
Dependability-driven
strategies to improve the
design and verification of
safety-critical HDL-based

embedded systems

Author: Ilya Tuzov

Advisors: Dr. David de Andrés Martínez
Dr. Juan Carlos Ruiz García

Valencia, November 2020

Resumen

La utilización de sistemas empotrados en cada vez más ámbitos de aplicación está
llevando a que su diseño deba enfrentarse a mayores requisitos de rendimiento,
consumo de energía y área de silicio ocupada (PPA). Asimismo, su utilización en
aplicaciones críticas provoca que deban cumplir con estrictos requisitos de confia-
bilidad para garantizar su correcto funcionamiento durante períodos prolongados
de tiempo. En particular, el uso de dispositivos lógicos programables de tipo
FPGA como tecnología de implementación final resulta un gran desafío desde
la perspectiva de la confiabilidad, ya que la memoria de configuración de estos
dispositivos es muy sensible a la radiación. Por todo ello, la confiabilidad debe
considerarse como uno de los criterios principales para la toma de decisiones a
lo largo del todo flujo de diseño, que debe complementarse con diversos procesos
que soporten y permitan alcanzar estrictos requisitos de confiabilidad.

Primero, la evaluación de la robustez del diseño frente a los fallos permite identi-
ficar sus puntos débiles, guiando así la definición de mecanismos de tolerancia a
fallos. Segundo, la eficacia de los mecanismos definidos debe validarse experimen-
talmente. Tercero, la evaluación comparativa de la confiabilidad (dependability
benchmarking) permite a los diseñadores seleccionar los componentes prediseña-
dos (IP), las tecnologías de implementación y las herramientas de diseño (EDA)
más adecuadas (desde la perspectiva de la confiabilidad) entre aquellas alterna-
tivas existentes. Por último, la exploración del espacio de diseño (DSE) puede
desplegarse para configurar de manera óptima los parámetros de los componentes
y las herramientas seleccionados, mejorando así la confiabilidad y las métricas
PPA de la implementación resultante.

iii

Todos los procesos anteriormente mencionados se basan en técnicas de inyección
de fallos para poder evaluar la robustez del sistema diseñado. A pesar de que
existe una amplia variedad de técnicas y herramientas de inyección de fallos,
ninguna de ellas permite cubrir completamente las necesidades planteadas en el
flujo de diseño semicustom. Aquellas soluciones basadas en simulación (SBFI)
normalmente están limitadas a trabajar con modelos hardware de alto nivel, pro-
porcionando estimaciones de robustez imprecisas, siendo altamente intrusivas y/o
específicas para alguna tecnología de implementación particular. Las técnicas de
inyección de fallos basadas en FPGAs (FFI) deben abordar problemas relaciona-
dos con la granularidad del análisis, no permitiendo la localización precisa de
los puntos débiles del diseño y considerando puntos de inyección innecesarios (no
esenciales).

Otro desafío es la reducción del coste temporal de los experimentos de inyec-
ción de fallos. Teniendo en cuenta la alta complejidad de los diseños actuales,
el tiempo experimental dedicado a la evaluación de la confiabilidad puede ser
excesivo incluso en aquellos escenarios más simples, mientras que puede ser sim-
plemente inviable en aquellos procesos relacionados con la evaluación de múltiples
configuraciones alternativas del diseño (benchmarking y DSE).

Por último, estos procesos orientados a la confiabilidad carecen de un soporte
instrumental (herramientas) que permita cubrir el flujo de diseño con toda su
variedad de lenguajes de descripción de hardware, tecnologías de implementación
y herramientas de diseño.

Esta tesis aborda los retos anteriormente mencionados, con el fin de integrar de
manera eficaz estos procesos orientados a la confiabilidad en el flujo de diseño.
Primeramente, se proponen nuevos métodos de inyección de fallos que permiten
una evaluación de la confiabilidad precisa y detallada en diferentes niveles del
flujo de diseño. Segundo, se definen nuevas técnicas para la aceleración de los
experimentos de inyección que mejoran su coste temporal. Tercero, se define dos
estrategias DSE que permiten configurar de manera óptima (desde la perspectiva
de la confiabilidad) los componentes IP y las herramientas EDA, con un coste
experimental mínimo. Cuarto, se propone un kit de herramientas (DAVOS) que
automatiza e incorpora con eficacia los procesos orientados a la confiabilidad en
el flujo de diseño semicustom. Finalmente, se demuestra la utilidad y eficacia
de las propuestas mediante un caso de estudio en el que se implementan tres
procesadores empotrados en un FPGA de Xilinx serie 7.

iv

Resum

La utilització de sistemes encastats en cada vegada més àmbits d’aplicació està
portant al fet que el seu disseny haja d’enfrontar-se a majors requisits de rendi-
ment, consum d’energia i àrea de silici ocupada (PPA). Així mateix, la seua util-
ització en aplicacions crítiques provoca que hagen de complir amb estrictes req-
uisits de confiabilitat per a garantir el seu correcte funcionament durant períodes
prolongats de temps. En particular, l’ús de dispositius lògics programables de ti-
pus FPGA com a tecnologia d’implementació final resulta un gran desafiament des
de la perspectiva de la confiabilitat, ja que la memòria de configuració d’aquests
dispositius és molt sensible a la radiació. Per tot això, la confiabilitat ha de
considerar-se com un dels criteris principals per a la presa de decisions al llarg
del tot flux de disseny, que ha de complementar-se amb diversos processos que
suporten i permeten aconseguir estrictes requisits de confiabilitat.

Primer, l’avaluació de la robustesa del disseny enfront de les fallades permet iden-
tificar els seus punts febles, guiant així la definició de mecanismes de tolerància
a fallades. Segon, l’eficàcia dels mecanismes definits ha de validar-se experimen-
talment. Tercer, l’avaluació comparativa de la confiabilitat (dependability bench-
marking) permet als dissenyadors seleccionar els components predissenyats (IP),
les tecnologies d’implementació i les eines de disseny (EDA) més adequades (des
de la perspectiva de la confiabilitat) entre aquelles alternatives existents. Final-
ment, l’exploració de l’espai de disseny (DSE) pot desplegar-se per a configurar de
manera òptima els paràmetres dels components i les eines seleccionats, millorant
així la confiabilitat i les mètriques PPA de la implementació resultant.

v

Tots els processos anteriorment esmentats es basen en tècniques d’injecció de
fallades per a poder avaluar la robustesa del sistema dissenyat. A pesar que ex-
isteix una àmplia varietat de tècniques i eines d’injecció de fallades, cap d’elles
permet cobrir completament les necessitats plantejades en el flux de disseny semi-
custom. Aquelles solucions basades en simulació (SBFI) normalment estan limi-
tades a treballar amb models maquinari d’alt nivell, proporcionant estimacions de
robustesa imprecises, sent altament intrusives i/o específiques per a alguna tec-
nologia d’implementació particular. Les tècniques d’injecció de fallades basades
en FPGAs (FFI) han d’abordar problemes relacionats amb la granularitat de
l’anàlisi, no permetent la localització precisa dels punts febles del disseny i con-
siderant punts d’injecció innecessaris (no essencials).

Un altre desafiament és la reducció del cost temporal dels experiments d’injecció
de fallades. Tenint en compte l’alta complexitat dels dissenys actuals, el temps
experimental dedicat a l’avaluació de la confiabilitat pot ser excessiu fins i tot en
aquells escenaris més simples, mentre que pot ser simplement inviable en aquells
processos relacionats amb l’avaluació de múltiples configuracions alternatives del
disseny (benchmarking i DSE).

Finalment, aquests processos orientats a la confiabilitat manquen d’un suport
instrumental (eines) que permeta cobrir el flux de disseny amb tota la seua varietat
de llenguatges de descripció de maquinari, tecnologies d’implementació i eines de
disseny.

Aquesta tesi aborda els reptes anteriorment esmentats, amb la finalitat d’integrar
de manera eficaç aquests processos orientats a la confiabilitat en el flux de disseny.
Primerament, es proposen nous mètodes d’injecció de fallades que permeten una
avaluació de la confiabilitat precisa i detallada en diferents nivells del flux de
disseny. Segon, es defineixen noves tècniques per a l’acceleració dels experiments
d’injecció que milloren el seu cost temporal. Tercer, es defineix dues estratègies
DSE que permeten configurar de manera òptima (des de la perspectiva de la
confiabilitat) els components IP i les eines EDA, amb un cost experimental mínim.
Quart, es proposa un kit d’eines (DAVOS) que automatitza i incorpora amb
eficàcia els processos orientats a la confiabilitat en el flux de disseny semicustom.
Finalment, es demostra la utilitat i eficàcia de les propostes mitjançant un cas
d’estudi en el qual s’implementen tres processadors encastats en un FPGA de
Xilinx sèrie 7.

vi

Abstract

Embedded systems steadily extend their application areas, dealing with increasing
requirements to their performance, power consumption and area (PPA). When-
ever embedded systems are used in safety-critical applications, they must also
meet rigorous dependability requirements, thus to guarantee their correct service
during an extended period of time. It becomes especially challenging to meet the
dependability requirements for those systems that use SRAM-based Field Pro-
grammable Gate Arrays (FPGAs) as the target implementation technology, since
they are very susceptible to Single Event Upsets (SEUs) in their configuration
memory. This leads to increased dependability threats, especially in harsh envi-
ronments. In such a way, dependability should be considered as one of the primary
design goals for embedded systems, driving the design decisions throughout the
whole design flow.

To meet the rigorous dependability requirements, the common semicustom design
flow should be accompanied by several dependability-driven processes. First,
dependability assessment should quantify the robustness of the design against
faults, and identify its weak points, thus supporting the definition of fault mit-
igation mechanisms. Second, dependability-driven verification ensures the cor-
rectness and efficiency of fault mitigation mechanisms. Third, dependability
benchmarking allows designers to select the most suitable (from a dependabi-
lity perspective) IP cores, implementation technologies, and electronic design au-
tomation (EDA) tools from available alternatives. Finally, dependability-aware
design space exploration (DSE) can be deployed to optimally configure the pa-
rameters of the selected IP cores and EDA tools, to improve as much as possible
the dependability and PPA features of resulting implementation.

vii

The aforementioned dependability-driven processes rely on fault injection test-
ing to quantify the robustness of the designed systems. Despite nowadays there
exists a wide variety of fault injection solutions, several important problems still
should be addressed to completely cover the needs of a dependability-driven design
flow. In particular, simulation-based fault injection (SBFI) methodologies must
be adapted to implementation-level HDL models, to enable the accurate and low-
intrusive simulation of logic faults in technology-specific macrocells. Likewise, the
assessment of FPGA-based designs requires to refine the granularity of FPGA-
based fault injection (FFI) to accurately locate the relevant fault targets within
the configuration memory, as well as to map detected weak points (critical bits)
onto the source HDL design.

Another important challenge, that should be addressed to efficiently integrate
dependability-driven processes into the design flow, is the reduction of SBFI and
FFI experimental effort. Considering the high complexity of modern hardware de-
signs, the required fault injection effort may exceed the experimental time budget
even in simple dependability assessment scenarios. Thus, in presence of alterna-
tive design configurations (especially in case of DSE dealing with thousands of
alternatives) the fault injection experimental effort becomes infeasibly high.

Finally, the aforementioned dependability-driven processes lack an instrumental
support (tools) covering the semicustom design flow in all its variety of description
languages, implementation technologies, and EDA tools. Existing fault injection
tools only partially cover the individual stages of the design flow, being usually
specific to a particular level of the design representation and implementation
technology.

This work addresses the aforementioned challenges, in order to efficiently inte-
grate dependability-driven processes into the design flow. First, it proposes new
SBFI and FFI approaches that enable an accurate and detailed dependability
assessment at different levels of the design flow. Second, it improves the per-
formance of dependability-driven processes by defining new techniques for accel-
erating SBFI and FFI experiments. Third, it defines two DSE strategies, that
enable optimal dependability-aware tuning of IP cores and EDA tools, while re-
ducing as much as possible the robustness evaluation effort. Fourth, it proposes
a new toolkit (DAVOS), that automates and seamlessly integrates the aforemen-
tioned dependability-driven processes into the semicustom design flow. Finally,
it illustrates the usefulness and efficiency of these proposals through a case study
consisting of three soft-core embedded processors implemented on a Xilinx 7-series
SoC FPGA.

viii

Contents

Abstract iii

Contents ix

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 6

1.3 Structure of the thesis. 7

2 Dependability-aware Hardware Design Flow 9
2.1 Semicustom and FPGA-based design flow . 10

2.1.1 Model-based design . 10

2.1.2 SRAM-based FPGA as target implementation technology. 13

2.1.3 Technology-specific libraries . 15

2.2 Dependability assessment . 21

2.3 Dependability benchmarking . 26

2.4 Dependability-aware design space exploration . 27

2.5 Conclusions . 31

ix

Contents

3 Fault Injection for Dependability Assessment of HW Designs 33
3.1 Introduction . 34

3.2 Fault models . 37

3.3 Simulation-based fault injection . 40
3.3.1 SBFI techniques . 40

3.3.2 Insufficiency of RT-level fault injection . 42

3.3.3 Performance and accuracy challenges of implementation-level SBFI 44

3.3.4 SBFI tools . 47

3.4 FPGA-based fault injection . 48
3.4.1 FFI techniques . 49

3.4.2 Locating the fault targets in the FPGA configuration memory 52

3.4.3 FFI tools. 57

3.5 Existing strategies for improving fault injection performance 58
3.5.1 Optimizing the fault space through fault collapsing. 58

