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Abstract. In the study of map projections it is relatively simple to obtain meaningful 

estimators of distortion for a small area. The definition and especially evaluation of 

global distortion measures (i.e. estimators representing the distortion worldwide or in a 

continent-like area) are undoubtedly more troublesome. Therefore it is relatively 

common to find that recommendations for the parameters to use in a particular map 

projection, be it devised for a continent or a country, are only based on simple rules (like 

the one-sixth rule of thumb for conic projections) with no possibility of further 

improvement in terms of resulting distortions and sometimes even with no knowledge at 

all of the size of these distortions. While the choice of map defining parameters is 

normally made for reasons other than distortion minimization, such as ease of use (e.g. 

integer or half-integer numbers may be preferable), preservation of conventional or 

traditional definitions, uniformity of parameters between neighboring regions, etc., it is 

always worthwhile to know the optimal set of parameters in terms of minimal distortion. 

Then the cartographer may mindfully deviate from it, documenting the difference in 

defining parameters as well as in resulting distortions. The present research provides a 
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means to do so by extending a related work presented in a previous contribution where 

the evaluation and optimization of distortions were studied for a single map projection 

and two areas of interest only. To this end, a new tool has been developed and it is now 

presented. It is open to the use by the journal readers and permits to evaluate several 

measures of distortion for the most common conformal and equal-area projections 

within the geographic boundaries of interest defined by the user. Also embedded in the 

tool and transparent to the user, global optimization techniques operating on Fibonacci 

grids permit the optimization of parameters for the particular map projection and area of 

interest under two possible criteria: minimization of typical distortion or minimization of 

extreme distortions. These tool and techniques are applied to several official projections 

in order to analyze their original performances and propose new parameters that 

significantly improve the resulting distortions, while leaving room for the reader to easily 

evaluate and optimize for the lowest distortions these projections within their regions of 

interest. 

 

Author keywords: Map projections; distortion; global optimization; Fibonacci grids. 

 

 

Introduction 

Leonardo Pisano, alias Fibonacci, presented in the early 13th century his famous 

sequence 1, 1, 2, 3, 5, 8, 13..., which over the centuries has been shown to appear in 

many disparate fields in nature, from sunflowers to hurricanes or galaxies (see e.g. 

Koshy 2001). The ratio of two consecutive numbers in the Fibonacci sequence 
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approaches monotonically the number known as golden ratio, which serves to construct 

a Fibonacci spiral and, with several turns of the spiral, a Fibonacci grid, which may be 

used to homogeneously cover a geographic area of interest (see e.g. González 2010 or 

Keinert et al. 2015). The resulting sampling is much more efficient than the standard 

latitude-longitude sampling, so that an extremely smaller sample (i.e. being the number 

of test points several orders of magnitude less) may yield results of better accuracy, 

thus enabling quick evaluations of interest for numerical modeling (Swinbank and 

Purser 2006). This explains the remarkable growth in its usage in geosciences that has 

been seen in recent years. In the field of map projections, the author has recently 

presented an application of Fibonacci grids combined with global optimization 

techniques for the evaluation and optimization of the Lambert Conformal Conic 

projection distortions (Baselga 2018). The complexity of the equation that needs to be 

numerically integrated over an asymmetric region (due to meridian convergence) 

explains the use of Fibonacci grids, while heuristic optimization techniques are required 

due to the complexity inherent to obtaining the optimum of several parameters that 

belong to the equation that is being integrated. 

 

A map projection is a functional relationship bringing a point on the earth's reference 

surface (be it a ellipsoid or a sphere) to a point on the plane, and vice versa. Due to the 

intrinsic differences between these two surfaces (one with curvature, the other without), 

the appearance of some distortions are inevitable. While the local study of local 

measures of distortion is straightforward by computing, for instance, the scale distortion 

factor (ratio between a differential length on the plane and the corresponding length on 
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the original reference surface) or the Tissot's indicatrix ellipse (Snyder 1987), global 

distortion measures that meaningfully characterize the behavior of map projection within 

some prescribed boundaries are not so obvious and broadly accepted. Some of the 

approaches to characterize this general distortion were proposed more than a century 

ago, such as the integral evaluations of Airy's and Jordan's measures (see Airy 1861 

and Jordan 1896, respectively), or several decades ago, Gilbert's and Peters's 

estimators (see Gilbert 1974 and Peters 1975, respectively; or Canters 2002 for a 

general presentation). The estimator called typical distortion was used in Baselga 

(2018) for the purpose of evaluation and optimization of the Lambert Conformal Conic 

projection in two areas of interest (Europe and Spain). It is defined as the mean squared 

deviation from unity (which is the optimal value) of the scale distortion factor in the 

mapping domain. Due to its resemblance to a well-known estimator broadly used in 

statistics – the standard deviation – it is easy to understand and has an easy 

interpretation: it represents the typical dispersion in the sample from the optimal value 

(one). Nevertheless, a detailed analysis of the distortions introduced by a map 

projection should not be based on the study of a single estimator only, but rather on the 

careful inspection of different distortion measures. 

