

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/157204

Titos-Gil, R.; Flores, A.; Fernández-Pascual, R.; Ros, A.; Petit Martí, SV.; Sahuquillo Borrás,
J.; Acacio, ME. (2019). Way Combination for an Adaptive and Scalable Coherence
Directory. IEEE Transactions on Parallel and Distributed Systems. 30(11):2608-2623.
https://doi.org/10.1109/TPDS.2019.2917185

https://doi.org/10.1109/TPDS.2019.2917185

Institute of Electrical and Electronics Engineers

© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1

Way Combination for an Adaptive and Scalable
Coherence Directory

Rubén Titos-Gil1, Antonio Flores1, Ricardo Fernández-Pascual1, Alberto Ros1, Salvador Petit2, Julio
Sahuquillo2 and Manuel E. Acacio1

Abstract—Today, general-purpose commercial multicores approaching one hundred cores are already a reality and even thousand
core chips are being prototyped. Maintaining coherence across such a high number of cores in these manycore architectures requires
careful design of the coherence directory used to keep track of current locations of the memory blocks at the private cache level. In this
work we propose a novel organization for the coherence directory that builds on the brand-new concept of way combining. Particularly,
our proposal employs just one pointer per entry, which is optimal for the common case of having just one sharer. For those addresses
that require more than one pointer, we have observed that in the majority of cases extra pointers could be taken from other empty ways
in the same set. Thus, our proposal minimizes the storage overheads without losing the flexibility to adapt to several sharing degrees
and without the complexities of other previously proposed techniques. Through detailed simulations of a 128-core architecture, we
show that the way-combining directory closely approaches the performance of a non-scalable bit-vector sparse directory, and beats
other scalable state-of-the-art proposals.

Index Terms—Cache coherence, sparse directory, way combining, scalability, coverage, bit vector, limited pointers, execution time,
network traffic.

1 INTRODUCTION AND MOTIVATION

C URRENT mainstream multicore architectures implement the
shared-memory abstraction as the low-level programming

paradigm, and this trend is not likely to change in the foreseeable
future [1]. Communication between cores in these devices occurs
by writing to and reading from shared memory, while one or more
levels of private caches in each core ensure low-latency memory
accesses and reduced pressure on shared resources (interconnec-
tion network and shared cache levels). A cache coherence protocol
implemented in hardware is responsible for preventing cores from
observing multiple versions of the same data, thus making private
caches functionally invisible to software [2].

Today, general-purpose multicores with close to one hundred
cores are becoming commercially available, such as Intel’s 72-core
x86 Knights Landing MIC [3]. Meanwhile, researchers are already
prototyping thousand core chips, like the KiloCore chip developed
at UC Davis [4]. Maintaining coherence across hundreds of cores
in these manycore architectures requires careful design of the
coherence directory used to keep track of current locations of the
memory blocks at the private cache level. Duplicate tag directories
employed in some first-generation multicores [5] are plainly and
simply unfeasible for manycores, since their associativity grows
with the number of cores. Contrarily, sparse directories [6] main-
tain an explicit sharer list per entry and can be organized as typical
associative caches, allowing for more scalable implementations.
Thus, recent proposals have built on sparse directories [7], [8],
[9], [10], [11], [12].

Two aspects determine the area requirements of a sparse

• 1Dept. Ingenierı́a y Tecnologı́a de Computadores, Universidad de Murcia,
30100 Murcia (SPAIN)
E-mail: {rtitos, aflores, rfernandez, aros, meacacio}@ditec.um.es
2Dept. Informática de Sistemas y Computadores, Universitat Politècnica
de València, 46022 Valencia (SPAIN)
E-mail: {spetit, jsahuqui}@disca.upv.es

directory [13]: The total number of entries and the number of
bits of each entry. The former determines the maximum number
of addresses that the directory can contain in a given moment,
and therefore has a direct effect on the amount of different
memory blocks that can be stored at the private cache level.
The term coverage is typically used to indicate the number of
directory entries with respect to the total number of entries in the
last level of private cache. Coverage shortage leads to increased
miss rates in private caches due to directory invalidations, hence
affecting performance. Multiprogrammed workloads consisting of
sequential programs place the most stringent demands on the
coverage of a sparse directory, requiring at least as many entries
as the sum of all entries in the last level of private caches, to allow
all such cache entries to be used at the same time. Previous works
(such as [9]) have shown also that in general 100%-coverage is
enough in most cases to eliminate nearly all invalidations due to
directory evictions if enough associativity is provided.

Whereas coverage does not depend on the number of cores and
therefore it is not a scalability hurdle, the amount of bits of each
directory entry poses severe limits to system scaling. The size of
each directory entry depends fundamentally on how it stores the
sharers list for the associated address. To be scalable, directory
implementations need to ensure that the number of bits per tracked
sharer scales gracefully (i.e. remaining constant or increasing very
slowly) [9]. Bit vectors are known to be non-scalable, since their
size increases linearly with the number of cores, thus making them
unfeasible for large core counts. Alternative representations such
as limited pointers [14], [15] or compressed sharing codes [6], [16]
curb directory memory overhead. Unfortunately, the improved
scalability comes at the cost of increasing either the number of
messages per coherence event or the miss rates at the private cache
levels. For instance, the loss of precision introduced by coarse bit-
vectors [6] leads to more invalidation messages per write, while
pointer recycling policies [14] must invalidate privately cached

2

ba
rn

es

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

ch
ol

es
ky

de
du

p fft

fm
m

lu
_c

b

oc
ea

n_
cp

oc
ea

n_
nc

p

ra
di

x

ra
yt

ra
ce

vi
ps

w
at

er
_n

sq
ua

re
d

w
at

er
_s

pa
tia

l

A
ve

ra
ge

0.00
0.12
0.25
0.38
0.50
0.62
0.75
0.88
1.00

F
ra

ct
io

n
of

 s
et

s

0 1 2 3 4 5 6 7 8

Fig. 1: Directory occupancy per set: average fraction of sets with
a given number of occupied entries (ways) in a 100% coverage
8-way sparse directory with bit-vector sharing code for 256 cores
(1 sample every 100000 cycles).

blocks every time a pointer is reused for a new sharer. At the end,
both extra coherence messages and increased miss rates result into
performance degradation.

