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aUniversity of Castilla-La Mancha
Department of Business Administration, Ciudad Real 13071, Spain

bUniversitat Politècnica de València
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Abstract

The safety stock calculation requires a measure of the forecast error uncer-
tainty. Such errors are usually assumed Gaussian iid (independent, identi-
cally distributed). However, deviations from iid deteriorate the supply chain
performance. Recent research has shown that, alternatively to theoretical
approaches, empirical techniques that do not rely on the aforementioned as-
sumptions, can enhance the safety stock calculation. Particularly, GARCH
models cope with time-varying heterocedastic forecast error, and Kernel Den-
sity Estimation do not need to rely on a determined distribution. However,
if forecast errors are both time-varying heterocedastic and do not follow a
determined distribution, the previous approaches are inadequate. To over-
come this, we propose an optimal combination of the empirical methods that
minimizes the asymmetric piecewise linear loss function, also known as tick
loss. The results show that combining quantile forecasts yields safety stocks
with a lower cost. The methodology is illustrated with simulations and real
data experiments for different lead times.
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1. Introduction

Traditionally, the supply chain forecasting literature has mainly focused
on point forecasts, with these being a measure of central tendency of the fore-
cast density function, such as the mean or median. Point forecasts are vital
for driving production systems based on Material Requirements Planning
(Silver et al., 1998). However, little attention has been paid to measure the
uncertainty around those forecasts, although important applications such as
determining the safety stock and reorder point in many replenishment poli-
cies depend on estimating the uncertainty.

Exponential smoothing has been one of the most popular forecasting
methods to construct point forecasts for supply chain purposes (Gardner,
2006). Hyndman et al. (2008) embedded exponential smoothing within a
statistical framework, based on the State Space approach, capable of yield-
ing the whole forecast distribution for different forecasting horizons. The
popularity of exponential smoothing has been due to its relative simplicity
and accuracy in practice. However, often, how well it approximates the de-
mand process is not sufficiently tested, mainly due to the limited repertoire
of forecasting model alternatives in software.

Ideally, if the demand generating process is correctly identified, the fore-
casts obtained from that identified model provide errors that are iid (inde-
pendent, identically distributed) and the statistical forecast distribution is
perfectly defined as a function of the forecasting model parameters and the
forecasting horizon. This holds regardless of the forecasting model, which
could be, for example, State Space Exponential Smoothing (Hyndman et al.,
2008), ARIMA (Box et al., 1994) or Unobserved Components (Harvey, 1989).

However, given the complex relationships that drive the demand, it is
reasonable to question whether correct identification of the process is possi-
ble. Thus, the iid assumptions about the error should be tested. However,
typically in supply chain forecasting we assume that these assumptions hold
and instead, we focus on comparing different forecast error metrics, such as
Mean Absolute Percentage Error (MAPE) or Mean Squared Errors (MSE),
without analyzing residual autocorrelation and deviations from the assumed
statistical distribution (Barrow and Kourentzes, 2016). Syntetos et al. (2010)
investigate the relationship between forecasting accuracy improvements and
stock control metrics, like cycle service level and inventory investments, and
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suggest that potential autocorrelation of the forecast errors (over the fore-
cast horizon) may have an effect on cycle service level under-performance.
Trapero et al. (2016) show that if the residuals are not iid, the supply chain
performance can deteriorate through different service levels than targeted,
higher volume of backorders or greater inventory investment.

An alternative to using theoretical models is their empirical counterparts
(Chatfield, 2000). Data driven approaches do not rely on iid assumptions
and they have provided promising results in calculating prediction intervals
(Williams and Goodman, 1971). When the iid assumptions are not satisfied,
other techniques like GARCH (Bollerslev, 1986) and Kernel Density Estima-
tion (KDE; Silverman, 1986) can be useful to forecast the size of uncertainty.

Within a supply chain case study, Syntetos and Boylan (2008) analyzed
the empirical performance of alternative forecasting methods for slow moving
items. They identified the estimation of the variability of the lead time fore-
cast errors as an area, amongst others, with scope for improving the overall
performance of the system. Zhang and Kline (2007) pointed out that, al-
though temporal demand heteroscedasticity has not been included into the
inventory management literature, it is present in industrial time series. In ad-
dition, computational results show that ignoring temporal heteroscedasticity
can increase company’s inventory costs up to 30%, when demand autocorrela-
tion is highly positive. Trapero et al. (2016) applied parametric models, such
as GARCH, to the problem of determining the variability of the lead time
forecast error. They showed with simulated and real data that for high lead
times, forecast error standard deviation presented temporal autocorrelation
and that GARCH models yielded promising results.