 

This research presents and uses a tool, which is available to the journal readers in the 

form of a standalone application, for the analysis not only of the Lambert Conformal 

Conic projection but also of the other most commonly used conformal projection, the 

Transverse Mercator projection, as well as the most commonly used equal-area 
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projections, namely the Albers Conic Equal-Area projection and the Lambert Azimuthal 

Equal-Area projection. 

 

Among the existing conformal projections, the Lambert Conformal Conic projection is 

especially well-suited for mid latitudes and regions with east-to-west predominant 

extension (Snyder 1987, Kopp and Kennedy 2000, Meyer 2010). It can be designed to 

have one or, as it is more common, two standard parallels. It is normally used for small 

scales, that is smaller or equal to 1:500,000, like the case of the 1:500,000-scale State 

base maps for the 48 contiguous United States (Snyder 1987), or in the commandment 

by the European Commission directive for spatial information INSPIRE D2.8.I.1 (2014) 

to use this projection "for conformal pan-European mapping at scales smaller than or 

equal to 1:500,000". The Lambert Conformal Conic projection is also used for States 

with large east-west extent as defined in the State Plane Coordinate Systems of 1983 

(Stem 1989). 

 

By contrast, the Transverse Mercator projection is the best choice for conformal 

mapping of areas having a south-to-north predominant extension (Meyer 2010). Scale 

distortion is only slightly affected by factors other than the distance from the central 

meridian, which can be held true to scale or mapped at a reduced scale so that the 

mean scale of the entire area of interest is improved (Snyder 1987). Being normally 

used for large scales (usually larger than 1:500,000), it is, for example, the official 

projection for many States as defined in the State Plane Coordinate Systems of 1983 



6 

 

(Stem 1989) and the European INSPIRE directive commands its use for "conformal 

pan-European mapping at scales larger than 1:500,000" INSPIRE D2.8.I.1 (2014). 

 

Referring now to the equal-area projections, it is worth remembering that they generally 

preserve neither angles nor scales, but the distortions introduced are compensated in a 

way that areas are effectively preserved. The two equal-area projections most widely 

used are the Albers Conic Equal-Area projection (Albers projection, for short) and the 

Lambert Azimuthal Equal-Area projection. To date, the preference seems to have been 

a matter of taste or custom, for instance, Albers projection in the U.S. (e.g. the National 

Atlas, Snyder 1987) and Lambert Azimuthal Equal-Area in Europe ("for pan-European 

spatial analysis and reporting, where true area representation is required", INSPIRE 

2014). The tool presented will be used to evaluate and compare the respective 

distortions introduced for some areas of interest, and optimize their defining parameters 

so that distortion is minimized. 

 

Choosing a set of defining parameters for a particular map projection and particular 

area-of-use that minimizes one of the above-mentioned general measures can produce 

unacceptably high distortion values for some particular places, so the tool offers the 

additional possibility of favoring the control of extreme distortions rather than the 

general distortion by means of the implementation of the estimator presented in the 

following section. The tool and techniques will be finally applied to several regions and 

official projections in order to analyze their original performances and the corresponding 

improvements after optimization of their defining parameters. 
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Materials and methods 

Distortion measures 

Given a pair of infinitesimally close points a scale distortion factor k1 can be defined as 

the ratio between the projected distance on the grid ds' and the original distance ds on 

the ellipsoid of reference, and can be computed with the general expression 

𝑘1 =
𝑑𝑠′

𝑑𝑠
=
√(𝑥𝜑2 + 𝑦𝜑2)𝑑𝜑2+(𝑥𝜆2 + 𝑦𝜆2)𝑑𝜆2 + 2(𝑥𝜑𝑥𝜆 + 𝑦𝜑𝑦𝜆)𝑑𝜑𝑑𝜆

√𝜌2𝑑𝜑2 + 𝜈2𝑐𝑜𝑠2𝜑𝑑𝜆2
 

(1) 

where x, x, y, y are the partial derivatives of the map projection defining functions x 

and y with respect to the geodesic coordinates latitude  and longitude ,  and  are 

the principal radii of curvature of the ellipsoid in the meridian and the prime vertical, 

respectively, and d and d are the differential coordinate increments from the first point 

to the second point (Baselga 2014, 2018). This scale distortion factor has a point-like or 

local meaning (i.e. it is valid only for infinitesimal lengths, say only a few meters on the 

earth surface).  

