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Abstract—This letter presents a microwave planar lens illuminated by a radially corrugated horn antenna. 

The lens is formed by a set of 5×5 multilevel unit cells working as a frequency selective surface. Each layer 

of the unit cells is formed by a square metallic ring with two sets of orthogonal stubs. The length of each 

set of stubs controls the transmission phase shift for each polarization, so that the lens can be configured 

independently for two orthogonal polarizations. The lens presented in this letter makes use of this operation 

to compensate the phase profile of the radiation pattern generated by the feeder. A prototype, with the lens 

located at 0.59𝜆𝜆 from the feeder, has been fabricated. Measured results show a maximum gain above 14.44 

dBi within the operating frequency band (12.55-13.10 GHz), and a crosspolar level below -32 dB within 

the HPBW. 

  

Index Terms—Frequency selective surfaces (FSS), lens antennas, reflector antenna feeds, satellite antennas. 

 

1. INTRODUCTION 

Frequency Selective Surfaces (FSS) have been extensively studied during the last 60 years. These low-

profile structures generate a frequency response that depends on the angle and polarization of the incident 

wave. This particular response has fostered the use of FSS in many applications such as radomes [1] 

absorbers [2] or metamaterials [3], to improve the performance of the primary radiators.  

FSS have also been considered in advanced communication satellites to combine several operating bands 

in a single aperture [4], thereby reducing the number of reflectors, and, in turn, the weight and volume of 

the satellite. These aspects are specially important in multiple-spot beam systems [5], where no less than 

four reflectors and a feed per beam are currently implemented [6]. Several solutions have been proposed to 

reduce the number of reflectors in these systems, e.g. a circular polarization selective surface at the focus 

of the reflector to combine two different polarizations in a single reflector [7], or an electromagnetic band-

gap structure to generate overlapped beams at the focus of the reflector [8]. 

This paper proposes an alternative solution based on the use of an FSS working as a microwave planar lens. 

This operation is similar to the one presented by the so-called transmitarray antennas [9]-[11], in which the 

phase profile given by the feeder, placed at a medium-long distance (typically F/D≈0.85), is properly 



flattened. In our case, the FSS is placed at a shorter distance (F/D=0.24) from the feeder (a radially-

corrugated horn antenna (RCHA) [12]) to minimize the spill-over losses and, in turn, increment the gain of 

the feeder. This planar lens behavior permits the use of unit cells capable of offering less than 360º of phase 

shift. 

The unit cell of the FSS is chosen to operate with two orthogonal polarizations. This dual-polarized 

operation allows the sharing of cells belonging to adjacent lenses with orthogonal polarizations, so that 

beams can be overlapped at the upper plane of the lenses [13]. This operation may reduce the number of 

reflectors in multiple-spot beam applications to just two by concentrating four colors in a single reflector. 

In order to demonstrate the feasibility of the proposal, this letter shows the design of a single lens formed 

by 5×5 unit cells, and illuminated by a RCHA, as illustrated in Fig. 1. Unlike designs based on metallic 

hole arrays [14], in which the response of the cell strongly depends on the period of the cell, the unit cell 

of the proposed FSS is a quad-ridged cell with orthogonal stubs that control the frequency response of the 

cell. Thereby, the phase shift produced for each polarization can be adjusted by just tuning the length of the 

stubs, what facilitates the design process. The optimized lens has been validated through the fabrication 

and measurement of a prototype. 

2. DESCRIPTION OF THE UNIT CELL 

The unit cell of the proposed FSS, depicted in Fig. 2, is formed by three layers of square metallic rings on 

a dielectric substrate separated 𝑠𝑠=3 mm. Two sets of orthogonal stubs are inserted on the edges of the rings 

to control the transmission and reflection of the incident plane waves. The thickness (𝑡𝑡𝑠𝑠) and the relative 

permittivity (𝜀𝜀𝑟𝑟) of the substrate are 0.254 mm and 2.2, respectively. The period of the unit cell (𝑝𝑝) is set to 

12 mm to center the pass band at 13 GHz (𝑝𝑝 ≈ 𝜆𝜆0/2), whereas the width and thickness of the metallic rings 

are 𝑤𝑤=0.6 mm and 𝑡𝑡𝑚𝑚=35 𝜇𝜇m. 

