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Abstract: In statistical process control, the Shewhart c chart is the most used tool to monitor the 
mean number of nonconformities. This chart is easy to use but its ability to detect small shifts in the 
process is low. To improve its an inspection on a larger unit is required, increasing sampling-related 
costs. This paper proposes a new double sampling scheme for c control chart (DS-c) that can be 
designed to improve the performance of c or to reduce the inspection cost. The mathematical 
expression required to do an exact evaluation of Average Run Length (ARL) and Average Sample 
Size (ASN ) is deduced. Further, a bi-objective genetic algorithm is implemented to obtain the 
optimal design of the DS-c scheme. This optimizatión is aimed to simultaneously minimizing the 
error probability type II (β) and the ASN , guaranteeing a desired level for the error probability type 
I (α). A performance comparison between the Double Sampling (DS), Fixed Parameters (FP), 
Variable Sample Size (VSS) and Exponential Wigthed Moving Average (EWMA) schemes for the 
c control chart is carried out. The comparison shows that with the implementation of DS-c scheme 
is obtained a significant reduction of the out of control ARL (ARL1) with a lower ASN respect to 
FP scheme and a better ARL profile than VSS scheme.

Keywords: Statistical Process Control; Number of nonconformities; c Chart; Double Sampling; 
Optimal Design.

1 Introduction

The conventional Shewhart c control chart is the statistical tool frequently used for
monitoring the mean number of nonconformities. According to Montgomery (2009) the
number of opportunities or potential locations for nonconformities is infinitely large and
the probability of occurrence of a nonconformity at any location of an inspection unit is
small and constant. Consequently, c chart is based on the assumption that the occurrence
of nonconformities on an inspection unit is well modeled by a Poisson distribution. The
inspection unit may be a single unit of product or a collection of units, when the output of
process is a single unit. When the output of process is a continuous unit, the inspection unit
is made up of a fraction of the product whose size is predetermined.

To monitor the process, an inspection unit, with fixed and predefined size and interval
time, is drawn from the process and the observed number of nonconformities is plotted. A
point plotting out-side the intervals between preset control limits is interpreted as an out of
control signal.

The ability of classic c chart to detect small-to-moderate shifts in the mean number of
nonconformities is low. A greater inspection units is required to improve its performance,
increasing sampling-related costs. Over the last decades, different proposals have been
developed in order to improve the performance of classical Shewhart control charts, and
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c control chart has not been an exception. Many of these proposals have been oriented to
allow the variation on time of one or more design parameters of the control chart, such
as sample size or sampling interval. Among these schemes are the Variable Sample Size
(VSS), Variable Sampling Interval (VSI) and Variable Sample Size and Interval (VSSI).
These adaptive schemes have been shown to be more effective than Fixed Parameter (FP)
schemes to detect small-to-moderate shifts in the process. A review of recent developments
in design of adaptive control charts has been elaborated by Psarakis (2015).

Adaptive control charts for attributes were initially proposed by Vaughan (1992), who
proposed a VSI scheme for np control chart. Years later Epprecht and Costa (2001) and
Epprecht et al. (2003) developed and optimized a VSS scheme for np and c control charts.
Later, Wu and Luo (2004) worked in order to optimize these adaptive control charts.
Furthermore to the classic Shewhart control charts, authors have also investigated the
development of adaptive control scheme applied to EWMA control charts. Epprecht et al.
(2010) developed a VSI scheme for EWMA-c control charts, obtaining optimal designs for
this chart as well as for the fixed sampling interval.

Double Sampling (DS) is another alternative that has been considered to improve
the performance of control charts. The first ideas about DS schemes were introduced by
Croasdale (1974). He proposed a DS scheme for the X control chart, used to monitoring
a quantitative variable. In this scheme two samples are drawn from the process. The
information collected from the first sample is used to decide whether process is in-control
state or if the analysis of second sample is required. The out of control state of process is
diagnosed using only information from the second sample. Later, Daudin (1992) proposes
to use the joint information of first and second samples for diagnosis of the out of control
state and considers the possibility that the out of control signal will be generated in the
first sample. This procedure improves the performance of Croasdale’s DS. The design
parameters of Daudin’s DS was optimized to minimize Average Sample Number (ASN ).
Instead of minimizingASN , Irianto and Shinozaki (1998) proposes to maximize the power
(1− β) of the DS-X control chart.

Subsequently, these ideas about DS schemes was implemented for attribute control
charts. De Araújo Rodrigues et al. (2011) proposed a DS-np control chart, developed to
improve the performance of traditional np chart. This scheme is deployed in two stages. On
the first stage, the first sample fraction is inspected and analyzed, depending on the results,
a final decision is made or it goes on to second stage, where remaining sample fractions are
inspected. Afterwards, the joint information of first and second stage is used to diagnose
the process. Similarly, Perez et al. (2010) proposed the DS-u scheme. The design of DS-u
chart was optimized to maximize the power (1− β) of the control chart, using a genetic
algorithm.

Some additional innovations for the DS scheme have been implemented. Wu and
Wang (2007) proposes a modified DS scheme for the np control chart. In this scheme,
the first subsamples is used only to diagnose the in-control state of the process or to
decide if it is required to analyze the second subsample. When the second sample is
required, the diagnosis of the out of control state is performed using the location of the
first non-conforming unit observed on second sample. With this scheme a false alarm rate
closer to target and a better performance in detection of the shift are obtained. Recently
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Chong et al. (2014) developed a synthetic DS np. This chart uses the DS-np proposes
by De Araújo Rodrigues et al. (2011) and it is complemented with a control chart for
Conforming Run Length (Number of units observed until the first nonconforming). With
this scheme, a faster detection of shift is obtained, compared to those observed for the
synthetic np and DS-np schemes.