 

Scale distortions along the meridian and along the parallel are customary denoted by h 

and k, respectively (Snyder 1987), so that substituting in Eq. (1) zero for d, in the case 

of h, and zero for d, in the case of k, one obtains respectively 
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ℎ =
√𝑥𝜑2 + 𝑦𝜑2


 

(2) 

 

 

𝑘 =
√𝑥2 + 𝑦2

𝑐𝑜𝑠
 

(3) 

 

In conformal projections h and k are equal, since the scale distortion factor, k1 in Eq. (1), 

is only point-dependent and not direction-dependent (Snyder 1987, Onursal and Kizilsu 

1999). The expressions for this scale distortion factor in the Lambert Conformal Conic 

and the Transverse Mercator projections with the ellipsoid as reference surface are 

readily found in the literature (e.g. Snyder 1987, Annoni et al. 2003). 

 

For equal-area projections h and k are not equal but inverse to each other, h = 1/k 

(Snyder 1987). Whilst for the case of the Albers Conic Equal-Area projection with the 

ellipsoid as reference surface expressions for h and k can be found e.g. in Snyder 

(1987), they are not easily found in the literature for the case of Lambert Azimuthal 

Equal-Area projection with ellipsoidal surface. The expressions to compute k from Eq. 

(3) for this projection (h being simply obtained as h = 1/k) are therefore given now. 
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Starting from the map projection defining functions x and y given in Annoni et al. (2003, 

p.125), which coincide with those in Snyder (1987, p.187) except for a slight change in 

notation, one may obtain the following partial derivatives with respect to longitude : 

𝑥𝜆 = 𝐵𝜆𝐷𝑐𝑜𝑠𝛽 sin(𝜆 − 𝜆0) + 𝐵𝐷𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝜆 − 𝜆0) 

(4) 

𝑦𝜆 =
𝐵𝜆
𝐷
[𝑐𝑜𝑠𝛽0𝑠𝑖𝑛𝛽 − 𝑠𝑖𝑛𝛽0𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝜆 − 𝜆0)] +

𝐵

𝐷
𝑠𝑖𝑛𝛽0𝑐𝑜𝑠𝛽𝑠𝑖𝑛(𝜆 − 𝜆0) 

(5) 

with 

𝐵𝜆 =
𝑅𝑞

√2
𝑐𝑜𝑠𝛽0𝑐𝑜𝑠𝛽𝑠𝑖𝑛(𝜆 − 𝜆0)[1 + 𝑠𝑖𝑛𝛽0𝑠𝑖𝑛𝛽 + 𝑐𝑜𝑠𝛽0𝑐𝑜𝑠𝛽𝑐𝑜𝑠(𝜆 − 𝜆0)]

−
3
2 

(6) 

 

using all the auxiliary variables Rq, , etc. as defined in Annoni et al. (2003 p.124-125) 

or Snyder (1987, p.187). As a note of caution here, it has to be noted that the square 

root of 2 in the numerator of B given in Snyder (1987, p.187) is correct whereas the 2 in 

the numerator of B given in Annoni et al. (2003 p.125) is not. Eqs. (4)-(5) into Eq. (3) 

permit to obtain the scale distortions along the parallel (k) and then along the meridian 

(h = 1/k). 

 

To characterize the overall scale distortion within a desired area of interest it was 

proposed in Baselga (2018) for the case of conformal projections the use of the typical 

distortion k1 computed for a sufficiently large representative sample of n points as  
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Δ𝑘1 = √
1

𝑛
∑(𝑘1𝑖 − 1)

2
𝑛

𝑖=1

 

(7) 

 

In the case of equal-area map projections, for which the scale distortion coefficient k1 

takes on different values along the meridian and the parallel, the estimator definition can 

be modified as 

 

Δ𝑘1 = √
1

2𝑛
∑[(ℎ𝑖 − 1)2 + (𝑘𝑖 − 1)2]

𝑛

𝑖=1

 

(8) 

This expression equals the definition given in Eq. (7) if used for a conformal projection 

(since h equals k for every point). 

 

Similar to the estimator based on squared differences with respect to one, one could 

study the arithmetic average of the scale distortion coefficient k1 (or of h and k), 𝑘1̅̅ ̅. This 

measure yields, however, only information about the central value of the scale distortion 

factor (the closer to one the better) but no information about its dispersion. Other 

distortion measures, e.g. Gilbert's and Peter's estimators, EG and EP, respectively, may 

also be useful to inform about the size of typical errors (see Gilbert 1974, Peters 1975, 

Canters 2002 or Baselga 2018 for their definition and use) and will be used in the tool 

and subsequent examples. Analogously to the modification from Eq. (7) to Eq. (8) it is 
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suggested that in the case of equal-area projections, h and k are accounted for in the 

computation of the corresponding measures 𝑘1̅̅ ̅,  EG and EP.  