Another miss-specification typically found in a supply chain context is
normality deviation (one of the other areas of improvement identified by
Syntetos and Boylan, 2008). For intermittent demand data, bootstrapping is
a non-parametric alternative (Willemain et al., 2004). Syntetos et al. (2015)
compared the performance of bootstrapping with respect to parametric meth-
ods. For continuous demand data, non-parametric approaches like KDE has
been succesfully reported by Strijbosch and Heuts (1992) and Manary et al.
(2009). Manary et al. (2009) employed KDE at the Intel company for cor-
recting forecast bias, nonnormal forecast errors and heterogeneous forecast
errors resulting in safety stock reductions of approximately 15 percent. Trap-
ero et al. (2016) also analyzed KDE and showed that worked reasonably well
for lower lead times, where nonnormality issues were a common situation.
However, if forecast errors possess both standard deviation autocorrelated
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and an unknown density function, which one should be used?
In this work we propose a quantile combination scheme that provides the

quantiles of the lead time forecast density function required to determine
the safety stock. By combining, we circumvent the need for choosing a spe-
cific empirical approach. Furthermore, the combination proportions for each
method are data driven. The proposed quantile combination is optimal in
the sense that it minimizes the tick loss function (see section 3.2). Initially,
such a combination was defined by Giacomini and Komunjer (2005) and ap-
plied to value-at-risk models. In that same reference, authors point out the
little empirical work that has been done in the context of conditional quantile
forecasting, despite the extensive body of literature in economics and man-
agement science attesting the usefulness of forecast combination for point
forecasts (Clements and Harvey, 2011). In fact, to the best of the author’s
knowledge, this is the first time quantile combination is applied to safety
stock estimation.

The classical assumption of normality and independence are evaluated
for different lead times by means of the Jarque-Bera and Engle tests, respec-
tively, in a real data case study. Our results show that non-normality mainly
happens for low lead times. In that case, the proposed combination achieves
a closer cycle service level with respect to the target one and it also reduces
the inventory investment and backorders, these improvements are summa-
rized in a tick loss reduction. For high lead times, the main issue is temporal
heteroscedasticity rather than non-normality. Here, the combination scheme
reduces the tick loss for most of the quantiles under study, except for the
extreme quantile (99%), where it does not improve over GARCH method.

The rest of the paper is organized as follows: section 2 provides rele-
vant background research. Section 3 discusses why a quantile combination
of forecasts is required instead of a point or density forecast. Furthermore,
this section describes the proposed combination scheme. Section 4 discusses
implementation aspects of the experiments, defining the criteria to measure
the performance of forecasts, as well as, the point forecasting algorithm em-
ployed. Section 5 carries out different Monte Carlo simulations to show the
influence of residual autocorrelation and asymmetric demand distributions
on the proposed combination approach. Section 6 presents the case study
that is utilized to assess the proposed approach. Finally, the last section
summarizes the main conclusions.

4



2. Background research

If the demand forecasting error is Gaussian iid with zero mean and con-
stant variance, the safety stock (SS), for a target Cycle Service Level (CSL),
expressed as the target probability of no stockout over the lead time, can be
computed as:

SS = kσL (1)

where k = Φ−1(CSL) is the safety factor; Φ(·) denotes the standard normal
cumulative distribution function; and σL stands for the standard deviation of
the forecast error for a certain lead time L that it is assumed to be constant
and known.

The main challenge in (1) is estimating σL. There are two alternatives:
a theoretical and an empirical approach. Regarding the theoretical option,
first, an estimation of σ1 (one-step ahead standard deviation of the forecast
error) is provided and, since the updating forecast step is usually smaller
than the lead time, subsequently, an analytic expression that relates σL and
σ1 is employed. For instance, Hyndman et al. (2008) show that if the demand
can be modeled as a local level model, i.e., an ETS(A,N,N) with parameter
α, the conditional variance for the lead-time demand is:

σL = σ1
√
L

√
1 + α(L− 1) +

1

6
α2(L− 1)(2L− 1). (2)

Note that Wecker (1979), Johnston and Harrison (1986) and Graves (1999)
also arrived at the same expression assuming a demand process that follows
an ARIMA(0,1,1), which is equivalent to ETS(A,N,N). In addition, σ1 can
be estimated based on applying a single exponential smoothing on the Mean
Squared Error (MSE), such as σ1 =

√
MSEt+1 and MSE is updated as new

observations become available as follows:

MSEt+1 = α′ε2t + (1− α′)MSEt, (3)

where εt = yt−Ft, yt is the actual value at time t and Ft is the forecast value
for the same period. Within this first alternative, Prak et al. (2017) pointed
out that if demand distribution parameters are not known and should be
estimated, as it usually happens, safety stocks should include a correction
factor.