This paper aims to propose a new DS scheme for c control chart. As it will be shown, the
new DS-c scheme offers better statistical efficiency than the classical FP-c charts without
increased sampling cost. Alternatively, the scheme can be used to reduce the sampling cost
without reducing the statistical efficiency. Recently a similar, but not equal, scheme was
proposed by Inghilleri et al. (2015), who designed a DS-c. Their proposal is supported on
an approximation to normal distribution, which is adequate only for very large inspection
unit. In contrast, our proposal is supported on the exact probability distribution for the
number of nonconformities and a bi-objective optimization approach is implemented.

The paper is organized as follows. After this introductory section, Section 2 shows a
description of proposed DS-c scheme and its decisions rules for the process diagnosis. In
Section 3, the performance measures for DS-C control scheme are obtained. In Section 4,
a bi-objective optimization is carried-out to obtain the optimal parameters of DS-c scheme
and an illustrative example is shown. Section 5 contains a comparison of efficiency of DS-c
chart versus the alternatives with fixed parameter (FP-c), VSS-c and EWMA-c. Finally,
Section 6 summarizes the conclusions of the paper.

2 The DS-c chart.

Let us suppose a process for which the observed number of nonconformities, on an standard
inspection unit of size (k), follows a Poisson distribution with mean λ. While the process
remains in-control state, the mean number of non-conformities is λ = λ0. If an assignable
cause is present, implying that process is becoming lower quality, there is an increase on
mean number of non-conformities to level λ = λ1 (λ1 > λ0). Only this shift is considered
of interest, therefore the chart is defined without lower control limit.

The proposed DS-c scheme has five design parameters: The fraction (m1) for the first
sub-sample; The acceptance number for the first stage, corresponding to a warning limit
(WL); The rejection number for the first stage (UCL1); The fraction (m2) for the second
sub-sample; and the acceptance number for the second stage (UCL2).

Once the design parameters are predefined, the following procedure is proposed to
monitor the process:

1. A global sample of size (m1 +m2) ∗ k is drawn from process.

2. A first sample fraction of sizem1 ∗ k is analyzed, searching for non-conformities. Let
x1 denote the observed number of nonconformities in this sub-sample. In this case the
decision depends on x1:

A. Ifx1 < WL, the process is considered in-control and the control scheme continues
operating.
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B. If x1 > UCL1, the process is supposed to be out of control and a corrective action
should be taken.

In either case (A or B), the second sub-sample does not need to be analyzed.

3. If WL < x1 < UCL1, the second sample fraction of size m2 ∗ k is analyzed,
searching for non-conformities. Letx2 denote the observed number of nonconformities
in this sub-sample. In this case the decision depends on sum of x1 and x2:

C. If (x1 + x2) < UCL2, the process is considered in control and the control scheme
continues operating.

D. If (x1 + x2) > UCL2, the process is considered out of control and a corrective
action should be taken.

4. At prefixed sampling intervals (every hour, for example), return to first stage and draw
a new global sample of size (m1 +m2) ∗ k.

To avoid confusion in decision rules, we recommend that locations of the limits WL,
UCL1 and UCL2 do not match with any integer number. Instead, we suggest locating
them in midpoint of two consecutive integers. Figure 1 shows the graphical appearance
for DS-c scheme. The points are plotted according to situations A, B, C and D, above
described.

Figure 1: DS-c graphical appearance.

As defined in the operation rule of DS-Scheme, the two sub-samples come from the
same global sample, therefore there is a guarantee that they come from the same distribution.
Also it is assumed that global samples are independent.

3 Performance measures.

In Statistical Process Control, the efficacy of a control chart is usually determined by its
ability to detect a shift in the process. This ability is measured by the probability of issuing
an alarm (Pa) or by the Average Run Length (ARL), which represents the average number
of points that are plotted until an alarm is signaled. If samples are independents, ARL is
inverse to Pa.
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ARL =
1

Pa
. (1)

Specifically for the DS-c scheme, Pa depends on the set of design parameters
(m1,m2,WL,UCL1, UCL2) and on mean number of nonconformities per inspection unit
(λ):

Pa = 1− P{(x1 < WL|λ) ∪ ((WL < x1 < UCL1|λ) ∩ (x1 + x2 < UCL2|λ))}

= 1− P (x1 < WL|λ) +
bUCL1c∑
i=dWLe

P (x1 = i|λ) ∗ P (x2 < UCL2 − i|λ), (2)

Where:

P (x1|λ) =
e−λm1 ∗ (λm1)

x1

x1!
, (3)

P (x2|λ) =
e−λm2 ∗ (λm2)

x2

x2!
. (4)

If Pa is evaluated for the in-control state of process (λ = λ0), the probability of
false alarm (α) is obtained. In this case, ARL = 1/α is denoted as ARL0 (In-control
ARL). Conversely, if Pa is evaluated for the out of control state of process (λ = λ1), the
probability of detect the shift (1− β) is obtained. Generally (1− β) is named as test power.
In this case, ARL = 1/(1− β) is denoted as ARL1 (Out of control ARL).

The Average Sample Number (ASN ) is another attractive indicator that should be
considered in performance evaluation of adaptive sample size schemes. TheASN is directly
related to inspection cost and can be used as an input to evaluate it. In the context of DS-c
scheme, the ASN measures the average fraction, of a standard inspection unit of size (k),
which will be analyzed. TheASN is a function of λ, of the sample fractions (m1,m2) and
the control limits of first stage (WL,UCL1):

ASN = m1 +m2 ∗ P (WL < x1 < UCL1|λ). (5)

WhereP (WL < x1 < UCL1|λ) is the probability of going to second stage. According
to current notation, ASN0 is the in-control ASN and ASN1 is the out of control ASN .

Note that performance indicators (Pa, ARL, ASN ) do not depend on size of the
standard inspection unit (k). This is due to that, in DS-c scheme, the standard inspection unit
is only the dimension reference on which the in-control mean number of nonconformities
(λ0) is established. In practice, the real inspection units will have a sizem1 ∗ k, in first stage,
and m2 ∗ k, in second stage. The effect of modifying the size of inspection unit is picked
up by the proportional adjustment of λ. This implies that, without loss of generality, the
performance evaluation can be done assuming that standard inspection unit is a reference
unit with relative size k = 1.
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4 Optimal design of the DS-c scheme.