 

Finally, it can also be useful to know the most extreme distortions within the area of 

interest, k1max and k1min and require them to be minimum with respect to one. For this 

purpose, a suitable objective function to be minimized over the representative sample of 

n points by means of a global optimization method can be defined as 

extreme_k1 = max
n

{abs(k1max − 1), abs(1 − k1min)} 

(9) 

 

Global optimization of defining parameters 

When a map projection is to be used for a particular area of interest, some of its 

defining parameters can be optimized so that the resulting distortions are optimal in a 

sense. It is well-known, for instance, the one-sixth rule of thumb for conic projections 

consisting in the definition of standard parallels at 1/6th of the maximum and minimum 

latitudes of interest (e.g. Kopp and Kennedy 2000, Fenna, 2007). 

 

Minimization of the typical distortion estimator – Eq. (8) – or, alternatively, minimization 

of extreme distortions – Eq. (9) – both for the area of interest by means of a suitable 

global optimization method is proposed now.  

 

Among the most successful global optimization methods, one can find the Simulated 

Annealing method, which emulates the process of self-construction of crystalline 
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networks observed in nature. Without delving now into its technicalities it can simply be 

said that it consists in an ordered heuristic trial-and-error search conducted within the 

desired parameter domain that, if driven properly, converges to the global optimum of 

the function being minimized. The reader is referred to the presentation of the method 

given in the general literature (e.g. Pardalos and Romeijn 2002) or some particular 

applications to surveying problems presented by the author (e.g. Baselga 2007, 2011, 

where a Matlab code for implementing the Simulated Annealing method for the case at 

hand is given in the latter). 

 

Other global optimization methods, such as Genetic Algorithms (e.g. Baselga 2007), 

Particle Swarm Optimization (e.g. Singh et al. 2016), the Shuffled Frog-leaping 

Algorithm (e.g. Yetkin and Berber 2013) or even some stochastic gradient descent 

method (e.g. Konečný et al. 2017) due to the smooth nature of the objective function, 

could have been equally used to successfully solve for the optimal parameters of the 

particular projection within the prescribed boundaries. As always when confronted with 

an heuristic method to obtain the global optimum for a problem, the user should check 

the necessary, though not sufficient, condition that successive executions of the 

algorithm yield the same result (possibly with negligible discrepancies). This can easily 

be checked with the tool described in the following section. 

 

TestGrids tool 

TestGrids has been developed by the author in Matlab using its guide tool for the design 

of the Graphical User Interface (GUI), which enables the redistribution to end users who 
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do not have MATLAB installed. It can be downloaded from the author's personal web 

page http://personales.upv.es/serbamo/TestGrids/index.htm (password 

"JSurvEng2018"). 

Its layout favors comparisons at a glance since all distortion measures for the different 

map projections, evaluated both for the official defining parameters as well as for the 

optimized ones, can be displayed simultaneously, as can be seen in Fig. 1. 

The user can define the area of interest (maximum and minimum latitude and 

longitude), some special properties including the parameters of the global optimization 

method (the default values may be adequate for the majority of situations) and the total 

number of points – referred to the entire Earth – to construct the Fibonacci lattice (the 

default value is here appropriate for large, continent-like areas, smaller areas possibly 

requiring a larger number of points). The user can also define the map projection 

defining parameters: latitude of standard parallels, latitude and longitude of origin or 

central meridian, and central meridian scale factor, where applicable. By clicking on 

"Evaluate" the application computes the distortion measures for the corresponding 

projection and area of interest. By clicking on "Optimize" the best map projection 

defining parameters are computed in terms of minimum typical distortion or minimum 

extreme distortions (this can also be selected by the user), as well as the resulting 

distortion measures for the projection and area of interest. 

 

 

Examples of application 

Lambert Conformal Conic projection 
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Europe 

Baselga (2018) computed the typical distortion for the Lambert Conformal Conic 

projection with the standard parallels and geographic boundaries for Europe defined in 

Annoni et al. (2003), later adopted by the INSPIRE directive as the official projection "for 

conformal pan-European mapping at scales smaller than or equal to 1:500,000" 

(INSPIRE D2.8.I.1 2014).  This projection and corresponding area of use are referred to 

as EPSG3034 in the International Association of Oil & Gas Producers (OGP) database, 

which has become a standard for the definition of coordinate reference systems 

(International Organization for Standardization, 2007). 