Alternatively to the theoretical approach, an empirical parametric ap-
proach can be employed (Syntetos and Boylan, 2006, 2008), in which case σL
is estimated directly from the lead time forecast error such as:
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σL =
√
MSEL,t, (4)

and
MSEL,t = γε2L,t + (1− γ)MSEL,t−1, (5)

where εL,t =
∑t

i=t−L+1(yi − Fi) is the cumulative lead time forecast error.
For this heuristic method we need neither the forecasting model/method nor
its parameters, i.e., it does not rely on an ARIMA(0,1,1) demand process. In
practice, this is particularly advantageous when Forecasting Support Systems
do not provide such information to users. Nonetheless, expressions (4)-(5) in
conjunction with (1) retain the assumption that lead time forecast errors are
normally distributed.

When applying an exponential smoothing to forecast errors, as in (5),
implicitly we assume that σL can be time-varying, thus, the independence
assumption is also relaxed. In this sense, to cope with time-varying volatil-
ity, we can use the generalized autoregressive conditional (GARCH) models
(Bollerslev, 1986), that represent a more parsimonious and less restrictive
version of the ARCH(p) models (Engle, 1982). GARCH(p,q) models express
the conditional variance of the forecast error at time t+1, as a linear function
of both q lagged squared error terms (ε2t ) and p lagged conditional variance
terms. For example, GARCH(1,1) model is given by:

σ2
t+1 = ω + a1ε

2
t + β1σ

2
t . (6)

Note that SES in (3) can be seen as a particularization of a GARCH model:
the integrated GARCH model (IGARCH; Nelson, 1990), with β1 = 1 − a1
and ω = 0.

Following the same intuition of (4)-(5), we can apply the GARCH(1,1)
over the cumulative lead time forecast error instead the one-step ahead fore-
casting error, thus, equation (6) can be rewritten as:

σ2
L,t+1 = ω′ + a′1ε

2
L,t + β′1σ

2
L,t. (7)

In this work, we focus our analysis on the GARCH(1,1) model using an over-
lapping approach to estimate σL,t, as new sample becomes available (Boylan
and Babai, 2016). To avoid any confusion with (6), the GARCH(1,1) over
the cumulative lead time forecasting error in (7) is called CGARCH(1,1).

It is likely that some demand distributions present important asymme-
tries, particularly when they are subject to promotions or special events. In
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these cases, the typical normality assumption for the forecast errors may not
hold and empirical non-parametric approaches can be useful. In this work,
as a non-parametric approach we use the Kernel Density Estimation (KDE).
To consider non-parametric methods, the safety stock calculation should be
reformulated as:

SS = QL(CSL), (8)

where QL(CSL) is the lead time forecast error quantile at the probability
defined by CSL. This quantile can be estimated non-parametrically from
the empirical distribution of the generated lead time forecast errors (eL).
According to Silverman (1986), if f(x) represents the probability density
function of the lead time forecast errors, its formula for a series X at a point
x is given by:

f(x) =
1

Nh

N∑
j=1

K

(
x−Xj

h

)
, (9)

where N is the sample size, K(·) is a kernel smoothing function that inte-
grates to one and h is the bandwidth (Silverman, 1986).

3. Combining quantile forecasts

3.1. Point, quantile and density forecasts, what should we combine?

Ideally, if we could model the underlying demand process for each SKU,
we would not require to use any combination scheme. However, that assump-
tion is unrealistic and, although we could identify the process, in practice, it
is not always possible to implement it in supply chain companies for several
reasons: i) many companies judgmentally adjust statistical forecasts, (Fildes
et al., 2009; Trapero et al., 2013) which may bias the residuals; ii) compa-
nies rely on forecasting software vendors with limited forecasting techniques
(Fildes, 2017); iii) the choice of demand forecasting model may not be under
the control of the operations/inventory planning department that is responsi-
ble for setting the safety stock (Manary and Willems, 2008). Therefore, if we
have doubts about the validity of the point forecasting models our company
have available, the iid assumptions should be questioned and a combina-
tion of the different forecasting errors obtained is a reasonable approach for
enhancing the calculation of the safety stock.

Combining forecast literature can be divided in two streams: combining
point forecasts and combining density forecasts. Combining point forecasts,
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i.e. the mean or median of the predictive distribution, has been studied sub-
stantially since Granger and Ramanathan (1984). However, its analysis for a
supply chain forecasting context has been scarcer (Barrow and Kourentzes,
2016). On the other hand, research on combining density forecast is more re-
cent and mainly applied to financial time series (Clements and Harvey, 2011;
Hall and Mitchell, 2007; Geweke and Amisano, 2011). A thorough analysis
regarding its utility in a supply chain forecasting context has not been done
yet. Between these two areas, we can place combining quantile forecasts,
which is very close to combining prediction intervals (Granger et al., 1989).
Again, there is a lack of research about the potential benefits of quantile
combination in supply chain applications.

