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Abstract

Nowadays, there are a lot of page images available and the scanning process
is quite well resolved and can be done industrially. On the other hand, HTR
systems can only deal with single text line images. Segmenting pages into single
text line images is a very expensive process which has traditionally been done
manually. This is a bottleneck which is holding back any massive industrial
document processing. A baseline detection method will be presented hereﬂ
The initial problem is reformulated as a clustering problem over a set of interest
points. Its design aim is to be fast and to resist the noise artifacts that usually
appear in historical manuscripts: variable interline spacing, the overlapping
and touching of words in adjacent lines, humidity spots, etc. Results show that
this system can be used to massively detect where the text lines are in pages.
Highlight: This system reached second place in the ICDAR 2017 Competition on
Baseline Detection (see Table .

1. Introduction

Over the past decades, numerous libraries and archives have made a great ef-
fort to digitize their collections. As a consequence, a huge amount of historical

handwritten document images have been published in online digital libraries.

Lfreely available at https://github.com/moisesPastor/baseLinePage

Preprint submitted to Journal of Pattern Recognition February 23, 2019
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Precision | Recall | F-Measure
DMRZ 0.973 | 0.970 0.971
UPVLC 0.937 | 0.855 0.894
BYU 0.878 | 0.907 0.892
IRISA 0.883 | 0.877 0.880
LITIS 0.780 | 0.836 0.807

Table 1: IcpAR 2017 Competition on Baseline Detection. Results for the cBAD test set
track-a [I]

This allows for the protection of the originals while sharing access to the infor-
mation within them. Nevertheless, methods need to be developed to make these
documents searchable, thereby making them useful for historians and other re-
searchers. Transcribing such a large amount of documents manually is both
time and cost prohibitive. Currently, transcriptions are obtained automatically
with a posteriori human revision or by using computer-assisted engines [2] [3] 4]
where the user collaborates interactively with the system to get the perfect tran-
scription. Word spotting systems have also been developed to search through
collections that have not been previously transcribed [B [0} [7]. So far, automatic
(or assisted) handwritten text recognizers need to be fitted with segmented text
line images. Nevertheless, there are a huge amount of scanned manuscript page
images available. The process of segmenting text page images into text line
images is a bottleneck which is holding back any massive industrial document
processing.

At this point, two related problems can be defined: baseline detection and
text line extraction. Baseline detection is a substantial process in document
image analysis that can be used not only to segment page images into line
images but also for many other document processing steps such as skew, slant,
and slope correction; text height normalization [8, O]; feature extraction; or
the rectification of geometric distortions [I0, [IT]. A baseline is a fictitious line

which follows and joins the lower part of the character bodies in a text line [12]
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and below which descenders extend. These baselines are not expensive to obtain
manually or semi-automatically and are used to know where the lines are. In the
work of V. Romero et al. [I3], baselines were used to extract the text lines images
and their performance was compared to that of manually segmented lines. Text
line extraction consists of defining a set of page image regions covering all page
lines and containing a single text line per region [I4] [I5].

The baseline detection and text line extraction processes are not easy tasks
to complete in manuscript texts when compared with printed texts. Manuscript
texts present some challenging problems including different skews, variable in-
terline spacing, the overlapping and touching of words between adjacent lines,
etc. These problems are even worse in the case of historical documents due
to the degradation problems they suffer as smear, significant background vari-
ations, uneven illumination, a lack of contrast, humidity spots, bleed-through,
layout inconsistencies, decorative entities, etc. Segmenting page images into
lines images is a very expensive process and is another bottleneck which is hold-
ing back any massive industrial document processing. The aim of the present
work is to contribute to overcoming this bottleneck.

The main contribution of this work consists in presenting a state-of-the-art
baseline detection and extraction system which is noise-resistant and which only
requires one page to be trained and which requires no special hardware in order
to work. Also, we bring the whole software source code to the community via
GitHub.