3.5.2 Statistical fault injection . 59

3.5.3 Speeding-up fault injection runs . 62

3.6 Conclusions . 64

4 Enabling Low-intrusive Simulation-based Fault Injection for Imple-
mentation-level Models 67

4.1 Introduction . 68

4.2 Fault simulation in VITAL-compliant models . 69
4.2.1 Definition of generic operations to support fault injection 69

4.2.2 Stuck-at, pulse, and indetermination faults . 71

4.2.3 Bit-flip faults in registers . 72

4.2.4 Delay faults . 73

4.2.5 Considering FPGA-specific components: bit-flips in configuration memory of
LUTs. 75

4.3 Fault simulation in Verilog-based models . 76
4.3.1 Bit-flip faults . 77

4.3.2 Delay faults . 79

4.4 Unified fault dictionary . 80

4.5 Conclusions . 83

x

Contents

5 Improving the Accuracy of FPGA-based Fault Injection 85
5.1 Introduction . 86

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory . . 87
5.2.1 Mapping of Look-Up tables . 88

5.2.2 Mapping of Block RAMs . 96

5.3 Optimized essential bits. 100

5.4 Exploiting optimized essential bits for the bit-accurate emulation of SEUs 104

5.5 Conclusions . 107

6 Contributions in Improvement of Fault Injection Performance 109
6.1 Introduction . 110

6.2 Strategies to reduce the number of fault injection runs 111
6.2.1 Filtering and prioritization of essential bits through the profiling of the target
switching activity . 111

6.2.2 Iterative statistical fault injection. 117

6.3 Strategies to speed-up SBFI and FFI experiments . 121
6.3.1 Mixed-level and multi-level fault injection . 122

6.3.2 Simulation-based and FPGA-based checkpointing. 127

6.4 Discussion . 131

6.5 Conclusions . 133

7 Contributions in Dependability-aware Design Space Exploration 135
7.1 Introduction . 136

7.2 DSE based on the design of experiments . 138
7.2.1 Background on design of experiments and its statistical analysis. 138

7.2.2 Exploring regular design spaces by means of fractional factorial designs 140

7.2.3 Exploring irregular design spaces through iterative refinement of D-optimal
designs. 144

7.3 Speeding-up the GA-based DSE by means of iterative selection 148

7.4 Conclusions . 153

8 DAVOS Toolkit 155
8.1 Introduction . 155

xi

Contents

8.2 DAVOS architecture . 156

8.3 Fault injection tools for dependability assessment . 160
8.3.1 DAVOS-SBFI tool . 161

8.3.2 DAVOS-FFI tool . 164

8.3.3 Interactive reporting interface . 168

8.4 Automated PPAD evaluation of parametrized designs. 169
8.4.1 Implementation support tool . 170

8.4.2 PPAD evaluation engine . 171

8.5 Decision support tool for selecting and optimizing HW designs 173

8.6 Conclusions . 177

9 Experimental Evaluation 179
9.1 Introduction . 180

9.2 Dependability benchmarking of soft-core processors 181
9.2.1 Experimental procedure . 181

9.2.2 Fault injection results and dependability metrics 185

9.2.3 Ranking of DUTs . 191

9.2.4 Experimental effort and speed-up. 193

9.2.5 Discussion . 200

9.3 Dependability-aware design space exploration for optimal tuning of EDA pa-
rameters. 202

9.3.1 Experimental procedure . 203

9.3.2 DSE results obtained by GA-based approach. 204

9.3.3 DSE results obtained by DoE-based approach . 208

9.3.4 Discussion . 215

9.4 Dependability assessment and verification of fault-tolerant HW design 217
9.4.1 Experimental procedure . 217

9.4.2 Experimental results. 221

9.4.3 Discussion . 223

9.5 Conclusions . 224

10 Conclusions and Future Work 227
10.1 Conclusions . 227

xii

Contents

10.2 Summary of contributions an publications. 233
10.2.1 Contributions of the thesis . 233

10.2.2 Publications . 235

10.2.3 Research projects . 236

10.3 International research stay . 236

10.4 Future work . 237

Appendices 239

A Details of Bit-accurate FPGA-based Fault Injection Approach 241
A.1 Accessing the configuration memory of Xilinx FPGAs 241

A.2 Bit-accurate mapping of LUTs onto the configuration memory 245

A.3 Determining the state of unused LUT pins. 248

A.4 Extracting the macrocells descriptors from implementation-level netlist 251

B Case Study Details 253
B.1 Architecture of the DUTs . 253

B.2 Convergence of GA/NSGA-based DSE . 254

B.3 Regression models for PPAD attributes . 256

B.4 Comparison of experimentally obtained PPAD optimization results with the
predicted ones . 259

Bibliography 261

xiii

List of Figures

1.1 Causality relationship between faults, errors, and failures 2

2.1 FPGA-based design flow . 11

2.2 Coarse-grained architecture of Xilinx 7-series FPGA 13

2.3 Annotation of interconnect and propagation delays from standard
delay format (SDF) file . 16

2.4 VITAL-compliant macro-cell model 18

2.5 Estimation of reliability attributes in the context of fault forecasting 23

2.6 Impact of Microblaze IP parameters on expected area and perfor-
mance (Vivado 2018.3) . 28

2.7 Impact of resource sharing optimization on resulting area 29

3.1 Basic concepts of fault injection . 34

3.2 Routing faults within the FPGA switchbox (according to [21]) . . 39

3.3 Impact of Finite-State Machine (FSM) encoding option on sequen-
tial logic (FF) produced by synthesis tool 42

3.4 Optimization of the sequential logic during logic synthesis 42

xv

List of Figures

3.5 Impact of retiming in HW implementations 43

3.6 Relative accuracy and complexity of fault injection experiments at
different levels of HDL description 45

3.7 Injection of bit-flip into implementation-level model by means of
RT-level approach . 46

3.8 FPGA-based fault injection flow 49

3.9 Coarse-grained mapping of RAM blocks onto the FPGA configu-
ration memory . 54

3.10 Coarse-grained mapping of Look-up tables onto the configuration
memory . 55

3.11 Sensitivity of sample size n to the increasing population size N . . 61

4.1 Injecting two consecutive pulses into a combinational component . 72

4.2 Injection of bit-flip into a flip-flop at implementation level 73

4.3 Injecting delay faults into a flip-flop 75

4.4 Representation levels of combinational logic in FPGA-based design
flow . 76

4.5 Structure of Verilog-based Flip-Flop macrocell 77

4.6 Simulation of bit-flip fault in Verilog macrocell 78

4.7 Simulation of timing faults in Verilog macrocells 80

4.8 Fault dictionary model . 81

4.9 Excerpt from the fault dictionary file and configuration file de-
scribing the delay fault model for a Xilinx’s X_FF macrocells and
a delay faultload, respectively . 82

5.1 Algorithm for the bit-accurate mapping of LUT cells onto the con-
figuration memory (bitstream) . 89

5.2 Location of LUT content within the configuration memory of 7-
series FPGA . 90

xvi

List of Figures

5.3 Example LUT descriptors extracted from the netlist in Vivado . . 93

5.4 Example of bit-accurate LUT mapping 94

5.5 Mapping of LUT content in case of LUT combining 95

5.6 Procedure for locating the RT-level memory content within the
inferred RAMB18 cell . 97

5.7 Example of locating the RT-level memory content within the in-
ferred RAM block . 99

5.8 Procedure for generating an optimized essential bit mask file . . . 101

5.9 Example result of optimizing essential bit mask for LUTs of one
CLB slice . 102

5.10 FAR profiling procedure used to extract the list of valid frame
addresses for any given device part 103

5.11 Procedure for extraction of configuration data from the bitstream
file and their annotation with frame addresses 104

5.12 SEU injection procedure based on optimized essential bits 105

6.1 Profiling of switching activity on LUT inputs to determine inactive
cells of configuration memory . 112

6.2 Profiling of switching activity in case of LUT combining with non-
shared inputs . 115

6.3 Interactions among entities involved in the generation of an opti-
mized faultload for an FPGA-based fault injection campaign . . . 116

6.4 Structure of resulting LUT cell descriptors after mapping, profiling
and fault injection . 116

6.5 Algorithm to minimise the sample size for estimating a given failure
mode with any given goal for the error margin 119

6.6 Fault injection process driven by both error margin and experi-
mentation time . 120

6.7 Speed-up attainable through iterative statistical sampling with re-
spect to conservative approach . 121

xvii

List of Figures

6.8 Mixed-level model comprising behavioural and implementation-
level components . 123

6.9 Matching the the sequential logic between the RTL and implementation-
level models . 125

6.10 Restoring execution from clustering checkpoint to speed-up the
fault injection experiments . 127

6.11 Speed-up gain expected from the checkpointing under increasing
number of clustering intervals . 129

7.1 DSE flow to optimize EDA/IP parameters though the fractional
factorial design of experiments . 141

7.2 Iterative D-optimal design-based DSE 145

7.3 Single-objective GA-based DSE algorithm with iterative selection . 149

7.4 Multiobjective GA-based DSE, combining iterative selection and
non-dominated sorting . 151

8.1 Architecture of DAVOS toolkit . 157

8.2 Architecture of Simulation-based fault injection tool 161

8.3 Architecture of FPGA-based fault injection tool 165

8.4 Example of interactive web-based fault injection report 168

8.5 Excerpt from an example configuration file, defining an implemen-
tation flow under Xilinx ISE toolchain 170

8.6 Excerpt from configuration file defining custom PPAD metrics . . 172

8.7 Monitoring interface, showing the current status of PPAD evalua-
tion process and summary of collected results 173

8.8 Sample configuration of the decision support tool for the depend-
ability benchmarking . 174

8.9 An example of configuration section defining the factorial design . 175

8.10 Example of Web-based DSE report 177

xviii

List of Figures

9.1 Distribution of failure modes estimated for the stuck-at-1/0 faults
by means of RT-level SBFI and implementation-level SBFI 186

9.2 Bit-flips in registers at different representation levels: distribution
of failure modes and estimated failure rate 187

9.3 Contribution of Microblaze modules into SDC percentage (esti-
mated by FFI) . 187

9.4 Bit-flips in distributed RAM (LUTRAM) obtained by SBFI and FFI188

9.5 Bit-flips in block RAM obtained by FFI 188

9.6 Robustness estimates obtained for the bit-flips in non-changeable
CM . 190

9.7 Percentage of LUT bits with respect to the profiled activity time,
and respective percentage of failures (SDC) 190

9.8 Iterative statistical fault injection in comparison to the conservative
statistical approach . 198

9.9 Excerpt from GA-based DSE results for AVR 205

9.10 AVR assembly under study with integrated SEU mitigation mech-
anism . 218

9.11 Adaptation of DAVOS FFI flow to the evaluation of defined re-
silient design . 219

A.1 ICAP, PCAP and JTAG paths for accessing the FPGA configura-
tion memory . 242

A.2 Bitstream composition for reading and writing the FPGA configu-
ration memory . 243

A.3 Procedures to read (a) and write (b) the configuration memory
through the PCAP interface . 244

A.4 Algorithm for locating the bits of LUT INIT (truth table) within
the bitstream fragment . 246

A.5 Excerpt of LUT mapping trace for LUT6 Cell under direct ping
mapping . 246

xix

List of Figures

A.6 Instantiated LUT with unused pins A4/A5/A6 (a), LUT connec-
tion to PS through GPIO interface 248

B.1 Architecture of HW designs under study 253

B.2 Convergence of GA-based DSE process (single optimization goal -
failure rate) . 254

B.3 Convergence of NSGA-based DSE process (two optimization goals:
failure rate and frequency) . 255

xx

List of Tables

2.1 Safety Integrity Levels (SIL) for continuously used systems and for
systems used on demand . 25

3.1 Common logic fault models . 38

3.2 ModelSim commands to simulate the fault effects at RT level . . . 41

3.3 Characterization of some well-known SBFI tools 48

3.4 Frame address composition for Xilinx 7-series FPGA family 53

3.5 Statistical sampling concepts mapped to the fault injection domain 61

4.1 Operations on VITAL-compliant macrocells to support fault injection 70

5.1 Bit-accurate mapping of LUT6 content onto the bitstream fragment 91

8.1 Sample application scenarios detailing which DAVOS tools and
modules are used in each of them 160

8.2 Main options of DAVOS_SBFI tool, that should be configured to
set-up an SBFI experiment . 163

xxi

List of Tables

8.3 Main options of DAVOS_FFI tool, that should be configured to
set-up an FFI experiment . 167

9.1 DUT simulation/emulation phases in clock cycles 180

9.2 Weights of PPAD attributes in three considered multi-objective
ranking scenarios . 182

9.3 Fault targets at different design representation levels 183

9.4 Faultload considered at different design representation levels 184

9.5 Comparison of considered DUTs attending to individual PPAD
metrics and WSM scores . 192

9.6 Non-optimized SBFI and FFI time (per injection run) 194

9.7 Estimated non-optimized and optimized (resulting) experimental
time per MC8051 fault injection campaign 194

9.8 Experimentally observed speed-up attained by checkpointing opti-
mization . 196

9.9 Speed-up gain achieved by multi-level SBFI with respect to imple-
mentation-level SBFI . 197

9.10 Experimental speed-up attained by LUT mapping and profiling . . 197

9.11 Speed-up attained by iterative statistical FFI at dependability bench-
marking in comparison to the conservative sampling approach . . . 199

9.12 Vivado parameters under study, default level highlighted in bold . 203

9.13 Resulting configurations providing best robustness 206

9.14 Accumulated millions of fault injection experiments and speed-up
attained by the proposed iterative selection strategy 207