Despite the obvious advantages of obtaining the whole predictive distri-
bution, as it provides more information than a point or quantile forecast, it
has the issue that it is difficult to compare alternative forecasting algorithms
and, particularly, determine the precise quantiles that predictive distribu-
tions may differ (Boylan and Syntetos, 2006). In other words, a forecasting
algorithm, in overall terms, may provide a closer predictive distribution to
the true one, however for certain quantiles that we may be mostly interested
for, the results may be worse. Another potential limitation of forecasting the
whole distribution is that to evaluate it, we need to specify/estimate the un-
known true density of the variable to be forecasted, although this limitation
can be avoided by using scoring rules (Hall and Mitchell, 2007).

In this work, since we focus on safety stocks, we do not require the whole
forecast distribution. Here, we consider several quantiles that are related to
the cycle service level that companies aim for, typically between 85 % and
99 %. We follow the recommendation given by Boylan and Syntetos (2006),
where for inventory calculations attention should be restricted to the upper
end of the cumulative distribution.

3.2. Proposed combination scheme

Christoffersen (1998) pointed out that combining non-parametric meth-
ods with time-varying variance estimators is likely to enhance prediction
interval estimates. In this work, we follow that suggestion to determine the
safety stock. Note that prediction intervals can be obtained from quantile
forecasts (Granger et al., 1989), while the safety stock is the difference be-
tween the upper prediction interval limit and the mean.

Trapero et al. (2016) compared different theoretical and empirical meth-
ods to determine the safety stock. Among then, KDE and GARCH over the
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cumulative lead time forecasting error obtained better results. Thus, both
methods have been chosen in this work to combine them by minimizing the
tick loss function (Giacomini and Komunjer, 2005). In this sense, the tick
loss function, which is also known as the linlin, hinge, pinball or newsvendor
loss (Gneiting, 2011), is an asymmetric piecewise linear loss function,

TLα(yt, Ft) =

{
α|yt − Ft| ifFt ≤ yt

(1− α)|yt − Ft| ifFt ≥ yt
, (10)

of order α ∈ (0, 1), where any α-quantile of the predictive distribution is an
optimal point forecast (Gneiting, 2011). In this work, the target quantile is
given by the CSL. In addition, the quantile α reflects the asymmetry in cost
terms. From a newsvendor point of view, the cost of underforecasting (Ca)
it is not the same cost than overforecasting (Cb). In that sense, α-quantile
can be related to costs such as, α = Ca

Ca+Cb
(Gneiting, 2011). For example, if

the CSL=0.9, it means that the cost of underforecasting is 9 times the cost
of overforecasting. Note that in supply chain applications it is common to
use the CSL interpretation based on quantiles rather than costs, given the
difficulty in estimating the cost Ca.

Given the KDE and GARCH quantiles Q1
L,t(CSL) and Q2

L,t(CSL) respec-
tively, we can combine them to obtain the safety stock (SSt) in the following
form (given that the quantiles are based on the same point forecast, Hall and
Mitchell, 2007):

SSt = w1 ·Q1
L,t(CSL) + w2 ·Q2

L,t(CSL), (11)

where (w1, w2) lies in some compact subset of R2. Following indications by
Giacomini and Komunjer (2005) we do not impose the restriction w1+w2 = 1.
More details about the restrictions on the combination weights, see (Granger
and Ramanathan, 1984). A way to estimate (w1, w2) is to minimize the
expected tick loss:

(w∗1w
∗
2) = arg min

(w1,w2)

Et [TLCSL(yt, Ft + SSt)] (12)

Another alternative to determine the optimal combination weight is to
maximize the conditional coverage Christoffersen test p-value. Christoffersen
(1998) developed statistical tests to assess the unconditional coverage on the
basis of the following indicator:
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It =

{
1 if yt ∈ [0, Ft +QL,t(CSL)]

0 if yt /∈ [0, Ft +QL,t(CSL)]
, (13)

where QL,t(CSL) is the quantile for a certain target CSL and yt is the actual
value. Note that coverage is the percentage of times that the actual value is
lower than QL,t(CSL) and it is highly related to the CSL concept in stock
control. The limitation of the unconditional coverage test is that it does
not measure whether the ones and zeros in (13) come clustered together in
a time-dependent fashion (Christoffersen, 1998). In order to address this,
Christoffersen proposes the conditional coverage test, which is a combination
of the tests for unconditional coverage and independence. The idea behind
such a combination is that the resulting quantile forecasts would be robust
to potential autocorrelation in the forecast error variability and further de-
viations from assumed statistical distributions.

Interestingly, both optimization alternatives were connected by Giaco-
mini and Komunjer (2005, Lemma 1, page 419). In that reference is shown
that the correct conditional coverage condition is equivalent to requiring op-
timality of an interval forecast with respect to tick loss function. In this work
we have preferred to determine the optimal weights by using (12), since it is
a relative evaluation, unlike the Christoffersen test that is an absolute eval-
uation (Giacomini and Komunjer, 2005). Note that the combination process
can be easily automated, which is especially recommended in a supply chain
context, where a vast number of products have to be forecasted.