Optimizing the performance of DS-c scheme is equivalent to finding the setting of design
parameters that guarantee that, during monitoring, the chart will have: 1. A tolerable
probability of false alarm; 2. A good performance to detect a critical increment in the mean
number of nonconformities per unit (λ1 = γ∗λ0), and 3. Reduced inspection costs.

The tolerable value for the probability of false alarm (α∗) and the critical magnitude of
shift for the process (γ∗) should be prefixed by practitioner. In addition, he should evaluate
the technical and economical constrains for the sampling procedure. For example, the
practitioner should establish the smallest and largest inspection unit that can be manipulated
in each sampling stage. These references may be used to restrict the search range of fraction
m1 over interval (m1.min; m1.max) and fraction m2 over interval (m2.min; m2.max).

Once these references are established. The problem is considered as a bi-objective
optimization problem, in which:

Given: (α∗, λ0, γ∗,m1.min,m1.max,m1.min,m2.max).

Find: (m1,m2,WL,UCL1, UCL2).

That minimize:

min : Z1 = β equivalent to min : Z1 = ARL1, (6)
min : Z2 = ASN0. (7)

Subject to:

Desired probability of false alarm

α ≤ α∗, (8)
(9)

Location of control limits

WL ≥ 0.5, (10)
UCL1 −WL ≥ 1, (11)

UCL2 − UCL1 ≥ 0 (12)

Size of subsamples

m1.min ≤ m1 ≤ m1.max, (13)
m1 ≤ m2, (14)

m2 ≤ m2.max. (15)

The above problem relate two contradictory objectives (Minimizing β, Minimizing
ASN0). This mean that is a competition between the objectives, therefore the optimal
solution for β is not the optimal solution for ASN0. To solve the problem, some criteria
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must be defined in order to determine which solutions are considered good quality and
which are not. In these sense Zitzler and Thiele (1999) introduces the concept of dominance,
which it is useful to classify the solutions of a multi-objective problem.

For each of M objectives, the operator�between two solutions (pi, p′i) (fj(pi)� fj(p
′
i))

indicates that pi is better than p′i for the particular objective j, likewise (fj(pi)� fj(p
′
i))

indicates that pi is worse than p′i for the particular objective j. It will be affirmed that pi
dominate p′i if only if following conditions are met:

• pi is not worse than p′i with respect to all objectives; fj(pi) 7 fj(p
′
i), for all j ∈

1, 2, 3, ...,M

• The solution pi is much better than p′i in at least one objective; fj(pi)� fj(p
′
i) in at

least one j ∈ 1, 2, 3, ...,M

Therefore, pi dominates to p′i or p′i is dominated by pi.

If it is found that the first condition of dominance is not fulfilled for either of the two
solutions, it is not possible to conclude about the dominance of one with respect to another.
When this happens, it is said that the solutions are un-dominated. In this way, if one has
a finite set of solutions P and a comparison of all possible pairs is made, in the end one
will have a subset of solutions P ′ that are not dominated by each other and this set has the
property of dominating the rest of solutions that do not belong to it. This subset P ′ is called
the Pareto front. When the set P is the search space, P ′ is called the Pareto optimal front
Zitzler and Thiele (1999). A procedure to obtain the Pareto optimal front is summarize
below.

1. Make i = 1.

2. For all i′ 6= i, compare the solutions pi and p′i to determine dominance.

3. If for some i′, pi is dominated by p′i, mark pi as dominated. Increase i by one and go
to step 2.

4. If all solutions (that is, when i = N is reached) in the set P was considered, go to step
5.

5. All solutions that are not marked as dominated are non-dominated solutions.

Note that in order to obtain the exact Pareto optimal front, the comparison between
all pairs of feasible solution has to be done. However, in many cases, as in the DS-c
optimization problem, the search space is too large and the comparison is computationally
expensive. Another alternative consists in have an exact mechanism to generate the subset
of non-dominated solutions. From equations (1 to 5) it can be deduced that the mathematical
expression to calculate the performance indicators (α, β,ASN ) do not correspond to linear
functions, whereby using analytic and exact solving tools for generate the subset P ′ is not
possible, at least from our knowledge. For this reason we proposed the implementation of
a multiobjective Genetic Algorithm.
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Genetic algorithms, introduced by Holland (1975), are a family of computational
models inspired by evolution. These algorithms encode a potential solution to a specific
problem on a simple chromosome like data structure, and apply recombination operators
to these structures in such a way as to preserve critical information. Whitley (1994). The
Genetic Algorithms have been widely used by different authors as a tool to optimize control
charts, recognized work in the area as: He et al. (2002), Aparisi and Garcia-Diaz (2004),
Chou et al. (2006) and recently Aparisi et al. (2018).

The Nondominated Sorting Genetic Algorithm (NSGA-II), developed by Deb et al.
(2002), is an excellent option for multi-objective optimization, since it is classified as elitist
because it incorporates a mechanism of preservation of the dominant solutions through
several generations of a genetic algorithm. In NSGA-II, the process starts with a set of
parent solutions Pt of size N , that is obtained at random or through a soft construction.
The following generations are determined using modified crossing and mutation selection
mechanisms defined by the classical genetic algorithm. The descendant population Qt
(size N ) is created using the parent population Pt (size N ). Later on, the two populations
are combined to form Rt = Pt ∪Qt of size 2N . After the above, by means of a non
dominated order, Rt is classified in different fronts of Pareto. Although this requires more
effort, it is justified by allowing a global verification of dominance between the population
of parents and descendants. Once the ordering process has finished, the new population is
generated from the sets of the non-dominated fronts. This new population begins to be built
with the best front that has not been dominated (F1), continues with the solutions of the
second front (F2), third (F3). Since the population Rt is of size 2N , and only N should to
make up the descendant population, not all the set of fronts belonging to the population Rt
can be accommodated in the new population. Those fronts that can not be accommodated
disappear.