9.15 Resulting regression models for failure rate (accounting for signifi-
cant terms) . 209

9.16 Relative contribution of considered factors to the resulting PPAD
attributes . 212

9.17 Resulting best configurations for each optimization goal 213

xxii

List of Tables

9.18 PPA and dependability evaluation time measured for each DSE
experiment . 215

9.19 Sensitivity to the SEUs of increasing multiplicity of simplex and
protected (TMR) version of AVR IP 221

9.20 Resulting mission time for the simplex and TMR versions of AVR
IP (under the default and optimized EDA parameters) 222

9.21 Probability of DUT failure under SEU accumulation 222

A.1 Mapping of the LUT content onto the bits of corresponding bit-
stream fragment . 247

A.2 LUT content allowing to determine the state of unused BEL pins
A6:A5:A4 . 249

B.1 Regression Models for dependability attributes (statistically signif-
icant terms) . 256

B.2 Regression Models for frequency and power consumption (statisti-
cally significant terms) . 257

B.3 Regression Models for area attributes (statistically significant terms)258

B.4 Predicted and actual PPAD results obtained for the best configu-
rations . 259

xxiii

List of Acronyms

ASIC Application-specific integrated circuit
BEL Basic element of logic
BRAM Block RAM
CLB Configurable logic block
CM Configuration memory
CSV Comma-separated values (file)
DSE Design space exploration
DSP Digital Signal Processing block
DUT Design under test
DVF Device vulnerability factor
DoE Design of experiments
ECC Error correction code
EDA Electronic design automation
FAR Frame address register
FFI FPGA-based fault injection
FF Flip-Flop
FIT Failure in time unit (one failure each one billion of device hours)
FPGA Field Programmable Gate Array
FSM Finite state machine

xxv

List of Tables

GA Genetic algorithm
GPIO General-purpose input/output
GSR Global set-reset
HDL Hardware description language
HW Hardware
ICAP Internal configuration access port
IC Integrated circuit
IP Intellectual property
MCDM Multi-criteria decision making
MTTF Mean time to failure
NSGA Non-dominated sorting genetic algorithm
PCAP Processor configuration access port
PPAD Performance, power, area, and dependability attributes
RTL Register transfer level
SBFI Simulation-based fault injection
SDC Silent data corruption
SDF Standard delay format
SEU Single event upset
SGE Sun grid engine
SoC System on chip
TMR Triple modular redundancy
UDP User-defined primitive
VITAL VHDL initiative towards ASIC libraries
WSM Weighted sum model
XML Extensible markup language

xxvi

Chapter 1

Introduction

1.1 Motivation

Embedded systems have become increasingly widespread across diverse appli-
cation domains, ranging from consumer electronics to aerospace systems. The
design of embedded systems supposes that they must perform their dedicated
(predefined) functions within the enclosing product in a most efficient way. On
the one hand, they should minimize the usage of hardware (and software) re-
sources to keep reasonable the cost of the resulting product. On the other hand,
when embedded into portable (autonomous) devices, they must be also energy-
efficient. These properties must be achieved without compromising the ability
of the system to confidently perform the required functionality, often under hard
real-time constraints [108]. At the same time, embedded system must meet the
dependability requirements of the target application domain. Dependability is
understood as the ability of the system to deliver a service that can justifiably
be trusted [13]. In non-critical applications (consumer electronics) the lack of
dependability may lead to financial losses and risks for the vendor’s reputation.
In safety-critical applications (automotive systems, power plants, medical equip-
ment) an invalid or absent system service is completely unacceptable, as it may
lead to catastrophic consequences on humans and the environment.

1

Chapter 1. Introduction

The causes and consequences of incorrect system behaviour are described by the
chain of dependability threats [13], depicted in Fig.1.1, which comprises three
main concepts: faults, errors, and failures. Faults are defects introduced in the
system during development, manufacturing, or operation. A fault may remain
dormant (or masked) without any effects on the system behaviour, but once ac-
tivated, causes a deviation from the correct logical values of system’s internal
nodes; this deviation is referred to as error. Errors may cause an incorrect be-
haviour of the system, and after propagating to the system interface, cause a
failure, which is perceived by the user (external system) as the deviation of the
delivered service from the correct one. The failure of a system service causes a
permanent or transient external fault for other systems that receive that service.
Errors may be also detected by the system, and corrected, and/or reported to the
user (higher-level system) in order to alert her that the delivered service cannot
be trusted.

Correct Fault Error Failure

Alarm

FaultActivation Propagation

Correction

Causation

Component
interface

masking

Figure 1.1: Causality relationship between faults, errors, and failures

Various faults in the system originate from development flaws, manufacturing
defects, and external effects [13]. Development faults are due to imperfections
in the designed software and hardware. Despite this work focuses on hardware
dependability, it is worth noting that software faults (incorrect type casting, un-
handled exception, memory leakage, etc.) may pose an important dependability
threat, as it has been reported for the widely-known Ariane 5 flight failure [102].
Hardware development faults may result from design flaws and bugs in the source
HDL model of the system, or in the used third-party IP cores. Indeed, in order
to reduce the development cost and time to market, the industry often makes
use of third-party IP cores (soft-core processors, communication controllers, etc.)
within the automated design flow. The side effect of integrating such IPs is that
they allow a very limited inspectability and, being often poorly verified by the
designer, may seriously compromise the reliability of the resulting system.

The steadily scaling of manufacturing technologies for VLSI Integrated Circuits
(IC) brings another set of benefits and challenges for the designers of embedded
system. On the upside, it favours higher packaging densities, higher clock speeds,

2

1.1 Motivation

and lower voltages, resulting in improved overall performance and lower power
consumption. On the downside, shrinking technologies also imply an increas-
ing vulnerability to hardware faults [120]. Even though the manufacturing open,
short and bridging defects [173] are detected at post-production testing (being less
critical for the consumer), the increased sensitivity of ICs to external (environ-
mental) effects become more critical. First, the higher cross-section increases the
rate of soft errors (single and multiple-bit upsets) in registers and memory cells,
due to the impact of ionizing particles [121]. Second, lower voltages make the
circuit more sensitive to electromagnetic (EM) noise, resulting in higher rates of
transient logic faults, while high-power EM pulses may also permanently damage
the IC [91]. Third, shrinking technology also intensifies the wear-out process due
to accumulated environmental effects; this increases even more the rate of soft
errors, and makes intermittent faults more pronounced until they finally manifest
as permanent faults [152].

The problem of IC sensitivity to external effects becomes particularly challenging
in the context of the increasing usage of Field Programmable Gate Arrays (FPGA)
in embedded systems. Programmable devices have always been considered as a
suitable alternative to ASICs, because of (i) quick development cycle, (ii) cost-
efficiency when the system is produced in small volumes or in unique samples, and
(iii) reconfiguration capabilities allowing to deliver post-production updates to the
designed systems, thus to extend their lifetime. This trend has intensified with the
advances of SRAM-based FPGA technologies, revealing superior performance and
ability to allocate the required functionality within the FPGA chip on demand at
run-time. At the same time, SRAM-based FPGAs are known to be very sensitive
to single event upsets (SEUs) in their configuration memory [70]. This problem is
especially challenging for mission-critical and safety-critical systems used in harsh
environments [127].

To avoid service failures in presence of faults, the designed systems must be pro-
tected by fault tolerance mechanisms, which perform error detection and recov-
ery. Most tolerance mechanisms exploit some kind of redundancy: hardware re-
dundancy (N-modular replication), data redundancy (error detection and correc-
tion codes), temporal redundancy (repeated execution, checkpointing/rollback).
Each mechanism has its pros and cons in terms of error correction capabilities,
and performance/power/area penalties. Hardware designs often combine several
mechanisms attending to their specific features. For instance, as it is pointed
in [69], modular redundancy is more appropriate for the protection of blocks with
pipelines and individual registers, because of its low delay penalty; while ECC,
introducing much lower resource overhead, is more appropriate for register files
and memories. Some design-hardening techniques specifically target FPGA-based

3

Chapter 1. Introduction

designs. For instance, scrubbing of configuration memory (CM) takes advantage
of FPGA partial reconfiguration capabilities to locate the corrupted CM frames,
and recover them from the reference bitstream [68] [77]. In case of permanent and
intermittent faults, error handling may also be accompanied by fault handling,
to prevent the faults from being activated again [13]. For instance, FPGA-based
systems may dynamically relocate the failing modules into other (non-corrupted)
areas of the chip [115].

Many commercial IP cores are supplied with integrated fault tolerance mecha-
nisms, for instance Gaisler LEON3-FT [40] and Xilinx Microblaze [181] soft-core
processors are protected against SEUs in registers, caches and on-chip RAM by
means of error correction codes. Leading EDA tool manufacturers, trying to gain
momentum in the aerospace and automotive industry, also offer specific products
to instrument the resulting designs (at the netlist level) with fault tolerance mech-
anisms (TMR, safe state machines, ECC), like Xilinx’s XTMR tool [183], Men-
tor Graphics’ Precision RTL Plus [111], and Synopsys’ Synplify Premium [156].
There also exist third-party tools, automating the design hardening, like the one
proposed by Brigham Young University [32], which deploys the Triple Modular
Redundancy (TMR) in EDIF netlists. Some FPGA vendors also offer IP cores for
CM scrubbing, like for instance Xilinx’s Single Error Mitigation controller [182].
Nevertheless, not all of these tools are easily available, and most of them lack cus-
tomization capabilities, so designers often prefer to integrate their custom fault
tolerance mechanisms into the designed systems.

The design process must be accompanied by the verification of integrated fault
tolerance mechanisms, and by the assessment of dependability features of the
resulting system. Verification should be started as soon as it becomes possible
in the design flow, in order to reduce the cost of fixing any weak points in the
design. At the same time, it should also be accomplished at each subsequent step
of the design flow to take into account the impact of involved implementation pro-
cesses and implementation technologies on dependability. Contemporary design
and certification standards in different domains, such as automotive (ISO-26262),
aerospace (DO-254), and railway (IEC-62279), require to verify the designed sys-
tems in presence of faults throughout the whole design flow and recommend the
use of fault injection for that purpose. However, the fault injection process itself
is not standardized. Despite nowadays there exist a wide assortment of differ-
ent fault injection solutions in the hardware domain, none of them is generic
enough to cover the complete hardware design flow in all its variety of Hardware
Description Languages (HDL), modelling levels, EDA tools, and implementation
technologies. Furthermore, the integration of fault injection into the design flow

4

1.1 Motivation

still faces some important challenges related to the accuracy of involved injection
procedures and to the required experimentation effort.

Because of their early availability in the design flow, simulation-based (SBFI)
and emulation-based (FFI) fault injection are two useful dependability evaluation
techniques along the design flow. The former targets HDL models of the designed
systems at different levels of abstraction. The latter targets the FPGA prototype,
being used for both acceleration of model-based injection and for the assessment
of final implementations.

Despite SBFI can potentially support the dependability assessment at all levels of
HDL representation, designers often limit its application to the Register Transfer
Level (source) model, thus considering a very limited set of fault models and
neglecting the impact of EDA optimizations and implementation technologies on
dependability. On the one hand, this is explained by the lack of generic low-
intrusive SBFI techniques that could accurately reproduce fault effects within the
diverse technology-specific (implementation-level) libraries. On the other hand,
this is due to the prohibitive experimentation effort at lower HDL representation
levels, resulting from significantly slower simulation speed and much wider fault
space.

FFI solutions enable a much higher experimentation performance, but must han-
dle even a wider fault space to evaluate the effects of upsets in configuration
memory (CM), which in modern FPGAs may amount to hundreds of megabits.
In addition to that, FFI faces accuracy challenges related to the granularity of the
deployed analysis, resulting from the lack of information and tools which would
allow to map the netlist logic components onto the underlying CM layer.

The existence of a wide variety of alternative IP cores, EDA tools, and imple-
mentation technologies, requires designers to select the solution that best meets
the design goals. The comparison and selection of alternatives from the depend-
ability perspective constitutes the dependability benchmarking process. Beyond
the challenges raised by dependability assessment, benchmarking must address
the problem of making decisions with multiple conflicting design goals, including
performance, power consumption, area/cost, and dependability (PPAD). At the
same time, since multiple alternative implementations must be evaluated, bench-
marking makes the problem of fault injection performance even more pronounced.

Finally, IP cores and EDA tools nowadays provide multitude of configuration pa-
rameters that may significantly impact the attainable PPAD results. On the one
hand, the impact of most parameters on dependability is a priori unknown. For
that reason, designers often prefer to keep them at their default levels. On the

5

Chapter 1. Introduction

other hand, improperly configuring these parameters may negatively impact the
quality of resulting implementations. Tuning selected parameters towards better
PPAD results constitutes an optimization problem in the space of alternative con-
figurations, and is referred to as design space exploration (DSE). Since the design
space growth exponentially with increasing number of available parameters, DSE
becomes a very resource-intensive problem even with respect to the simplest de-
sign goals, such as silicon area or power consumption. Thus, straightforward DSE
approaches become practically infeasible in dependability-aware contexts, due to
the very high cost of evaluation of alternatives through fault injection.

1.2 Objectives

The primary goal of this work is to contribute as much as possible to the effi-
cient integration of dependability-driven fault injection-based processes into the
hardware design flow. In particular, the following objectives are established:

• Studying the capabilities and limitations of existing fault injection solutions
with respect to the dependability assessment at different stages of the hard-
ware design flow, and whenever required, defining additional techniques for
an accurate fault simulation/emulation.

Defined simulation procedures should be low-intrusive and generic enough
to properly reproduce the effects of common logic faults in HDL models
defined on the basis of an arbitrary technology-specific libraries. Defined
fault emulation procedures should be able to selectively target CM cells
pertaining to any selected design scope (module) and the major types of
FPGA logic primitives.