This paper is organized as follows: Section 2 provides a brief summary of
related work. The baseline detection method proposed is presented in Section 3.
In Section 4, a line extraction method is proposed. The experimental framework
and results are reported in Section 5. Some discussions are presented in Section

6. Finally, Section 7 provides our conclusions and plans for future work.
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2. Related Work

A general taxonomy divides the baseline detection in three categories: curved
text-line detection, scene text detection and handwriting text-line detection.
Our aim is to improve handwriting line detection where the problem is not
to detect text lines in a complex scene but rather to detect lines in scanned,
historical, handwritten documents. Doing so involves some challenges such as
complex layouts, irregular character sizes, varying skews, noise artifacts, and
touching lines of text. As the present work is devoted to handwriting baseline
detection, we shall try to focus on the state-of-the-art handwritten baseline
detection. But, it must be said that in the literature on this topic, the terms
detection and extraction are frequently used indistinctly. The most common
taxonomy in literature is that presented by B. Gatos [16] where text baseline

detection methods are classified into four categories:

a) Methods based on projection profiles. This technique [I7, [I8] assumes that
the text lines are almost horizontal and parallel. To allow some text line
deviation from the horizontal axis, the image is segmented into vertical
strips and projections are performed for each one. Some morphological or
blurring techniques are used in these methods to smooth the horizontal

projections.

b) Methods based on the Hough transform. These methods work properly
in printed text [19]. The Hough transform is a well-known tool used in
document analysis that allows the finding of the line angle that crosses
the most points in a set of points, starting from one point. These points
of interest are usually the gravity centers of the connected components

[20, 2] or the local minima points [22] of the connected components.

¢) Clustering methods. The aim is to cluster the basic building elements of
text such as pixels, connected components or other structures detected
from the contours into sets that correspond to lines, including local min-

ima. In [23], a graph has been built with the connected components as
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vertices and using the distances between components as edges weights. In
[24], an adaptive local connectivity map is used. A new image is obtained
by finding the sum of the intensities of the neighbors pixels in the hori-
zontal direction. A grouping method is then used to cluster the connected
components. In [25], the maximally stable external region (MSER) algo-
rithm is used rather than conventional binarization algorithms. The scale
and local orientation of connected components (CCs) is used to infer a

line spacing for each CC.

d) Dynamic programming based methods try to segment the lines by finding
an optimal path which crosses the image from the left to the right edge
[15, 14]. Saabni transforms the input image into an energy map and
determines the seams that cross between the text lines. Nicolaou takes
the assumption that for each text line, a path exists which crosses the

image from left to right.

Another common taxonomy divides the methods into two categories: top-
down and bottom-up [26]. Top-down analysis consists to split the whole page
into a set of subunits and continues this splitting until having pieces such as text
lines. On the other hand, bottom-up analysis starts by merging the smallest
primitives (CCs, superpixels, etc.) and continues merging until obtaining the
page components at the highest level. It is easy to find other methods in the
literature, most of them based on heuristic techniques or on a combination of
other techniques. A good survey can be found in [12], [27] and [28] along with a

more detailed description of methods for text line detection and segmentation.

3. Baselines Detection Algorithm

The purpose of line detection algorithms is to mark where the text lines are
in page images. The method proposed here is designed with the aim to resist
the noise artifacts that usually appear in historical manuscripts.

The baseline detection problem can be formulated as a clustering problem

over a set of interest points. Let P be a set of points, we are looking for a
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Figure 1: Work Flow. From the page image, the local minima points are obtained. In

order to avoid points from noise artifacts, these points are classified as belonging, or
not to a baseline. Then, points are clustered using a top-down clustering tree algorithm

(see Fig. @ Each resulting class contains minima points belonging to a baseline.

partition W so that W = {C4,Cs,..,C,,} where C; UCy U ...UC,, = P and
CinCj e (Vi,jNi#j). The polyline formed by joining each couple of points
in a cluster C;, previously ordered along the x-axis, is considered a baseline.
In this work, points that are candidates for belonging to baselines are the local
minima of the image text edges (see Figure [2)). It is normal to find among
these points some belonging to descenders, noise spots, borders, etc. To deal
with this, a classification system has been designed to detect those points which
really belong to baselines. From these points, a clustering algorithm is used to
cluster the points into lines. Figure [1| gives the workflow for this process. A
modification of DBSCAN[29] is used in the present work. It must be said that

this algorithm does not need to know the number of clusters in advance.