It is also well-known that the degree of sharing varies across
memory blocks and over time within applications, so that there
is no optimal sharers list organization for all cases. Ideally, each
directory entry should have enough flexibility to adapt to different
situations. Several previous works show that a significant fraction
of the directory entries (approaching 90% in some cases) track
private blocks, for which a single pointer would suffice. Further-
more, amongst entries tracking shared blocks, most of them have
a very small number of sharers (two or three). The remaining very
few entries have many sharers, yet its number does not grow with
system size [12]. Moreover, virtually all directory entries would
track private blocks when sequential workloads are executed in
multiprogramming.

This way, a sparse directory designed for the common case
should have as many entries as the last level of private caches
(with the same or higher associativity), with each entry consisting
of a single pointer. Though this design would fit perfectly well to
the requirements of sequential workloads in a multiprogrammed
environment, when multithreaded applications come into play, the
shortage of bits in each directory entry could have catastrophic ef-
fects on performance. However, when multithreaded applications
are executed, a significant number of directory sets are not fully
occupied (i.e. there are free ways in the set) as a consequence
of shared blocks appearing in the L2 caches. For the benchmarks
considered in this work, Figure 1 shows that sets are on average
at half their maximum occupation, and Figure 2 depicts the
number of sharers tracked by each entry (refer to Section 3 for
details). Interestingly, most of those applications that exhibit high
occupancy in Figure 1 (such as Fft, Radix or Ocean cp) have just
one sharer per entry in almost all entries. This observation is not
new as it is what motivates previous approaches that use multiple
entry formats to store sharing information [9] [17]. We however
exploit it differently than previously done. Particularly, we propose
that overflowed directory entries in a particular set can expand to
the free ways in that set.

Taking into account these observations, in this work we
propose a novel sparse directory architecture that builds on the
following design principles:

• It should be designed for the common case. Considering that the

ba
rn

es

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

ch
ol

es
ky

de
du

p fft

fm
m

lu
_c

b

oc
ea

n_
cp

oc
ea

n_
nc

p

ra
di

x

ra
yt

ra
ce

vi
ps

w
at

er
_n

sq
ua

re
d

w
at

er
_s

pa
tia

l

A
ve

ra
ge

0.00
0.12
0.25
0.38
0.50
0.62
0.75
0.88
1.00

F
ra

ct
io

n
of

 p
re

se
nt

 a
dd

re
ss

es

1
2

3
4

5
6..63

64..124
125..126

127..128

Fig. 2: Sharers per directory entry: average fraction of present
addresses with a given number of sharers in a 100% coverage 8-
way sparse directory with bit-vector sharing code for 256 cores (1
sample every 100000 cycles).

degree of sharing for most addresses is low (one or two), our
proposal employs just one pointer per entry.

• It should adapt to changing sharing degrees. Though a single
pointer suffices for most addresses, there are others which
require additional storage to track their sharers list. To handle
those with the minimum loss of precision, we leverage the
available ways that often exist in the same cache set to allocate
additional sharing code storage, giving birth to the concept
of way combining. This enables flexible resource assignment
within a set, making each set of the sparse directory appear as
a pool of entries which are dynamically allocated on demand
among the addresses mapped to that set.

• It should entail as lower complexity as possible. Way com-
bining comes with minimal cost as it avoids the complexity
introduced by other proposals [7] [9] [17]. Our proposal builds
atop traditional sparse directories, relies on existing replacement
algorithms, and does not increase the complexity of directory
operations. Of course, it is not as flexible as SCD [9], but
we show that extra flexibility enabled by SCD barely has any
positive influence on final performance.

• It should keep directory memory overhead as low as possible.
Our proposal has a lower memory overhead than SCD, which
we consider the most scalable directory proposal to date, and
this overhead grows more slowly with the number of cores.

• It should approach as much as possible the performance of the
non-scalable bit-vector sparse directory. Our proposal reaches
this objective (just 2% overhead on average is observed) at
the same time that improves over the previously proposed SCD
directory.

The rest of the manuscript is organized as follows. We present
our proposed directory architecture in Section 2. Section 3 de-
scribes our simulation environment and detailed results are shown
and analyzed in Section 4. Some important related works are then
discussed in Section 5, and finally, Section 6 contains the main
conclusions of this work.

2 THE WAY-COMBINING DIRECTORY

2.1 General Overview
The way-combining sparse directory (henceforth, WC-dir) stores
sharing information about block addresses that are kept at the
private levels of the on-chip cache hierarchy typically found in a

3

tag formatV sharers

= =

log(N) log(N)

Hit Sharers

index

format sharers

address
tag

V

FBVectorConv

tag

FSM

Fig. 3: Implementation of the Way-Combining Directory.

manycore chip multiprocessor. The structure of WC-dir is nearly
identical to that of a traditional set-associative directory cache.
Figure 3 gives a simple overview of a circuit for obtaining the list
of sharers (see Section 2.3 for further details).

Each address is unequivocally mapped to a set in the cache,
and the sharing information, if present, may be stored in any set
entry. However, unlike a conventional directory cache, WC-dir
allows multiple entries of the set to be allocated to the same
address, so that an access to WC-dir can result in zero, one or
more tag hits. In the latter case, the sharing information stored in
the matching entries is combined to produce the list of sharers for
the requested address. As depicted in Figure 3, WC-dir replaces
the N-to-1 multiplexer typically found in an N-way set-associative
cache (which selects the data from the matching entry) with
a combinational unit named FSM (from Finite State Machine)
whose purpose is to merge the sharing information from all the
matching entries.

Our design is based on the observation that most memory
blocks have only a handful of sharers, most often just one.
The dominance of entries with a single sharer (i.e., tracking
private data) comes at no surprise in single-threaded multiprogram
workloads Nevertheless, in multi-threaded or parallel applications
the majority of the directory entries also track private blocks.
Furthermore, the common case for shared blocks is that a large
fraction of them are only held by two or three sharers. This means
that traditional sparse directories that use full bit-vectors to encode
sharers clearly make a poor utilization of the area dedicated to
storing sharing information.

Another important fact to understand our design is that when
two or more private caches hold copies of a block, only one entry
needs to be allocated in the directory. That means that in a 100%
coverage directory there has to be a free directory entry for every
sharer but the first one of every address present at the private
cache level. WC-dir can take advantage of those empty entries
when they happen to be in the same cache set as addresses whose
sharing information does not fit in a single entry.