The NSGA II algorithm is available in R Statistical Software through the package
mco, developed by Mersmann et al. (2014). This package was used as a tool to solve the
bi-objective optimization problem of design of DS-c scheme and obtain the Pareto front. To
illustrate the optimization procedure and the operation of the DS-c scheme, an application
example is developed in section 4.1

4.1 Application Example

In a textile finishing plant, the dyed fabric is inspected to verify the presence of defects. In
inspection, a sample of k = 9mts2 of cloth is drawn and the observed number of defects
is counted. In regular operating conditions (in-control) the process presents a mean of
λ0 = 0.5 defects per inspection unit. An increase in the mean number of defects at the
level λ1 = 1.0 (γ∗ = 2.0) is critical for this process.

Currently, the process is monitored with an FP-c scheme with upper control limit
located in UCL = 3.0. This FP-c scheme has a false alarm probability of α = 0.00175
(ARL0 = 570.9) and probability to detect the critical shift of 1− β = 0.0189 (ARL1 =
52.66). As an alternative to reduce the detection time of critical shift, without increasing
the probability of false alarm, the implementation of a DS-c scheme with optimal design
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is considered.

Due to operational restrictions in process, the largest inspection unit that can be drawn is
45mts2 (m2.max = 5.0) and smallest of 1.8mts2 (m1.min = 0.2). To these restrictions,
a restriction on the probability of false alarm desired for the DS-C scheme is added (α ≤
0.00175). When the optimization algorithm runs, the Pareto front shown in Figure 2 is
obtained.

Figure 2: Pareto front for the illustrative example.

In Figure 2, the horizontal and vertical dotted lines indicate the performance reference
of FP-c scheme, currently used. Those solutions located between pair of reference lines
correspond to settings of DS-c schemes under which an improvement is obtained in both
performance criteria (β,ASN0). To select the optimal solution, the practitioner must
establish a trade off between the improvement in speed of shift detection and reduction
of inspection costs. For this example case, given that economical resource to cover the
inspection costs is currently available, the solution with the best performance in detecting
the shift (minimum β), without incurring an additional cost (ASN0 ≤ 1.0 ) is chosen.
According to this criterion, the optimal design is the setting (m1 = 0.31,m2 = 4.68,WL =
0.5, UCL1 = 4.5, UCL2 = 7.5). Table 1 shows a comparison of performance indicators
(ARL0(α), ARL1(β), ASN0) for the FP-c and DS-c schemes.

Table 1 Performance summary of FP-c and Optimal DS-c for illustrative example.

Scheme ARL0 − (α) ARL1 − (β) ASN0 − (mts2)

FP-c 570.9 - (0.00175) 52.66 - (0.981) 1.00 - (9.00)
DS-c 571.1 - (0.00175) 17.42 - (0.943) 0.98 - (8.84)

The summary shows that optimal DS-c scheme will have a better performance (lower
ARL1) in detection of critical shift. On average, the DS-c scheme will use 17.42 samples
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to detect the shift, while FP-c scheme will average 52,66 samples. If we assume that both
schemes use the same sampling frequency, this is equivalent to reducing in 66.92% the
mean time of detection of shift. Additionally, both the false alarm rate and inspection costs
are practically the same as those currently presented by FP-c scheme. According to optimal
design, in inspection a sample of 9 ∗ (0.31 + 4.68) = 44.91mts2 is drawn. Initially, only
an area of 9 ∗ (0.31) = 2.79mts2 is inspected and plotted x1: the number of defects over
the first subsample. Only if 1.5 ≤ x1 ≤ 4.5 will it be necessary to check the remaining
42.12 mts2.

To illustrate the differences in the operation of FP-c and DS-c schemes, the inspection
of the process has been simulated. In both cases, the first 10 samples were simulated under
in-control state (λ = 0.5). From sample 11, the process was simulated under out-of-control
state (λ = 1.0). Figure 3 shows the result obtained by carrying the FP-c and DS-c control
charts for simulated samples.

[FP-c] [DS-c]

Figure 3: Simulation of operation of the a) FP-c and b) Optimal DS-c for the illustrative
example.

As can be observed, when control was performed with FP-c scheme, the shift is detected
in sample 24, 14 samples after the occurrence of shift. With DS-c scheme the signal is
presented earlier, in sample 14, only 4 samples after that shift in process occurs. Note that
in DS-c scheme, only two samples (6 and 14) required verification of all global sample. In
remaining 12 samples, the in-control diagnosis was made with inspection of only the first
subsample.

For this particular example, the implementation of DS-c scheme leads to greater
efficiency in process monitoring. A wider comparison of performance of DS-c scheme,
which includes other control schemes, is presented in Section 5.

5 Comparative evaluation of the performance of DS-c scheme.

In this section a broad performance evaluation of optimal DS-c scheme is carried out, in
order to quantify the benefit that its application may have in contrast as to the use of a
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traditional FP-c scheme. To have a wider reference, optimal VSS-c scheme, proposed by
Epprecht et al. (2003), and optimal EWMA-c chart by Borror et al. (1998) and used by
Epprecht et al. (2010), are included in comparison. As it was shown in section 3, without
loss of generality, the performance evaluation is made taking as reference a standard unit
of inspection of size k = 1.

To make a fair comparison between four alternative schemes, it is necessary to ensure
that its designs are obtained under similar conditions and restrictions. For example, the
four schemes must have similar inspection costs and false alarm rates. As mentioned in
section 3, The inspection costs depends directly on size of the inspection unit. In FP-c and
EWMA-c schemes, the size of the inspection unit is always the same (k) and the inspection
cost also will be constant. In contrast, in VSS-c and DS-c schemes the sample size varies
between two quantities and the inspection cost is variable. However, it is still possible
to guarantee the similarity of the inspection cost of the four schemes. For this purpose,
the design constrain ASN0 ≤ 1 is include in the optimization procedure of VSS-c. On
the other hand, the optimization procedure of DS-c generates a Pareto front. From this
Pareto, those optimal solution that satisfies the condition ASN0 ≤ 1, with a lower β value
is chosen (as in illustrative example). It will be the solution with the best out of control
performance and same or inferior inspection cost that FP-c and EWMA-c schemes.

