
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/159208

Floris, I.; Sales Maicas, S.; Calderón García, PA.; Adam, JM. (2019). Measurement
uncertainty of multicore optical fiber sensors used to sense curvature and bending direction.
Measurement. 132:35-46. https://doi.org/10.1016/j.measurement.2018.09.033

https://doi.org/10.1016/j.measurement.2018.09.033

Elsevier



Measurement uncertainty of Multicore Optical Fiber 

sensors used to sense curvature and bending direction 

Ignazio Florisa,b, Salvador Salesa, Pedro A. Calderónb, Jose M. Adamb* 

aITEAM , Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain 
bICITECH, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain 

 

Abstract 

This paper describes a study of the influence of strain measurement uncertainty on sensing curvature and 

bending direction, considering one of the most widely used fiber geometries for sensing applications (7-core 

Multicore Fiber) with different core spacings (distance between outer cores and fiber axis). The Monte Carlo 

method was proposed to simulate the real measurement process and 33 simulations with 106 iterations were 

performed to determine the laws of propagation of strain measurement uncertainty in calculating curvature and 

bending direction. The outcomes, which show the strong influence of strain uncertainty and core spacing on 

the accuracy of Multicore Fiber sensors, can be used to support the design of new sensors or new fiber geometry 

and to predict their achievable performance. 

 
Keywords: Fiber Bragg Grating; Multicore Fiber Optic; Curvature Sensing; Shape Sensing; Monte Carlo Simulation; 

Error Analysis. 

1. Introduction 

Recent developments in Optical Fiber Sensor (OFS) technology have made these sensors 

attractive for a number of medical [1], industrial and general engineering applications [2–5]. The 

reasons for these developments are the unique advantages of OFSs over electrical sensors, including 

their compactness and light-weight, immunity to electromagnetic interference (EMI), resistance to 

harsh temperatures, chemicals and radiation and intrinsic safety. 

Multicore Fiber (MCF) Sensors for high-precision curvature sensing have many applications in 

Mechanical, Civil, Aerospace, and Medical Engineering. For example, an ultrasensitive multicore 

optical fiber-based vector bending sensor has been developed for continuously monitoring the 

verticality of buildings, towers, bridge piles, and other infrastructures [6], a curvature sensing 

multicore fiber displacement sensor has been used for tunnel monitoring [7] and a two-axis 

temperature-insensitive accelerometer has been developed based on an MCF curvature sensor [8]. 

MCF sensors can also be used to reconstruct the shape of the fiber. Shape sensing can improve 

the performance of various medical procedures that require high precision in the shape and location 

of surgical instruments, such as catheters [9]. Multicore optical fiber sensors have been employed 

to monitor flexible structures, such as aircraft wings, composite wind-turbine blades, suspension 

bridges, and in high-performance civil, mechanical, and aerospace engineering applications [10]. 
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Since shape reconstruction requires extreme precision, high accuracy is needed in curvature and 

bending direction sensing, which is the basis of the 3D shape reconstruction process. 

Fiber Bragg Gratings (FBG) sensors are well established as highly sensitive strain-measuring 

devices [11]. The magnitude of curvature can be calculated by using a dual-core fiber and comparing 

the strain detected by pairs of gratings [12–14]. Multi-Core Fiber (MCF), composed of multiple 

cores with strain sensors (several outer cores displaced from the centerline of the fiber and one core 

on the axis), can reconstruct the fiber shape. Although three non-aligned cores are sufficient to 

calculate fiber bending and torsion [12,15,16], further cores can be used to achieve better precision 

and the fiber shape can be calculated numerically by integrating Frenet-Serret formulas [17]. 

MCF shape sensing technology has thus become a powerful and reliable instrument for 

continuous and multidimensional monitoring in engineering applications or ultrasensitive 

instruments for medical purposes. High accuracy in determining curvature and bending direction is 

crucial to reliably estimating the shape of the fiber, since these factors are used to calculate the 

curvature κ(s) and torsion τ(s) functions necessary to reconstruct the fiber shape. 

Even though a lot of research has been carried out on MCF sensors, an in-depth study of how 

certain parameters influence their precision was required to define and extend their limits, improve 

their sensitivity and identify other possible fields of application. 

This paper proposes an algorithm designed to calculate curvature, bending direction and 

longitudinal deformation, based on the strains detected by the gratings in a 7-core multicore fiber 

section. With a view to studying the influence of the standard deviation (SD) of the grating strain 

measurement and the distance between the outer gratings and the fiber axis (core spacing) on 

curvature and bending direction detection, the measurement process was simulated by the Monte 

Carlo method and a test to check the statistical significance of the experiment was carried out. 