The analysis of the unit cell has been performed with CST [15] using Floquet ports, and assuming infinitely 

periodic boundary conditions on lateral walls. Two orthogonal plane waves, TE (𝑥𝑥�) and TM (𝑦𝑦�), have been 

considered. The frequency response of the unit cell is controlled by the length of the stubs parallel to the 

incident plane wave. These stubs resonate when their length (𝑙𝑙𝑥𝑥 or 𝑙𝑙𝑦𝑦) is, approximately, 0.15𝜆𝜆. To illustrate 

this effect, Fig. 3 shows the surface currents on the metallic paths, and the total electric field in the inner 

space, of a three-layer unit cell with 𝑙𝑙𝑥𝑥 = 𝑙𝑙𝑦𝑦 =3.5 mm for a TM incidence at 13 GHz. As can be observed, 



currents are mainly concentrated in the resonant stubs, and the inner field is similar to that of a dual-ridged 

waveguide. 

The frequency shift of the transmission parameter for a 𝑦𝑦�-directed polarization produced by the change of 

the vertical length of the stubs is shown in Fig. 4. This behavior permits the use of the layered scattered 

approach [16] to adjust the phase shift produced by the unit cell without altering significantly the amplitude 

of the transmission parameter [see shadowed region in Fig. 4]. 

Fig. 5 plots the transmission parameter of the unit cell for a vertical polarization at the central frequency 

(13 GHz) versus the length of the vertical stubs (𝑙𝑙𝑦𝑦). As can be deduced, a three-layer unit cell gives a 

maximum 127º phase shift for magnitude variations smaller than 1 dB. The maximum phase shift can be 

increased by adding layers, e.g. 175º for a 4 layers configuration, at the expense of increasing the variability 

in the magnitude of the transmission parameter.  

3. DUAL-POLARIZED MICROWAVE PLANAR LENS 

The unit cell described in previous section is the constitutive element of the microwave planar lens proposed 

in this letter. The lens is illuminated by a RCHA [12] as depicted in Fig. 1. This feeder is able to illuminate 

the lens more uniformly than a simple rectangular aperture. The distance between the RCHA and the lens 

(𝑠𝑠𝑙𝑙=13.9 mm) has been chosen to illuminate the edges of the 5×5 microwave planar lens, which extension 

is 60×60 mm2, with a -10 dB amplitude taper so that a trade-off between spill-over and illumination 

efficiencies is obtained. The total profile of the structure is 19.9 mm, i.e., 0.86 𝜆𝜆0. 

The RCHA illuminates the microwave lens with a spherical phase profile. Having in mind the period of the 

unit cells, 𝑝𝑝=12 mm, and the position of the phase center of the feed (at 7.65 mm from the aperture of the 

feed), it can be deduced that the angle of incidence of waves on the first (𝑙𝑙𝑦𝑦2) and outer (𝑙𝑙𝑦𝑦3) rings are 

29.12º and 48.09º, respectively. At these angular positions, the near field of the RCHA shows a phase shift 

of ∆𝑆𝑆1=30º and ∆𝑆𝑆2=110º in the first (𝑙𝑙𝑦𝑦2) and outer (𝑙𝑙𝑦𝑦3) rings of cells, respectively, with regard to the 

central cell (𝑙𝑙𝑦𝑦1) [see Fig. 1]. 

The lens must compensate the previous phase profile so that a nearly uniform phase distribution is obtained 

on the upper plane of the lens. From Fig. 5, it can be concluded that a three-layer unit cell can cope with 

the phase shift required. Nevertheless, in order to estimate the length of the vertical stubs of the different 

cells (note that the polarization of the RCHA is 𝑦𝑦�), it becomes more appropriate to study the unit cell for 

the corresponding angles of incidence. Fig. 6 shows the phase shift of a three-layers unit cell for the 



approximate angles of incidence of interest. The length of the different stubs can be accurately estimated 

from these results. In particular, if the length of the central element (𝑙𝑙𝑦𝑦1) is set to 3.75mm, the largest length 

with an insertion loss below 1 dB for a normal incidence [see Fig. 5], the length for the surrounding rings 

of cells must be 𝑙𝑙𝑦𝑦2=3.4 mm and 𝑙𝑙𝑦𝑦3=1.9 mm [see Fig. 1].  

Previous estimation is valid for an infinite number of unit cells. In order to account for the finite number of 

cells, an optimization process becomes mandatory. The goals for this optimization have been the 

maximization of the bandwidth and the directivity, and the minimization of the sidelobe level (SLL). The 

optimized dimensions are 𝑙𝑙𝑦𝑦1=3.75 mm, 𝑙𝑙𝑦𝑦2=3.5 mm and 𝑙𝑙𝑦𝑦3=2.4 mm, quite similar to the initial estimation. 