Also it is know that, due to its discrete nature, FP-c scheme has limited possible value
for probability of false alarm (α), which depend on value of λ0 and location of the upper
control limit (UCL). Instead, DS-c, VSS-c and EWMA-c schemes have a greater number
of design parameters, whereby they are more flexible to meet with a desired probability of
false alarm (α∗). To match the probability of false alarms of the four schemes, as much as
possible, the following strategy is used:

• The usual α′ = 0.00027 (ARL0 = 370.42) is used as the nominal design reference of
FP-c scheme.

• The FP-c scheme with α closest to α′ is selected and the real probability of false alarm
(α∗) is calculated.

• α∗ is used as design reference for VSS-c, EWMA-c and DS-c schemes.

Finally, in the design of VSS-c and DS-c the constraints on the range of variation of
the fraction sample sizes (0.2 ≤ m1 ≤ 0.8) and m2 ≤ 5.0 are imposed. This restrictions
are the same employed by Epprecht et al. (2003).

Once the equivalence between four schemes is guaranteed, the comparison focuses on
evaluating its performance in detecting a shift of critical relative magnitude γ∗, on the mean
number of non-conformities (λ∗1 = γ∗λ0). The values considered for input parameters were
as follows: λ0 = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0; γ∗ = 1.5, 2.0, 3.0. Table 2 shows the optimal
design parameters for FP-c, VSS-c, EWMA-c and DS-c schemes , under λ0 and γ∗ inputs
and the corresponding ARL0 and ARL1. The indicator %ARL1, which is included in
column 13 of Table 2, evaluates the percentage reduction of ARL1 obtained when DS-c
scheme is used instead of some of the alternatives schemes (Alt = FP, VSS, EWMA). This
indicator is calculated as seen in equation 16.
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%ARL1(Alt,DS − c) =
ARL1(Alt)−ARL1(DS − c)

ARL1(Alt)
∗ 100% (16)

Table 2: Performance and design parameters of FP-c control chart and equivalent optimal
VSS-c, EWMA-c, DS-c schemes for given λ0 and γ∗.