The results of the study successfully identified the propagation laws of strain measurement 

uncertainty in curvature and bending direction calculation and the influence of core spacing on this 

phenomenon. The equations, which describe the dependence of strain standard deviation and core 

spacing on curvature and bending direction precision, are shown in the charts at the end of the paper. 

These equations can be used to predict the maximum performance (neglecting other error sources) 

of 7-core MCF sensors when the strain SD and core spacing are known. 

2. Shape sensing background 

2.1 Multi-core fiber curvature and bending direction measurement 

MCF, with strain sensors in the cores, can be used for shape sensing reconstruction. If the fiber 

is inside a frictionless constraint and secured only at one end, the natural curve frame will correspond 

with the material fiber frame along the fiber [18].  
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Fig. 1. Multi-core fiber with two gratings for curvature sensing. 

 

Considering a dual-core fiber (gratings at the same temperature) under the Kirchhoff rod 

assumption, bending induces difference in the strain between the gratings in proportion to the 

distance from the neural axis, as shown in Fig. 1. By comparing pairs of gratings, it is possible to 

calculate the magnitude of curvature using Eq. (1): 

𝜅 = 𝛥𝜀/𝑑 = (𝜀1 − 𝜀2)/𝑑 = 1/𝑅                                                                                                               (1) 

where κ is the curvature, ε1 and ε2 are the strains detected by the two FBGs, d is the distance between 

the cores and R is the bending radius [12]. 

Due to the fiber’s short radius, it is reasonable to suppose that the temperature is constant along 

the section, so that strain differences can be measured without temperature compensation. By using 

an MCF with at least three non-aligned cores it is possible to calculate the strain along the whole 

section (the strain surface ε(x,y)), with which the curvature and bending direction can be determined 

in three dimensions [2, 3]. In doing so, it has been assumed that the errors made in the approximation 

of the curvature with a constant value are negligible, which is generally true, considering the small 

length of the gratings. 

2.2 Shape reconstruction 

Assuming that no external twisting forces are induced into the fiber (local twisting is prevented), 

when the curvature and bending direction are known in several sections, the function of curvature 

κ(s) and torsion τ(s) can be calculated by curve fitting. With these functions and the tangent, normal 

and binormal unit vectors, or collectively the Frenet–Serret frame, T0, N0, B0, at the starting point 

r0, the shape can be reconstructed through numerical integration of the Frenet-Serret formulas [17], 

which can be written as: 

 

 [
𝑻′
𝑵′
𝑩′

] = [
0 𝜅 0

−𝜅 0 𝜏
0 −𝜏 0

] [
𝑻
𝑵
𝑩

]                                                                                                             (2)                       

 

where T, N and B are respectively tangent, normal and binormal unit vectors. 

 

 

Fig. 2. Space curve and Frenet-Serret frames at the starting point 0 at a generic point s. 
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3. Case studies 

3.1 Fiber geometry  

The fiber geometry and especially the number and position of the cores have a strong influence 

on the accuracy of the curvature and bending direction obtained. The fibers currently available on 

the market for 3D shape sensing applications are unfortunately limited in number and are generally 

the same as those designed for telecommunication applications, such as data center transmission 

cables, supercomputing and Space Division Multiplexing (SDM) transmission cables [19]. 

However, their manufacturing costs are prohibitive, considering the limited demand as compared 

to the telecommunications market. The diameter of such fibers is extremely small (glass diameter 

of 125 μm) and the distance between the outer cores and the fiber center is commonly between 30 

and 50 μm. This study used one of the most widely used fiber geometries [20–23] for shape sensing 

applications, the seven-core multicore fiber (see Fig. 3), with 1 central core and 6 outer cores with 

equal angular spacing of 60 degrees equidistant from the fiber center, including 3 different core 

spacings: 30, 50 and 70µm. 

 

Fig. 3. (a) Seven-core multicore fiber; (b) seven-core multicore fiber produced by FIBERCORE [19] 

3.2 Strain plane calculation from curvature, bending direction and longitudinal strain 

Provided that external twisting forces into the fiber are prevented, under the Euler–Bernoulli 

hypotheses, when the fiber is subjected to bending the strain surface is a plane. The strain plane 

𝜀(𝑥,𝑦), at the considered section, can be calculated if the curvature, bending direction and 
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longitudinal fiber strain are known, after defining a local Cartesian Coordinate System (x,y) 

centered on the mid-section, as shown in Fig. 4.  