• Defining new fault injection speed-up techniques and refining existing ones
to improve, as much a possible, the performance (reduce the experimentation
effort) of dependability assessment at different design representation levels.

• Defining a design space exploration (DSE) methodology for the dependability-
aware tuning of EDA tools and IP cores. The DSE methodology should allow
multiobjective PPAD optimizations, while reducing as much as possible the
experimentation (evaluation) effort. It should also take into account prop-
erties of the design space, such as the number of levels adopted by EDA/IP
parameters, possible interactions of parameters, and the design space regu-
larity (existence of incompatible configurations).

6

1.3 Structure of the thesis

• Providing an instrumental support for the efficient integration of dependability-
driven processes into the semicustom/FPGA-based design flow. Developed
tools should be generic enough to support different hardware description lan-
guages and abstraction levels, fault models, EDA tools, and implementation
technologies.

• Evaluating the effectiveness of proposed techniques and analysis tools in
application to benchmark circuits considered representative of embedded
systems.

1.3 Structure of the thesis

In addition to the present introduction, the rest of this thesis is structured into
nine chapters:

• Chapter 2: It studies the background on dependability-driven processes
within the semicustom and FPGA-based design flow. First, it provides
an overview of the processes, technologies, and standards of the baseline
design flow. After that, it presents the terminology and existing solutions in
the domain of dependability-assessment, dependability benchmarking, and
dependability-aware design space exploration.

• Chapter 3: This chapter studies the background on fault injection method-
ologies, which are at the base of aforementioned dependability-driven pro-
cesses. First, it introduces the basic concepts, requirements, and approaches
of fault injection. Second, it studies in detail existing techniques and accuracy-
related challenges in the domain of simulation-based (SBFI) and FPGA-
based (FFI) fault injection. Third, it studies existing approaches for im-
proving fault injection performance. Finally, it studies the capabilities and
limitations of existing SBFI and FFI tools with respect to their integration
into the semicustom design flow.

• Chapter 4: It proposes a low-intrusive fault injection approach that al-
lows the accurate simulation of common logic faults in VITAL-based and
Verilog-based implementation-level HDL models. After that, it unifies the
application of defined fault injection procedures to the diverse macrocells
and fault models, through a flexible tool-independent fault dictionary for-
mat.

• Chapter 5: This chapter improves the accuracy of FFI experiments by (i)
establishing a bit-accurate mapping between several of the most important

7

Chapter 1. Introduction

types of Xilinx netlist primitives and the configuration memory, and (ii)
by optimizing the localisation of essential bits within the FPGA configura-
tion memory to deploy bit-accurate FFI experiments for any selected design
scope and type of logic primitives.

• Chapter 6: This chapter presents the contributions for improving the fault
injection performance. The proposed approach reduces the number of injec-
tion runs by filtering and prioritizing essential bits through the profiling of
the switching activity, and by sampling the fault space in an iterative way
until reaching a given confidence interval for derived metrics. In addition to
that, each individual experiment is also accelerated by developing the ideas
of multi-level fault injection and checkpointing in the context of SBFI and
FFI.

• Chapter 7: It proposes three DSE techniques that aim at the dependability-
aware tuning of EDA tools and IP cores with a minimal experimental effort.
The first two techniques rely on i) Design of Experiments (DoE) to rep-
resentatively sample the design space with the smallest possible number
of configurations, ii) statistical methods to quantify the impact of consid-
ered parameters on PPAD results, and iii) MCDM techniques to determine
the best suitable configuration of parameters. The third technique explores
the design space by means of genetic algorithms, optimizing the DSE per-
formance through an iterative dependability-driven selection. Finally, this
chapter discusses the advantages and limitations of each technique with re-
spect to the properties of the design space under study.

• Chapter 8: This chapter describes the DAVOS toolkit, developed to pro-
vide an instrumental support for the seamless integration of considered
dependability-driven processes into the semicustom design flow.

• Chapter 9: The efficiency of proposed techniques and tools is evaluated in
application to three soft-core processors (MC8051, AVR, and Microblaze)
considered to be suitable benchmarks in the context of embedded systems.

• Chapter 10: This chapter summarizes the conclusions drawn from this
work, discusses the advantages and limitations of proposed techniques, and
outlines the ways for future research based on proposed approaches.

8

Chapter 2

Dependability-aware Hardware
Design Flow

The semicustom design methodology supplies designers with a wide range of inter-
operable EDA tools, customizable IP cores, and implementation technologies that
significantly accelerate the development cycle and help to meet the required per-
formance, power and area (PPA) requirements. Being applied to the development
of critical systems, the baseline design flow should be complemented by several
dependability-driven processes, namely: (i) dependability assessment to evaluate
the dependability features of the designed system against the requirements of target
applications, (ii) dependability benchmarking to select the most suitable IP cores,
EDA tools, and implementation technologies attending to dependability criteria,
and (iii) dependability-aware design space exploration to optimally configure the
EDA tools and IP cores from the viewpoint of the robustness of resulting imple-
mentations. This chapter provides the necessary background on dependability-
aware design flow. Section 2.1 first introduces the basic processes of semicustom
design flow. After that, Sections 2.2, 2.3, and 2.4 detail the terminology and
analyse existing solutions in the domain of dependability assessment, benchmark-
ing, and design space exploration, respectively. Finally, Section 2.5 concludes this
chapter.

9

Chapter 2. Dependability-aware Hardware Design Flow

2.1 Semicustom and FPGA-based design flow

Nowadays, the hardware design flow is automated enough to translate highly
abstract HW models directly into their final implementation technology with
minimum level of designer’s effort. The designer’s task in this flow is to define
the source high-level model of the system and to verify the intermediate imple-
mentation results through simulation. This section provides an overview of the
model-based HW design flow and its application to SRAM-based FPGAs.

2.1.1 Model-based design

The modern semicustom hardware design flows rely on the use of Hardware De-
scription Languages (HDL) to model the hardware, and on Electronic Design Au-
tomation (EDA) tools to translate these models into the target implementation
technology. HDL models can be defined at either the implementation level, the
logic level, or the Register Transfer Level (RTL). In practice, the source designs
are usually defined by high-level RTL models, which describe the circuit in terms
of registers and how information flows among them with just clock cycle accuracy.
Synthesis tools translate RTL models into functional netlists, comprising a set of
inferred interconnected sequential and combinational logic components [165]. The
technology mapping process realizes these generic netlists in a specific technol-
ogy, using a library of primitive components available from different technology
vendors. Technology-dependent netlists are then placed (assigning physical loca-
tions for each element) and routed (adding connection, power, and clock lines) to
obtain a physical netlist that can be translated into a tapeout (for standard cells)
or bitstream (for Field-Programmable Gate Arrays (FPGAs)) file. Fig.2.1 illus-
trates the generic design flow for the case of FPGAs as the target implementation
technology.

Due to design reuse concerns [171], source designs can be also represented by
a hierarchical amalgamation of third party intellectual property (IP) cores de-
scribed in different HDLs at different abstraction levels. The high complexity of
these heterogeneous hardware designs requires the common semi-custom design
flow to rely on the interoperability of highly flexible EDA tools [84]. In such
a way, different third-party synthesis tools (e.g. Synopsis’ Synplify and Men-
torGraphics’ Precision Synthesis) may interchange the generated netlists with
the vendor-specific place/route tools, using the so-called Electronic Design Inter-
change Format (EDIF).

A set of constraints can be supplied to EDA tools to guide them towards meeting
the design requirements. Synthesis constraints usually customize the logic infer-

10

2.1 Semicustom and FPGA-based design flow

Q

Q
SET

CL R

S

R

Q

Q
SET

CL R

S

R

process(inp_a, inp_b, aluop)

begin

case aluop is

when "000" => res <= inp_a + inp_b;

when "001" => res <= inp_a * inp_b;

Logic Synthesis

Map, Place, Route

High-level HW model

EDA toolkit

Performance

Power Consumption

Area/Cost

Dependability

PPAD implementation goals:

Generate bitstream

Behavioral
verification

Functional
verification

Timing
verification

In-device
verification

Implementation
constraints

Synthesis options

Implementation options

Timing
analysis

Power
analysis

Implementation

Figure 2.1: FPGA-based design flow

ence. For instance, designers may explicitly specify in the RTL code (by means
of synthesis attributes), how a particular memory array should be inferred in an
FPGA: using block memory (BRAM), and/or distributed memory (LUTRAM).
Timing constraints commonly specify the required clock frequencies, maximum
critical path, setup times for input pins, etc. Finally, physical constraints assign
the IO pins to the design interface and define the area on the chip layout for the
placement of design modules. Additionally, each process in the design flow can
be customized by means of EDA tools parameters. These parameters globally
tune the logic inference, logic optimizations, enable/disable the usage of certain
types of technology components, tune the place-route strategies, and configure
the processing effort.

Intermediate implementation results should be verified at each step of the design
flow through the simulation of HDL models, exported by EDA tools from the
generated netlists. The behavioral simulation verifies the functional correctness
of the source design. The post-synthesis simulation verifies the functionality of
inferred and optimized gate-level netlist. The post-place-route simulation verifies

11

Chapter 2. Dependability-aware Hardware Design Flow

the resulting implementation from both functional and timing perspectives. The
verification process is usually automated by means of testbenches, which supply
a set of input tests to the model and check the responses against the precom-
puted reference results. More elaborated verification methodologies [20] develop
layered coverage-driven testbenches in SystemVerilog, which generate constrained-
random input tests, while monitoring the reached functional and structural cover-
age. The responses of the design under test (DUT) in the layered testbenches are
usually verified against the reference results, computed at run-time by the abstract
algorithmic model (not necessarily synthesizable). This can be accompanied by
a run-time checking of formal properties, defined by designers using Open Vera
Assertions (OVA) or SystemVerilog Assertions (SVA) [37], which are particularly
useful for the verification of communication protocols and Finite State Machines
(FSMs). Some works [28] also propose the synthesis of hardware assertion check-
ers, which can be used for in-device verification and on-line monitoring.

It must be noted that recent advances in High-level synthesis (HLS) allow defini-
tion of source designs at higher levels than RTL – in form of untimed or partially
timed System-C models, or even by ANSI C/C++ programs [42]. Such HLS tools
as Mentor Graphics’ Catapult [26] translate these highly-abstract descriptions into
the RTL code suitable for either ASIC or FPGA logic synthesis. Likewise, FPGA
vendors provide support for HLS-based flow directly within their EDA suites, like
for instance Xilinx’ Vivado HLS. High-level models may significantly improve the
productivity of the design process. They are especially useful in the context of
FPGA-based applications, allowing quick implementations and run-time recon-
figurations. However, designers may lack control over the micro-architecture of
resulting HDL models. Therefore, RTL models still remain at the core semicustom
design flow, since they provide a reasonable trade-off between the development
efforts and the level of details that designers would like to specify manually.

The quality of the resulting implementation is usually computed attending to
whether it meets the design requirements in terms of performance, power, and
area (PPA). Performance estimations are usually tightly related to the results of a
timing analysis, which determines the critical paths through the circuit along with
the maximum operating frequency. The analysis of power consumption relies on
switching activity estimations obtained by simulating the implementation-level
model. The area metric may refer to both physical area of silicon chip (stan-
dard cells) and the utilization rate of FPGA resources. When dependability is
an expected design feature, common PPA design goals should be complemented
with dependability metrics, thus leading to the PPAD notation. Existing com-
mercial tools provide no direct support for estimating dependability attributes
[52]. Therefore, custom dependability assessment processes should be integrated

12

2.1 Semicustom and FPGA-based design flow

into the generic design flow to provide support for dependability-driven design
strategies.

2.1.2 SRAM-based FPGA as target implementation technology

SRAM-based FPGA is a popular implementation technology, featuring quick de-
velopment process and run-time reconfiguration among other benefits. An FPGA
chip comprises two layers: the configurable FPGA fabric and the configuration
memory. The configurable fabric is a two-dimensional grid of configurable logic
blocks (CLB), digital signal processing blocks (DSP), memory blocks (BRAM),
and IO transceivers, interconnected by means of a configurable routing network.
The functionality of these components and their interconnection is determined
by the content of the underlying configuration memory (CM). The CM content
is loaded on FPGA start-up from the bitstream file stored in an external non-
volatile memory. Later, the CM content can be modified at run-time to alter
the functionality of some modules or completely replace them; this is achieved by
loading a full or partial bitstream.

C
lk

 R
o

w
 =

 1
C

lk
 R

o
w

 =
 0

C
lk

 R
o

w
 =

 0

To
p

 =
 0

To
p

 =
 1

 (
B

o
tt

o
m

)

5
0

 C
LB

 T
ile

s
5

 B
R

A
M

 T
ile

s
5

 D
SP

 T
ile

s Clock region
X0:Y0

Hardwired
ARM

Clock region
X1:Y2

C
LB

 c
o

lu
m

n
s

B
R

A
M

 c
o

lu
m

n

D
SP

 c
o

lu
m

n

Clock region
X1:Y0

LUT_D

Sl
ic

e
[X

s:
Y

]

Sl
ic

e
 [

X
s+

1
:Y

]

CLB Tile [XT : Y]

Switchbox

Tile
INT_XT : Y LUT_C

LUT_B

LUT_A

C
A
R
R
Y

FF_D FF_D

FF_C FF_C

FF_B FF_B

FF_A FF_A

Figure 2.2: Coarse-grained PL architecture, illustrating the relation between BEL, Slice,
Tile, clock region, clock row, Top/Bottom for the case of Xilinx 7-series (Zynq SoC) device

Following the Xilinx’s terminology regarding the design flow, the sequential and
combinational logic inferred at logic synthesis is mapped onto technology-specific
logic cells. At device level these cells are placed into the basic elements of logic
(BEL), which are the smallest components of FPGA fabric. Each BEL supports
the placement of some class of logic cells: Flip-Flops, LUTs, MUXes, Carry chains

13

Chapter 2. Dependability-aware Hardware Design Flow

(being all of them part of a CLB,) DSPs, RAM blocks, etc. BEL can be seen as
placement of cell. A group of related BELs is referred to as a Slice (site). Slices are
arranged on the FPGA layout as a two-dimensional grid, and can be located by
(XS , YS) coordinates, counted from the bottom-left corner of the device layout. In
Xilinx 7-series devices each type of slice has its own independent grid coordinates,
except Slice_L and Slice_M, which share the same space of grid coordinates.