 

The values for the standard parallels were optimized so that the typical distortion for the 

area of interest was reduced 10% with respect to the use of official standard parallels. 

This was at the cost, however, of increasing the extreme distortions appearing in the 

area. Now the question is revisited so that this projection is also optimized in the sense 

of minimum extreme values within the area of interest, Eq. (9). 

 

Table 1 shows the distortion measures for three definitions of the standard parallels: the 

official according to INSPIRE D2.8.I.1 (2014), the best choice for minimum typical 

distortion and the best for minimum extreme distortions, computed all of them by means 

of TestGrids using its default values for the total number of points in the Fibonacci 

lattice and parameters in the Simulated Annealing method. Minimum numerical 

discrepancies of negligible significance could be found by changing some of these 

parameters (for instance, increasing the number of points in the Fibonacci lattice to 
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obtain a much more accurate result at the cost of increasing the computing time). 

Unless explicitly stated it is assumed that all results shown in the paper have been 

obtained by TestGrids with its default parameters. 

 

The best choice of standard parallel latitudes for the case of Europe seems not evident 

as one could make a case for each of the three options: the solution with minimum 

typical distortion in the area of interest is suboptimal in the sense that it has a maximum 

distortion value that is higher than the other two, being this value (67567 ppm) possibly 

too large for being acceptable; by contrast, the solution with minimum extreme 

distortions may be considered inacceptable in terms of both the typical and average 

distortion estimators; finally, the standard parallels according to INSPIRE D2.8.I.1 

(2014) may not be optimal in minimizing a certain distortion measure but they may 

represent a certain compromise between the other two solutions. 

Contrary to this case, the following examples show some applications where the best 

choice is unmistakably clear. In some cases this will lead us to propose a change in the 

currently used map defining parameters. 

 

Australia 

Now the attention is turned to the Geoscience Australia Standard National Scale 

Lambert Projection, EPSG17362, which is used to depict onshore territories in a single 

representation. The resulting distortion measures for the prescribed standard parallels 

and area of use are shown in Table 2 along with the computed optimum values and 
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resulting measures for the optimal solutions in terms of minimum typical distortion and 

minimum extreme distortions. 

 

As it can be seen the standard parallels used in EPSG17362 are already relatively well 

optimized for the entire area of use in the sense of low typical distortion. However, it is 

also true that a change in the defining standard parallels to those shown in the 

penultimate row of the table will not only produce considerably smaller maximum 

distortions (some 22000 ppm instead of some 32000 ppm, i.e. a 69% reduction) but 

also a typical distortion that is only a bit higher that the best possible one (some 1500 

ppm instead of some 1300 ppm, i.e. a 15% increase). One could propose, though this 

would not be indisputable, a change in the definition of standard parallel latitudes, so 

that, rounding to the next integer, upper = 15º S and lower = 39º S be used, leading to 

the distortion measures shown in the last row of Table 2, which can be regarded easier 

to use and equivalent in practice to those displayed in the previous row. 

 

Conterminous US 

Now the distortion measures for the USA Contiguous Lambert Conformal Conic 

projection, ESRI projection 102004 (ESRI 2013), within the boundaries known as 

CONUS onshore (EPSG1323) are evaluated and the optimal solutions for minimum 

typical distortion and minimum extreme distortions are studied. This projection is used 

for instance in the National Hydropower Map (United States Department of Energy, 

2013). The results of the analysis are shown in Table 3. As it can be seen the 

prescribed standard parallels are optimized neither in the sense of minimum typical 
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distortion (which results in 9132 ppm whereas the optimal solution is 7099 ppm) nor for 

minimum extreme distortions (they reach 25828 ppm compared with only 11950 ppm in 

the optimal solution, which represents a 54% reduction in the maximum distortion). One 

could propose, for instance, that the standard parallel latitudes be changed to those 

minimizing the typical distortion upper = 44.07º N and lower = 29.63º N, since its use 

provides lower typical, average and extreme distortions, as well as lower Gilbert's and 

Peter's estimators than the current values in use. 

 

US State Plane Coordinate Systems 

Each US state has a State Plane Coordinate System (SPCS) for use in surveying and 

mapping (Stem 1989). Although the majority of states use the Transverse Mercator 

projection, some of them, having a large east-to-west extent, use the Lambert 

Conformal Conic projection. After analyzing several of these it has been found that the 

majority of SPCSs are already well optimized either in the sense of minimum extreme 

distortions (e.g. Texas Central) or in the sense of minimum typical distortion (e.g. Texas 

North). However, it may be worth showing now but one example where the currently 

used standard parallel latitudes could be modified for significant distortion reduction. It is 

the case of Nebraska, EPSG2819, whose distortion figures are displayed in Table 4. It 

is worth noting that the area of interest is now of much small extent (non continent-like), 

therefore a larger number of points for the entire Fibonacci lattice was used (5,000,000 

instead of the ten times smaller default value) in order to obtain more accurate results. 