Fig. 4. (a) Cartesian Coordinate System (x,y) in a seven-core multicore fiber; (b) 3D distribution of the strain under a fiber 

bending and traction. 

After calculating the strain plane equation, the strain of all the cores can be determined. These 

are the exact strain values, which would be detected by the gratings without measurement 

uncertainly in strain detection. 

3.3 Monte Carlo simulation 

The Monte Carlo method (MCM) was developed as an experimental probabilistic method of 

solving difficult linear and nonlinear deterministic problems [24–27] and is now recognized as a 

powerful instrument for solving many different scientific and technical problems. Since modern 

computers can easily simulate large numbers of experimental trials that have random outcomes, 

MCM, a large class of computational algorithms, were developed to confront processes that could 

not be easily predicted with the aim of obtaining numerical results and modeling the probability of 

different outcomes that rely on repeated random sampling.  

The MCM can be used to determine the probability distribution for an output quantity from the 

probability distributions assigned to the input quantities on which the output quantity depends in 

order to define the law of propagation [28,29]. Before simulation, a specification of the input 

probability distribution needs to be defined to perform the random sampling. Although analytical 

methods are ideal because they do not require an approximation, they are applicable in simple cases 

only and in practice the propagation of distributions cannot be implemented without making 

approximations in complex cases [29]. 

When applied to uncertainty estimation, the MCM simulates a real measurement process, which 

is probabilistic in nature, by randomly sampling the uncertainty of the parameters, generating 

thousands or even hundreds of thousands of measurements and consequent outcomes and creating 

artificial features. 

In this study the MCM was used to simulate the errors in strain measurement assuming that the 

errors detected in different gratings were independent, uncorrelated and followed a standard normal 

distribution (input Gaussian probability distribution) with a certain standard deviation. 

The errors in strain measurement represent the errors of the strain measurement process, which 

depend on interrogation process: resolution of the interrogation system, technique used to track the 

peaks and determine the shift of wavelength, conversion of shift of wavelength in strain, and 

environmental conditions: temperature, vibrations, etc. 
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For each trial the errors in the strain measurement were then simulated and added to the exact 

strain value in all the cores. 

3.3.1 Case 1: Uncertainty in curvature calculation 

Fifteen simulations were performed to study the measurement uncertainty in curvature 

determination considering: longitudinal strain equal to 0με; bending direction corresponding to axis 

x; three different values of core spacing, including 70, 50 and 30 µm; five different values of 

standard deviation in strain measurement, including 5, 2.5, 1, 0.5 and 0.2 με. The values of strain 

measurement were chosen considering that the resolution of commercial interrogation system is 

nowadays around 1 με and it will decrease in the future so that a reasonable value of strain 

measurement SD is between 5 and 0.2 με. Since the curvatures sensed have no influence on 

curvature distribution, their values were calculated so that the maximum strain value in the section, 

without measurement errors, was equal to 1000 με, as shown in Table 1. 

Table 1. Simulations for identification of uncertainty in curvature calculation. 

Simulation Nº 
Longitudinal 

Strain [με] 

Angle between 
Bending Direction 

and axis x [rad] 

Curvature [m-1] Core spacing [µm] 
Standard 

Deviation in Strain 

Measurement [με]  

1 0.00 0.00 14.286 70.00 5.00 

2 0.00 0.00 14.286 70.00 2.50 

3 0.00 0.00 14.286 70.00 1.00 

4 0.00 0.00 14.286 70.00 0.50 

5 0.00 0.00 14.286 70.00 0.20 

6 0.00 0.00 20.000 50.00 5.00 

7 0.00 0.00 20.000 50.00 2.50 

8 0.00 0.00 20.000 50.00 1.00 

9 0.00 0.00 20.000 50.00 0.50 

10 0.00 0.00 20.000 50.00 0.20 

11 0.00 0.00 33.333 30.00 5.00 

12 0.00 0.00 33.333 30.00 2.50 

13 0.00 0.00 33.333 30.00 1.00 

14 0.00 0.00 33.333 30.00 0.50 

15 0.00 0.00 33.333 30.00 0.20 

3.3.2 Case 2: Uncertainty in bending direction calculation 

Eighteen simulations were performed with a view to analyzing the measurement uncertainty in 

determining the angle between bending direction and axis x, considering: longitudinal strain equal 

to 0με; bending direction corresponding to axis x; three different values of core spacing, including 

70, 50 and 30 µm; three different values of standard deviation in strain measurement, including 5, 

1 and 0.2 με; two different values of curvature for each core spacing value, as shown in Table 2.  

