2},--,{{-1,2},3},- - }

Once all the patterns have been processed, the resulting list of coincidences is
{2,2,3,2,2,6,5,2,1,2,1,1,1,1}. Normalising by the number of actual patterns found, 14, and applying
Shannon entropy, the final SlopEn value for this time series is 5.29.

Appendix B. SlopEn Source Code Implementation

This section includes a possible implementation of the SlopEn algorithm using C++ programming
language (no optimisation, no error checking). It is implemented using a base-2 logarithm, but it can
be replaced by a natural logarithm. This source is included below:

float fComputeSlopeEntropy(std::vector<float> vectorTimeSeries, int iEmbeddedDimension, float {Gamma, float fDelta)

{

struct structBin
{
int c;
std::vector<int> vectorSymbols;

bool bFound;

float fSlopEn, p, fSlope;
std::vector<int> vectorSlopePattern;
std::list<structBin> listPatternsFound;

fSlopEn = 0.0;
for(int j=0; j<vectorTimeSeries.size()-(iIEmbedded Dimension-1); j++)

vectorSlopePattern.clear();
for(int i=j+1; i<j+iEmbeddedDimension; i++)

fSlope = vectorTimeSeries[i] - vectorTimeSeries[i-1];

if(fabs(fSlope)<=fDelta) vectorSlopePattern.push_back(0); else

if(fSlope>fDelta && fSlope<=fGamma) vectorSlopePattern.push_back(1); else
if(fSlope>fGamma) vectorSlopePattern.push_back(2); else

if(fSlope<-fDelta && fSlope>=-fGamma) vectorSlopePattern.push_back(-1); else
vectorSlopePattern.push_back(-2);
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bFound = false;
for(auto &patternInList : listPatternsFound)

if (patternInList.vectorSymbols==vectorSlopePattern)

patternInList.c++;
bFound = true;
break;

}

if(bFound==false) listPatternsFound.push_back({ 1,vectorSlopePattern });

}

for(auto &patternInList : listPatternsFound)

p = (float)patternInList.c/listPatternsFound.size();
fSlopEn += -p*log2(p);

return(fSlopEn);

}
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