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Abstract. 
Binary thin disulfide (SnS2) and ternary Sn1-x FexS2 (X = Fe (2.5%, 5% and 10%) which has 

huge potentials in the visible-light rang due to its band gap 2.2-2.6 eV. Herein, SnS2 and Sn1-

x FexS2 powders have been synthesize by a fruitful hydrothermal method. The structure, 

morphology, elemental composition and optical properties of the obtained product were 

characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron 

Microscopy (FESEM), Electron Dispersive Spectroscopy (EDS) and UV-Vis spectroscopy. 

It was found that the Fe could be effectively incorporated in the obtained Sn1-xFexS2 

compounds.  According to XRD analysis, increased concentration of Fe in the Sn1-xFexS2 

compounds results in a gradual degradation of the crystallinity. The optical bandgap was 

found to be 1.52 eV, 2.22 eV, 2.38 eV and 2.48 eV, for the SnS, SnS2, Fe 5% and Fe 10% 

respectively. Mott–Schottky measurements performed for SnS2 confirm the n-type character 

of SnS2 samples.  
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Introduction 

Recently, fabrication of environmental friendly, low cost-effective and highly efficient 

solar cells has been an increasing interest in the research area. This includes the preparation 

of both absorber and buffer layers using high abundance and low environmental hazardous 

elements [1]. A significant improvement was achieved by substituting Cu (In, Ga) Se2, CdTe) 

with earth-abundant absorber layers such as Cu2ZnSnS4 (CZTS), Cu2SnS3 (CTS) and SnS. 

But little attention has been paid among the sulfide binary semiconductor buffer layer, till to 

date, CdS which has a band gap of about 2.42 eV is the best efficiencies are achieved with 

CdS buffer layer [2]. However, on the other side alternative binary buffer materials such as 

InxSey [3], ZnS [4], In2S3 [5], Al2O3 [6], ZnSe [7] and ZnO [8] are reported. 
The efficiency of the CdS buffer layer device still lags. As day by day increasing 

considerable interest as promising buffers layer Sn based compound SnO2, Sn (O, S) and 

SnS2 [9] have been attracted to replace with conventional toxic CdS. In addition, tin based 

buffer layers expected to help for the formation of the junction between the window and 

absorber layer [10]. Furthermore, using the wide band gap Sn based buffer layers, to 

maximize the amount of incident light to the junction region in order to make full use of solar 

spectrum. Moreover, it has a suitable band gap 2.2 eV to transmit most of the solar radiation 

to the absorber layer [11]. 

SnS2 can be used for various application like, electrical switches, quantum well structure 

and recording system [12], different rang of physical and chemical methods have been 

reported to prepare SnS2 such as, chemical	vapour	deposition [13], spray pyrolysis [14],	

Chemical	 bath	 deposition	 (CBD)	 [15], plasma-enhanced	 chemical	 vapour	 deposition	

(PECVD)	[16] and dip deposition [17]. 

In this work we report, hydrothermal low-cost method for synthesis of SnS2 product 

using common, nontoxic SnCl45H2O and thioacetamide as the reactants and 5 % acetic acid 

aqueous solution as the solvent and the influence of Fe content at different (2.5%, 5%, 10%). 

The structure, composition and optical property of the resultant products were characterized 

by X-ray diffraction (XRD), Field emission surface electron microscopy (FESEM), energy 

dispersive spectroscopy (EDS) and UV–Vis transmittance measurement spectra. 
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Experimental 

All chemicals and reagents were used directly without further purification as received. 

Absolute ethanol, isopropyl alcohol, acetone, Analytical grade stannic chloride pentahydrate 

(SnCl4.5H2O) and thioacetamide (C2H5NS) were bought from Sigma-Aldrich. 

SnS2 and Sn1-xFexS2 (with x = 2.5%, 5% and 10%) were prepared using the required 

amounts of analytical grade tin (IV), iron (FeCl3) and thioacetamide were weighted as 

described by Elsevier [18]. The SnS2 powders were synthesized by hydrothermal method 

according to a slightly modified method reported by Li et al [19]. After the reaction system 

cooled down at room temperature. finally, the yellow products were collected by 

centrifugation and well washed by alcohol and distilled water for 3 times before drying in a 

vacuum dried at 100 ºC for 3 hours. 

The crystal structure of SnS2 and different Fe at (2.5%, 5%, 10%) composite were 

investigated by X-ray diffraction (XRD) using a Rigaku Ultima IV diffractometer in the 

Bragg-Brentano configuration using CuKα radiation (λ = 1.54060 Å). Chemical composition, 

surface morphology and topography were characterized using energy dispersive 

spectroscopy (EDS) and field emission scanning electron microscopy (FESEM) a Zeiss 

ULTRA 55 model equipped with an In-Lens SE detector respectively. 