Fig. 5 shows an example of the Gaussian error distributions in the cores of the first simulation 

of the second case study. The exact values of strain in the core, not affected by measurement errors, 

are shown in Table 3. 

Table 2. Simulations for identification of uncertainty in bending direction calculation. 
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Simulation 

number 

Longitudinal 

Strain [με] 

Angle between 
Bending Direction 

and axis x [rad] 

Curvature [m-1] Core spacing [µm] 
Standard 

Deviation in Strain 

Measurement [με] 

1 0.00 0.00 0.071 70.00 5.00 

2 0.00 0.00 0.214 70.00 5.00 

3 0.00 0.00 0.071 70.00 1.00 

4 0.00 0.00 0.214 70.00 1.00 

5 0.00 0.00 0.071 70.00 0.20 

6 0.00 0.00 0.214 70.00 0.20 

7 0.00 0.00 0.200 50.00 5.00 

8 0.00 0.00 0.400 50.00 5.00 

9 0.00 0.00 0.200 50.00 1.00 

10 0.00 0.00 0.400 50.00 1.00 

11 0.00 0.00 0.200 50.00 0.20 

12 0.00 0.00 0.400 50.00 0.20 

13 0.00 0.00 0.500 30.00 5.00 

14 0.00 0.00 0.833 30.00 5.00 

15 0.00 0.00 0.500 30.00 1.00 

16 0.00 0.00 0.833 30.00 1.00 

17 0.00 0.00 0.500 30.00 0.20 

18 0.00 0.00 0.833 30.00 0.20 

Table 3. Strain values in the seven cores without measurement errors in the first simulation of the 2nd case study. 

Curvature [m-1] Core spacing [µm] 
Standard Deviation in Strain 

Measurement [με]  

0.71 70.00 5.00 

ε1 ε2 ε3 ε4 ε5 ε6 ε7 

0.00 5.00 2.50 -2.50 -5.00 -2.50 2.50 
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Fig. 5. Strain measurement simulated in the first simulation of the identification of uncertainty in bending direction in core 

1 (a); core 2 (b); core 3 (c); core 4 (d); core 5 (e); core 6 (f); core 7 (g). 
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3.4 Calculating curvature, bending direction and longitudinal strain 

Considering the error-affected strain value generated by MCM, the curvature and bending 

direction were calculated in each trial to determine the relation between core spacing and the 

standard deviations of strain measurement and curvature and bend direction angle. 

The strain surface was first calculated considering the strain values of the 7 cores through a 

Multivariate Linear Regression analysis. The curvature was then calculated by Eqs. (3) and (4) with 

the known strain plane equation ε(x,y): 

𝜅 = √𝜅𝑋
2 + 𝜅𝑌

2                                                                                                                                 (3) 

𝜅𝑥 = 𝛥𝜀𝑥/2𝑠; 𝜅𝑦 = 𝛥𝜀𝑦/2𝑠                                                                                                           (4) 

where κ is the curvature, κx and κy are, respectively, the components of curvature along the axis x 

and y, Δεx and Δεy are the variations in strain along the axis x and y respectively and s is the spacing 

core, the distance between the fiber center and the outer core centers. The bending direction, or 

direction of maximum curvature, and longitudinal strain (average strain in the section) were then 

calculated. 

3.5 Stopping Rules 

The effectiveness of the MCM depends on the number of iterations. Unfortunately, the 

appropriate number of iterations required for reliable results cannot be estimated theoretically [30]. 

By increasing the number of trials, the statistics will stabilize at a constant value and the simulation 

should then be stopped. However, a number between 105 and 106 iterations seems to be sufficient 

in most cases [31] and a trial value of 106 can often be expected to deliver a 95 % coverage interval 

for the output quantity, such that this length is correct to one or two significant decimal places [29]. 

Each simulation in the study was carried out with 106 iterations. For each simulation, the total 

dataset consisted of 5 subdatasets with 2∙105 trials each. To ensure that the simulations were 

statistically significant, the values obtained with the five subdatasets were compared with the value 

given by the total dataset. The results of the comparison are given in Section 6. 

4. Multi-step procedure for curvature and bending direction calculation 

An algorithm was developed in MATLAB® code [32] to generate the error distribution by the 

Monte Carlo method and compute the resulting distribution of longitudinal deformation, curvature 

and bending direction. The procedure can be summarized as follows: 

- Step 1. Strain calculation in all the cores, given the fiber geometry, longitudinal deformation, 

curvature and bending direction, as shown at point 3.2. 