To take advantage of these observations in a simple design,
WC-dir allows entries of the same cache set with the same tag (i.e.,
referring to the same cache block) to be combined. The sharing
information of each block can be encoded in one or more entries
of the same set by using either pointers or coarse bit-vectors. For
this purpose, two formats, namely pointer and coarse vector, are

employed to track the set of sharers of a given block. The format
of each entry is encoded with an additional format field. Entries in
pointer format (assumed to be set to ’1’ in the example) contain
a pointer to a sharer, while entries in coarse bit-vector format [6]
(assumed to be set to ’0’), contain a portion of the coarse vector of
sharers. More precisely, in the coarse bit-vector format, each bit of
an entry represents a set of nodes (thus, this representation results
in loss of precision). If a bit is set to 1, it means that a copy of
the block is maintained in the private caches of one or more of the
represented nodes, while if a bit is reset, none of the them holds a
copy.

The list of sharers is jointly stored by all combined entries
and can be decoded using the referred FSM logic. The ability of
WC-dir to combine entries in the same set is independent of the
format employed to track the sharers. In fact, the format in which
the sharing code is stored for a given address may change over
time, depending on the number of entries that can be allocated to
the address.

Every time a new block address is inserted into the directory,
the pointer format is used by default for the new allocated entry.
Subsequent sharers of the same block are also added in pointer for-
mat, provided that there are free entries in the directory. However,
when directory resources become insufficient to maintain exact
sharing information, the amount of directory storage dedicated to
specific addresses is dynamically reduced at runtime. This is done
as an attempt to maximize directory utilization and precision while
keeping low area overhead and operation complexity.

The addresses whose directory storage is reduced are selected
as follows. If an address in coarse format exists in a full set
(i.e. a set where all the entries are valid), WC-dir makes room
by decreasing the number of occupied entries (hence reducing
precision). Otherwise, WC-dir entries allocated to an address in
pointer format are switched to coarse format in order to make
room.

Since evicting an address from the directory results in in-
validations in private caches, that may later harm performance
by causing additional misses, WC-dir always tries to minimize
evictions at the cost of reducing the precision of the sharing code.
Thus, evictions only occur when a new address is inserted into
a full set where each entry is allocated to a different address,
following a typical LRU replacement algorithm to select the
victim.

Finally, note that the implementation complexity of WC-dir
would be lower than in other proposals such as SCD, since in
WC-dir all operations involve a single set.

2.2 Working Example

To illustrate the behavioral aspects of WC-dir, Figure 4 shows
the evolution of a 4-way set associative WC-dir for 256 nodes.
Each sharer field consists of 8 bits that, in pointer format, can be
combined to point up to four sharers (one per cache way) or, in
coarse format, to compose a 32-bit (4× 8) sharer vector where
each bit represents 8 (256/32) nodes.

Figure 4 (a) shows the set containing two addresses addrA and
addrB, both in pointer format and each with a single sharer. New
sharers can be added to an existing address by allocating available
entries in the set, as depicted in Figure 4 (b). When all entries in
a set are allocated (either to the same or different addresses) using
the pointer format, no sharer can be inserted into the directory
without first taking action to make room in the set.

4

Fig. 4: WC-dir: Example of operation.

Figure 4 (c) shows how before inserting a new sharer for
addrB, addrA must switch from pointer format over three entries
to coarse vector format over two entries, thus releasing one of its
entries (note that no address is evicted). Though in this example
there is only one candidate, in practice there are several heuristics
that could be employed to select the victim amongst the candidate
addresses. In this work, WC-dir opts for a simple LRU algorithm,
although other approaches could be used. Also, those candidates
whose sharing code is already stored in coarse format are always
chosen over those in pointer format, in order to keep precise
sharing codes for as many addresses as possible (as in Figure 4
(d)).

2.3 Low-level implementation details

We assume that any number of entries can be combined if they are
in pointer format, while this number must be a power of two to be
combined when they are in coarse format. That is, one, two, four
or eight entries can be combined in coarse format in an 8-way set-
associative cache. If 8 entries are being combined (i.e. 64 bits in
total), then the granularity of the coarse bit-vector representation
is equal to 4, since each bit represents four nodes (NPROCS/64).
Notice that the coarsest granularity is 32 nodes represented by a
single bit, when a single entry is used to represent all the nodes.

The different coarse granularities are checked by the auxiliary
hardware logic at runtime. This is done when the tag of the block
is being looked up. At this time, the number of entries matching
the same tag (i.e. referring to the same block address) is counted.
To conserve energy, we assume that the data array is accessed after
tags, as typically done in second and low level caches.

The illustrate the simple hardware used by our approach, next,
we depict some circuit examples involved in the three major
actions carried out by WC-dir: i) adding a new sharer to an entry,
ii) making room for a new sharer in a full set, and iii) reading the
list of sharers.

Adding a new sharer to an entry. To add a sharer a circuit
similar to the depicted in Figure 5 can be applied. For entries in
coarse format, the three bits from the sharer pointer (PTRX ..X−2)
that are used to index the bit representing the node in the coarse
bit-vector are selected depending on the granularity, which can
be obtained from the number of combined ways (n-way). The
resulting index is decoded and ORed with the coarse bit-vector to
obtain the updated vector with the new sharer. On the other hand,
in case the target address is being codified in pointer format, then
PTR is just written to the entry. Note that in this case a free entry is
required. Otherwise, more room must be made for the new sharer.

Making room for a new sharer. When additional space is
required to store a new sharer, the design can choose between
either increasing the granularity of a sharing code in coarse format,

or moving from pointer to coarse format. Since the approach
pursues to achieve the highest precision, the former case is always
done incrementally as additional room is needed. That is, the
number of ways devoted to a sharing code in coarse format is
reduced to the immediately lower power of two (e.g. from 4 to 2
entries, or from 8 to 4 entries). Figure 6a presents an example of a
circuit performing such an increase of granularity. In the figure, a
portion of 16 bits (2 entries) from a coarse bit-vector are ORed to
obtain 8 bits representing the same nodes but with lower precision.
Note that since the amount of storage is halved, one entry (the left
one) is released (the valid bit is set to ‘0’).

Regarding to moving from pointer to coarse format, Figure 6b
shows a possible implementation. In this example, two pointers are
combined in the same entry in coarse format. Similarly to Figure
5, the bits of each pointer that are used to index the target coarse
bit-vector depend of the number of ways allocated to it.

Reading the list of sharers. To obtain the list of sharers, those
ways of the set whose tag match the target address must be read
and fed to the FSM, which produces a set of pointers to the nodes
involved in the coherence action. The way to obtain the set of
pointers depends on the format. Figure 7 depicts two examples.
In Figure 7a, the FSM is fed with the 8 bits of one entry, where
each bit represents 32 nodes (i.e. the coarsest granularity), while
in Figure 7b a sharing code with two pointers is read.