λ0 γ∗ Scheme m1 m2 r WL1 UCL1 WL2 UCL2 ARL0 ARL1 %ARL1

0.5 FP 1 3.5 3.5 570.9 137.13 53.73
1.5 VSS 0.54 3.64 1.5 4.5 0.5 5.5 615.5 48.53 -30.74

EWMA 1 0.04 0.75 601.6 42.081 -50.78
DS 0.31 4.68 0.5 4.5 7.5 575.1 63.45

FP 1 3.5 3.5 570.9 52.66 66.93
2.0 VSS 0.26 4.6 0.5 3.5 2.5 6.5 628.2 12.991 -34.10

EWMA 1 0.07 0.88 592.6 17.45 0.16
DS 0.31 4.68 0.5 4.5 7.5 575.1 17.42

FP 1 3.5 3.5 570.9 15.23 70.06
3.0 VSS 0.33 4.6 0.5 3.5 3.5 6.5 682.9 4.471 -2.01

EWMA 1 0.15 1.15 571.3 7.14 36.15
DS 0.31 4.68 0.5 4.5 7.5 575.1 4.56

1.0 FP 1 4.5 4.5 273.2 53.83 59.90
1.5 VSS 0.38 3.08 1.5 3.5 1.5 7.5 282.3 21,77 0.82

EWMA 1 0.06 1.39 277.1 20.401 -5.8
DS 0.52 4.96 1.5 5.5 11.5 273.8 21.59

FP 1 4.5 4.5 273.2 18.99 67.59
2.0 VSS 0.21 4.19 0.5 2.5 5.5 9.5 312.2 6,62 6.95

EWMA 1 0.16 1.82 276.6 8.77 29.81
DS 0.52 4.96 1.5 5.5 11.5 273.8 6.161

FP 1 4.5 4.5 273.2 5.41 58.72
3.0 VSS 0.31 3.08 0.5 3.5 4.5 7.5 277.5 2.74 18.61

EWMA 1 0.24 2.09 277.2 3.75 40.38
DS 0.59 3.37 1.5 5.5 9.5 273.6 2.231

1.5 FP 1 5.5 5.5 224,4 36.54 61.26
1.5 VSS 0.38 3.01 1.5 4.5 3.5 9.5 231.6 13.521 -4.73

EWMA 1 0.09 2.11 232.0 14.88 4.84
DS 0.40 4.73 1.5 7.5 14.5 224.6 14.16

FP 1 5,5 5.5 224.4 11.92 64.66
2.0 VSS 0.27 2.97 0.5 5.5 5.5 9.5 224.5 4.151 -1.45

EWMA 1 0.21 2.65 229.3 6.29 33.10
DS 0.40 4.73 1.5 7.5 14.5 224.6 4.21

FP 1 5.5 5.5 224.4 2.87 49.46
3.0 VSS 0.54 2.97 1.5 4.5 6.5 9.5 234.8 1.71 0.58

EWMA 1 0.26 2.83 224.6 2.76 38.45
DS 0.53 2.50 1.5 6.5 10.5 228.0 1.701

2.0 FP 1 6.5 6.5 220.6 29.84 64.59
1.5 VSS 0.28 3.32 1.5 4.5 5.5 12.5 221.1 10.201 -3.63

EWMA 1 0.10 2.74 221.5 12.15 13.00
DS 0.54 4.81 2.5 7.5 18.5 221.8 10.57

FP 1 6.5 6.5 220.6 9.04 63.81
2.0 VSS 0.39 3.64 1.5 4.5 9.5 13.5 237.7 3.67 10.90

EWMA 1 0.26 3.52 222.0 5.12 36.18
DS 0.55 4.39 2.5 11.5 17.5 220.9 3.271

FP 1 6.5 6.5 220.6 2.54 44.26
3.0 VSS 0.69 2.83 2.5 5.5 9.5 11.5 224.9 1.93 26.43

EWMA 1 0.27 3.56 228.9 2.33 39.12
DS 0.66 2.26 2.5 8.5 12.5 224.0 1.421

3.0 FP 1 8.5 8.5 262.9 24.84 68.75
1.5 VSS 0.39 4.88 2.5 6.5 16.5 22.5 270.3 6.701 -15.82

EWMA 1 0.16 4.32 263.5 9.85 21.19
DS 0.55 5.00 3.5 9.5 26.5 273.6 7.76

FP 1 8.5 8.5 262.9 6.55 62.86
2.0 VSS 0.48 3.72 2.5 6.5 14.5 18.5 265.8 2.89 15.91

EWMA 1 0.25 4.80 263.1 4.01 39.43
DS 0.60 3.54 3.5 11.5 21.5 263.4 2.431

FP 1 8.5 8.5 262.9 1.84 35.38
3.0 VSS 0.81 2.67 4.5 7.5 11.5 16.5 271.9 1.61 26.09

EWMA 1 0.26 4.87 267.3 1.92 38.01
DS 0.70 1.83 3.5 9.5 15.5 268.6 1.191

1 LowestARL1 in optimization point Continued on next page
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Table 2: Performance and design parameters of FP-c control chart and equivalent optimal
VSS-c, EWMA-c, DS-c schemes for given λ0 and γ∗. (continued from previous page)

λ0 γ* Scheme m1 m2 r WL1 UCL1 WL2 UCL2 ARL0 ARL1 %ARL1

4.0 FP 1 9.5 9.5 352.1 23.46 73.31
1.5 VSS 0.31 4.30 2.5 8.5 18.5 26.5 354.5 5.871 -6.64

EWMA 1 0.14 5.47 355.1 8.67 27.29
DS 0.45 4.95 3.5 10.5 33.5 358.7 6.26

FP 1 9.5 9.5 352.1 5.43 63.21
2.0 VSS 0.44 2.78 2.5 7.5 14.5 19.5 356.7 2.56 21.88

EWMA 1 0.23 6.06 364.4 3.56 43.82
DS 0.62 3.51 4.5 11.5 27.5 358.8 2.001

FP 1 9.5 9.5 352.1 1.53 28.48
3.0 VSS 0.84 2.20 5.5 9.5 13.5 17.5 370.9 1.44 23.61

EWMA 1 0.23 6.06 364.4 1.77 38.01
DS 0.72 1.61 4.5 11.5 18.5 363.7 1.101

1 LowestARL1 in optimization point

As seen in Table 2, with the implementation of the optimal DS-c scheme, the
performance of FP-c control chart is remarkably improved. This happens for all pairs
(λ0,γ∗). Here, the observed reduction in ARL1 was between (28.48%) and (73.31%)
with similar inspection cost. In those scenarios with λ0 > 1.0 and moderate to large shift
magnitude (γ∗ = 2.0, 3.0), the DS-c scheme was the best alternative, or at least very close
(%ARL1 > −2.0). Only those scenarios with a very low mean number of non-conformities
λ0 = 0.5 or a small critical shift magnitude (γ∗ = 0.5), one of two schemes, VSS-c or
EWMA-c, has a significantly outperformance (%ARL1 < −2.0) that DS-c scheme.

It is common practice to optimize a control chart to obtain the best performance in
detecting a specific shift magnitude. However, in a practical application, the shift magnitude
for which the control chart has been optimized is only one in an infinite set of possible
shifts magnitudes that the process can present. For example, in the implementation of a
optimal DS-c scheme, the mean number of non-conformities may increase exactly in the
magnitude γ = γ∗ for which it has been optimized, or it may present a shift of magnitude
γ 6= γ∗ in which there is no guarantee that its performance is optimum. So as to evaluate
and compare the performance of the three alternative control schemes at different shift
magnitude, the ARL1 profile evaluated for different values of γ, are presented in Table 3.
Additionally, The third column of Table 3 shows the average sample size (ASN0) required
to control the process, while it is in-control state.

Table 3: ASN0, ARL0 and ARL1 profile (γ = 1.5− 5.0) for the FP-c control chart and
equivalent optimal VSS-c, EWMA-c, DS-c schemes.

ARL1
γ = λ1/λ0

λ0 γ* Scheme ASN0 ARL0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.5 FP 1.000 570.9 137.13 52.66 26.13 15.23 9.92 7.00 5.25 4.13

1.5 VSS 0.998 615.5 48.53 16.22 9.36 6.61 5.16 4.28 3.70 3.29
EWMA 1.00 601.6 42.081 17.98 11.38 8.38 6.67 5.56 4.79 4.22

DS 0.982 575.1 63.45 17.42 7.73 4.56 3.22 2.55 2.17 1.94

2.0 VSS 0.981 628.2 50.86 12.991 6.59 4.65 3.79 3.32 3.02 2.82
EWMA 1.000 592.7 44.75 17.45 10.60 7.65 6.02 4.99 4.28 3.77

DS 0.982 575.1 63.45 17.42 7.73 4.56 3.22 2.55 2.17 1.94

LowestARL1 .