- Step 2. Simulation of strain Gaussian distribution in all the cores, given the standard deviation in 

strain detection, as shown at point 3.3.  

- Step 3. Calculation of longitudinal deformation, curvature and bending direction angle 

distribution through Multivariate Linear Regression analysis, as explained at point 3.4. 

- Step 4. Tests of Statistical Significance. 

5. Results and comments  

This section deals with the outcome of the experiments for curvature and bending direction 

calculation. 
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5.1 Longitudinal strain distribution 

The longitudinal strain of the fiber distribution (supposed equal to zero without measurements 

errors) was calculated for each simulation. Fig. 6 shows an example of the longitudinal strain 

distribution (first simulation of the second case study), which is clearly Gaussian. The SD of the 

distribution remained below a value of 2∙10-6µε during the entire simulation.  

Fig. 6. Longitudinal fiber strain measurement simulated in the 7 core in the first simulation of the second case study. 

5.2 Case 1: Curvature calculation 

Fifteen simulations were carried out to evaluate the effect of the errors on strain measurement 

and the variation of core spacing in curvature sensing, as explained at point 3.3.1, including different 

SD values in strain measurement and core spacing. Since the curvature was calculated as the vector 

addition of the two curvature components along the x and y axes by Eq. (2), curvature is a positive-

definite function, so that in the neighborhood of the origin the shape of the distribution is distorted, 

as can be seen in Fig. 7. To avoid this inconvenience, the distributions of the curvature components 

along the x and y axes may be studied, as shown in Fig. 8. In view of this, in the first case study 

only considerable curvatures far removed from the value of zero were analyzed. Fig. 9 shows, as 

example, the distribution of the curvature in the first simulation of the first case of study. The 

curvature distribution is still Gaussian. 

 

Fig. 7. Curvature distribution in first simulation for the identification of uncertainty in bending direction calculation. 
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Fig. 8. (a) Distribution of curvature along axis x in first simulation for the identification of uncertainty in bending direction 

calculation; (b) distribution of curvature along axis y in first simulation for the identification of uncertainty in bending 

direction calculation. 

Fig. 9. Curvature distribution in first simulation for the identification of uncertainty in curvature calculation. 

 

The outcomes of the first experiment are shown in Table 4. Three different core spacing values 

and five different SD values were considered in strain measurement. The curvature values were 

calculated so that the maximum strain value in the section, without measurement errors, was equal 

to 1000 με. This was possible since the curvature sensed had no influence on the curvature 

distribution. Curvature distribution was calculated for each simulation considering its SD. 

Fig. 9 shows the variation of the curvature and strain standard deviations at a constant core 

spacing value. As can be seen, curvature SD varies linearly with strain SD. The regression line 

equations and coefficients of determination (R2) are shown in the figure. 
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Table 4. Curvature standard deviation results. 

Simulation Nº Curvature [m-1] Core spacing [µm] 
SD in Strain 

Measurement [με]  
Curvature SD [m-1] 

1 14.2857 70.00 5.00 0.0412 

2 14.2857 70.00 2.50 0.0206 

3 14.2857 70.00 1.00 0.0083 

4 14.2857 70.00 0.50 0.0041 

5 14.2857 70.00 0.20 0.0016 

6 20.0000 50.00 5.00 0.0578 

7 20.0000 50.00 2.50 0.0289 

8 20.0000 50.00 1.00 0.0115 

9 20.0000 50.00 0.50 0.0058 

10 20.0000 50.00 0.20 0.0023 

11 33.3333 30.00 5.00 0.0963 

12 33.3333 30.00 2.50 0.0481 

13 33.3333 30.00 1.00 0.0192 

14 33.3333 30.00 0.50 0.0096 

15 33.3333 30.00 0.20 0.0038 

 

 

Fig. 10. Curvature SD results for each strain SD point at constant core spacing values. 

 

The curvature SD variation with constant core spacing at a constant SD deviation value is shown 

in Fig. 11. In this case, the relationships are not linear and were approximated by a quadratic 

polynomial, whose equations are shown in the figure. 
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Fig. 11. Curvature SD results for each core spacing point at constant values of strain SD. 