From these results one could propose the adoption of the standard parallels upper = 

42.37º N and lower = 40.63º N, which produces some 50% reduction for both the typical 
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distortion (from 249 ppm to 118 ppm) and extreme distortions (from -341 ppm to -173 

ppm) in the area of interest. 

 

Transverse Mercator projection 

US State Plane Coordinate Systems 

Similarly to the previous example, SPCSs that use the Transverse Mercator projection 

can also be studied. The cases of Florida East and Florida West (EPSG2777 and 

EPSG2778, respectively) are dealt with as illustrative examples. In the case of the 

Transverse Mercator projection, the variables to optimize for the area of interest are 

only the scale factor of the central meridian as well as the central meridian longitude 

(ideally centered in the area). As in the previous example, a large number of points for 

constructing the entire Fibonacci lattice (10 million instead of the smaller default value) 

is used aiming at higher accuracy. In Tables 5 and 6 it can be seen that the SPCSs 

could be optimized especially in terms of their extreme distortions (reaching 165 and 

161 ppm in Florida East and Florida West, respectively). Apart from the use of the 

optimal central longitude for each SPCS, a unique central meridian scale factor for both 

SPCSs (e.g. k0 = 0.999918) could also be used by which the resulting distortions are 

always below 100 ppm and the typical distortion is equal or better than those for the 

current definitions (see last row in both tables). 

 

UTM 

Universal Transverse Mercator (UTM) is a particular case of the Transverse Mercator 

projection where the globe is divided into 60 zones, each spanning six degrees of 
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longitude and having their own central meridian, to which a scale factor k0 = 0.9996 is 

applied. Some easting and northing offsets (the latter only to points in the Southern 

hemisphere), which have no influence on the resulting distortions, are applied to 

coordinates. The projection has a range of use between 80° S and 84° N, thus avoiding 

regions much closer to the poles where distortions would be clearly inacceptable. It is 

the standard projection in many countries and it is used for many applications in 

geosciences (e.g. Soler and Wang 2016, El-Mowafy and Bilbas 2016, Mozas-Calvache 

and Pérez-García 2017, Agüera-Vega et al. 2017). 

 

If the distortion measures are computed for any of these UTM zones (say zone 31 from 

0º E to 6º E) between their limits of use 80° S to 84° N one obtains the values shown in 

Table 7 along with the optimized scale factor (in the sense of both minimum typical 

distortion and minimum extreme values) and their corresponding distortion measures. It 

can be seen that the defining scale factor of the central meridian is mostly optimized in 

the sense of minimum typical distortion (343 ppm as compared with the optimal overall 

value of 330 ppm). Further, after a quick trial-and-error search (changing the maximum 

and minimum longitudes) it is found that the central meridian scale factor k0 = 0.9996 is 

indeed the optimal value in the sense of minimum typical distortion for the case where 

the zones extend not only 3º to both sides of the central meridian but 3º 24' 36". This 

extension beyond the natural definition limits of the UTM zones is not infrequent, as any 

surveyor may know, since projects located in UTM zone borders are solved selecting 

one zone only and computing all points (be they in their natural zone or in the 

neighboring one) in the same UTM zone. 
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Equal-area projections 

Conterminous US 

The Albers Conic Equal-Area projection was used for the National Atlas of the United 

States until its final edition in 2014, although with a spherical reference surface (Snyder 

1987). The US Geological Survey currently uses the version with WGS84 ellipsoid 

(EPSG5072) for the boundaries known as CONUS onshore (EPSG1323). As it can be 

seen in Table 8, the standard parallels are already quite well optimized in a compromise 

between the minimum typical distortion and the minimum extreme distortions. 

 

It could also be studied whether the use of a Lambert Azimuthal Equal-Area projection 

optimized for the area of interest would produce a map with smaller distortions. As it 

turns out, this is not the case for the Conterminous US, as the resulting distortion 

measures (not shown here) do not improve those of the Albers Conic Equal-Area 

projection (Table 8). 