3 EVALUATION METHODOLOGY

We evaluate the performance of different cache coherence direc-
tories using the GEMS 2.1 simulator [18]. GEMS is fed with
information gathered by a PIN tool [19], which offers detailed

Fig. 5: Circuit for adding a sharer.

5

(a) n-way to n/2-way coarse

(b) 2 pointers to n-way coarse

Fig. 6: Examples of changing the format.

(a) 1-way coarse format (b) 2-way pointer format

Fig. 7: Examples of reading the list of sharers encoded in different formats.

TABLE 1: System parameters.

Memory parameters
Block size 64 bytes
L1 cache (data & instr.) 32 KiB, 4 ways
L1 access latency 1 cycle
L2 cache (data & instr.) 128 KiB, 8 ways
L2 access latency 10 cycles
L3 cache (shared) 1024 KiB/tile, 32 ways
L3 access latency 20 cycles
Cache organization L2 inclusive, L3 non-inclusive
Directory size (SCD75) 1536 entries, 3 ways (75% coverage)
Directory size (SCD) 2048 entries, 4 ways (100% coverage)
Directory size (rest) 2048 entries, 8 ways (100% coverage)
Directory latency 5 cycles
Physical address size 48 bits
Memory access time 200 cycles

Network parameters
Topology and Routing 2-D mesh (8×8), X-Y
Flit size 16 bytes
Message size 5 flits (data), 1 flit (control)
Link time 2 cycles
Bandwidth 1 flit per cycle

information about the instructions executed, memory references,
and syncronization primitives as is the standard methodology for
large-scale system simulations [20]. We model the interconnection
network with Garnet [21]. The simulated architecture corresponds
to a single chip multiprocessor (tiled-CMP) with 128 cores (one
per tile). All evaluated configurations implement local caches with
MESI states. The most relevant simulation parameters are shown
in Table 1.

We evaluate five configurations for the coherence directory that

TABLE 2: Benchmarks.

SPLASH-3
Barnes 16K particles, timestep = 0.25, tolerance = 1.0
Cholesky 13992×13992, NZ=316740
Fft 220 total complex data points
Fmm 16K particles, timestep = 5
Lu cb 512×512 matrix, block = 16
Ocean cp 514×514 grid, distance = 20000, timestep = 28800
Ocean ncp 514×514 grid, distance = 20000, timestep = 28800
Radix 4M keys, radix = 4K
Raytrace Balls4, antialiasing with 2 subpixels
Water nsqared 83 molecules, timestep = 3
Water spatial 153 molecules, timestep = 3

PARSEC 3.0
Blackscholes 4096 options
Bodytrack 4 cameras, 1 frame, 1000 particles, 5 annealing layers
Canneal 5000 swaps per temperature step, 2000◦ start temperature,

200000 netlist elements
Dedup 31 MB
Vips 2336×2336 pixels

we name BV, LP1, SCD, SCD75 and WC1. BV employs a sparse
directory using non-scalable bit-vectors in each directory entry as
the sharing code. LP1 is an implementation of DiriCV [6] which
uses a limited pointer scheme in which the sharing information
is stored as a single pointer in the case of private blocks or as
a coarse bit-vector when several sharers are found. SCD is an
implementation of the SCD architecture [9] using a 4-way z-cache
that explores three levels when finding a replacement candidate
(which means that it is roughly equivalent to a 52-way associative
cache). SCD75 is a different configuration of SCD with only
75% coverage whose area requirements are closer to those of

6

LP1 and WC1, since it uses a 3-way z-cache that explores four
levels (roughly equivalent to a 45-way cache). Finally, WC1 is
an implementation of WC-dir that uses 1-pointer entries. BV and
LP1 use silent replacements of shared blocks (no notification is
sent to the directory in case of eviction of a clean shared block)
and WC1, SCD and SCD75 use noisy replacements (a notification
is always sent to the directory upon eviction). We have evaluated
both options for each configuration and selected the best shared
block replacement technique in terms of execution time for each
case.

Our simulations consider representative applications from
PARSEC 3.0 [22] and SPLASH-3 [23] (see Table 2). We have
included as many benchmarks as we have been able. We have
excluded only those benchmarks that we could not scale up to
128 cores (i.e. execution time with 128 threads is smaller than
with 64 threads) and Freqmine, which uses OpenMP and cannot
be ported to our simulations infrastructure. Input set sizes have
been fixed considering resulting simulation times. The resulting set
of benchmarks contains applications exhibiting varying behaviors
and sharing patterns, with an average L2 miss rate of 64% All the
results correspond to the parallel part of the applications and we
have accounted for the variability of parallel applications.

4 EVALUATION

Table 3 shows the amount of memory required to implement each
of the directory structures considered in this work. The data for
LP1 has been omitted because it is identical to that of WC1. In
addition to the sizes for 128-core systems, which are considered in
the rest of this section, the data of smaller and bigger systems are
also shown to illustrate the scalability of the different proposals.
For each tile, the BV directory requires more than 39 KiB to
support a 128 KiB last private cache, while WC1 and LP1 require
only 9.3 KiB, thanks to the much smaller sharing code. SCD with
the same coverage as the rest requires significantly more area than
LP1 and WC1 both because the sharing code needs more bits and
because the tags required by the z-cache are larger. Even reducing
the coverage of SCD to 75%, it still requires more memory than
LP1 and WC1 for 128 or more nodes. Moreover, if we look at
how the size (per tile) of each directory scales with the number
of nodes, we can see that only LP1 and WC1 keep their overhead
constant. This happens because the tag size is reduced at the same
rate as the sharing code size increases (i.e., logarithmically). The
size of the sharing code of BV grows much faster, to the point that
the directory would need more area than the tracked caches for
a system with 512 nodes or more, making it non-scalable. SCD
scales much better than BV but worse than LP1 and WC1. This
is because its sharing code size grows faster than WC1 and LP1’s
one (as the square root of the number of nodes) and its tag size
remains constant.

The larger memory requirements imply more area, and thus,
higher static energy consumption for the directory. Hence, for core
counts larger than 64, WC1 (and LP1) is the scheme that would
consume less static energy, being the reduction with respect to the
other approaches more notable as the core count increases.