 

As explained in Section 4.5, MCM requires a stopping rule that determines the length of the 

sample records (number of samples in the simulation). Since the appropriate number of iterations 

cannot be estimated theoretically [23], we opted for 106, which seems to be sufficient in most cases 

[18,24]. The correctness of this assumption was later verified. For each simulation, the curvature 

distribution of the total dataset, consisting of 5 subdatasets with 2 ∙105 trials each, was determined 

and its standard deviation was compared with the standard deviation of the distribution of the 

subdatasets. The results of the comparison are shown in Table 5. 

The percentage error of the subdatasets’ SD was then compared with that of the total dataset SD 

for each simulation by Eq. (5): 

𝐸𝑝 = [(𝑠𝑇 − 𝑠𝑆)/𝑠𝑇]100                                                                                                               (5) 

where Ep is the percentage error, sT is the standard deviation of the total dataset and sS is the 

standard deviation of the subdataset. The percentage errors of all the simulations in the first case 

study are shown in Table 6. The highest percentage error obtained was 0.340, indicating that the 

simulation can be considered statistically significant. 
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Table 5. Curvature SD results; comparison of subdatasets and total datasets. 

Simulation 

number 

Curvature St. 

Dev. 1º 
subdataset  

Curvature St. 

Dev. 2º 
subdataset  

Curvature St. 

Dev. 3º 
subdataset  

Curvature St. 

Dev. 4º 
subdataset  

Curvature St. 

Dev. 5º 
subdataset  

Curvature St. 

Dev. Total 
dataset  

1 0.041250 0.041247 0.041209 0.041243 0.041257 0.041241 

2 0.020658 0.020605 0.020615 0.020704 0.020586 0.020633 

3 0.008245 0.008251 0.008248 0.008258 0.008269 0.008254 

4 0.004125 0.004113 0.004120 0.004117 0.004121 0.004119 

5 0.001654 0.001647 0.001644 0.001651 0.001649 0.001649 

6 0.057681 0.057791 0.057660 0.057810 0.057844 0.057757 

7 0.028966 0.028846 0.028876 0.028797 0.028860 0.028869 

8 0.011551 0.011525 0.011510 0.011553 0.011578 0.011543 

9 0.005769 0.005768 0.005782 0.005777 0.005787 0.005777 

10 0.002312 0.002306 0.002310 0.002311 0.002310 0.002310 

11 0.096011 0.096468 0.096271 0.096349 0.096428 0.096305 

12 0.048108 0.048173 0.048150 0.048026 0.048092 0.048110 

13 0.019209 0.019247 0.019250 0.019275 0.019251 0.019247 

14 0.009626 0.009604 0.009620 0.009620 0.009631 0.009620 

15 0.003844 0.003851 0.003842 0.003846 0.003842 0.003845 

Table 6. Curvature standard deviation results; percentage errors. 

Simulation 

number 

Percentage 

Error 1º dataset  

Percentage 

Error 2º dataset  

Percentage 

Error 3º dataset  

Percentage 

Error 4º dataset  

Percentage 

Error 5º dataset  

1 -0.022 -0.015 0.078 -0.005 -0.037 

2 -0.117 0.137 0.091 -0.340 0.230 

3 0.107 0.038 0.076 -0.044 -0.177 

4 -0.135 0.154 -0.015 0.041 -0.044 

5 -0.277 0.114 0.315 -0.136 -0.015 

6 0.132 -0.058 0.168 -0.091 -0.150 

7 -0.336 0.079 -0.025 0.251 0.033 

8 -0.065 0.161 0.288 -0.082 -0.299 

9 0.129 0.151 -0.093 -0.009 -0.177 

10 -0.088 0.166 0.013 -0.065 -0.025 

11 0.306 -0.169 0.036 -0.045 -0.128 

12 0.003 -0.130 -0.083 0.174 0.038 

13 0.196 -0.003 -0.018 -0.148 -0.025 

14 -0.061 0.166 0.004 0.004 -0.114 

15 0.022 -0.158 0.086 -0.025 0.075 

5.3 Case 2: Calculating bending direction angle 

The second case study involved the impact of the strain measurement SD and core spacing on 

the bending direction calculations. The bending direction and the angle between the bending 
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direction and the x axis (null without measurement errors) were estimated for each trial. The 

distribution of the bending direction angle was then considered for each simulation. Once again, as 

in the strain measurement, the distribution of the resulting quantity was Gaussian, as can be seen 

from Fig. 12. The bending direction angle distribution was studied in the interval from – π to + π in 

order to identify all the possible configurations of the bending axis. 

Fig. 12. Bending direction angle distribution of the first simulation to identify uncertainty in bending direction 

calculations. 