Optical properties of SnS and SnS2 films were measured at room temperature by using 

IR-VIS-UV spectrophotometer at wavelength within the range (400–900) nm. Mott–

Schottky measurements were performed using Autolab potentiostat PGSTAT302N [20]. 

1. Results and discussion  
Figure 1 shows the XRD patterns of SnS2 and Sn1-xFexS2 with various amount of Fe 

(x=2.5, 5 and 10%). Several diffraction peaks located at 14.95º, 28.29º, 30.20º, 32.12º, 

46.00º, 50.00º, 52.47º, 58.55º and 59.62º respectively, corresponding to the lattice planes 

(001), (100), (002), (101), (003), (110), (111), (200) and (112) are displayed in the XRD 

diffractogram. These diffraction peaks match very well with the reference standard card 

(JCPDS NO- 23–677) corresponding to Berndtite structure of SnS2. 
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Figure 1. X-ray diffraction patterns of SnS2 and Sn1-XFexS2 (x = 2.5%, 5%,10%). 

XRD peaks for the binary SnS2 and ternary Sn1-XFexS2 (with Fe contents 2.5%, 5% 

and 10%) are found to be located at the same 2θ angles meaning that the crystalline structure 

is maintained, and the Fe atoms locate at Sn sites. Two main effects are observed with the 

increase of Fe contents. First, the intensity of diffraction peaks drops, which means that the 

crystallinity of the ternary SnFeS2 compounds decreases with the Fe content. Second, the 

XRD peaks become broader when increasing Fe concentration. This effect is related to a 

smaller in size of the crystallites. This result is further verified by measuring the Full Width 

at Half Maximum (FWHM) of XRD peaks. From the FWHM the crystallite size is calculated 

according to the Scherrer equation [21],   

𝐷 =
𝐾𝜆

𝛽𝐶𝑜𝑠𝜃 

 
where β is the full width at half maximum (FWHM), λ is the X-ray wavelength having a 

value of 1.5418 Å (CuKα), K is a proportionality constant (K = 0.9 was used) and θ is the 

Bragg angle at the Centre of the peak. The crystallite size D is the size of the crystal in the 

perpendicular direction to the reflecting planes. 

The crystallite size calculated for the XRD peak (001) peak is shown in Table 1. As 

expected, the higher the Fe contents the smaller the crystallite size. Figure 2 shows the 
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variation of FWHM and crystallite size relation along the (001) peak with different Fe 

contents. Furthermore, as increases the dopant concentration from 0% to 10% the position of 

the diffraction peaks slightly shifts to higher angles. Sn2+ ions (140 pm) are been substituted 

by smaller radius in size Fe2+ ions (126 pm) and then diffraction planes are closer and 

diffraction peaks shifts to higher angles [22].  

Simples ID 2θ for (001) peak (degree) FWHM (degree) Crytallite size (nm) 
SnS2 14.93 0.56 58.2 

SnS2 ; Fe 2.5% 14.93 0.65 49.9 
SnS2 ; Fe 5% 14.93 0.71 46.2 
SnS2 ; Fe 10% 14.93 0.73 44.5 

Table 1. represent the SnS2 crystallite size with different Fe contents. 

 

 Figure 2. Variation of crystallite size with FWHM value with different Fe (0, 2.5, 5 
and 10%) contents. 

 

Figure 3 shows the surface morphology of the as-synthesized SnS2 and SnFeS2 powders 
as observed from the FESEM images. The surface roughness decreases dramatically as 
increases the Fe contents, finer and more homogenous surface are formed. This provides 
again an evidence that different morphologies are indeed dependent on Fe/Sn ratio. 
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Figure 3. Top view FESEM images of SnS2 prepared with different amount of additional 

Fe: (a) 0%, (b) 2.5%, (c) 5%, and (d) 10% content. 
Figure 4 displays the elemental mapping of S, Sn, and Fe elements in Sn1-XFexS2 powder. 

It can be observed that the elements are uniformly distributed in the Sn1-XFexS2 compounds. 

This indicates that the elements are localized in the nanoparticle in random form and the ratio 

of Sn:S was calculated to be 1:2 [23], which further demonstrates that the obtained product is 

SnS2 in Figure 4. 

SnS2 ; Fe 2.5% SnS2 ; Fe 5% 
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SnS2 ; Fe 10% SnS2  
Figure 4. EDS mapping of SnFeS2 compounds, elemental distribution of S, Sn, and Fe for 

various Fe contents (2.5%, 5%, 10%). 