3.1. Interest points

Interest points are those points susceptible to belonging to baselines. Local
minima points, obtained from the text edges are chosen as interest points (see
Figure [2] for a contour example). After a blur and a binarization by using the
well-known global Otsu algorithm, the contours of the image foreground are
obtained. Then, using an analysis window centered on each point from the

contours, the local minima are obtained. Since the local minima points are
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Figure 2: Top: A binarized image detail. Bottom: The text contour with local minima

points.

usually obtained from noisy images, an automatic point classifier is needed to
bring robustness in front of the noise and other kinds of artifacts found on
these pages. Therefore, the first problem to solve is the local minima points
classification. In this work, a forest of Extremely Randomized Trees (ERT)[30]
has been used as a classifier. The ERT input consists of a downsampled image
window context around the point to be classified. The window geometry is
empirically set. Three randomly chosen pages are manually annotated and
then are used to train several ERTs, one for each training page and window
geometry. These ERTs are used to classify all of the minima points. Results
for the ALCARAZ corpus can be seen in Figure [3] It must be observed that this
parameter is not very sensitive if it is chosen in a meaningful range. When the
context becomes insufficient, the error quickly starts to grow. Similar behaviors
are observed in the whole corpora set. In the present work, a 100 x 50 pixels
window context around the point of interest has been taken. Then this context

image was downsampled into a 50 x 30 pixel image. .

3.1.1. Extremely Randomized Trees (ERT) Forest Classifier

This is a tree-based ensemble method for supervised classification introduced
in 2005 by P. Geurts et al. [30]. The term came from the random decision forest
that was firstly proposed by Tin Kam Ho [31] in 1995. This method combines
the bagging idea with the random selection of features in order to get a low
variance. This classifier was selected because it works quite well with a few

labeled samples and is fast at estimating its parameters and at classification [32].
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Figure 3: Point error classification for the ALCARAZ corpus. Each point represents the
average classification error of three ERTs on a single, randomly chosen page that was

trained for window geometry.

3.1.2. Ground truth

——— — =

Figure 4: An example of the labeling process. From the manual baselines, points which
are close enough to them are classified as belonging (blue circles) and those which are

too far are away are classified as not belonging (violet squares).

Two types of ground truth are needed: one for training the ERT and another
for baseline evaluation purposes. The first one is obtained automatically from
the second. The labeled points used to train the ERTs were estimated from
manual baselines. A simple method is used to classify the interest points as
belonging to a baseline or not. The method consists of labeling those points

which are close enough to a baseline of reference, those whose distance is less
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than a predetermined threshold as belonging to a baseline, and those which are
too far from that threshold so as to not belong (see Figure [4] for an example).
As our baseline detection method requires relatively little training data (a single
page) we developed a graphical tool to achieve a fine adjustment (see Figure[5)).
In this way, after choosing the upper and lower distance limits, we can easily
move the baselines up or down slightly as well as any of its composing segments

to automatically correct the point labeling.

(] GT_Tool_PAGE Baseline mode

File Mode Options Help
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Figure 5: A graphical tool for fine point classification adjustment. The blue points are
those classified as belonging to the baseline while the red points are classified as not
belonging. Minima point coordinates cannot be changed but by moving a baseline (or

a segment of it) the point labels change automatically.

The average of points per page used to fit the baseline to the text lines was
3.6 in the IcDAR13, 5.5 for ALCARAZ, and 4.3 on the HATTEM corpus. These

corpora will be explained in detail in Section [5.1

8.2. Clustering points into baselines

Excluding the interest points classified as not belonging to the baselines,
a top-down clustering algorithm based on a modified DBSCAN (density-based

spatial clustering of applications with noise) [29] is used to get baselines (see
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Figure @ DBSCAN exploits the notion of density reachability. A point, p1,
is reachable from another point, po, if its Euclidean distance is lower than a
given distance, e. A point belongs to a cluster if it has a sufficient number
of reachable points in its neighborhood. This requires two parameters: the
distance to be used as a boundary for the neighborhood, ¢, and a minimum
number of reachable points in a neighborhood in order for that to be considered
a dense neighborhood, K. It must be highlighted that this algorithm does not
need to know the number of clusters.