 

Australia 

In a similar fashion, the Australian Albers EPSG3577 projection can be evaluated and 

optimized. As it can be seen in Table 9, the projection is already relatively well 

optimized in the sense of minimum typical distortion. However, if one studies whether 

the use of a Lambert Azimuthal Equal-Area projection is more convenient for depicting 

the area of interest (i.e. if it would produce a map with smaller distortions) now the 
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answer is positive, as it is shown in Table 10. The proposal is now to use the Lambert 

Azimuthal Equal-Area projection with origin latitude 0 = 27.08º S and origin longitude 0 

= 133.27º E for area-preserving representations of Australia onshore (EPSG 2575) 

territories, since it reduces from 13264 to 5014 ppm (62% reduction) the typical 

distortion and from 36801 to 12632 ppm (66% reduction) the maximum distortion value 

with respect to the Australian Albers projection. 

 

Conclusions 

Taking advantage of the Fibonacci lattices' optimality for efficiently sampling functions 

with a geographical distribution, it has been described how general measures for 

distortion could be computed for the most common conformal and equal-area map 

projections within the prescribed areas of interest. These computations have been 

implemented in a tool (TestGrids) open to the use by the journal readers. 

Furthermore, the use of a global optimization method, also incorporated in the tool, 

permits to optimize the map defining parameters in the sense of either minimum typical 

distortion or minimum extreme distortions (up to the user's choice) and compare results 

with those obtained using the standard map projection definitions. 

Without pretending to exhaust all possible cases of application some examples were 

provided for map projections, areas of use and corresponding defining parameters that 

are already relatively well optimized (either in the sense of minimum typical or extreme 

distortion), in some cases, and others whose defining parameters could be clearly 

improved or where even the projection used should be changed to significantly minimize 

the resulting distortions. 
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Starting from these examples and using this tool, the reader is given the possibility of 

further analyses and applications to their cases of interest. 
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Figure captions 

Fig. 1. TestGrids program window.  
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Tables 

Table 1. Upper and lower standard parallel latitudes (u and l) with their corresponding typical distortion (k1), 

average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and k1min), and Gilbert and 

Peters estimators (EG and EP) for Lambert Conformal Conic projection for Europe (area of use: max = 71º, min = 

27º, max = 45º, min = -30º). 

Source 
u  

(º) 

l  

(º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

INSPIRE D2.8.I.1 (2014)  65 35 24687 -9147 43679 -34378 617 11094 

TestGrids, optimizing for typical 

distortion 
61.54 36.06 22434 -503 67567 -24741 496 9515 

TestGrids, optimizing for extreme 

distortions 
65.84 34.02 26565 -13523 38682 -38683 722 11983 

 

 

Table 2. Upper and lower standard parallel latitudes (u and l) with their corresponding typical distortion (k1), 

average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and k1min), and Gilbert and 

Peters estimators (EG and EP) for Geoscience Australia Lambert Conformal Conic projection (area of use: max = -

9.86º, min = -43.7º, max = 153.69º, min = 112.85º). 

Source 
u  

(º) 

l  

(º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

EPSG17362 -18 -36 13339 2219 32903 -12256 175 5485 

TestGrids, optimizing for typical 

distortion 
-16.92 -36.54 13102 -171 31900 -14565 170 5616 

TestGrids, optimizing for extreme 

distortions 
-14.92 -39.08 15151 -7707 22064 -22065 233 6806 

Proposed standard parallels -15 -39 15003 -7407 22402 -21767 228 6740 

 

 

Table 3. Upper and lower standard parallel latitudes (u and l) with their corresponding typical distortion (k1), 

average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and k1min), and Gilbert and 

Peters estimators (EG and EP) for Lambert Conformal Conic projection for Conterminous US (area of use: max = 

49.38º, min = 24.41º, max = -66.91º, min = -124.79º). 

Source 
u  

(º) 

l  

(º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 
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ESRI 102004  45 33 9132 3368 25828 -5460 82 3380 

TestGrids, optimizing for typical 

distortion 
44.07 29.63 7099 -50 17266 -7909 50 3046 

TestGrids, optimizing for extreme 

distortions 
45.95 28.19 8184 -4076 11950 -11951 67 3664 

 

 

Table 4. Upper and lower standard parallel latitudes (u and l) with their corresponding typical distortion (k1), 

average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and k1min), and Gilbert and 

Peters estimators (EG and EP) for Lambert Conformal Conic projection for Nebraska (area of use: max = 43.01º, min 

= 39.99º, max = -95.3º, min = -104.06º). 