1 LowestARL1 in optimization point. Continued on next page
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Table 3: ASN0, ARL0 and ARL1 profile (γ = 1.5− 5.0) for the FP-c control chart and
equivalent optimal VSS-c, EWMA-c, DS-c schemes. (Continued)

ARL1
γ = λ1/λ0

λ0 γ* Scheme ASN0 ARL0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

3.0 VSS 0.998 682.9 61.90 15.11 6.86 4.471 3.51 3.03 2.75 2.56
EWMA 1.00 571.3 54.72 18.73 10.42 7.14 5.46 4.44 3.76 3.28

DS 0.982 575.1 63.45 17.42 7.73 4.56 3.22 2.55 2.17 1.94

1.0 FP 1.00 273.2 53.83 18.99 9.19 5.41 3.64 2.69 2.14 1.79

1.5 VSS 0.982 282.3 21.77 8.10 5.03 3.76 3.08 2.67 2.39 2.20
EWMA 1.00 277.1 20.401 9.24 6.03 4.53 3.66 3.10 2.71 2.42

DS 0.997 273.84 21.59 6.16 3.23 2.29 1.87 1.63 1.48 1.37

2.0 VSS 0.992 312.2 25.08 6.62 3.79 2.95 2.58 2.38 2.24 2.14
EWMA 1.00 276.6 22.72 8.77 5.33 3.87 3.08 2.59 2.25 2.00

DS 0.997 273.84 21.59 6.161 3.23 2.29 1.87 1.63 1.48 1.37

3.0 VSS 0.997 277.5 26.09 7.22 3.78 2.74 2.32 2.10 1.98 1.90
EWMA 1.00 277.2 25.70 9.18 5.30 3.75 2.93 2.44 2.11 1.87

DS 0.989 273.64 25.16 6.99 3.39 2.231 1.75 1.50 1.36 1.26

1.5 FP 1.00 224.42 36.54 11.92 5.65 3.37 2.34 1.80 1.50 1.32

1.5 VSS 0.999 231.57 13.521 4.99 3.28 2.62 2.28 2.08 1.94 1.84
EWMA 1.00 232.0 14.88 6.61 4.32 3.26 2.66 2.27 2.00 1.80

DS 0.976 224.63 14.16 4.21 2.46 1.89 1.62 1.45 1.33 1.25

2.0 VSS 0.979 224.53 15.50 4.65 2.88 2.34 2.12 2.01 1.94 1.90
EWMA 1.00 229.3 16.43 6.29 3.86 2.84 2.29 1.94 1.71 1.54

DS 0.976 224.63 14.16 4.211 2.46 1.89 1.62 1.45 1.33 1.25

3.0 VSS 0.998 234.80 18.20 5.03 2.87 2.21 1.93 1.76 1.64 1.55
EWMA 1.00 224.6 17.31 6.36 3.81 2.76 2.21 1.87 1.64 1.47

DS 0.981 228.00 18.05 4.90 2.44 1.681 1.38 1.23 1.15 1.10

2.0 FP 1.00 220.6 29.84 9.04 4.20 2.54 1.82 1.46 1.26 1.15

1.5 VSS 0.980 221.1 10.201 4.28 3.04 2.53 2.26 2.09 1.95 1.85
EWMA 1.00 221.5 12.15 5.46 3.60 2.75 2.26 1.95 1.72 1.56

DS 0.999 221.79 10.57 3.24 2.02 1.59 1.37 1.24 1.16 1.11

2.0 VSS 0.990 237.7 11.81 3.67 2.50 2.12 1.92 1.79 1.68 1.58
EWMA 1.00 222.0 13.71 5.12 3.15 2.33 1.89 1.62 1.43 1.30

DS 0.987 220.95 10.95 3.271 1.99 1.57 1.35 1.23 1.15 1.10

3.0 VSS 0.994 224.9 17.39 4.54 2.52 1.93 1.67 1.50 1.38 1.28
EWMA 1.00 228.9 14.04 5.17 3.15 2.33 1.88 1.61 1.43 1.29

DS 0.993 224.00 14.32 3.76 1.95 1.421 1.21 1.12 1.07 1.04

3.0 FP 1.00 262.95 24.84 6.55 2.96 1.84 1.39 1.18 1.09 1.04

1.5 VSS 0.992 270.27 6.701 3.22 2.52 2.20 1.99 1.83 1.71 1.59
EWMA 1.00 263.5 9.85 4.18 2.74 2.10 1.74 1.51 1.35 1.23

DS 0.979 273.60 7.76 2.53 1.70 1.37 1.21 1.12 1.07 1.04

2.0 VSS 0.994 265.83 8.04 2.89 2.19 1.92 1.75 1.61 1.49 1.39
EWMA 1.00 263.1 10.50 4.01 2.54 1.92 1.58 1.37 1.23 1.14

DS 0.984 263.44 8.56 2.431 1.55 1.27 1.15 1.08 1.04 1.02

3.0 VSS 0.996 271.91 17.88 3.81 2.11 1.61 1.37 1.23 1.13 1.07
EWMA 1.00 267.3 10.66 4.03 2.54 1.92 1.58 1.37 1.23 1.14

DS 0.995 268.62 11.67 2.82 1.52 1.191 1.08 1.03 1.02 1.01

4.0 FP 1.00 352.14 23.46 5.43 2.40 1.53 1.21 1.08 1.03 1.01

1.5 VSS 0.957 354.46 5.871 2.98 2.41 2.16 2.01 1.90 1.82 1.74
EWMA 1.00 355.1 8.67 3.80 2.55 1.98 1.65 1.44 1.28 1.17

DS 0.988 358.65 6.26 2.14 1.52 1.27 1.15 1.08 1.04 1.02

2.0 VSS 0.985 356.65 8.17 2.56 1.92 1.72 1.59 1.47 1.36 1.27
EWMA 1.00 364.4 9.06 3.56 2.31 1.77 1.47 1.28 1.16 1.08

DS 0.993 358.83 7.05 2.001 1.36 1.16 1.07 1.03 1.01 1.01

3.0 VSS 0.997 370.89 15.54 3.25 1.85 1.44 1.24 1.12 1.06 1.03
EWMA 1.00 364.4 9.06 3.56 2.31 1.77 1.47 1.28 1.16 1.08

DS 0.986 363.72 10.69 2.38 1.33 1.101 1.03 1.01 1.00 1.00

LowestARL1 .