In order to take advantage of the a priori knowledge of the quasi-horizontal
distribution of the local minima points belonging to a baseline, the metrics of
the original DBSCAN algorithm were changed to use the Mahalanobis distance

instead of the Euclidean one (see Equation .

dun (P2, 53) = /(B — P2)TE1 (51 — 3) (1)
where:
e, O
E =
0 ¢

And e, = e and gy = Ae

To get the baselines, an initial first partition is obtained by using the DBSCAN
algorithm. Then a criteria function is used to decide if each class of cluster is
a leaf or not, in which case it will need to be split. Every time a class is
proposed to be split, the DBSCAN neighbors area managed by ¢ is reduced and
the modified DBSCAN is applied to this cluster point set (see Figure @ The
criteria function to stop splitting clusters is based on the analysis of the slopes
of the straight lines joining two consecutive points once those points are ordered

along the z-axis. A real graphic example can be seen in Figure [7]

4. Line extraction

As line extraction is an open interesting problem, a line extraction algorithm

was implemented. The purpose of line segmentation algorithms is to divide the

10
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Figure 6: Scheme of the top-down clustering tree algorithm. Each set of interest points
(tree nodes) is split using the modified DBSCAN. This process is repeated at each node

if the node contains points belonging to a more than one single baseline.

image into areas in which each one contains a single text line.

Using baselines as restrictions, an algorithm was designed to find an optimal
path from the left to the right side of the image between every pair of consecutive
baselines (see the example in Figure . First, these areas of the image are de-
skewed [33]. A directed weighted graph is built from this image taking pixels
as nodes. Five edges are inserted for each node (8-connected but taken out the
back edges), except for the ones corresponding to the last image column. The
edge weights are the sum of the pixel complement values for the involved nodes.
That way, if both are white, the weight will be 0 while if both are black, the

weight will reach its maximum value. Edge weights are calculated as follows:

w(v(z,y),v(@,y)) = Inv(l,y) + Inv(ly )

11
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Figure 7: A graphic example of the top-down clustering algorithm. From top to bottom,
and from left to right: In the first image, a clustering proposition after the application
of the first modified DBSCAN. It must be noted that the first cluster only contains a
baseline while the rest of the clusters need to be re-clustered by previously decreasing
the neighborhood area, . After re-clustering, the second cluster (the yellow area)
is split into two smaller clusters (as seen in the second image). These new clusters

need to be re-clustered again because both contain points belonging to more than one

baseline. This process is repeated until all contain points from a single baseline.

where v(z,y) is a function that returns the vertex associated with the image
pixel (z,y) and the function Inv(I, ) returns the complementary value of the
pixel at the position (x,y). An initial vertex is chosen to be on the left side and
in the middle of both baselines. Any vertex corresponding to a pixel in the last
column is taken as a final vertex. The well-known Dijkstra algorithm is used to
find the shortest path between the initial node to one of the finals. These paths
are used as borders between the text lines areas. An example of a page with

detected baselines and the result of segmenting this page by using them can be

seen in Figure [§

12
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Figure 8: On the left: An example of detected baselines as presented for one page of the

Icdar’13 contest corpus. On the right: The segmentation seen by using these baselines

as restrictions.