4. Experimental setup

To assess the performance of the proposed combination we need to define
point-forecasts for the demand distribution, appropriate evaluation criteria
and benchmark models. These considerations are described here and are
relevant to the simulations and the case study that follow.

4.1. Point forecast

In order to compute the safety stock the first step is to calculate the
demand point forecast. The respective forecast error is used for the vari-
ance/quantile forecasting methods described previously. This two-step ap-
proach was also employed by (Granger et al., 1989).
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In this work we use the single exponential smoothing (Gardner, 1985,
2006) to obtain the point forecasts:

Ft+1 = αyt + (1− α)Ft, (14)

where 0 < α < 1. Given the recursive nature of exponential smoothing, it
is necessary to initialize the method. We optimize the initial value together
with the smoothing parameter α by minimizing the in-sample mean squared
error. The lead time forecast is FL =

∑L
h=1 Ft+h = L ·Ft+1, which is required

to compute the lead time forecast error εL,t in (5) and (7). The choice of
the method is appropriate given the data considered, as detailed in the next
sections.

4.2. Evaluation of the alternative approaches

4.2.1. Tradeoff curves

The different methods to compute the safety stock are evaluated by its
direct effects on stock control by means of tradeoff curves (Gardner, 1990;
Syntetos et al., 2015). These curves allow to compare different methods in
a realistic fashion, given that from a practitioner view, they are the most
meaningful. The three variables considered in the curves are the achieved
cycle service level, the inventory investment and backorders.

We assume a newsvendor framework (Beutel and Minner, 2012; Lee,
2014). The achieved cycle service level is calculated as the percentage of
times that the real lead time demand falls within the prediction intervals for
a certain SKU, where the prediction interval is the sum of the point forecast
plus the safety stock. Then, the average of that percentage across SKUs is
computed. The inventory investment is the average of the upper bound of
the prediction interval per SKU and across SKUs. Note that the safety stock
depends on the CSL target, and since the point forecast is the same for every
method considered, the main differences found between methods are due to
different safety stocks calculations. Additionally, we calculate the backorders
by summing the units out of the quantile per each SKU on the hold out sam-
ple and then calculating the average of these sums across SKUs. Note that,
as we do not have any information available about both, the backorder cost
and holding cost per SKU, performance metrics as backorders and inventory
investment are function of physical units.
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4.2.2. Tick loss function

Although tradeoff curves provide rich information, a potential problem
with such curves is that they may be difficult to interpret when comparing
several methods. Basically, the practitioner needs to handle three metrics
at the same time, that is, achieved cycle service level, inventory investment
and backorders. It may occur that, when comparing different methods, some
of them may provide a good service level, although at the expense of higher
inventory investments. Therefore, unless a method is better at the three
metrics, the choice of the “best” method is not totally clear.

A possible solution is to utilize the tick loss function given its economic
interpretation. In this sense, the tick loss function averages the assymetric
cost of underforecasting and overforecasting, resulting in only one metric.
Therefore, the “best” method will be the one with the lowest loss value. To
complete the information provided by tradeoff curves and to facilitate the
comparison between methods, we will include another graph with the tick
loss value obtained for each method.

4.3. Implementation details and benchmark models

In this work the target cycle service levels are set to: 85%, 90%, 95% and
99%. The data is split in four parts of equal length. The first part (25% of
the data) is used to compute both the exponential smoothing parameter and
its initial value, so as to determine the point demand forecast. The second
part is employed to estimate the KDE, CGARCH and Näıve (Defined below)
methods for estimating the safety stock. The third part is utilized to calculate
the weights in (11). Finally, the last part (25% of the data) is devoted to
test the quantile forecasts of the considered methods. Such a sample size
distribution is employed for both simulation and real data experiments.

Regarding estimation algorithms, for the KDE, we use the Epanechnikov
kernel smoothing function and the bandwidth is set to the appropriate value
that is optimal for normal distribution densities (Bowman and Azzalini,
1997). Estimation of CGARCH(1,1) parameters are based on the econo-
metric toolbox from MATLAB, selecting an interior-point optimization al-
gorithm.

Furthermore, two benchmarks are considered. Firstly, a näıve benchmark
to assess the KDE and CGARCH, based on the constant empirical lead time
standard deviation calculated on the hold-in sample and (1). Secondly, we
also benchmark the proposed combination by implementing a combination
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of KDE and CGARCH intervals, where each is assigned a weight of 50 %,
instead of the optimal set (w∗1, w

∗
2).