1 LowestARL1 in optimization point.
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From Table 3 it is observed that in those scenarios where VSS-c or EWMA-c schemes
were the best alternative to detect the critical shift, this condition of best option remains
only for those shifts whose magnitude is very similar to that of the critical shift for which
it was optimized (γ ' γ∗). Although, in most cases this condition is only retained at the
optimization point (γ = gamma∗). On the other hand, the optimal DS-c scheme seems to
be much more robust, since when it is best alternative to detect critical shift, this condition
keeps it for all shift whose magnitude is greater than the critical shift (γ ≥ γ∗). In addition,
in those cases where DS-c is not the best option to detect the critical shift, it presents
the best performance in almost the entire profile ARL1. Especially for those shifts with
moderate to large magnitude (γ ≥ 2.5).

6 Conclusions

In this work we have made the optimal design proposal of a new double sample scheme
for the control chart c (DS-c). Due to DS-c scheme having a greater number of parameters
than its counterpart of fixed parameters (FP-c), its flexibility to meet a desired false
alarm rate is much higher. This property is usually desired in the design of control
graphics. Additionally, a bi-objective optimization procedure is presented, through which
the practitioner can lead the design towards the optimization of one of two objectives,
minimizing the average cost of the inspection process or minimizing the average time
of detection of a shift. As a result of the procedure, the practitioner has a set of Pareto
optimal solutions (Pareto front), from which he can select that which represents user trade
off between both objectives (minimizing β or minimizing ASN ). For example, from the
Pareto front, the practitioner can select the solution that minimizes the inspection costs,
guaranteeing the same efficiency of the c control chart in the detection of an increase in
the average number of nonconformities. Alternatively, the user can select the solution
that, guaranteeing the same inspection costs, optimizes the performance of the graph in
detecting a change.

The performance of DS-c scheme was compared with the alternatives based on the
variable sample size VSS-c and the EWMA-c. This comparison was made guaranteeing the
equality of costs between the three schemes and the same frequency of false alarms. The
results show that the performance of the DS-c scheme is only surpassed by one of the VSS-c
and the EWMA-c schemes, when they have been optimized to detect a small increase in
the average number of non-conformities (γ∗ = 1.5) or when it is used for processes with
very low number of nonconformities per inspection unit (λ0 = 0.5). However, this loss of
performance is only significant at the point of optimization. When the shift presented is
greater than the critical shift (γ > γ∗) for which they were optimized, the DS-c scheme
was always the best alternative.

References

Aparisi, F., Epprecht, E. K., and Mosquera, J. (2018). Statistical process control based on
optimum gages. Quality and Reliability Engineering International, 34(1):2–14.



16 author

Aparisi, F. and Garcia-Diaz, J. C. (2004). Optimization of univariate and multivariate
exponentially weighted moving-average control charts using genetic algorithms.
Computers & Operations Research, 31(9):1437–1454.

Borror, C. M., Champ, C. W., and Rigdon, S. E. (1998). Poisson ewma control charts.
Journal of Quality Technology, 30(4):352.

Chong, Z. L., Khoo, M. B., and Castagliola, P. (2014). Synthetic double sampling np control
chart for attributes. Computers & Industrial Engineering, 75:157–169.

Chou, C.-Y., Wu, C.-C., and Chen, C.-H. (2006). Joint economic design of variable
sampling intervals (x) and r charts using genetic algorithms. Communications in
Statistics—Simulation and Computation®, 35(4):1027–1043.

Croasdale, R. (1974). Control charts for a double-sampling scheme based on average
production run lengths. International Journal of Production Research, 12(5):585–592.

Daudin, J. (1992). Double sampling x charts. Journal of quality technology, 24(2):78–87.

De Araújo Rodrigues, A. A., Epprecht, E. K., and De Magalhaes, M. S. (2011). Double-
sampling control charts for attributes. Journal of Applied Statistics, 38(1):87–112.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–
197.

Epprecht, E. and Costa, A. (2001). Adaptive sample size control charts for attributes. Quality
Engineering, 13(3):465–473.

Epprecht, E. K., Costa, A. F., and Mendes, F. C. (2003). Adaptive control charts for attributes.
IIE Transactions, 35(6):567–582.

Epprecht, E. K., Simões, B. F., and Mendes, F. C. (2010). A variable sampling interval ewma
chart for attributes. The International Journal of Advanced Manufacturing Technology,
49(1):281–292.

He, D., Grigoryan, A., and Sigh, M. (2002). Design of double-and triple-sampling x-bar
control charts using genetic algorithms. International Journal of Production Research,
40(6):1387–1404.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. U Michigan Press.

Inghilleri, R., Lupo, T., and Passannanti, G. (2015). An effective double sampling scheme
for the c control chart. Quality and Reliability Engineering International, 31(2):205–216.

Irianto, D. and Shinozaki, N. (1998). An optimal double sampling control chart.
International Journal of Industrial Engineering-Applications and Practice, 5(3):226–234.

Mersmann, O., Trautmann, H., Steuer, D., Bischl, B., and Deb, K. (2014). Package “mco”:
multiple criteria optimization algorithms and related functions. URL: https://cran. r-
project. org/web/packages/mco/mco. pdf.



Characterization and Optimal Design of a new Double Sampling c Chart 17

Montgomery, D. C. (2009). Introduction to statistical quality control. John Wiley & Sons
(New York).

Perez, E., Carrion, A., Jabaloyes, J., and Aparisi, F. (2010). Optimization of the new ds-u
control chart: an application of genetic algorithms. In Proceedings of the 9th WSEAS
international conference on Applications of Computer Engineering, pages 105–109.

Psarakis, S. (2015). Adaptive control charts: recent developments and extensions. Quality
and Reliability Engineering International, 31(7):1265–1280.

Vaughan, T. S. (1992). Variable sampling interval np process control chart. Communications
in Statistics-Theory and Methods, 22(1):147–167.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2):65–85.

Wu, Z. and Luo, H. (2004). Optimal design of the adaptive sample size and sampling interval
np control chart. Quality and Reliability Engineering International, 20(6):553–570.

Wu, Z. and Wang, Q. (2007). An np control chart using double inspections. Journal of
Applied Statistics, 34(7):843–855.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE transactions on Evolutionary Computation,
3(4):257–271.