5. Experimentation

5.1. Corpora

ALCARAZ corpus

This corpus is a small set of documents from the Spanish Inquisition process
against Pedro Ruiz de Alcaraz which took place from 1534 to 1539 [34]. It is
composed of 44 pages with a total of 1,731 lines that were produced by a single
writer. The whole manuscript was written in ancient Spanish and shows notable

age degradation. An example of this corpus can be seen in Figure [0

HATTEM corpus

HATTEM corpus is a manuscript from the 15th century, composed of 572
pages. Most of it is written in Dutch while some is in Latin and French. It is
a prose translation of the Secretum Secretorum (which is a Latin translation of
an Arabic encyclopedia on government, health, astrology, and alchemy) which
was transcribed for the Pope [35]. Figureshows some examples of pages from
the corpus. The corpus set used here is the same as used in [I3]. This corpus

is composed of 40 pages (1,542 text lines) which are not consecutive pages from

13



Figure 9: Example manuscript pages from the ALCARAZ corpus.

the book. They were selected from the complete collection by an expert who
was given the criteria of providing a reduced but representative set of all page

formats that appear in the book.

Figure 10: Example manuscript pages from the HATTEM corpus.

In this work, manual baselines and a perfectly fitted polygon surrounding
25 each text line were used (as kindly provided by the authors of [13]). To obtain
the polygons, they used the segmentation technique presented in [20] and during

a post-process, a manual correction was performed. These polygons were used

14
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for the aim of comparison with the ICDAR’13 segmentation context.

ICDAR 2013 Handwriting Segmentation Contest corpus
This corpus is the same as used at the ICDAR 2013 segmentation contest [36].

The corpus is composed of 350 image pages of manuscript text with their as-

sociated ground truth, written in three different languages: Latin, Greek, and

Bangla. The corpus is presented split into two partitions: one for training

purposes and the other for testing.
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Figure 11: Example pages from the ICDAR’13 contest corpus.

The text images are presented as black and white handwritten document

245
The ground truth were raw data image

images produced by different writers.
files with zeros for the background and a positive integer value, each one cor-

responding to the foreground of a segmentation region. Some examples of this

corpus can be seen in Figure

w0 5.2. Ezxperimentation and Results

5.2.1. Baseline detection measures
A metric proposed by Tobias Griining [37] , based on the classic precision

recall, F-measure, is used here.

g,, be the baseline ground truth and let R = r,,...,r, be a

ey

Let G =g,,...
s baseline hypothesis. As each baseline can contain an arbitrary number of points
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each polyline is “blown up” to take in all points along the baseline. Let G* and
R* be the blow up sets for G and R respectively. A tolerance value ¢; has to be
calculated for each polyline in the ground truth g; because the baselines are not
unique. To estimate the tolerance values, the author of this algorithm followed
the approach in [38] and used the distances of adjacent ground truth baselines.
In his opinion, the tolerance values are not crucial if they are in a meaningful
range because the metric is not highly sensitive to them.

To calculate the precision and recall, a counting function is needed. The
counting is calculated from one ground truth line, g* € G* and second TR
Actually, what is being done is counting through the whole set of found lines,
G*. In this way, the recall value only represents how much of the ground truth
line is found no matter whether it is under- or over-segmented. The recall for

ground truth lines is calculated as follows:

ent(gF, R*, t;)
|97

On the other hand, precision must be a measure of how accurate the hy-

recall(g;, R*) = i=1,...,|G" (2)

potheses are. For a hypothesis and a ground truth set (G*, R*), the proposed
precision measure is calculated by searching for the best matching pairs, M, on

the cross matrix C' € RM:X where ci,j is calculated as follows:

C’I’Lt(’lﬂ-‘, 9*7 t)
precls;.rj) = T 0
J

From the matching pairs, M, the recall and precision at a page level are

calculated as follows:

> recall(g*, R*)

recallpage(G*,R*) = gregr I (4)
> prec(gt, )
% (g*,r*)EM
Precpage (M RY) = Z=——r (5)
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5.2.2. Segmentation measures

Also in this paper, the same performance evaluation tool of ICDAR 2007
Handwriting Segmentation Contest [36] was used. Its metrics are based on the
number of matches between the areas detected and the areas in the ground
truth [39].

Let I be the foreground points inside the set of all images; G; and R;
be the foreground points for the j text line ground truth and the hypothe-
sis, respectively; and T'(s) be a function that counts the elements of set s.
MatchScore(i, j) represents the matching results of the i ground truth region
and the j result region as follows:

T(G;NR:N 1)
T(G;UR) N 1)

MatchScore(i,j) =

A one-to-one match between a hypothesis region, i, and a ground truth
region, j, pair is only considered if the matching score is equal to or above a
specified acceptance threshold, T,,. In the present work, the T, was set to 95%,
as it was set in the ICDAR 2013 for line segmentation evaluation.