A group of slices form a Tile, which are arranged into columns on the device
layout. Each column of tiles corresponds to the same type of FPGA resource
(CLB, DSP and BRAM). Tiles can be located by (XT , YT) coordinates, which are
shared among tiles of all types, except switch box tiles, whose coordinates coincide
with the tile of linked resources (CLB, DSP and BRAM). A two-dimensional array
of tiles forms a clock region, which is crossed in the middle by the clock lane. In
7-series devices, for instance, the clock region has a height of 50 CLB tiles, or 5
DSP blocks, or 5 RAMB36 tiles. A horizontally aligned group of clock regions
forms a clock row. Finally, FPGA devices are divided into Top and Bottom parts
with one or more clock rows in each part, as depicted in Fig.2.2

The physical placement of design modules can be constrained by defining a rectan-
gular area on the FPGA layout (XT , YT coordinates of bottom-left and top-right
Tiles), referred by Xilinx as Pblock. Each Pblock should include enough Tiles of
each type (CLB, DSP and BRAM) as to allow the placement and routing of all
logic cells within the associated design module.

The sequential logic in Xilinx 7-Series FPGAs is inferred on CLB Flip-Flops (eight
FFs per CLB slice), memory blocks (BRAM), and distributed memory (LUTs of
type-M). Combinational logic in Xilinx FPGAs is implemented by means of LUTs,
MUXes, carry chains, and DSPs. LUT cells implement an arbitrary function of
up to six variables; larger functions are implemented by combining these cells by
means of slice multiplexers and carry chains. Each CLB Tile comprises two CLB
slices. Each CLB slice includes four LUTs (labelled as A, B, C, D bottom-to-
top). CLB slices pertain to one of two types: type L (logic) or M (Memory).
The distinguishing features of the latter (M) is that it allows the implementation
of distributed memories and shift registers on its LUT BELs. Further details on
Xilinx’s CLBs can be found in [175].

14

2.1 Semicustom and FPGA-based design flow

2.1.3 Technology-specific libraries

Semicustom and FPGA-based design flows rely on libraries of basic technology
elements to implement the logic described in source HDL models. Macrocell is a
term used to describe the basic technology elements in the semicustom design flow,
being usually considered as the generalization of standard cells [48]. FPGA-based
flow commonly uses by the term logic primitive to refer to the basic elements of
logic (BELs), which is a native term in the architecture of the selected FPGA.
Likewise FPGA vendors define macros, used to instantiate complex elements,
which are expanded by EDA tools to their underlying primitives [184].

The libraries of technology primitives are distributed by vendors for their de-
vices. They cover implementation and simulation aspects. From the implemen-
tation viewpoint these libraries provide the information required by EDA tools
for technology-specific implementation processes. Primitives can be instantiated
directly in the HDL code or inferred at logic synthesis. From the simulation
perspective these primitives define the BEL’s HDL models, which are used as
the basis for functional and timing verification of intermediate implementation
results.

This subsection provides an overview of the technologies and standards used to
define the libraries of primitives (macrocells) from the simulation perspective.

2.1.3.1 Libraries for the functional and timing simulation

The models exported by EDA suites for post-synthesis verification are usually
defined in the basis of functional simulation libraries, e.g. Xilinx’s Unisim. These
primitives must accurately reflect the functional behaviour of modelled BELs. At
the same time, since the post-synthesis model may include thousands or millions
of such primitives, they should be very efficient in simulation. The Verilog HDL
provides a set of built-in generic logic primitives for gate-level modelling and
supports user-defined primitives (UDPs). UDPs can be sequential (both edge-
sensitive and level-sensitive) or combinational. UDPs models should comply with
a set of requirements [36] for the definition of their interface and functionality.
The functionality of both sequential and combinational UDPs can be modelled
by truth tables, defining the primitive’s output as a function of its inputs and in-
ternal state. The main advantage of using UDPs for component modelling is that
simulators are able to apply efficient compile-time and run-time optimizations,
thus improving the overall simulation performance. Further details on UDP rules
and syntax can be found in [109].

15

Chapter 2. Dependability-aware Hardware Design Flow

(CELL (CELLTYPE "X_LUT6")

(INSTANCE LUT6)

(DELAY

(ABSOLUTE

(PORT ADR0 (280:350:795)(280:350:795))

(IOPATH ADR0 O (34:55:75)(34:55:75))

...

)

)

) Standard Delay Format file (.*SDF)

ADR0

ADR1

ADR2

ADR3

ADR4

ADR5

Interconnect delay propagation delay ADR0  O

OFunctionality

X_LUT6

O

I

CLK

X_FF

min typ max

0  1

min typ max

1  0

Figure 2.3: Annotation of interconnect and propagation delays from standard delay format
(SDF) file

The post-place-route verification relies on timing simulation libraries, e.g. Xilinx’s
SimPrim. These primitives must accurately reflect both the functional and timing
behaviour of modelled BELs. The models, exported by EDA tools, are annotated
from the timing properties of the resulting circuit, specified using Standard Delay
Format (SDF) files. SDF has been established by the Open Verilog International
organization, as a tool- and language-independent format for representation and
interpretation of timing data at any stage of the electronic design process [75].
Currently it is standardized as IEEE-1497.

Each macrocell in the netlist SDF file specifies a set of timing properties and
timing checks supported by that macrocell. Two commonly modelled timing
properties are the interconnect and propagation delays. The interconnect delay
refers to the net connected to a given input port of a macrocell. It can be modelled
on a pin-to-pin basis between two macrocells (Verilog), or by delaying the signal
directly on the input port (VHDL-VITAL). In the first case the delay value is
annotated from the INTERCONNECT tags of SDF file, in the latter case delay
is annotated from the PORT tag. The propagation delays refer to the different
paths that can be activated through the macrocell. In the SDF file path delays are
specified by the IOPATH property followed by the names of input and output
ports. As it is exemplified in Fig.2.3, all SDF delays are specified separately
for different transitions: ’0→1’, ’1→0’, ’0→Z’, ’Z→0’, ’1→Z’, ’Z→1’. At the same
time, the minimum, typical, and maximum values are specified for each transition,

16

2.1 Semicustom and FPGA-based design flow

which correspond to the best-case, expected, and worst-case operating conditions
of the circuit respectively.

Verilog natively supports the modelling of delays in simulation primitives through
specify blocks, as well as back-annotation of timing properties from SDF files
by means of the $sdf_annotate system task. Specify blocks define a (i) set of
timing parameters (specparam), (ii) a set of paths, which model the interconnect
and propagation delays on a pin-to-pin basis, and (iii) system timing checks.
Specparam are special Verilog parameters, accessible only within the specify block
(which declares the timing properties of Verilog macrocells), and they are used
to store and calculate the actual (or default) delay values. Path declarations
can use these parameters or constant literals instead. As detailed in [168], paths
specifications may be continuous, edge-sensitive, and state-dependent. Timing
parameters are annotated from a SDF file by looking-up the paths definitions
with matching source/destination pins and path activation events. Timing checks
monitor different timing properties that should be satisfied for a correct macrocell
operation, such as setup and hold times annotated from SETUPHOLD tag of SDF
file.

2.1.3.2 The VITAL standard

In its early years, there was no uniform and efficient method for handling timing
in VHDL, which resulted in a lack of ASIC libraries for modelling and imple-
menting digital systems. The VHDL Initiative Towards ASIC Libraries (VITAL)
standard [76] was the result of an agreement among ASIC vendors, EDA tool
vendors, and ASIC designers about the requirements (timing accuracy, model
maintainability, and simulation performance) for the effective modelling of ASIC
primitives, or macrocells, in VHDL.

The VITAL specification contains four main elements: i) the Model Development
Specification document defines how to specify ASIC libraries in VITAL-compliant
VHDL to be used in simulators; ii) the Vital_Timing package provides a standard
set of procedures for checking timing constraints defined in a SDF file; iii) the
Vital_Primitives package models all gate-level primitives already used by simu-
lation tools vendors, so they could be optimised for a faster simulation of VHDL;
and iv) the VITAL SDF map which maps SDF files to VHDL generic values.

The basic architecture of a VITAL-compliant macrocell is depicted in Fig. 2.4
and Listing 2.1 specifies an inverter that follows this architecture.

17

Chapter 2. Dependability-aware Hardware Design Flow

No
Wire Delay

Signal Delay

Path Delay

Timing
checks

Functionality

GlitchData

Paths [In→O]

O_zd

violation

Process VitalBehavior
(sensitivity list)

VITAL level-1 architecture

In_resolved

In_ipd

VITAL level-0 entityIn O

SchedValue == O_zd

Glitch detected?

Retain previous value
(return)

O , SchedValue =
 ProcessGlitch(Mode)

LastValue = O_zd

O = O_zd after
 delay max(Path[In→O])

SchedValue = O_zd

SchedValue = LastValue

Yes

Yes

In_dly

VITAL_Primitives
package

VITAL_Timing
package

No

Figure 2.4: VITAL-compliant macro-cell model

VITAL defines two levels of support. VITAL level 0 requires the definition of
a level 0 attribute (line 21 of Listing 2.1), using ports of type std_ulogic and
std_logic_vector with no underscores in the port names (lines 18–19), and special
naming convention for timing generics (lines 8–11, with ports names prefixed as
tpid_—interconnect path delay that represents the delay between components—
and tpd_—propagation delay that represents the pin-to-pin delay within a com-
ponent). Compliance with VITAL level 0 provides SDF back annotation and
negative timing constraints. VITAL level 1 requires the definition of a level 1 at-
tribute (line 26), no use of shared variables, use of those operators defined in the
Standard and std_logic_1164 packages (lines 1–3 ensure that only those pack-
ages and the VITAL packages are used), and all outputs must be driven by a
VitalPathDelay or a Vital primitive (lines 53–63 make use of a VitalPathDelay01
primitive to drive the YNeg output—line 54). Compliance with VITAL level 1, as
the inverter described in Listing 2.1, provides accelerated simulation of primitives
and tables.

Any VITAL-compliant macrocell must include a Wire Delay block, a Signal Delay
block, and a VITALBehavior process, as depicted in Fig. 2.4.

18

2.1 Semicustom and FPGA-based design flow

Listing 2.1: VITAL-compliant inverter gate (std04.vhd) [137]
1 LIBRARY IEEE; USE IEEE. std_logic_1164 .ALL;
2 USE IEEE. VITAL_timing .ALL;
3 USE IEEE. VITAL_primitives .ALL;
4
5 -- ENTITY DECLARATION
6 ENTITY std04 IS
7 GENERIC (
8 -- tipd delays : interconnect path delays
9 tipd_A : VitalDelayType01 := VitalZeroDelay01 ;

10 -- tpd delays
11 tpd_A_YNeg : VitalDelayType01 := UnitDelay01 ;
12 -- generic control parameters
13 MsgOn : BOOLEAN := DefaultMsgOn ;
14 XOn : BOOLEAN := DefaultXOn ;
15 InstancePath : STRING := DefaultInstancePath
16);
17 PORT (
18 A : IN std_ulogic := ’U ’;
19 YNeg : OUT std_ulogic := ’U’
20);
21 ATTRIBUTE VITAL_LEVEL0 of std04 : ENTITY IS TRUE;
22 END std04 ;
23
24 -- ARCHITECTURE DECLARATION
25 ARCHITECTURE vhdl_behavioral of std04 IS
26 ATTRIBUTE VITAL_LEVEL1 of vhdl_behavioral : ARCHITECTURE IS TRUE;
27 SIGNAL A_ipd : std_ulogic := ’U ’;
28
29 BEGIN
30 -- Wire Delays
31 WireDelay : BLOCK
32 BEGIN
33 w_1: VitalWireDelay (A_ipd , A, tipd_A);
34 END BLOCK ;
35
36 -- No Signal Delay block
37
38 -- VITALBehavior Process
39 VITALBehavior : PROCESS (A_ipd)
40
41 -- Functionality Results Variables
42 VARIABLE YNeg_zd : std_ulogic := ’U ’;
43 -- Output Glitch Detection Variables
44 VARIABLE Y_GlitchData : VitalGlitchDataType ;
45
46 BEGIN
47 -- No Timing Checks section
48
49 -- Functionality Section
50 YNeg_zd := VitalINV (A_ipd);
51
52 -- Path Delay Section
53 VitalPathDelay01 (
54 OutSignal => YNeg ,
55 OutSignalName => "YNeg",
56 OutTemp => YNeg_zd ,
57 XOn => XOn ,
58 MsgOn => MsgOn ,
59 Paths => (
60 0 => (InputChangeTime => A_ipd ’ LAST_EVENT ,
61 PathDelay => tpd_A_Yneg ,
62 PathCondition => TRUE)),
63 GlitchData => Y_GlitchData);
64
65 END PROCESS ;
66
67 END vhdl_behavioral ;

19

Chapter 2. Dependability-aware Hardware Design Flow

Interconnect delays represent the time it takes a signal to traverse the circuit
from one component to another, which depends on various factors, like the length
of the wire, its resistance, and fan-out, among others. The Wire Delay block
(lines 30–34 in Listing 2.1) is in charge of delaying incoming signals by the time
specified in the associated timing generic (tpid using the VitalWireDelay routine
(line 37 in Listing 2.1). This routine can only be called once per input port,
which cannot be used anywhere else in the model afterwards, and its output must
be an internal signal (A_ipd in the example).