5. Simulation results.

To evaluate the performance of the combination scheme proposed, several
Monte Carlo simulations with 100 repetitions were carried out, where the
length of each simulation was set to 500 observations. The simulation exercise
will deal with the common situation where the point forecasting method
does not precisely follow the demand generating process. That experiment
has been implemented by simulating an AR(1) demand process, whereas
the point forecasting method is an exponential smoothing. Such a demand
process has been chosen because it is frequently found in empirical datasets.
For instance, Ali et al. (2012) find AR(1) to be the most frequent process
(30.3 % of the series). Similarly, Trapero et al. (2014) find AR(1) to describe
56.25 % of the series in their dataset.

Let Dt be the demand at time t that follows an AR(1) process:

Dt = µ+ φDt−1 + εt, (15)

where µ is a positive constant, φ is the autoregressive parameter and εt is i.i.d.
normally distributed with zero mean and variance σ2. The values chosen for
the simulation were µ = 100, σ2 = 50, and φ is allowed to vary between -0.9
and 0.9.

Figure 1 shows the tick loss function on the hold-out sample averaged
across repetitions (100) and then, across quantiles (85%, 90%, 95% and
99%) against the autoregressive parameter φ. The lead times analyzed in
this simulation were 1 and 4 weeks, plotted in the upper and lower panel,
respectively. Considering the upper panel with a lead time of 1 week, the
parametric CGARCH approach provides a lower average tick loss for every
φ parameter, closely followed by the proposed Optimal Quantile Combina-
tion (OQC). That indicates some autocorrelation on the forecasting errors
variability, which may be caused by the fact that the forecasting model did
not exactly match with the demand generating process. Since the error term
in (15) is normally distributed, non-parametric KDE achieves a higher loss.
The 50%-50% combination approach lies between the loss obtained by KDE
and CGARCH, very similar to the Näıve. Interestingly, the average tick loss
increases for negative values of φ. Regarding the lead time of 4 weeks, the
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Figure 1: Upper panel: average tick loss for a lead time 1 and normal distribution. Lower
panel: average tick loss for a lead time 4 and normal distribution.

combination approach OQC and CGARCH yield the lowest loss, where OQC
slightly improves CGARCH for higher values of positive φ.

Figure 2 depicts the average tick loss against φ when the error distribu-
tion in demand is not normally distributed. In this case, we have added to
expression (15) a log-normal noise with mean 0.9 and variance 1.4. Again,
upper panel corresponds to lead time 1 and lower panel to lead time 4. Con-
sidering the upper panel, since the error is not normal, KDE can capture
such deviation from normality due to its non-parametric nature providing
a low value of tick loss only improved by OQC for most of φ values. For
a lead time 4 (lower panel), as a consequence of the central limit theorem,
the non-normality is mitigated and CGARCH outperforms Kernel, although
again, the combination proposed yields the best results.

Figures 1 and 2 show the overall results. Nonetheless, to see the per-
formance of the proposed combination scheme more disaggregated, we can
choose a particular value of φ, and plot the tradeoff curves and the tick loss
value for each quantile of interest. Figure 3 shows the trade-off curves for
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Figure 2: Upper plot: average tick loss values for a lead time 1 and log-normal distribution.
Lower plot: average tick loss values for a lead time 4 and log-normal distribution. The
marked region is expanded in figures 3 and 4 and table 1.
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Table 1: Tick loss values corresponding to Figure 4. Minimal values are highlighted in
bold.

Method
CSL

0.85 0.95 0.9 0.99
KDE 11.65 9.29 6.31 2.93
CGARCH 10.15 7.68 4.70 1.51
50%-50% 10.56 8.0 4.94 1.75
OQC 10.08 7.56 4.63 1.62
Näıve 12.83 10.21 6.68 2.61

φ = 0.7, lead time 4 and log-normal distribution, that corresponds to the
points included in the marked rectangle of Figure 2. The tradeoff curves
consist of representing achieved CSL and backorders against inventory in-
vestment. Each curve has four plotting symbols corresponding to the four
CSL targets. The tradeoff curves show how OQC provides good results,
since it almost achieve the target CSL but a lower inventory investment.
However, it is difficult to indicate which method is the “best”, since OQC
provides lower inventory investment, although it does not achieve the target
cycle service levels and provides a higher level of backorders with regards to
CGARCH. An additional plot that can help with the interpretation is shown
in Figure 4. In that figure, the value of the tick loss function is calculated
for each CSL and method. For that particular case, we can see that KDE,
Näıve, 50%-50% obtain higher tick loss values, whereas OQC obtains slightly
lower values than CGARCH for most of CSL targets (0.85, 0.9, 0.95). For
the quantile 0.99, CGARCH provided the lowest loss, followed by OQC. The
tick loss values of such a figure are also found in Table 1, where the minimal
values for each CSL are highlighted in bold.