Let N be the count of ground-truth elements, M the count of hypothesis
elements, and 020 the number of one-to-one matches. The detection rate (Dg)
or recall and precision (R4) are calculated as follows:

020 020

Dp="22 Ry=>>
R N’ A M

A performance metric, the harmonic mean of the precision (R4) and recall

(DRr), the traditional F Measure (FM) is calculated in this way:

2Dr Ry
Dr+ Ry

This metric seems to be robust and well established since it has been used in

FM =

different fields and in similar contests including IcDAR 2007[40], IcDAR 2009
[41] and IcFHR 2010[42], and only depends on an acceptance threshold Tj,.
The results have been calculated by using the same evaluation software pro-

vided by the ICDAR 2013 contest.
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5.2.3. Experimental work
The number of trees in the ERTs was fixed at 100 and K was set experi-

mentally at 3. The initial € value was set automatically.

Ground truth

The ground truth for ALCARAZ and ICDAR’13 was manually annotated at
the baseline level by the authors of this work. The ICDAR’13 segmentation
contest pixel-level ground truth is publicly available. For HATTEM, the ground
truth used (manual baselines and polygons) is the same as the one used by V.
Romero et al. in [I3] (kindly provided by the authors). Polylines per baseline
were composed of 5.5, 4.3, and 3.6 points on average for ALCARAZ, HATTEM and
IcpAR’13 while the average lines per page was 39.3, 39.8, and 17.7, respectively.

This is an indicator of the amount of work needed to label the manual baselines.

One page training experiments: Taking one in

For every corpus, an ERT was trained for each of its pages using the labeled
points classified from manual baselines. A line detection experiment was carried
out for each ERT, using the remaining pages only for testing. The results in

Table [2] are presented as the average and standard deviation of all experiments.

Original metrics Mahalanobis metrics
Precision Recall FM | Precision Recall FM
Alcaraz | Average 0.70 0.81 0.75 0.98 0.97 0.97

Std. dev. 0.027 0.019 0.023 0.003 0.002  0.002

Hattem | Average 0.71 0.43 0.54 0.99 0.85 0.92
Std. dev. 0.006 0.057  0.047 0.002 0.019 0.011

Icdar Average 0.80 0.80 0.80 0.99 0.96 0.97
Std. dev. 0.184 0.175 0.183 0.02 0.07 0.05

Table 2:  Detection results. Average results for 44 (ALCARAZ), 40 (HATTEM), AND 150
(ICDAR13) SINGLE-PAGE TRAINED SYSTEMS. ALL SYSTEMS USED DBSCAN ORIGINAL METRICS

AND MAHALANOBIS METRICS.
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Figure 12: ALCARAZ, HATTEM and ICDAR13 skater plots. Each point represents the
precision recall for an ERT single-page trained system. The large green dot is the

result for a zero-page trained system.

The low standard deviations values must be noted. This is a clue as to the
small amount of training data needed to train and the stability of the system.
In the skater plots (see Figure , there is a point for each single-page trained
system. The biggest dot (in green) represents a system that was trained with
zero pages. All candidate points were taken as belonging to baselines, including
those that were obtained from descenders, noise, or any kind of artifact. The
results for zero-page trained systems presents a high recall value due to the fact
that the whole set of points belonging to baselines are included, covering most
of them but also introducing false positives and over-segmentation. It must
be said that a classifier which brings low performance can erroneously classify

points as noise, thus harming the clustering process.
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Increasing training experiments

To check the influence of the amount of training data for ERTS, some incre-
mental training experiments were performed. This was first done without any
classifier, considering all points as belonging to baselines (zero-page training).
Then an ERT was trained with the first page, then the first two pages, the first
three pages, and so on. In these experiments, the corpora were partitioned into

training sets and test sets (see Table |3|for details).