Fig. 7 shows the electric field on the YZ axis of the optimized planar lens at 13 GHz. This figure illustrates, 

on the one hand, the illumination of the complete lens given by the RCHA [see Fig. 7(a)], and, on the other 

hand, how the phase is transformed from a spherical profile (between the lens and the RCHA) into a flat 

distribution on the upper plane of the lens [see Fig. 7(b)]. 

It is worth noting that the same response would be obtained for a horizontally-polarized field if the same 

stub lengths were applied to the 𝑥𝑥�-directed stubs. This dual-polarized operation might also be used with 

circularly-polarized fields. If two orthogonal polarizations with a 90º phase shift were excited in the feeding 

RCHA, a circularly-polarized field would be obtained, and the lens would properly compensate the phase 

of each polarization. As an example, Fig. 8 shows the simulated radiation pattern that would be obtained in 

this case. As can be observed, a low crosspolar gain (LHCP), and a low SLL, would be obtained. 

 

4. PROTOTYPE AND MEASUREMENTS 

The optimized lens has been fabricated using a photolithographic process to print the metallic sections on 

the dielectric substrate (Neltec NY9220 with 𝜀𝜀𝑟𝑟=2.2 and tan 𝛿𝛿=0.009), whereas the RCHA has been 

fabricated in aluminum, as described in [12]. Foam layers (𝜀𝜀𝑟𝑟=1.05 and tan 𝛿𝛿=0.0135) have been inserted 

between the different layers of the lens, and between the lens and the RCHA, to guarantee the separation 

between them. Fig. 9 shows two pictures of the prototype. Note that a rectangular-to-circular waveguide 

transition (not shown in the pictures) has been used to measure the structure with a common rectangular 

waveguide flange. 

Fig. 10 compares the measured and simulated 𝑆𝑆11 parameter of the fabricated microwave planar lens. The 

measured data show an 𝑆𝑆11 parameter below -10 dB within a 0.5 GHz bandwidth, from 12.55 GHz to 13.1 



GHz. The differences between measured and simulated results are produced by the nonperfect 

characterization of the rectangular-to-circular waveguide transition. 

The E-plane and H-plane radiation patterns of the fabricated prototype at 13 GHz are plotted in Fig. 11 and 

Fig. 12, respectively. As can be observed, the SLL is -18 dB on the E-plane and -16 dB on the H-plane, 

whereas the crosspolar component is below -32 dB within the HPBW in both planes. Observe that simulated 

results offer much lower values than measured results due to the limited dynamic range of the measurement 

system. Yet, the obtained low crosspolar levels enable the proposed structure to be used as a dual-polarized 

microwave lens, with a high isolation between the two orthogonal components. 

The gain of the prototype has been measured to evaluate the losses of the proposed structure. Figs. 13 and 

14 compare the measured and simulated maximum gain, and the radiation efficiency, respectively. As it 

can be seen, the gain of the antenna, quite similar to the simulated values, is above 14.44 dBi, which means 

an increment of 2 dB with respect to the measured gain of the feeder, and the radiation efficiency is better 

than 75% within the operating frequency band (12.55-13.1 GHz). Losses are mainly produced by the foam 

and dielectric layers, though it is worth mentioning that part of the losses are produced by the RCHA, which 

is made of aluminum and includes a small foam layer [12]. 

5. CONCLUSION 

This letter presents a dual-polarized microwave planar lens designed with a multiple-layer FSS. The lens is 

fed by a RCHA to completely illuminate the structure, thereby minimizing the spill-over losses. The dual-

polarization operation is given by two sets of orthogonal stubs on the edges of the unit cell of the FSS.  

A microwave planar lens formed by 5×5 unit cells has been designed and fabricated. Measured results 

show a good return loss within a 4.3% bandwidth, as well as a high gain (above 14.44 dBi), a good SLL 

(below -16 dB in all planes), and a crosspolar level below -35 dB within the HPBW. 

Despite being designed for a linearly-polarized field, the lens holds the same properties for the orthogonal 

polarization. Simulated results for a circularly-polarized field confirm this property, which might be used 

to transmit two orthogonal signals, either using the whole lens or part of the structure, simultaneously. 

Thereby, orthogonal beams might be overlapped at the focus of the reflector of multiple-spot beam systems, 

which might reduce the weight and volume of the system. 
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