Each directory design makes use of its allocated resources in
a different way to store the sharing information of the addresses
present in the private caches. This will determine how easy it
is to access and update that information and how precise it
is. In some cases, a directory design will reduce the precision
of the stored information (always by storing a superset of the

actual sharer set) at the cost of more invalidation traffic. Figure 8
shows the average precision per address stored in the directory
during the whole execution of the applications. Both BV and
SCD achieve perfect precision, although SCD does that with much
fewer resources. LP1 and WC1 have lower precision, but we can
see that way combining allows WC1 to improve the precision
of the information stored in the directory with respect to LP1,
which needs the same amount of resources. As expected, the
improvement is more marked in those benchmarks that have fewer
occupied entries per set (see Figure 1). Note, however, that not all
tracked blocks will be necessarily written (read-only blocks), and
some blocks will be updated more frequently than others. Thus,
approaching perfect precision is generally important but in some
cases it could come without any benefits.

Figure 9 plots the number of directory replacements per
instruction. As already explained in Section 2, WC1 is designed
so that it can hold exactly the same number of addresses as BV
and LP1. Obviously, WC1 stores these addresses with increased
precision over LP1. To ensure this, WC1 only combines entries
when empty ways are found in a particular set. This way, WC1
never allocates new entries to an address at the expense of
expelling another address in the same set. In that case, the first
address is transitioned into the coarse vector representation. We
can see that WC1 has fewer directory replacements than BV and
almost as many as SCD. This is because, as explained in Section 3,
both WC1 and SCD are using noisy replacements of shared blocks
while BV is using silent replacements, and noisy replacements
enable the deallocation of entries for addresses evicted by all
sharers, reducing the directory occupancy. Regarding SCD, we
can see that reducing the size of the z-cache to 75% (SCD75)
increases dramatically the number of directory replacements. This
is because L2 caches are usually almost full and a directory with
75% coverage, even when SCD provides increased flexibility in
allocating directory entries, is unable to keep all the addresses
which could be stored at the L2 caches (i.e., L2 cache resources
are wasted). Interestingly, we can also notice that in some cases
(i.e., Canneal, Ocean cp, Ocean nc and Vips), SCD with 100%
coverage results into increased directory replacements with respect
to WC1. This is because SCD uses one extra entry to store
indexing information for blocks with several sharers, thus reducing
the total effective capacity of its cache. Figure 10 shows the
number of L2 cache replacements per instruction, where we can
see that SCD75 reduces the number of L2 replacements with
respect to the rest because its reduced coverage often forces the
invalidation of many lines before the sets get full, wasting space
in the caches.

Figure 11 shows the average L2 miss latency split in five
components: the time that the miss spends in L2 before being
issued (At L2), the time that the request takes to arrive to L3
(To L3), the time that it spends waiting before being attended
(At L3), the time spent accessing memory (Main memory) and the
time until the data and all acknowledgments arrive to the requestor
(To L2). We observe that LP1 and WC1 increase the To L1 time
for a few benchmarks (i.e., Barnes, Canneal, Cholesky, Fmm,
Ocean cp, Ocean ncp, Water nsqared and Water spatial). This
is because these configurations generally send more invalidations
on write misses due to the lack of precision of their sharing
information, as can be seen in Figure 12. But the increase incurred
by WC1 is much smaller than that of LP1 on most benchmarks,
becoming practically none in some of them (e.g., Barnes, Fmm
and Ocean cp).

7

TABLE 3: Directory size and overhead for different configurations (LP1 sizes are identical to WC1).

Nodes 64 128 256 512 1024
Directory BV SCD SCD75 WC1 BV SCD SCD75 WC1 BV SCD SCD75 WC1 BV SCD SCD75 WC1 BV SCD SCD75 WC1

Tag (bits) 28 36 36 28 27 35 35 27 26 34 34 26 25 33 33 25 24 32 32 24
Sharing Code (bits) 64 11 11 7 128 16 16 8 256 20 20 9 512 28 28 10 1024 37 37 11
Size / Tile (KiB) 23.5 12.3 9.2 9.3 39.3 13.3 9.9 9.3 71.0 14.0 10.5 9.3 134.8 15.8 11.8 9.3 262.5 17.8 13.3 9.3
% over L2 17.2 8.9 6.7 6.8 28.6 9.7 7.3 6.8 51.8 10.2 7.7 6.8 98.4 11.5 8.6 6.8 191.6 13.0 9.7 6.8

barnes
blackscholes

bodytrack
canneal

cholesky
dedup fft fmm lu_cb

ocean_cp
ocean_ncp radix

raytrace vips

water_nsquared
water_spatial

Average
0.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

sh
ar

in
g

co
de

 p
re

ci
si

on
 (

%
)

BV LP1 SCD SCD75 WC1

Fig. 8: Precision per address measured as the average for each address of the ratios between the actual number of sharers and the
number of sharers encoded in the directory. The directory is sampled every 100000 cycles.

barnes
blackscholes

bodytrack
canneal

cholesky
dedup fft fmm lu_cb

ocean_cp
ocean_ncp radix

raytrace vips

water_nsquared
water_spatial

Average
0.0

1.0

2.0

3.0

4.0

5.0

R
ep

la
ce

m
en

ts
 /

10
00

 in
st

r. BV LP1 SCD SCD75 WC18.2

Fig. 9: Directory replacements per instruction.

barnes
blackscholes

bodytrack
canneal

cholesky
dedup fft fmm lu_cb

ocean_cp
ocean_ncp radix

raytrace vips

water_nsquared
water_spatial

Average
0.0

1.0

2.0

3.0

4.0

5.0

R
ep

la
ce

m
en

ts
 /

10
00

 in
st

r. clean dirty shared silent

16.9
66.9

16.9
66.8

7.1
66.8
55.1

17.0 67.0

BV LP1 SCD SCD75 WC1

Fig. 10: L2 cache replacements per instruction.

barnes
blackscholes

bodytrack
canneal

cholesky
dedup fft fmm lu_cb

ocean_cp
ocean_ncp radix

raytrace vips

water_nsquared
water_spatial

Average
0

 50

100

150

200

250

300

350

La
te

nc
y

(c
yc

le
s)

At_L2 To_L3 At_L3 Main_memory To_L2

BV LP1 SCD SCD75 WC1

Fig. 11: L2 miss latency.

8

barnes
blackscholes

bodytrack
canneal

cholesky
dedup fft fmm lu_cb

ocean_cp
ocean_ncp radix

raytrace vips

water_nsquared
water_spatial

Average
0

0.125
 0.25

0.375
0.5

0.625
 0.75

0.875
1

C
ou

nt

0 1 2 3 4 5 6..63 64..124 125..126 127..128

BV LP1 SCD SCD75 WC1

Fig. 12: Frequency of each number of sharers invalidated per L2 write miss.