Components may present negative timing constraints (either setup or hold times,
not both) only if they present some kind of internal delay. The Signal Delay
block takes charge of delaying the internal signals of the component (suffix _ipd),
if needed, in a similar fashion to the Wire Delay block, but using the VitalSig-
nalDelay routing instead. The sample model has no negative timing constraints,
so this block is not defined (line 36).

The actual functionality of the component is defined within a process labelled as
VITALBehaviour (lines 38–63 in Listing 2.1). Any signal read within the process
(A_ipd is read in line 46) must be included in its sensitivity list (line 39), so the
process will be triggered whenever the value of any of these signals changes. First
of all, the process may perform timing constraint checks for possible violations
if the TimingChecksOn generic parameter is active. Those checks make use of
predefine routines, like VitalSetupHoldCheck, from the VITAL_Timings package.
No timing checks are performed in the sample model (line 47). After that, the
functionality section computes the actual logic function of the component without
any delay (YNeg_zd). Lines 49-50 of Listing 2.1 define the behaviour of the in-
verter by means of the predefined VitalINV function to comply with VITAL level
1. Finally, the output values computed are delayed after applying the appropriate
delays using VitalPathDelay procedures (lines 52-63). These procedures enable
different optimisations of the simulation like, for instance, checking whether the
output has changed with respect to the previously scheduled value to prevent
further processing.

Beyond meeting their functional and timing constraints, many hardware designs
remain useless if they are not able to comply with their functional requirements
while providing acceptable levels of dependability. Next section introduces the
process of dependability assessment that deals with quantification and analysis
of dependability attributes.

20

2.2 Dependability assessment

2.2 Dependability assessment

One of the primary goals of a dependability-aware design flow is to ensure that the
designed system meets the dependability requirements of the target application
domain. Dependability assessment, in a broad sense, deals with the quantification
of dependability attributes that, following the terminology in [13] and [191], are
defined as follows.

– Reliability is the probability that the system will operate correctly through-
out the interval [t0, t], given that system was operating correctly at time
t0.

– Availability is the probability that the system is operating correctly and is
available to perform its functions at a given time instant t.

– Safety is the probability that a system will either perform its functions cor-
rectly or will discontinue its functions in a manner that does not disrupt the
operation of other system or compromise the safety of any people associated
with the system.

– Integrity is the measure of absence of improper system alterations;
– Maintainability is a measure of the ease with which a system can be re-
paired, once it has failed; in other words, the aptitude to undergo repairs
and evolution.

Above attributes are defined by [13] as primary ones. By specializing them to
a specific class of faults, secondary dependability attributes can be defined. For
instance, robustness is defined as dependability with respect to externals faults.

In practice dependability assessment often focuses on the estimation of attributes
based on reliability function R(t). It expresses the probability R that the system
will survive up to a specified time t [101]. The arithmetic mean value of the reli-
ability function is known as the mean time to failure (MTTF) for non-repairable
systems, or mean time between failures (MTBF) for repairable ones, and can be
computed by Equation 2.1.

MTTF =
∫ ∞

0
R(t) · dt (2.1)

The failure probability function F (t) is the metric complementary to R(t), ex-
pressing the probability that an element will fail before a certain time instant.
The failure density f(t) is the mathematical derivative of failure probability, ex-
pressing how the latter changes over time. On the basis of these functions the
failure rate metric is defined as λ(t) = f(t)

R(t) . It quantifies the probability that a

21

Chapter 2. Dependability-aware Hardware Design Flow

module that has not failed up to time t will fail up to time t + dt (within the
following small period dt). As detailed in [101], failure rate can be estimated in
practice from the observations of the failure mode of a large number of similar
devices, being λ interpreted as the number of elements (devices) which fail on
average in a time unit.

The failure rate plotted with respect to time is commonly following a bathtub
curve. It comprises three intervals: early failures, random failures, and wear-out
failures. The former describes the rate of failures resulting from manufacturing
defects. The failure rate typically drops during this time interval. The middle
interval represents random failures, which are usually unforeseeable due to the
superposition of the wide range of independent factors. The failure rate during
this interval becomes stable (constant). Finally, the latter interval represents the
failure rate resulting from circuit aging effects, characterized by an increasing
failure rate. As detailed in [101], for constant failure rate λ(t) = λ (middle
interval), the MTTF can be quantified as follows: MTTF = 1

λ .

MTTF is one of the most commonly used metrics, allowing to compare different
design alternatives from the reliability perspective. At the same time, MTTF of
simplex designs is known to be greater than MTTF of redundant (K-out-of-N)
systems [47]. This is explained by the reliability function of redundant systems,
which is very high at the beginning, as replicas tolerate faults, but quickly falls
down at the end of the lifetime, as the redundancy is exhausted. Nevertheless, at
the beginning of the life time the reliability of redundant (e.g. TMR) systems is
much higher than that of simplex versions. Therefore, MTTF may be misleading
when comparing simplex designs with their redundant versions. Instead, the
reliability of critical replicated systems can be compared on a fixed time interval
called mission time,as opposed to MTTF computed for t→∞. The mission time
metric is defined as the time in which the reliability of the system remains above
a given threshold. Assuming an exponential reliability function and a constant
failure rate, the mission time can be computed by solving the Equation 2.2 for
a given reliability threshold RT . This metric allows to take into account the
reliability benefits of redundancy for critical systems.

RT = e−λ×t (2.2)

The estimation of dependability attributes is related to the fault forecasting pro-
cess, as depicted in Fig.2.5. Fault forecasting aims at estimating the present
number, the future incidence, and the likely consequences of faults [13]. Fault
forecasting is conducted by evaluating the systems behaviour with respect to
fault occurrence and activation. This process has qualitative and quantitative

22

2.2 Dependability assessment

aspects. The qualitative forecasting aims at identifying, classifying and ranking
failure modes, or event combinations, leading to systems failure. The quantitative
forecasting evaluates in terms of probabilities the extent to which some of the at-
tributes are satisfied. Quantitative forecasting comprises modelling and testing.
As explained in [13] these approaches are complementary since modelling requires
the data on the basic modelled processes, that may be obtained by testing.

Fault forecasting

Quantitative

Failure modes

Failure events
Modeling Testing (fault injection)

Stochastic
Petri nets

Markov
chains

Analytic Reliability model

Fault tolerance coverage

Latency

Rate of failure modes

Processing

Mission time
MTTF

...

Qualitative

Figure 2.5: Estimation of reliability attributes in the context of fault forecasting

Modelling starts with the definition of the model of the system from the elemen-
tary stochastic processes describing the behaviour of the component and their
interactions. Discrete Markov chains (DTMCs) and Petri nets [148] are two com-
monly used methods to define the model of a system. The defined model subse-
quently is processed to obtain the expressions and dependability measures. The
testing process refines the dependability metrics obtained at model processing
by quantifying the functional ability of HW designs to tolerate faults. First of
all, HW implementations may present some intrinsic robustness, since not every
fault leads to an error, and not every error is propagated to a failure. Thus, test-
ing should measure the percentage of faults leading to a failure (functional failure
rate). Furthermore, as pointed in [13], when evaluating fault-tolerant systems, the
computation of dependability measures from the model should take into account
the measure of efficiency of fault handling mechanisms, known as fault tolerance
coverage.

For instance, the work in [64] defined the reliability models of FPGA-based system
in presence of N-modular redundancy, in order to compare alternative implemen-
tations from the reliability viewpoint. The defined models take into account the
utilization of different types of FPGA resources and their upset rate, reported by
Xilinx in [179]. Configuration memory (CM) and changeable memory (BRAM

23

Chapter 2. Dependability-aware Hardware Design Flow

and LUTRAM) are two main types of resources considered of a higher priority
for reliability estimations of FPGA designs [72].

The design-specific set of CM cells determining the actual circuitry within the
FPGA fabric is known as essential bits. In such a way, the failure rate of FPGA
design with respect to CM upsets is commonly computed by multiplying the
amount of essential bits by the CM upset rate. This may lead, however, to
significantly overestimate the resulting failure rate. Indeed, as it is pointed in
[179], any design implemented in FPGAs has unused and non-critical bits, which
do not lead to a failure when upset. Likewise [97] proposes to distinguish the
CM upsets leading to a failure from the rest of upsets. The subset of essential
bits that in case of upset lead a system to a failure are referred to as critical bits.
When the bit-accurate mapping between the FPGA logic/routing resources and
the CM cells is known (which is very rare in case of modern FPGA devices), the
essential and critical bits can be located by means of static analysis of the routed
design, as it is proposed in [154]. Otherwise, critical bits can be identified by
means of fault injection testing.

Hence, for more realistic estimations a percentage of critical bits should be taken
into account, commonly referred to as device vulnerability factor (DVF), which
according to [179] rarely exceeds 10%. Considering the DVF in reliability models
allows to refine the derived reliability estimates. In such a way, the failure rate
taking into account the DVF can be quantified as follows:

λdesign = λF ×K ×NEB ×DV F, (2.3)

where:

λF is a constant failure rate at sea-level taken from device reliability reports
provided by FPGA manufacturers. For instance, it can be found in [179],
expressed in FIT units per megabit of configuration memory, for the Xilinx
7-series FPGAs. One FIT unit corresponds to one upset per 109 device
hours.

K is a derating factor scaling the upset rate according to the altitude. It is
based on Rosetta test results [72] [136], being 1.0 at sea-level, 21.3 at high-
terrestrial altitudes, and 327.8 for space applications.

NEB is the amount of essential bits (in megabits) in a given implementation.

DV F is the device vulnerability factor (percentage of critical bits within the set
of essential bits), obtained by fault injection testing.

24

2.2 Dependability assessment

It is worth noting, that system failures may have different severity. The design
of safety-critical systems must estimate the risk of dangerous failures, i.e. those
which may lead to catastrophic consequences. Depending on its functional relia-
bility, the safety-instrumented system may qualify for one of Safety Integrity Level
(SIL). The international safety standard IEC-61508 defines four safety levels, ab-
breviated SIL-1 to SIL-4, being the former attributed to a highest malfunction
risk (lowest reliability), and the latter attributed to a lowest risk of malfunction
(highest reliability) [169]. In the safety of automotive systems, regulated by stan-
dard ISO-26262, these levels are mapped into Automotive Safety Integrity Levels
(ASIL), as listed in Table 2.1. To qualify for a given SIL, a hardware device must
meet a maximum probability of dangerous failure PDF , listed in Table 2.1, or
similarly ensure a given risk reduction factor RFF = 1/PDF . These values are
established separately for continuously used systems (e.g. motor car brakes), and
for systems used on demand (e.g. car air bag). The former considers the proba-
bility of failure per hour, while the latter estimates the probability of failure on
demand [151].

Table 2.1: Safety Integrity Levels (SIL) for continuously used systems and for systems used
on demand

Safety integrity
level (SIL)

(IEC615087)

ASIL
(ISO26262)

Continuously used system
(probability of dangerous

failure per hour)

Low-demand system
(probability of dangerous

failure on demand)
1 A 10-9 – 10-8 10-5 – 10-4
2 B/C 10-8 – 10-7 10-4 – 10-3
3 C/D 10-7 – 10-6 10-3 – 10-2
4  10-6 – 10-5 10-2 – 10-1

Fault injection is considered one of the most valuable testing techniques in depend-
ability assessment. First of all, it is not always feasible (or very costly) to observe
the system in the field to get statistical data. Second, unlike other testing techni-
ques, fault injection can be employed at different phases of the design flow, starting
from the high level model and up to the final prototype. Fault injection is widely
recognized by the industry and explicitly mentioned in safety standards. Particu-
larly, the safety standard in automotive domain ISO-26262 recommends the usage
of fault injection to verify the designed system in presence of faults throughout the
whole design flow, starting from early design stages. As discussed in [133], fault
injection may efficiently complement traditional dependability analysis processes
in automotive development processes (like FMEA [135]). Nevertheless, as it will
be detailed in Chapter 3, its integration into the design flow still faces important
challenges related to the representativeness of involved fault models, accuracy of
injection procedures, and experimentation performance.

25

Chapter 2. Dependability-aware Hardware Design Flow

When several alternatives are available for selection, the process of assessing and
comparing their dependability metrics for choosing the most suitable one is known
as dependability benchmarking. Next section introduces this concept.

2.3 Dependability benchmarking

The semicustom design flow supplies designers with a wide assortment of alterna-
tive IP cores, EDA tools, and implementation technologies. The selection of one
or another alternative may significantly impact the PPAD features of resulting
implementations, thus being crucial for meeting the design goals. In the context
of HW designs, dependability benchmarking can be understood as an experimen-
tal approach aiming at comparing and selecting alternative solutions attending
to their PPAD features.

As detailed in [86], to be useful in practice, benchmarks should rely on measures
that are representative for a given application domain. At the same time, to
provide justifiable results, the involved evaluation and analysis procedures should
be reproducible. These requirements are well addressed by numerous conven-
tional (performance) benchmarks. On the one hand, they develop representative
workloads for a given application domain, like for instance, LINPACK targeting
high-performance computers (HPC), or any of the EEMBC (Embedded Micro-
processor Benchmark Consortium) benchmarks for embedded systems. On the
other hand, they obtain a relatively small set of widely recognized performance
measures like, for instance, the number of floating-point operations executed per
second (FLOPS).