 

The SD associated with each simulation are listed in Table 7. Three different values of core 

spacing and three different values of standard deviation in strain measurement were considered. 

Since the standard deviation of the bending direction angle distribution was found to be closely 

dependent on the curvature sensed in the preliminary analysis, two different curvature values were 

considered for each strain SD and core spacing value. 

Table 7. Bending direction angle standard deviation results. 

Simulation 
number 

Curvature [m-1] 
Core spacing 

[µm] 
St. Dev. in Strain 

Meas. [με]  
Bend. Dir. Angle 

St. Dev.  

1 0.0714 70.00 5.00 0.7142 

2 0.2143 70.00 5.00 0.1964 

3 0.0714 70.00 1.00 0.1164 

4 0.2143 70.00 1.00 0.0385 

5 0.0714 70.00 0.20 0.0231 

6 0.2143 70.00 0.20 0.0077 

7 0.2000 50.00 5.00 0.3051 

8 0.4000 50.00 5.00 0.1459 

9 0.2000 50.00 1.00 0.0579 

10 0.4000 50.00 1.00 0.0288 

11 0.2000 50.00 0.20 0.0115 

12 0.4000 50.00 0.20 0.0058 

13 0.5000 30.00 5.00 0.1965 

14 0.8333 30.00 5.00 0.1161 

15 0.5000 30.00 1.00 0.0385 

16 0.8333 30.00 1.00 0.0231 

17 0.5000 30.00 0.20 0.0077 

18 0.8333 30.00 0.20 0.0046 
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Fig. 13 shows the bending direction angle SD variation with strain SD at a constant value of core 

spacing and curvature. The bending direction angle SD varies linearly with the strain SD. The 

regression line equations and coefficients of determination (R2) are included in the figure. As can 

be seen, the data points with a curvature of 0.214 m-1 and core spacing 70 µm coincide with those 

associated with curvature values of 0.500 m-1 and core spacing of 30 µm, since the product of 

curvature and core spacing is the same in both cases. 

 

Fig. 13. Bending direction angle SD results for each strain SD data point at constant core spacing and curvature values. 
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Considering that the precision of the bending axis estimation greatly depends on the curvature 

sensed, the variation of the bending direction angle SD was studied considering the ratio between 

strain SD and curvature at a fixed value of core spacing (see Fig. 14), and the ratio between core 

spacing and curvature at a fixed value of strain SD (see Fig. 15). In both cases, the relationships are 

linear. The regression line equations and coefficients of determination (R2) are included in the 

figures. 

Fig. 14. Bending direction angle SD results for each strain SD and curvature ratio data point at constant core spacing values. 
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Fig. 15. Bending direction angle SD results for each core spacing and curvature ratio data point at constant strain SD 

values. 

 

Here again a test of statistical significance was carried out to verify that the length of the sample 

records (106) was statistically robust by comparing the results obtained with the subdatasets and the 

total dataset. In each simulation, the percentage errors of the subdatasets were compared with the 

total dataset by Eq. (5). The highest percentage error obtained was 0.361, indicating that the 

simulation can be considered statistically significant. The results are shown in Tables 8 and 9. 
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Table 8. Bending direction angle SD results; comparison of subdatasets and total dataset. 

Simulation 

number 

Bend. Dir. Angle 

St. Dev. 1º 
dataset  

Bend. Dir. 

Angle St. Dev. 
2º dataset  

Bend. Dir. 

Angle St. Dev. 
3º dataset  

Bend. Dir. 

Angle St. Dev. 
4º dataset  

Bend. Dir. 

Angle St. Dev. 
5º dataset  

Bend. Dir. 

Angle St. Dev. 
Total dataset  

1 0.713099 0.712740 0.715035 0.715513 0.714393 0.714156 

2 0.196032 0.196060 0.196784 0.196507 0.196430 0.196362 

3 0.116487 0.116364 0.116278 0.116615 0.116200 0.116389 

4 0.038519 0.038558 0.038617 0.038453 0.038412 0.038512 

5 0.023031 0.023104 0.023050 0.023048 0.023108 0.023068 

6 0.007700 0.007719 0.007686 0.007700 0.007694 0.007700 

7 0.305244 0.304521 0.304990 0.305689 0.305210 0.305131 

8 0.145566 0.145794 0.146136 0.145968 0.145992 0.145891 

9 0.057893 0.058085 0.057790 0.057979 0.057782 0.057906 

10 0.028811 0.028781 0.028924 0.028826 0.028872 0.028843 

11 0.011516 0.011559 0.011524 0.011556 0.011581 0.011547 

12 0.005779 0.005780 0.005779 0.005762 0.005764 0.005773 

13 0.196357 0.196175 0.196551 0.196377 0.196933 0.196479 

14 0.116109 0.115894 0.116204 0.116303 0.116170 0.116136 

15 0.038444 0.038521 0.038628 0.038637 0.038483 0.038543 

16 0.023083 0.023074 0.023115 0.023104 0.023102 0.023096 

17 0.007700 0.007707 0.007666 0.007697 0.007700 0.007694 

18 0.004613 0.004608 0.004622 0.004612 0.004605 0.004612 

Table 9. Bending direction angle SD results; percentage errors. 