Source 
u  

(º) 

l  

(º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

EPSG2819  43 40 248 -226 4 -341 0 113 

TestGrids, optimizing for typical 

distortion 
42.37 40.63 103 0 233 -115 0 44 

TestGrids, optimizing for extreme 

distortions 
42.57 40.44 118 -57 173 -173 0 53 

 

 

Table 5. Scale factor of the central meridian (k0) and central meridian longitude (0) along with the corresponding 

typical distortion (k1), average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and 

k1min), and Gilbert and Peters estimators (EG and EP) for Transverse Mercator projection for Florida East (area of use: 

max = 30.83º, min = 24.41º, max = -79.97º, min = -82.33º). 

Source 
k0  

(ppm) 
0  

 (º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

EPSG2777  0.999941177 -81 56 0 165 -59 0 23 

TestGrids, optimizing for typical 

distortion 
0.99994421 -81.15 50 0 121 -56 0 21 

TestGrids, optimizing for 

extreme distortions 
0.99991186 -81.15 60 -32 88 -88 0 26 

Proposed solution with the same 

scale factor for Florida East and 

Florida West 

0.999918 -81.15 56 -26 94 82 0 25 
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Table 6. Scale factor of the central meridian (k0) and central meridian longitude (0) along with the corresponding 

typical distortion (k1), average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and 

k1min), and Gilbert and Peters estimators (EG and EP) for Transverse Mercator projection for Florida West (area of 

use: max = 29.6º, min = 26.27º, max = -81.13º, min = -83.34º). 

Source 
k0  

(ppm) 
0  

 (º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

EPSG2778  0.999941177 -82 56 -2 161 -59 0 23 

TestGrids, optimizing for typical 

distortion 
0.99995128 -82.24 44 0 101 -49 0 19 

TestGrids, optimizing for 

extreme distortions 
0.99992517 -82.24 51 -26 75 -75 0 23 

Proposed solution with the same 

scale factor for Florida East and 

Florida West 

0.999918 -82.24 55 -33 69 -82 0 24 

 

 

Table 7. Scale factor of the central meridian (k0) and central meridian longitude (0) along with the corresponding 

typical distortion (k1), average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and 

k1min), and Gilbert and Peters estimators (EG and EP) for Universal Transverse Mercator projection, zone 31 (area of 

use: max = 84º, min = -80º, max = 6º, min = 0º). 

Source 
k0  

(ppm) 
0  

 (º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

UTM zone 31  0.999600 3 343 -91 976 -400 0 149 

TestGrids, optimizing for typical 

distortion 
0.999690 3 330 0 1067 -310 0 134 

TestGrids, optimizing for extreme 

distortions 
0.999312 3 502 -379 688 -688 0 229 

 

 

Table 8. Upper and lower standard parallel latitudes (u and l) with their corresponding typical distortion (k1), 

average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and k1min), and Gilbert and 

Peters estimators (EG and EP) for Albers Conic Equal-Area projection for Conterminous US (area of use: max = 

49.38º, min = 24.41º, max = -66.91º, min = -124.79º). 
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Source 
u  

(º) 

l  

(º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

EPSG5072  45.5 29.5 7328 27 14245 -14045 54 3252 

TestGrids, optimizing for typical 

distortion 
44.52 30.1 7083 25 17359 -17062 50 3044 

TestGrids, optimizing for extreme 

distortions 
46.28 28.54 8172 33 12058 -11914 67 3644 

 

 

Table 9. Upper and lower standard parallel latitudes (u and l) with their corresponding typical distortion (k1), 

average, maximum and minimum values of the linear distortion coefficient (k1avg, k1max and k1min), and Gilbert and 

Peters estimators (EG and EP) for Australia Albers Conic Equal-Area projection (area of use: max = -9.86º, min = -

43.7º, max = 153.69º, min = 112.85º). 

Source 
u  

(º) 

l  

(º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

EPSG3577 -18 -36 13264 88 36801 -35495 176 5472 

TestGrids, optimizing for typical 

distortion 
-17.55 -37.06 13049 85 32212 -31207 170 5601 

TestGrids, optimizing for extreme 

distortions 
-15.35 -39.5 15184 115 22501 -22006 231 6773 

 

 

Table 10. Origin latitude and longitude (0 and 0) with their corresponding typical distortion (k1), average, 

maximum and minimum values of the linear distortion coefficient (k1avg, k1max and k1min), and Gilbert and Peters 

estimators (EG and EP) for Australia Lambert Azimuthal Equal-Area projection (area of use: max = -9.86º, min = -

43.7º, max = 153.69º, min = 112.85º). 

Source 
0  

(º) 

0  

(º) 

k1 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

TestGrids, optimizing for typical 

distortion 
-27.08 133.27 5014 13 12632 -12475 25 1978 

TestGrids, optimizing for extreme 

distortions 
-27.94 133.27 5054 13 12426 -12273 26 1994 

 

 