Also, we can see in Figure 11 that the At L3 time of SCD and
SCD75 increases for some benchmarks (i.e., Canneal, Ocean cp
and Vips). We have found that this is caused by extra directory
replacements due to having to use more than one entry per
address (as already commented on) and because replacements in
SCD are more expensive than in any of the other configurations.
Particularly, on a replacement in SCD, more accesses to the z-
cache are necessary to move entries to make room, keeping the
directory busy for more time. WC1, on the other hand, prefers
to dynamically reduce the precision of the sharer set of some
addresses rather that evict them. The results show that the extra
traffic and latency due to the extra invalidations is not so bad as
the extra latency in SCD due to the directory replacements.

The most direct effect of the lack of precision of the directory
information is that unnecessary invalidation messages are sent
upon write misses, as shown in Figure 12, and upon directory
replacements. These extra messages can have in some cases
significant effect in the total network traffic, as shown in Figure 13.
Here again we see that the increased precision afforded by way
combining allows WC1 to have much lower traffic than LP1,
although it is still higher than BV’s and SCD’s. For most bench-
marks, the increase in traffic does not have an important effect on
miss latency, as already seen in Figure 11, and hence will not affect
the execution time in a significant extent. Interestingly, though
SCD reaches perfect precision, the difference in average traffic
regarding WC1 is just 10%, even though SCD has significantly
larger area requirements. In this figure we show, in addition to the
global average, the average of a selection of those benchmarks that
have more L2 replacements (Canneal, Fft, Ocean cp, Ocean ncp,
Radix, Raytrace and Vips). We can see that the traffic increase of
WC1 for these benchmarks is slightly higher, but still lower than
LP1.

Dynamic energy consumption is fundamentally affected by the
differences in network traffic. First, the dynamic energy consump-
tion of the interconnection network is proportional to its traffic
load and has been reported to constitute a significant fraction of
the total energy budget [24]. Second, unnecessary invalidation
messages increase the number of snoops in the private caches.
These snoops, however, are much less frequent than the accesses
from the local processor, and therefore, the difference on dynamic
energy consumption is minimal.

Figure 14 shows the relative increase in normalized execution
time for each directory structure. First, it proves that reducing
the coverage of SCD to 75%, to make its memory requirements
similar to LP1’s and WC1’s has a very negative effect in many
benchmarks (e.g., Canneal or Ocean cp), such that on aver-
age SCD75 performs worse than LP1. SCD with full coverage

achieves an execution time that is less than 5% slower on average
than BV, and it even outperforms it in some cases (e.g., Fft and
Radix). The latter is due to the increased effective associativity
provided by the z-cache used in SCD, that eliminates some
conflict misses appearing in BV. Finally, WC1 average overhead
with respect to BV is just 2%, thus being the configuration that
closest approaches the performance of the non-scalable BV. If we
look only at those benchmarks with many L2 replacements, both
SCD and WC1 obtain a higher performance degradation (8% and
4%). SCD is affected more than WC1 because some of those
benchmarks have a high directory occupancy with a high sharing
degree (e.g., Canneal and Raytrace), and in these cases SCD needs
to use more than one entry for many addresses which increases the
number of directory replacements.

4.0.0.1 Varying private cache size and core count:
Scaling private data cache size (L2 in our case) has direct impact
on the number of entries that are active in the directory cache.
Assuming that 100% coverage is maintained in all cases, we
observe that at small private data cache sizes, single-sharer entries
dominate. In this case, L2 cache replacements are frequent, which
avoids exposing sharing patterns on-chip, and most addresses
would be true or temporally private [12]. In such scenarios, shared
addresses are rare and WC1 would approach very closely the
behavior of BV. As the L2 cache size increases, so it does sharing
(i.e. temporary private addresses turn into shared ones [12]), and
therefore, opportunities for combining entries also grow because
fewer directory entries are needed to track all the addresses stored
at the L2 caches (i.e., in the case of a shared address, one direc-
tory entry tracks several entries in the L2 caches, leaving other
directory entries unused due to the 100% coverage). Moreover,
as most shared addresses require only a few pointers to cover
all active sharers, WC1 can track them precisely by combining
a few entries. For widely shared addresses (which are very few
and whose number does not increase with private cache size
scaling [12]) WC1 would use the coarse vector representation with
one or several ways (depending on set occupation). Note that loss
of precision is not so critical for widely shared lines.

Core count scaling has also impact on the number of directory
entries that are active in a particular moment. In this case, however,
the impact is more limited as increasing core count tends to
augment sharers only for widely shared addresses [12]. When the
core count is large, WC1 tracks widely shared addresses using
the coarse vector representation because the associativity is never
going to be large enough to have one pointer for each sharer.
This way, going through larger core counts would entail minimal
additional precision losses. On the other hand, for configurations
with a small number of cores, the impact that precision loss has on

9

barnes
blackscholes

bodytrack
canneal

cholesky
dedup fft fmm lu_cb

ocean_cp
ocean_ncp radix

raytrace vips

water_nsquared
water_spatial

Average
Selected

Average

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

F
lit

s

Control Data

BV LP1 SCD SCD75 WC1

Fig. 13: Normalized total network traffic.

barnes
blackscholes

bodytrack
canneal

cholesky
dedup fft fmm lu_cb

ocean_cp
ocean_ncp radix

raytrace vips

water_nsquared
water_spatial

Average
Selected

Average

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

BV LP1 SCD SCD75 WC10.49
0.87

Fig. 14: Increase in the normalized execution time with respect to BV.

performance is significantly lower, and therefore, the advantage of
WC1 with respect to LP1 also becomes smaller.

5 RELATED WORK

The most common way of encoding the set of sharers of a memory
block is a bit vector where each bit represents a core’s local
cache [25]. Unfortunately, the memory requirements of this exact
and simple design grows linearly with the number of cores and
thus is not scalable. The width of a directory can be reduced by
codifying the sharers in an inexact way by excess, which will
still guarantee correct operation of the coherence protocol. The
downside of these compression techniques is that they trade off
entry size for coherence traffic. Maybe the best-known example of
a compression scheme is Coarse Vector [6].