Typical EDS spectrum showing how characteristic X-rays correspond to different 
elements. It is clearly seen that the synthesized powders are mainly composed of S, Sn, and 
Fe elements, as shown in Table 2. As seen in the EDS spectra in Figure 5, no other peak 
related to impurity was detected from the elemental composition. This confirms that only Fe 
has been incorporated onto the SnS2 surface. 

Simples ID S % Sn % Fe % Eg (eV) 
SnS2 61.74 38.24 --------- 2.22 

SnS2 ; Fe 2.5% 61.93 37.20 1.05 ------- 
SnS2 ; Fe 5% 63.19 34.08 2.73 2.38 
SnS2 ; Fe 10% 61.22 32.60 6.18 2.48 
Table 2. shows the EDS elemental composition of SnS2 with addition of Fe content. 

 
Figure 5. Elemental composition of SnFeS2 with different Fe contents. 
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2. Optical analysis  

The optical properties such as absorption coefficient, transmittance and band gap energy 

for SnS as a p-type material 1.52 eV to compare with SnS2 n-type 2.22 eV material were 

determined. Figure 6 (a, b,) shows the optical transmittance and absorption versus the 

wavelength (λ) in the range 400–900 nm. An important shift to shorter wavelengths in the 

onset of the transmittance is observed for the SnS to SnS2 composite. the SnS and 

SnS2 semiconductors materials has a direct energy band gap [24]. Then the optical band gap 

of direct band gap semiconductors can be estimated from by plotting the square of absorbance 

times energy photon (αhυ)2 versus the photon energy (hυ).  The point where the extrapolation 

of the straight-line portion to the energy axis at (α = 0) is the value of the optical band gap. 

Figure 6 (c, d) shows Using the relation α2 =A (Eg - hυ), which is valid for this type of 

materials, Eg values of 1.52 eV, 2.22 eV, 2.38 eV and 2.48 eV were found, for the SnS, SnS2, 

Fe 5% and Fe 10% respectively. The band gap shift is naturally related to decrease in carrier 

concentration as the increasing of iron contents. Furthermore, this variation in the optical 

absorption in the visible region corresponds to changes in both the crystalline quality and 

roughness of Fe-doping concentration.  

 
(a) 

 
(b) 
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(c)  

(d) 
Figure 6. Optical transmittance of SnS and SnS2(a), Absorbance of SnS2 doped Fe % (b), 
Plot of (AE)2 versus the photon energy (hν) for SnS and SnS2 (c) and optical band gap of 

SnS2 doped Fe content (d). 

3. Mott–Schottky analysis 

In figure 7 Mott–Schottky measurements were performed in a quartz cell using the Auto 

lab potentiostat PGSTAT302N with a Pt rod counter electrode, Ag/AgCl saturated in 3 M 

KCl reference electrode and working electrode is 0.25 cm2 using 1 M of Na2SO4 electrolyte. 

The Mott–Schottky plot (1/C2 vs applied potential) was obtained and analyzed for all the 

samples. The flat band potential is an important physical property as regard to the 

performance of the material in photoelectrochemical [25]. Both ND and Efb were estimated 

from the Mott-Schottky equations (Eqs. 1): 

!
"!"#

= #
$	&		&$'%(!#

"𝐸 − 𝐸)* −
+,
$
%	for n-type semiconductor    (1) 

where, e is the electron charge, ε is the dielectric constant of the semiconductor, εo is the 

vacuum permittivity, AS is the surface area of the working electrode, k is the Boltzmann’s 

constant, and T the temperature. The calculated value was found that the Efb of the electrode 

using SnS2 are about -0.68 V and -0.71 V (vs. SCE), respectively [26].  

The positive slope confirm that SnS2 is a n-type semi-conducting material which can be 

used as buffer layer for photovoltaic solar cells application. According to eq. 1 the estimated 

values for the concentration of donors were about: ND = 3.6×1018 (cm -3). 



ECS Journal of Solid State Science and Technology, 8 (6) Q118-Q122 
[DOI: 10.1149/2.0251906jss] 

 

Figure 7. Mott-Schottky plots of an electrode using SnS2 with 1 M Na2SO4 at a frequency 
of 1 KHz. 

4. Conclusions 

Binary SnS2 and ternary Sn1-XFexS2 (with x = 2.5%, 5% and 10%) compounds were 

prepared by simple hydrothermal technique of the precursor species, which is a novel 

procedure to prepare this type of compounds. The structure characterization was carried out 

through XRD measurements indicated the crystal size is Berndtite JCPDS card #: 23–677 

without any secondary phases. The optical band gap values were obtained 1.52 eV, 2.22 eV, 

2.38 eV and 2.48 eV for the SnS, SnS2, Fe 5% and Fe 10% respectively.  Mott–Schottky 

measurements was used to determine the type of conductivity, which was found to be n-type 

for SnS2. 
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