Corpus train  test
Alcaraz 30 14
Hattem 30 10
Iedar’13 * 40 110

Table 3: The number of pages for training sets and for test

sets. *Due to the very different

nature of the pages, a shuffle was applied before segmenting this corpus into sets.
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Figure 13: Baseline precision, recall, and F-measure results for ALCARAZ, HATTEM,

and ICDAR13 systems trained with an increasing number of pages.
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The observed behaviors (see Figure are similar along all three corpora.
All of the tests performed presented a prominent increase in precision from the
zero-page trained systems to the trained ones. The biggest increment is achieved
in going from zero pages to those with a single page. From there, the results
remain relatively stable. The relative increments produced by training with a
single page with respect to the zero-page trained ones is 25.6% on F-Measure,
51.5% on precision, and 2.1% on recall for ALCARAZ; a 43.6%, 77.1%, and 11.2%
for HATTEM; and 12.0%, 23.5%, and 0.6% for IcDAR’13. Similar behavior was

found in the interest points classification error results.

FExtraction experiments

As the ground truth is available at pixel level for HATTEM and ICDAR’13,
kindly provided by authors of [13] and by the organizers of the ICDAR’13 seg-
mentation contest, respectively, some line segmentation experiments were car-
ried out for the sake of comparison. Results of these comparisons can be seen
in Table [E

The first row shows the best result obtained by Romero et al. They used
cross-validation, dividing the corpus into eight blocks of five pages. The next
row shows the optimistic values obtained by the method proposed in Section
using the manual baselines provided by Romero et al. Finally, the average
and standard deviation for the 40 single-page trained ERT systems are included.
The difference between using manual baselines and those provided automatically
by the system (with one training page) has an F-measure of 6.7 points (7.9%
relative).

As a polygon including a text line is not unique and the ground truth is
labeled at the pixel level, this forces the measure evaluator to include some
kind of tolerance. HATTEM images are filled with noise, decorations, dropped
capitals, etc. Therefore, a polygon including a text line could be considered to
be unmatching because it includes enough noise to overpass the tolerance value.
The authors of the present work deleted all dropped capitals from the HATTEM

images and the results of this can be seen in Rows 4 and 5 of Table
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DR(%) RA(%) FM(%) o020
HATTEM | V.Romero et al. [13] 82.0 82.0 82.0 1306
Manual baselines 83.47 83.95 83.71 1329
Average 75.66 78.55 77.07  1202.8
Standard deviation 1.38 1.14 1.24  25.26
Average no DropCap 83.47 86.62 85.05 1327
Std. dev. no DropCap 1.6 1.4 1.4 28.9
IcpAR'13 | Contest winner 98.68 98.64 98.66 2614
Average 98.72 98.60 98.66 2615.3
Standard deviation 0.40 0.36 0.32 10.6

Table 4: HATTEM and ICDAR’13 contest corpus segmentation results. Row 1: Results obtained
by Romero et al. Row 2: The results of using the manual baselines provided by Romero et
al. as restrictions on the line extraction algorithm. Rows 3 and 4: The average and standard
deviation for the extraction algorithm using the baselines provided by 40 single-page trained
ERT systems. Rows 5 and 6: The same results after manually taking out the dropped capitals.
Rows 7, 8, and 9: For the ICDAR’13 contest, the winning results as well as the average and

standard deviation for the results based on the baselines provided by 150 ERT systems.

For the well-known, publicly available ICDAR’13 segmentation contest for
which ground truth is available at the pixel level, some line extraction exper-
iments were carried out. The contest winner result is presented in Row 7 of
Table [ It must be noted that the corpus for this contest was quite irregular
with significant variations in handwriting, alphabet, language, etc. while the

results remained quite stable.

6. Discussion

The well-known global Otsu algorithm works pretty well even with degraded,
aged documents due to this algorithm bringing with it a binarization that usually
does not lose the foreground while emphasizing some noise artifacts. The need
for binarization is not for document restoration or enhancement but rather to

find the borders between the foreground and background. The price paid for this
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is the enhancement of the noise artifacts. The majority of the points obtained
from the noise artifact are rejected in the next phase, point classification.