Simulation 

Nº 

Percentage 

Error 1st 
Dataset  

Percentage 

Error 2nd 
Dataset  

Percentage 

Error 3rd 
Dataset  

Percentage 

Error 4th 
Dataset  

Percentage 

Error 5th 
Dataset  

1 -0.148 -0.198 0.123 0.190 0.033 

2 -0.168 -0.154 0.215 0.073 0.035 

3 0.084 -0.021 -0.095 0.194 -0.162 

4 0.018 0.120 0.273 -0.153 -0.259 

5 -0.161 0.154 -0.077 -0.088 0.173 

6 0.000 0.247 -0.176 0.001 -0.072 

7 0.037 -0.200 -0.046 0.183 0.026 

8 -0.223 -0.066 0.168 0.053 0.069 

9 -0.021 0.309 -0.200 0.126 -0.213 

10 -0.111 -0.212 0.281 -0.059 0.102 

11 -0.274 0.104 -0.204 0.078 0.294 

12 0.117 0.119 0.107 -0.190 -0.154 

13 -0.062 -0.154 0.037 -0.052 0.231 

14 -0.023 -0.209 0.059 0.144 0.029 
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15 -0.255 -0.057 0.222 0.244 -0.155 

16 -0.053 -0.095 0.085 0.036 0.026 

17 0.079 0.171 -0.361 0.038 0.072 

18 0.019 -0.084 0.213 0.004 -0.153 

6. Conclusions 

High precision in curvature and bending direction computation is fundamental for several 

applications in Structural Health Monitoring, such as continuous monitoring of the verticality of 

structures, including buildings, towers, bridge piles, tunnel displacement, etc. Curvature and 

bending direction are the inputs for shape sensing reconstruction, which can be used in a variety of 

medical, aerospace, mechanical, and civil engineering applications. 

This study focused on the propagation of strain uncertainty in curvature and bending direction 

sensing, simulating the measurement process by the Monte Carlo method with 106 iterations, 

considering the 7-core multicore fiber section with different core spacing, one of the most widely 

used fiber geometries in shape sensing applications. 

A statistical significance test was carried out to verify the results of the experiment and determine 

the relation between strain uncertainty and core spacing variation and curvature and bending 

direction precision. 

The following conclusions can be drawn from this study: 

- MCM is an efficient method of studying the propagation of the strain measurement errors in 

calculating curvature and bending direction. 

- The curvature distribution is greatly and non-linearly influenced by the core spacing and depends 

linearly on the strain SD. 

- The SD of the distribution of the angle between bending direction and the axis x depends linearly 

on the core spacing and the measured strain SD. As it is also strongly dependent on the curvature 

sensed, the accuracy of the sensor is related to the application. 

- The precision in determining curvature and bending direction depends largely on the core 

spacing. A highly sensitive shape sensor could be designed with larger core spacing fibers than 

those employed in telecommunications.  

- The precision of bending direction and curvature detection can be calculated after determining 

the core spacing of the fiber, the strain measurement SD and the curvature sensed, using the 

charts in Figures 7-8 and 11-12. 

The outcomes show the strong influence of strain uncertainty and core spacing on MCF sensor 

precision in sensing curvature and bending direction. The relations identified in this research project 

could be used to calculate the maximum performance achievable by 7-core MCF curvature sensors 

after finding the strain SD of the gratings and core spacing, while acknowledging that if further 

errors affect the phenomenon the precision will be lower than expected. 

These results show that a different fiber geometry with larger core spacing could be produced by 

taking advantage of the remarkable improvement that can be obtained by slightly increasing the 

distance between the outer cores and the fiber axis. Furthermore, the proposed equations can be 

used to design sensors with the required accuracy for specific cases of determining curvature and 

bending direction. Lastly, these findings could be used as the starting point for investigating MCF 

sensor precision for shape and position sensing. 
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