Addressing the aforementioned requirements in the context of dependability is not
straightforward. On the one hand, fault injection is a widely-recognized instru-
ment for evaluating the dependability attributes of alternative solutions. On the
other hand, there is no standardized uniform way for carrying-out such experi-
ments. Existing benchmarking proposals rely on diverse fault injection approaches
(software-based, hardware-based, model-based, etc.), apply diverse faultloads and
estimate different dependability attributes that they consider representative for
their particular application scenario. In addition to that, benchmarking EDA
tools and implementation technologies requires to consider the implementation-
level models. However, existing benchmarking solutions usually relying on custom
fault injection tools, rarely handle implementation-level HDL models, or they do
so in a highly intrusive way which degrades the credibility of results.

Finally, the comparison and selection processes are not trivial, since the relevant
dependability attributes may be application-dependent, and often several of them

26

2.4 Dependability-aware design space exploration

must be considered at the same time along with the rest of (PPA) attributes.
Multiple-criteria decision making (MCDM) methods provide a way for structuring
complex problems and considering multiple, and usually conflicting, criteria to
make more informed and better decisions [79]. As it is the case when implementing
designs on reconfigurable devices, there is usually no unique optimal solution for
problems involving multiple criteria, so it is necessary to take into account the
preferences of the decision maker (usually by weighting the relative importance
of each criterion) to differentiate between available solutions. Different methods,
each one with its own mathematical foundations, have been developed along the
years, such as the Weight Sum Model (WSM) and the Weight Power Model
(WPM) [160], the Analytic Hierarchy Process (AHP) [141], the VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) [125], or the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) [189]. For instance, as [59]
has shown, the uncertainty of the analysis process can be effectively addressed by
weighting all the different PPAD metrics in a hierarchical way (according to the
requirements of application scenarios) and, subsequently, by ranking alternatives
on the basis of a score-based model (such as WSM/WPM, for instance).

A challenge of paramount importance when assessing the dependability of a hard-
ware design or when benchmarking different design alternatives from a depend-
ability viewpoint, is the number of fault locations and fault models to consider
during the evaluation process, which may lead to unaffordable number of experi-
ments to carry out. The problem augments with the number of parametrization
options in the IP cores or EDA tools under use. The dependability-aware design
space exploration introduced in next section addresses this problem.

2.4 Dependability-aware design space exploration

The development of complex digital systems poses a great design optimization
problem, especially for dependability-related applications. Engineered solutions
must not only meet the required functionality, but they must also meet a num-
ber of (sometimes conflicting) implementation goals, such as minimizing power
consumption and occupied area, while maximizing the attainable clock frequency
and exhibited robustness [170].

Due to its critical role in meeting the implementation goals, FPGA manufactur-
ers and third party companies providing EDA toolkits include a wide range of
different optimization options suitable to different kind of devices, architectures,
and scenarios. Nevertheless, far from alleviating the task of designers, the myriad
of available options makes it very difficult to know the precise contribution of

27

Chapter 2. Dependability-aware Hardware Design Flow

each option to a particular goal. Some options may have a greater impact in the
implementation goals than others, some of them may have opposite effects, and
most of them are never used because it is not clear enough what could rightly be
expect from them [89]. The side effect is that improperly tuning EDA parameters
negatively impacts the quality of resulting design implementations.

Figure 2.6: Impact of Microblaze IP parameters on expected area and performance (Vivado
2018.3)

Likewise, complex IP cores often supply designers with dozens of parameters,
allowing their customization for a given application scenario. Some IP cores, dis-
tributed with off-the-shelf EDA suites, allow designers to get an idea about how
setting each parameter to one level or another may impact PPA results. For in-
stance, the customization guide of Xilinxs’ Microblaze IP, illustrated in Fig. 2.6
allows designers to tune the architectural (enabling FPU, MMU, caches, etc.)
and functional (exceptions, stack/memory protection, etc.) parameters, and to
choose from predefined optimization presets. For each selected setting of IP pa-
rameters, it provides a relative estimation (0% → 100%) of expected frequency,
area, and performance. However, estimations in absolute units are not available
at this abstraction level, since PPA results are strongly conditioned by synthe-
sis/placement/routing optimizations. For instance, as Fig.2.7 shows, enabling
just one ’resource sharing’ optimization in Mentor Graphics’ Precision Synthe-
sis, allows to reduce up to three times the utilization of FPGA resources (Area)
for implementing arithmetic operations. It is not surprising that the expected
dependability features are completely omitted by customization guides, since the
impact of all these parameters on dependability is a priori unknown.

28

2.4 Dependability-aware design space exploration

entity addsub is

port(

A,B,C :in std_logic_vector(7 downto 0);

opcode :in std_logic;

RES :out std_logic_vector(7 downto 0));

end addsub;

architecture behav of addsub is

begin

RES <= A + B when opcode = '0'

else A - C ;

end behav;

B (7:0)
+

A (7:0)

C (7:0)

opcode

RES(7:0)

a(7:0)

b(7:0)

cin

a(7:0)

b(7:0)

cin

cout

d(7:0)

d(7:0)

cout

in1

in2

sel B (7:0) +/

A (7:0)

C (7:0)

opcode

RES(7:0)a(7:0)

b(7:0)

cin
cout

d(7:0)
in1

in2

sel

mode

in out

Resource sharing  NO Resource sharing  YES

LUT6: 24
CARRY4: 4

LUT6: 8
CARRY4: 2

Figure 2.7: Impact of resource sharing optimization (Mentor Graphics’ Precision Synthesis)
on resulting area (Virtex-6 FPGA)

Determining the best configuration of available EDA/IP parameters for a given
implementation goal would require exploring the whole design space (all possi-
ble combinations of parameters at different levels). FPGA manufacturers provide
different tools for design space exploration, like Xilinx’s SmartXplorer [178] or In-
tel Design Space Explorer II [3], which perform several different implementations
(changing the synthesis options) of the same design looking for the configuration
that best meets the required PPA goals. Nevertheless, even when many-core ma-
chines or computer clusters can be used to perform the exploration in parallel,
the time required to sweep the whole design space is prohibitive. For instance,
considering that the 34 different synthesis options from Xilinx’s XST synthesizer
could be set at just two possible levels, and the implementation and evaluation
of the design takes just 1 minute (very optimistic), exploring the whole design
space (234 configurations) will take roughly 32000 years running on a single-core
machine. Some modern EDA suites like Xilinx Vivado present an even bigger
design space due to a considerable number of parameters which should be treated
at more than two levels (e.g. synthesis, placement, routing strategies).

It is worth noting, however, that industrial designs are often characterized by
implementation constraints, that could limit the free adjustment of some synthe-
sis, placement and routing parameters offered by EDA tools.

Several works have dealt with the problem of design space exploration from differ-
ent perspectives. For instance, a given architectural configuration for a multipro-
cessor may required a couple of weeks to be simulated, so statistical simulation [65]

29

Chapter 2. Dependability-aware Hardware Design Flow

or predictive modeling [61] are some of the proposed approaches to reduce that
design space. Focusing on reconfigurable devices, evolutionary approaches were
proposed in [132] to find a good solution in High-Level Synthesis with conflict-
ing design objectives [147] focused on the parametrization of soft-core processors
through a greedy search method. A calibration free algorithm for automatically
optimizing design parameters was proposed in [95]. None of these works specif-
ically focused on the parametrization of the synthesis, placement, and routing
processes, but on the architectural features of the designs to be implemented
onto the reconfigurable device.

In the particular context of FPGAs, an approach based on machine-learning au-
totuning was presented in [105] to sample the parameter space and thus reduce
the time devoted to the configuration search process. Nevertheless, although this
approach, and those provided by FPGA manufacturers, may find a suitable con-
figuration for the requested goals, the particular contribution of each selected
option and their interactions are not accounted. Accordingly, designers are at a
loss when deciding how to configure the synthesis tool for each given design.

A very preliminary first step towards achieving this goal was taken at [110], which
estimated the impact of different Xilinx’s ISE optimization options on the power
consumption of different security algorithms. However, that study considered just
4 different options, and focused on just one primary goal (power consumption).
In addition to that, the contribution of each particular parameter to that goal
was not determined, just the difference between configurations.

In fact, most of existing DSE proposals are tailored to either increase the max-
imum clock frequency of the final system or decrease the number of resources
required for its implementation, usually at the expense of the rest of goals. This
is especially true in the case of robustness, which traditionally falls behind indus-
trial traditional needs in terms of costs and computing power [52].

Existing approaches targeting the enhancement of robustness of HW implemen-
tations present two main limitations. First, those approaches acting at the design
entry [140] [27] [4] (relying on high-level model of the system), do not, or only
partially, consider the side effects of improving the dependability in the rest of
PPA goals, which limits their usefulness in practice. Second, those approaches
optimizing the synthesis [51], mapping [130], placement [33], and routing [73], are
extremely difficult to apply, as they usually involve the modification of processes
embedded within off-the-shelf tools that can be very rarely accessed.

30

2.5 Conclusions

2.5 Conclusions

The development of critical systems must meet not only the required functionality,
performance, power, and cost budget, but also the strict dependability require-
ments of the target application domain. The conventional semicustom design flow
should be thus complemented by several dependability-driven processes. First of
all, dependability assessment must be carried out at each step of the design flow,
to ensure the efficiency of any deployed fault tolerance mechanism and to evaluate
resulting dependability attributes against the requirements of the target applica-
tion. Second, dependability benchmarking should guide the selection of most
suitable IP cores, EDA tools, and implementation technologies that best satisfy
PPAD goals. Third, dependability-aware design space exploration should be car-
ried out to optimally configure selected EDA tools and IP cores to obtain the best
possible PPAD results.

All three dependability-driven processes rely on fault injection to evaluate the
dependability features of designed systems. To seamlessly integrate these pro-
cesses into the design flow, the fault injection methodology must meet a set of
requirements. First of all, to support the dependability assessment (as the safety-
aware design standards require), it should cover all the stages of the design flow
from high-level HDL models to final prototypes, and ensure the accuracy of de-
vised analysis at each of these levels. Second, to support benchmarking, it should
be generic enough to handle any HDL design and implementation technology.
Finally, it should provide a very high experimentation performance, in order to
prevent the approach from becoming a bottleneck for the deployment of these
processes.

Particularly, the fault injection effort is one of the major challenges of dependability-
aware DSE, requiring the evaluation of a large number of alternatives in the design
space. This could be a reason why (as the analysis of the background shows),
no solution has been proposed so far for optimally tuning EDA/IP parameters to
simultaneously improve both PPA and dependability features of resulting imple-
mentations.

The following chapters of this thesis address the aforementioned dependability-
driven processes throughout the semicustom design flow. Chapter 3 studies the
capabilities and limitations of existing fault injection solutions with respect to
the dependability assessment at different levels of the design flow. Chapters 4
and 5 propose simulation-based and FPGA-based fault injection approaches that
address the limitations of existing fault injection approaches, enabling accurate
dependability assessment at each stage of the design flow. Chapter 6 proposes
a set of techniques to improve the performance of fault injection experiments.

31

Chapter 2. Dependability-aware Hardware Design Flow

After that, time-efficient DSE strategies for optimal EDA/IP tuning are defined in
chapter 7. All the defined strategies are seamlessly integrated into the semicustom
design flow by means of a new toolkit described in chapter 8. Finally, chapter 9
illustrates the usefulness and efficiency of these proposals through a case study of
three embedded soft-core processors.

32

Chapter 3

Fault Injection for
Dependability Assessment of

HW Designs

This chapter studies existing advances and challenges of fault injection with re-
spect to its integration into a dependability-aware semicustom design flow. Sec-
tion 3.1 introduces the background (fault injection concepts, techniques and re-
quirements) required to understand the rest of the chapter. Section 3.2 presents
the commonly considered fault models at the logic level. Section 3.3 discusses the
challenges existing today when relying on simulation-based fault injection (SBFI)
for dependability assessment. It also analyses the capabilities of existing fault
injection tools with respect to their integration into the semicustom design flow.
Likewise, Section 3.4 discusses the techniques, tools, and challenges of FPGA-
based fault injection. Section 3.5 presents the currently existing proposals for
improving the performance of fault injection experiments. Finally, Section 3.6
summarizes the main conclusions of this chapter.

33

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

3.1 Introduction

Fault injection is a verification and dependability assessment methodology con-
sisting in the analysis of system behaviour under the deliberate introduction of
faults into that system. The verification dimension of the concept encompasses
the qualitative analysis, referred to as fault removal. It aims at discovering the
potential weak points (fault tolerance deficiencies) of the target system, and at
determining the most appropriate means to design, develop, and deploy the nec-
essary fault tolerance mechanisms [14]. The dependability assessment aspect is
related to the quantitative analysis of the targets systems, being a part of a fault
forecasting or robustness characterization process, as it has been discussed in
Section 2.2.