An alternative way to reduce the width of the directory is by
limiting the number of sharers that can be stored exactly in an
entry. In the Limited Pointer scheme [14] each entry can hold a
small number of pointers to sharers, which is enough for most
addresses. When a memory block requires more sharers than the
limit, there are two options: evicting one of the previous sharers
(creating directory-induced invalidations)–DiriNB–or switching to
an inexact representation (creating additional traffic) like using a
bit to indicate that broadcast should be used to invalidate that
memory block (DiriB) or a coarse vector that fits in place of
the pointers (DiriCV) [6]. The number of bits required by these
techniques is i× (1 + dlog2ne), being i the number of stored
pointers. One extra bit is required in the case of using the broadcast
approach.

Simoni and Horowitz [26] enhance the limited pointers scheme
by having a pool of pointers to allocate the sharers. Each entry in
the pool consists of a valid bit, the identifier of node (dlog2ne
bits), and a pointer to the next entry in the pool (log2 p bits, where
p is the number of entries in the pool). Every memory block keeps
a dirty bit, an empty bit, and pointer to the first sharer in the
pool (2 + log2 p bits in total). Pointers are allocated in the pool on
demand and, when the pool is full, evictions are performed causing

invalidations. A main disadvantage of this approach is that getting
the sharing information requires s sequential accesses to the pool,
being s the number of sharers.

The segment directory [15] is a hybrid of the bit vector and
limited pointers schemes. Each entry consist in a segment vector
and a segment pointer. The segment vector is a K-bit segment of
a full bit vector whereas the segment pointer is the dlog2

N
K e-bit

field keeping the position of the segment vector within the full
bit vector. The problem of this representation is that it does not
adapt to the variable sharing degrees of memory blocks. Shukla
and Chaudhuri employ this representation in a pool directory [17].
Also, in [27] the authors propose to design each set of a 8-way
sparse directory to have six pointer ways (used to track private
data) and two bit-vector ways (for keeping track of blocks with
more than 1 sharer). Ways in each set are assigned to every
memory block depending on its current number of sharers. All
ways in WC are the same, and adaptation to varying sharing de-
grees is achieved by combining entries in the same set. Moreover,
conversely to these proposals, WC does not rely on non-scalable
bit-vectors.

In SCD [9] entries store only a limited number of pointers
but they can be combined to provide more space for storing
a larger number of sharers using bit vectors (hierarchically).
However, to be able to do this SCD increases the size of the tags,
requires the use of a Z-cache [28] and needs several directory
accesses to retrieve the set of sharers. Additionally, for overflowed
entries indexes to other entries must be stored, leading to reduced
effective capacity of the directory. Despite these downsides, we
think that SCD represents the most scalable directory coherence
design to date and we have chosen it as the reference against which
WC-dir is compared.

Hierarchical directories have also been proposed to reduce the
entry size [29] or to navigate more efficiently the cache hierar-
chy [30]. However, hierarchical organizations impose additional
network hops and lookups on the critical path [29] or require
important modifications to the cache coherence protocol [30].

The Tagless Coherence Directory [31] uses multiple-hash

10

bloom filter to store directory information, working similarly to
an inexact duplicate-tag directory. Ideally, Tagless has constant
per-core overhead, but in practice the bloom filter size needs to
grow with the number of cores to avoid excessive aliasing.

Two-level directory architectures have also been proposed as
a scalable way of organizing the coherence directory [32]. In a
two-level directory, the first level stores the exact sharers set as
a vector of bits, while the second level uses a compressed code.
However, when using compression, area is saved at the expense of
using an inexact representation of the sharer vector in some cases,
thus yielding performance losses. In Stash [10] the second level
directory information is stored along with the shared data cache
and it keeps only a single bit to encode whether any core has the
block. This way, entries in the first level directory are saved for
private blocks.

Coherence Deactivation stores information in the directory
only for shared blocks that are not read-only [8]. The rest of
blocks are tracked by the page table, which acts as a second level
directory at page granularity. Since most of the blocks usually
tracked by the directory are private, its size can be considerably
reduced. However, this proposal relies on the operating system to
keep updated the non-tracked information.

Some other proposals try to exploit the fact that applications
typically exhibit a limited number of sharing patterns, by storing a
limited number of patterns with full bit-vectors or bloom filters in a
sharing pattern table and an address-indexed sparse directory holds
pointers to the pattern table [33] [34]. Although these schemes
increase the range of sharers that can be tracked efficiently, they
are still not scalable and require additional bandwidth.

Spatiotemporal Coherence Tracking [35] saves directory space
by tracking temporarily private data in a coarse-grain fashion.
Multi-grain directories [36] also uses different entry formats of
the same length and tracks coherence at multiple different gran-
ularities in order to achieve scalability. However, these proposals
are limited to a range of directory interleavings (those higher or
equal to the size of a memory region) in order to achieve maximum
benefits.

6 CONCLUSIONS

This work proposes WC-dir, a novel sparse directory architecture
designed putting the focus on the common case, where just one
pointer per entry provides enough space for tracking sharers. This
way, WC-dir fits perfectly to the necessities of sequential work-
loads. For parallel workloads, where one pointer is not enough, our
proposal takes advantage of the until now unexploited observation
that several entries remain free in most sets of the sparse directory
in these cases, and applies the new way combining concept to
provide more space for sharing information to the few addresses
in the set that need it. Thus, the way combining concept allows to
see each set of the sparse directory as a pool of entries which are
allocated dynamically as needed among the addresses mapping
to that set, minimizing the storage overheads without losing the
flexibility to adapt to several sharing degrees.

WC-dir can be derived with minimal changes from a sparse
directory that uses the well-known Dir1CV sharing code [6].
Like other contemporary proposals such as SCD, it can track the
list of sharers through multiple formats, going from the limited
pointers representation to the coarse vector one when there are
no free entries left in a particular set and a new sharer needs
to be added to any of the addresses in that set. However, and

contrarily to SCD, WC-dir achieves this flexibility without the
extra complexity of a z-cache that SCD uses, avoiding also the
iterative re-insertions that keep the directory controller busy for
longer times. Moreover, the fact that WC-dir remains very similar
to a traditional sparse directory allows using simple replacement
algorithms and simplifies directory operations.