6. Experimental results. A case study.

6.1. Dataset

The dataset employed in this paper has been previously used by Barrow
and Kourentzes (2016) and originates from a major UK fast moving con-
sumer goods manufacturer specialized in the production of household and
personal care products. In total 229 products with 173 weekly observations
per product are available. According to Barrow and Kourentzes (2016) there
are no seasonal SKUs and only a minority (21 %) exhibits a small trend.
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Figure 3: Tradeoff curves for AR(1) with φ = 0.7, lead time 4 and lognormal distribution.
The target cycle service levels are 85%, 90%, 95% and 99%
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Figure 4: Tick loss values for the same case analyzed in Figure 3. The target cycle service
levels are 85%, 90%, 95% and 99%
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We use single exponential smoothing to produce the point forecasts for
all SKUs, even if some exhibit trend. Although exponential smoothing may
not always be the best option to produce point forecasts, this will allow us
to assess the performance and robustness of the proposed combination ap-
proach when the forecasting model is not the underlying data generating
process. Note that this is a common problem both in research and practice.
The true process is typically unknown and its identification is not trivial.
Furthermore, in an industrial context it is commonplace to use a simple uni-
variate statistical forecasts that are subsequently adjusted judgmentally to
encompass additional information (Fildes et al., 2009), or promoted sales
(Trapero et al., 2013), to fit better the historical sales, since company fore-
casting support systems are often not equipped with an adequate repertoire
of forecasting models.

6.2. Results

We have carried out two simulations with the real demand data for lead
times equal to 1 and 4 weeks. In doing so, this experiment will also shed
some light on the influence of the lead time over the combination approach.
In order to compare the different inventory investments and backorders across
SKUs, sales have been normalized with respect to the in-sample mean.

Figure 5 shows the tradeoff curves of the manufacturer data for a lead time
of 1 week. Regarding the achieved CSL, all the methods underachieve the
target CSL. However, for quantiles 95% and 99%, OQC outperforms the rest
of methods. Potential deviations of normality in the error distribution, which
are common for low lead times, make Näıve and CGARCH underachieve the
highest target CSL (99%). KDE slightly improves it, but at the expense
of higher inventory investments. Focusing on backorders, the combination
approach OQC achieves the best results with the lowest level of backorders
and for CSL targets 85%, 90% and 95% with the lowest inventory investment
too.

Figure 6 shows the tick loss value obtained from each technique. This
graph shows the benefits of OQC with respect to the rest of methods for
every CSL target.

Figure 7 shows the trade-off curves of the manufacturer data for a lead
time of 4 weeks. In terms of achieved CSL, CGARCH provides the best
results with the lower deviation from the target. KDE and Näıve yield poor
results. Among the combination approaches, OQC and 50%-50% achieves
a similar CSL, although OQC at a substantial lower inventory investment.
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Figure 5: Tradeoff curves for the manufacturer data assuming a lead time equal to 1 week.
The cycle service level target are 85%, 90%, 95% and 99%
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Figure 6: Tick loss values for each CSL target obtained from the manufacturer data
assuming a lead time equal to 1 week.

Regarding backorders, OQC outperforms the rest of techniques for all CSL
targets, except 99% in favor of CGARCH. These results can be summarized
by the tick loss function, whose values are shown in Figure 8. That figure
shows that OQC approach reduces the loss for most of CST targets, except
for CSL=99%, where CGARCH is shown to be better. Note that these
experimental results coincide with those obtained by simulated data in the
previous section. In general terms, OQC shows a superior performance with
respect to the other methods for every quantile when lead time is 1. For
higher lead times, that improvement remains except for the 99% quantile,
where CGARCH works better.

A superior performance of KDE for lower lead times is the result of nor-
mality deviations on the forecast errors. In the same sense, when CGARCH
provides good results for higher lead times is as a consequence of forecast
errors conditional heterocedasticity. To provide evidence of these we calcu-
lated the Engle test for residual heteroscedasticity and the Jarque-Bera test
for Gaussian distribution, for lead times ranging from 1 to 4 weeks. These
results are shown in Table 2. The second column in that table shows the
percentage of SKUs that reject the null hypothesis of no conditional het-
eroscedasticity. The third columns shows the percentage of SKUs that reject
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Figure 7: Tradeoff curves for the manufacturer data assuming a lead time equal to 4 weeks.
The target cycle service level are 85%, 90%, 95% and 99%
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Figure 8: Tick loss values for each target CSL obtained from the manufacturer data
assuming a lead time equal to 4 weeks.

Table 2: Engle test for residual heteroscedasticity applied to our dataset assuming different
lead times

Lead time Engle test(% SKUs) Jarque-Bera test(% SKUs)
1 30.2 85.6
2 91.7 81.2
3 98.2 74.6
4 99.1 69.9

the null hypothesis of Gaussian distribution. To compute those statistical
tests, we have employed the forecasting errors, where the sample part devoted
to optimize the point forecasting method has been removed.