For the case of page images that suffer from a lack of contrast, a preprocess
must be carried out to avoid losing parts of the line text. Although, the most
disturbing noise artifact is the bleed-through where the system can label them
as belonging to baselines (see Figure [14] A).

The proposed method is quite adaptive to deviations over the horizontal as
skew and slope. Each baseline segment is composed of two points and the angle
allowed for these segments is up to 65°. If a cluster contains segments over this
value, the cluster is determined as having more than one baseline and is then
split. This value has been chosen empirically and is not very sensitive if chosen
in a meaningful range. This will allow it to follow every text line if none of its
segments exceeds this 65°.

In Figure some page examples with their automatically-detected base-
lines can be seen. On the top left, (A), is one image with no text but with
bleed-through. This is one of the most disturbing artifacts for our method be-
cause it has no opportunity to detect if these lines belong to the foreground
or if they are bleed-through. On the top right, (B), is a labeled page which
presents some skew. On the bottom left, (C), is an image with two columns
which have been labeled. The image did not have any previous layout informa-
tion and had been treated as a single page. The image on the bottom right,
(D), is an artificially undulated image where the baselines can be seen following
this undulation.

The presented method complexity is O(|pizels| + knlog(n)) where n is the
number of local minima baseline candidate points after ERT classification
(n << |pizels|) and k is the number of clusters that must be re-split during
the process, in which case |n.| < |n,| where n. is the candidate points number
on the cluster ¢ and n, is the number of points in the cluster parent which the

cluster came from (see Sectionf3.2] for more details).
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Figure 14: From top-left to bottom-right. A: Bleed-through detected baselines. B:
Mistakes due to bleed-through. C: A two-column image. D: An artificially undulated
page.

On the other hand, training the ERT classifier has a complexity of O(ntreex*
mitry * nlog(n)) where ntree is the number of trees, ntry the number of vari-
ables wanted to sample at each node, and n is the number of samples. The

classification process is O(nT'ree * log(n)).
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7. Conclusions

A fast baseline detection method has been presented here. The local min-
ima of the text contours are considered to be interest points. An Extremely
Randomized Trees forest is used to discriminate between points belonging to a
baseline to those which do not. That makes the system robust to usual prob-
lems in historical documents like slant, slope, skew, noise or humidity spots.
A modified version of DBSCAN is used to cluster these points into baselines.
The Mahalanobis distance is used as metrics to take advantage of the quasi-
horizontal nature of the local minima points of the text lines. That bring a
significative improvement.

A fast baseline detection method has been presented here.

The method seems to be resistant to the usual problems found in historical
documents like slant, slope, skew, noise, and humidity spots. The local minima
of the text contours are considered to be interest points. An extremely ran-
domized trees forest is used to discriminate between the points belonging to a
baseline between those which do not. A modified version of DBSCAN is used to
cluster these points into baselines. The Mahalanobis distance is used as a metric
to take advantage of the quasi-horizontal nature of the local minima points of
the text lines. That bring a significative improvement. The implementation in
this work uses the page layout, if available, or the whole page if not. In the case
of multiple text columns and no layout, a meaningful value for € must be chosen
(see Figure|14| C). The method presented shows how stable is, independently of
the page chosen to train, and do not need especial hardware to run. It takes
roughly five minutes to annotate the baselines of a page, three minutes to train
an ERT, and three seconds on average to automatically estimate the baselines
of each page on an Intel(R) Core(TM) i5-6400 CPU @ 2.70GHz computer.

Some extraction experiments were carried out for the aim of comparison.
The use of baselines as a restriction had proved to be useful.

As a future work, we plan to use other features than image itself to classify

the interest points, as for example geometric moment invariants in order to
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reduce the point classification time. We are planing to use CNN’s to enhance
the images to avoid the lack of contrast that some page images present, in which
cases, some of the text lines can be lost.

The software used in the present work can be freely download from https:

//github.com/moisesPastor/baselLinePage.
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