Through detailed simulations of a 128-core architecture using
a set of benchmarks exhibiting varying sharing patterns, we
have shown that WC-dir reduces average execution times when
compared with SCD and can practically meet the performance
obtained by a non-scalable bit-vector sparse directory (just 2%
overhead on average is observed). Moreover, concerning the
area overhead, we have shown that for WC-dir, overhead with
respect to the private caches is lower than SCD’s for 128 cores,
and moreover it remains constant as we increase the number
of cores, whereas SCD grows albeit slowly. The only downside
that we have observed for WC-dir is some more extra network
traffic. Particularly, WC-dir increases traffic 6% on average when
compared with a similarly sized SCD (SCD75 configuration) and
10% compared with a SCD configuration with the same number
of entries, which requires 25% more area. Observe, however, that
the WC1 design evaluated in this work puts the emphasis on
minimizing area overhead while maintaining the execution time.
The area requirements can be increased in exchange of reduced
traffic by, for example, duplicating the number of bits per entry
(and thus the number of initial pointers and the size of the coarse
vectors) in WC-dir would cut down the traffic penalty whilst still
preserving advantages over SCD (lower execution time, less area
—although to a lesser extent— and simpler implementation).

ACKNOWLEDGMENTS

This work has been supported by the Spanish MINECO, as well
as European Commission FEDER funds, under grant “TIN2015-
66972-C5-3-R”.

REFERENCES

[1] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
pp. 78–89, Jul. 2012.

[2] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, ser. Synthesis Lectures on Computer
Architecture, M. D. Hill, Ed. Morgan & Claypool Publishers, 2011.

[3] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights landing: Second-
generation intel xeon phi product,” IEEE Micro, vol. 36, no. 2, pp. 34–46,
Mar. 2016.

[4] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,
E. Adeagbo, and B. Baas, “A 5.8 pj/op 115 billion ops/sec, to 1.78
trillion ops/sec 32nm 1000-processor array,” in 2016 Symposium on VLSI
Technology and Circuits, Jun. 2016, pp. 1–2.

[5] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha: A scalable
architecture based on single-chip multiprocessing,” in 27th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2000, pp. 12–14.

[6] A. Gupta, W.-D. Weber, and T. C. Mowry, “Reducing memory traffic
requirements for scalable directory-based cache coherence schemes,” in
19th Int’l Conf. on Parallel Processing (ICPP), Aug. 1990, pp. 312–321.

[7] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo direc-
tory: A scalable directory for many-core systems,” in 17th Int’l Symp.
on High-Performance Computer Architecture (HPCA), Feb. 2011, pp.
169–180.

[8] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for private
memory blocks,” in 38th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2011, pp. 93–103.

11

[9] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory with
flexible sharer set encoding,” in 18th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2012, pp. 129–140.

[10] S. Demetriades and S. Cho, “Stash directory: A scalable directory
for many-core coherence,” in 20th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2014, pp. 177–188.

[11] L. Zhang, D. B. Strukov, H. Saadeldeen, D. Fan, M. Zhang, and
D. Franklin, “Spongedirectory: Flexible sparse directories utilizing multi-
level memristors,” in 23rd Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2014, pp. 61–74.

[12] M. Zhao and D. Yeung, “Studying the impact of multicore processor
scaling on directory techniques via reuse distance analysis,” in 21th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb. 2015,
pp. 590–602.

[13] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers, Inc.,
1999.

[14] A. Agarwal, R. Simoni, J. L. Hennessy, and M. A. Horowitz, “An
evaluation of directory schemes for cache coherence,” in 15th Int’l Symp.
on Computer Architecture (ISCA), May 1988, pp. 280–289.

[15] J. H. Choi and K. H. Park, “Segment directory enhancing the limited di-
rectory cache coherence schemes,” in 13th Int’l Parallel and Distributed
Processing Symp. (IPDPS), Apr. 1999, pp. 258–267.

[16] S. S. Mukherjee and M. D. Hill, “An evaluation of directory protocols
for medium-scale shared-memory multiprocessors,” in 8th Int’l Conf. on
Supercomputing (ICS), Jul. 1994, pp. 64–74.

[17] S. Shukla and M. Chaudhuri, “Pool directory: Efficient coherence track-
ing with dynamic direcory allocation in many-core systems,” in 33rd Int’l
Conf. on Computer Design (ICCD), Oct. 2015, pp. 557–564.

[18] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in 2005 ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI),
Jun. 2005, pp. 190–200.

[20] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P. Faraboschi, “How
to simulate 1000 cores,” Computer Architecture News, vol. 37, no. 2, pp.
10–19, Jul. 2009.

[21] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in IEEE Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.
2009, pp. 33–42.

[22] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, Jan. 2011.

[23] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr. 2016, pp. 101–111.

[24] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” in 36th Int’l Symp. on Computer Architecture (ISCA), Jun.
2009, pp. 196–207.

[25] L. M. Censier and P. Feautrier, “A new solution to coherence problems
in multicache systems,” IEEE Transactions on Computers (TC), vol. 27,
no. 12, pp. 1112–1118, Dec. 1978.

[26] R. Simoni and M. A. Horowitz, “Dynamic pointer allocation for scalable
cache coherence directories,” in Int’l Symp. on Shared Memory Multipro-
cessing, Apr. 1991, pp. 72–81.

[27] L. Fang, P. Liu, Q. Hu, M. C. Huang, and G. Jiang, “Building expressive,
area-efficient coherence directories,” in 22nd Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2013, pp. 299–
308.

[28] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and asso-
ciativity,” in 43rd IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
Dec. 2010, pp. 187–198.

[29] S.-L. Guo, H.-X. Wang, Y.-B. Xue, C.-M. Li, and D.-S. Wang, “Hi-
erarchical cache directory for cmp,” Journal of Computer Science and
Technology, vol. 25, no. 2, pp. 246–256, Mar. 2010.

[30] A. Sembrant, E. Hagersten, and D. Black-Schaffer, “A split cache
hierarchy for enabling data-oriented optimizations,” in 23th Int’l Symp.
on High-Performance Computer Architecture (HPCA), Feb. 2017.

[31] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A tagless
coherence directory,” in 42nd IEEE/ACM Int’l Symp. on Microarchitec-
ture (MICRO), Dec. 2009, pp. 423–434.

[32] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato, “A new scalable
directory architecture for large-scale multiprocessors,” in 7th Int’l Symp.
on High-Performance Computer Architecture (HPCA), Jan. 2001, pp.
97–106.

[33] H. Zhao, A. Shriraman, and S. Dwarkadas, “SPACE: Sharing pattern-
based directory coherence for multicore scalability,” in 19th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Sep. 2010,
pp. 135–146.

[34] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan, “SPATL:
Honey, i shrunk the coherence directory,” in 20th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2011, pp. 148–
157.

[35] M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec. 2012, pp. 341–350.

[36] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coherence direc-
tories,” in 46th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
Dec. 2013, pp. 359–370.