That table shows the relationship that exists between the lead time and
both, the conditional heterocedasticity and normality deviations on the fore-
casting errors. In summary, as the lead time increases, the percentage of
SKUs that do not pass the null hypothesis of no conditional heteroscedas-
ticity is higher. In the same sense, for higher lead times, the percentage of
SKUs that reject the null hypothesis of normality is lower due to the central
limit theorem.
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7. Conclusions

Supply chain management requires forecasts of the demand mean and
variance. In particular, safety stocks are based on the estimation of quantiles
of the demand forecast error distribution. Such quantiles are related to the
cycle service levels that are important for achieving company goals. We
propose to combine different empirical approaches to determine the safety
stock in a more robust fashion with respect to traditional iid assumptions.
The main idea is to combine alternative empirical approaches, which can
be parametric and non-parametric, each with its own merits, with optimal
weights. These weights are optimal in the sense that they minimize the
tick loss function (Giacomini and Komunjer, 2005). To the best of authors’
knowledge, this is the first time quantile combination has been applied to
compute the safety stock. The results show that the combination reduces
the loss function for the different CSL targets. If the lead time is high,
such a combination still provides promising results for most of the quantiles,
although for extreme quantiles as 99%, CGARCH as a single method is better
suited. This conclusion is supported by both simulated and real data.

As a byproduct, the use of the tick loss function provides another assess-
ment tool to complement the tradeoff curves, which are difficult to interpret
when handling different methods and any of them show a clear superiority.

The results have direct implications for practice. Even when the demand
point forecasts are acceptably accurate, the iid assumptions in the safety
stock calculation can harm the inventory performance. Although for certain
forecasting models there are analytical expressions for the variance over lead
time, again retaining the same assumptions, these are typically not consid-
ered in practice and are furthermore invalidated when the final forecasts are
adjusted to include managerial judgment (Trapero et al., 2013). This creates
a problem for practice, as the calculated safety stocks have several weak-
nesses, with apparent effects on inventory. On the other hand, using empir-
ical approaches overcomes these limitations, as the assumptions are relaxed
and the considered error distribution originates from the final forecast, which
can include any further adjustments or be based on any model/method, irre-
spective of the existence of analytical expressions. The proposed combination
improves the empirical approaches to achieve superior inventory performance.
Crucially, this is done in a way that it is easy to implement with existing
forecasting systems, since the only required input is the historical forecast
errors. The proposed approach can benefit existing forecasting systems and
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forecasting methods directly. A further advantage of the proposed approach
that is relevant to practice is that it is fully automatic and data driven, and
therefore implementable in the context of supply chain forecasting, where it
is typical to require predictions for a very large number of SKUs.

This work has presented the combination scheme on the basis of two quan-
tile forecasts, KDE and CGARCH, however, the inclusion of more techniques
in the combination is straightforward.

According to Giacomini and Komunjer (2005), little empirical work has
been done in the context of combining conditional quantile forecasting. This
work presents a first attempt to show the merits of such a combination in
a supply chain context to determine the safety stocks. However, further
research should verify these findings in other industrial datasets, for example,
on slow-moving items, where bootstrapping non-parametric methods have
been successfully applied (Willemain et al., 2004). Furthermore, this work
was limited to a newsvendor framework, however, other stock control policies
of the order-up-to level type should also be investigated, as well as, the impact
of the method to determine the safety stock on the demand variability of
other upwards supply chain members through the bullwhip effect.
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Trapero, J. R., Garćıa, F. P., Kourentzes, N., 2014. Impact of Demand Na-
ture on the Bullwhip Effect. Bridging the Gap between Theoretical and
Empirical Research. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
1127–1137.

Trapero, J. R., Pedregal, D. J., Fildes, R., Kourentzes, N., 2013. Analysis
of judgmental adjustments in the presence of promotions. International
Journal of Forecasting 29 (2), 234 – 243.

Wecker, W. E., January 1979. The variance of cumulative demand forecasts.
Working Paper. Graduate School of Business. University of Chicaco 5.

Willemain, T. R., Smart, C. N., Schwarz, H. F., 2004. A new approach to
forecasting intermittent demand for service parts inventories. International
Journal of Forecasting 20 (3), 375 – 387.

Williams, W. H., Goodman, M. L., 1971. A simple method for the construc-
tion of empirical confidence limits for economic forecasts. Journal of the
American Statistical Association 66 (336), 752–754.

Zhang, G. P., Kline, D. M., 2007. Quarterly time-series forecasting with
neural networks. IEEE Trans. Neural Netw. 18 (6), 1800–1814–.

29