WORKLOAD

IN
P

U
T

S

FAULTLOAD

Q

Q
SET

CLR

S

R

&0

0
0

=10

0
0

Q

QSET

CLR

S

R

(FAULT MODEL, TARGET, TIME)

O
U

T
P

U
T

S

TESTS

RESPONSES

ALARM

INTERNAL
STATE

TRACE

DUT

RESPONSES ALARM
INTERNAL

STATE

MATCH NO MATCH

FAILURE
MODE

MASKED

MATCH * MISMATCH LATENT

MISMATCH YES *
SIGNALED
FAILURE

MISMATCH NO *
SILENT DATA
CORRUPTION

COMPARE TO REFERENCE (GOLDENRUN)

(a) components of fault injection experiment (b) Failure modes for robustness characterization

Figure 3.1: Basic concepts of fault injection

A fault injection experiment within the semicustom design flow involves a set of
generic components, depicted in Fig.3.1, namely:

– Targeted system (design under test, DUT), represented by its HDL model
or its physical implementation (e.g. FPGA prototype);

– Workload, executed by the DUT, comprising a set of input test vectors and
executable code (in case of processor designs);

– Faultload, specifying a set of faults to be injected into the DUT during the
experimentation; each fault configuration is commonly described by three
attributes: fault model (bit-flip, stuck-at, pulse, delay, etc), targeted design
node, and injection time;

– Responses, characterizing the service delivered by the DUT in response to
the input workload;

– Alarm, which can be set by the DUT to notify the higher-level system
regarding internally detected errors;

34

3.1 Introduction

– Trace of DUT’s internal state (registers and memories), captured during the
workload execution;

With respect to the popular FARM model, established to describe the fault in-
jection experiments in [10], the aforementioned components can be mapped as:
’F’ (Fault set) →faultload, ’A’ (Activation) →workload, ’R’ (Readouts) →tuple
(Responses, Alarm, Internal state), ’M’ (Measures) →Failure modes, latency and
derived metrics.

Failure modes characterize the DUT behaviour in the presence of injected faults.
Failure modes are determined by comparing the readouts obtained from each
injection run to the readouts from a fault-free run (the so-called GoldenRun),
as depicted in Fig.3.1. Particularly, when the responses and the DUT internal
state match the GoldenRun, the failure mode is classified as masked fault (also
referred to as silent fault). When the DUT responses are correct, but the internal
state at the end of the injection run does not match the GoldenRun, the failure
mode is reported as latent error. This means that even if the DUT was able to
deliver a correct service on the considered workload, its internal state is corrupted
by a fault, which may result in a future DUT failure. In case of incorrect DUT
responses, the failure mode is classified as either a signalled failure when the alarm
is raised, or as a silent data corruption (SDC) otherwise. The latter represents
the most dangerous fault effect from a safety perspective. The rate (percentage)
of each failure mode within the complete set of executed injection runs quantifies
the relative robustness of the DUT and the coverage features of its fault tolerance
mechanisms.

To obtain credible measurements by means of fault injection, several features
must be taken into account in the design of fault injection environments [103]:

– Representativeness – the fault injector should properly reproduce those
faults (fault models and distribution) that are representative of the real
operational conditions.

– Low intrusiveness – the fault injector should not affect, or should minimize
its effect on, the DUT behaviour in any way other than introducing a selected
fault into the designated design node (fault target). An important challenge
is to reach all relevant fault targets within the DUT while minimizing the
DUT modifications and preventing the interference between the injector and
the DUT. It must be noted that increasing the level of intrusiveness may
degrade the credibility of observations and, thus, the usefulness of derived
results and conclusions.

35

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

– Observability – the fault injector should be able to observe all relevant read-
outs (responses and DUT state) to properly characterize the DUT behaviour
with respect to the injected faults.

– Inspectability – injection runs and related results (mainly reported traces)
must be provided with enough level of detail to enable any ulterior audit.

– Reproducibility of experiments – repetition of the same experiment should
provide statistically similar results. This is tightly related to the repeatablity
feature of experiments, meaning that injection experiments must be repeated
in case of need to verify the correctness of results. This requires a very fine
control on applied injections from the perspective of both time and space.

Depending on the level of description of the DUT, the existing injection solutions
can be classified as prototype-based and model-based. Prototype-based solutions
target the physical prototype of the system either at hardware or software level,
thus referring to Hardware implemented fault injection (HWIFI) and Software
implemented fault injection (SWIFI), respectively.

HWIFI solutions rely on a specially designed test equipment to introduce physical
faults. Some of them operate at the pin level, by forcing (the voltages) and mon-
itoring the values on the DUT interface. Known pin-level HWIFI solutions are:
AFIT [107], MESSALINE [10], and RIFLE [104] tools. Other HWIFI solutions
rely on the generation of controlled electromagnetic interference (EMI) to induce
the faults into the DUT installed between the conducting places [87] [38] [166].
Finally, some HWIFI solutions place the DUT into the vacuum chamber and
introduce faults through heavy-ion radiation [88]. Two common limitations of
HWIFI approaches is that they are applicable only at the final stages of design
flow (once the prototype becomes available) and require expensive specialized
equipment. Most of them feature low reproducibility and poor observability of
experiments. Furthermore, they pose a high risk of damaging the device under
test itself.

SWIFI solutions inject faults through the software layer by altering data and
instructions in memory and registers. Some well-known SWIFI implementations
are: MAFALDA [9], FERRARI [85], and XCEPTION [35] tools. On the one
hand, SWIFI tools can be seen as a low-cost alternative to HWIFI that provide
a good reproducibility of experiments. On the other hand, their applicability is
limited to those fault targets which are accessible by means of software (registers
and memories). Nevertheless, SWIFI is a well-suited approach for debugging and
testing the software from the dependability perspective, e.g. operating systems,
drivers, applications.

36

3.2 Fault models

As previously stated, the alternative to prototype-based fault injection (HWIFI
and SWIFI) is Model-based fault injection. It exercises a model of the system
either through simulation (Simulation-based fault injection, SBFI) or emulation
in FPGA (FPGA-based fault injection, FFI); some examples of such emulation-
based tools are FT-Unshades [153], and FLIPPER [2]. They allow a very high
control on the experimentation process, featuring much higher observability and
reproducibility. Unlike HWIFI and SWIFI, model-based fault injection can be
applied much earlier in the design flow, thus significantly reducing the cost of
fixing existing design problems. At the same time, they also cover most design
phases up to the prototype level (FPGA-based). This makes model-based fault
injection techniques practically indispensable for supporting the dependability-
driven strategies throughout the semicustom design flow. Nowadays there exist a
wide range of SBFI and FFI solutions. The rest of this chapter is devoted to the
analysis of their advantages, challenges, and practical implementations (tools).

3.2 Fault models

Defining representative faultloads is one of the major issues in fault injection ex-
periments, in particular when faults are simulated or emulated. On the one hand,
real faults in the system may have very different origin – from physical defects
at the hardware level up to software bugs at the application layer. On the other
hand, as it is pointed in [8], to characterize the behaviour of computing systems
in presence of faults it is not necessary to inject real faults, it is sufficient to
inject faults that induce a similar behaviour of the DUTs in terms of activated
errors. Similar errors can be induced by different types of faults like, for instance,
an incorrect value in a memory cell may be caused by the impact of an ionizing
particle or by electromagnetic interference. Hence, it is important not to estab-
lish an equivalence in the fault domain, but rather in the error domain. Despite
fault injection still should consider different representation levels of the system
throughout the design flow (to account for the impact of involved processes and
technologies on dependability), it may rely on common fault models, which ab-
stract the fault causes, while reproducing the fault effects in a similar way at the
considered abstraction levels.

Numerous works in the domain have dealt with the definition of representative
hardware fault models by studying the manifestation at logic and RT levels of
physical CMOS defects [173], including those induced at operation [63]. Com-
mon logic fault models devised by these studies are commonly classified in three
categories according to their persistence:

37

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

• transient faults [23], appearing for a short period of time, being usually
induced by the interaction of the circuit with the physical environment,
such as electromagnetic interference (EMI), crosstalk, impact of ionizing
particles, etc.

• permanent faults [152], appearing due to irreversible circuit defects both due
to manufacturing imperfections and environmental effects, and remaining
active for a long period of time (until fault handling actions take place).

• intermittent faults [43], appearing and disappearing periodically, usually
tending to become more notable in a long period of time due to wear-out
mechanisms, and finally to manifest as permanent faults.

Table 3.1: Common logic fault models

Fault model Description Persistence Target Logic

Bit-flip

Models the occurrence of Single Event Upsets (SEU) that
inverts the logic state of a register, latch or memory cell.
Does not have any associated persistence time, as it
remains in the system until the affected state element is
rewritten by normal circuit operation.

Transient Sequential

Pulse

Models the occurrence of a Single Event Transient (SET)
(voltage spike) in the combinational logic. The logic state
of the affected node remains inverted for a short period
of time (usually shorter that clock cycle), retaining its
proper logic level afterwards.

Transient Combinational

Delay

Models the violation of timing properties of circuit
elements from the expected values. Usually models the
increase of propagation time though the circuit and its
individual logic gates. When affecting the registers, it
causes the violations of setup/hold times.

Transient/
Permanent/
Intermittent

Sequential/
Combinational

Indetermination
Models undermined logic state of logic node, caused by
unstable voltage between high and low thresholds.

Transient/
Permanent/
Intermittent

Sequential/
Combinational

Stuck-at

Models the binding of a logic node (output of sequential
or combinational primitive) to a determined logic value
(1/0), and the retaining of this value independently of the
inputs of affected primitive.

Permanent
Sequential/

Combinational

Short/Bridging

Models interconnection (routing) defect, resulting in the
short-circuit of two circuit lines. The resulting effect
depends on the logic value and relative strength of each
signal.

Permanent Combinational

Open

Models the break of the line into two independent
segments, resulting in the loss of driving signal for
affected nodes.

Permanent Combinational

38

3.2 Fault models

Most commonly used models of permanent, transient, and intermittent logic faults
are described in Table 3.1. It is important to note that Single Event Upsets (SEU)
in configuration memory (CM) are currently considered as prevalent dependabi-
lity threats for FPGA-based designs [167]. Being modelled as soft-errors (bit-flips)
at the CM layer, SEUs may cause a wide range of diverse effects in the underly-
ing FPGA fabric, corrupting both the logic and the routing for long periods of
operation (until FPGA reconfiguration or CM scrubbing take place).

As it is explained in [22], CM upsets affecting the LUT content corrupt the logic
function implemented by the LUT, in such way that it produces an incorrect out-
put only when its input value is the one associated with the faulty CM bit; for that
reason, this effect cannot be simulated by the stuck-at fault on the LUT interface.
CM upsets affecting routing resources may activate or deactivate programmable
interconnection points (PIP) within switchboxes, causing several possible topo-
logical modifications [21] (see Fig. 3.2): (i) disconnection of net segment (open
fault) due to PIP deactivation (deletion of routing segment), (ii) antenna fault
when a new routing segment is instantiated between an unused input node and
a used output node, (iii) conflict fault when new routing segment is instantiated
between used input node and used output node, and (iv) bridging fault when an
existing routing segment is deleted and a new routing segment is created between
a used input and the output of the deleted routing segment.

D

A

B

C

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(a) original routing (b) open fault (c) antenna fault (d) conflict fault (e) bridge fault

Figure 3.2: Routing faults within the FPGA switchbox (according to [21])

By comparing the results of electrical fault injection with behavioural simulations,
the works in [22] [21] have reported that aforementioned topological modifications
within the switchbox can be mapped onto following logic fault models at the
netlist level: (i) stuck-at 1/0, which binds a net (that is connected to an affected
switchbox) to a constant logic 1/0, (ii) logical bridge between two nets, which
causes that their logic values are exchanged, (iii) wired-AND (wired-OR) between
two independent net segments B and D, originally connected to the nets A and
C respectively, which drives both of them to A ∧ C (A ∨ C), (iv) wired-MIX
between two independent net segments B and D, connected to the nets A and C
respectively, which drives B to logic 1, and D to logic 0 when A 6= C, and keeps

39

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

them unaltered otherwise. As it has been previously mentioned, the analysis of
such SEU effects requires the knowledge of bit-accurate mapping between the
FPGA fabric resources and the underlying CM. Despite this mapping is rarely
available in case of modern FPGAs, several existing tools proposed in [131] [31]
are able to establish such mapping internally for certain types of logic resources
(though not detailing the mapping algorithms).

3.3 Simulation-based fault injection

Simulation-based fault injection analyzes the effects of faults in HDL models,
which can be described at different abstraction levels. The faults are induced
by altering the logic values and timing parameters of DUT elements during the
simulation.

3.3.1 SBFI techniques

SBFI approaches rely on the modification/instrumentation of the HDL model
and/or on simulator commands [62]. Those that instrument the model use sabo-
teurs and mutants. Saboteurs are special components inserted within signals that
alter the value or timing characteristics of those signals when activated. Mutants
are variations of existing components that can behave like original components
and reproduce their behaviour in presence of faults upon activation of the injec-
tion signal.

Several existing instrumentation-based solutions can be noted. First of all, [62]
proposes generic procedures for the definition of mutants and saboteurs at the
behavioural level. It considers a wide set of fault models including bit-flip, stuck-
at, pulse, indetermination, delay, etc. The VERIFY [149] tool, makes the library
provider responsible for taking into account all possible faults in the macrocells
and requires a non-standard HDL simulator to support an extension of the VHDL
language. The proposal in [106] instruments the original library for post-synthesis
simulation to enable the injection of SEUs in FPGA-based designs. A saboteur-
based technique [18] takes into account the setup/hold time window to properly
simulate bit-flips in clock-gated ASICs. Although these methods enable the in-
jection of sophisticated fault models [16], they are highly intrusive, as they intro-
duce/replace components into/from the original model. Moreover, they cause a
significant overhead in the experimental process. If the model is instrumented for
each experiment, which may take a couple of minutes for a medium-sized netlist
(100K gates), this means that the experimentation will take 2 additional weeks
to complete for a campaign consisting of only 10000 experiments. If the model

40

3.3 Simulation-based fault injection

is instrumented to support the injection of several faults, then the size of the
model may increase so much that it will slow down the simulation of each single
experiment.

Table 3.2: ModelSim commands to simulate the fault effects at RT level (as proposed
in [15])

Fault model Simulator commands (RTL injection approach)

Stuck-at(Signal, value) force –freeze Signal Value

Indetermination(Signal) force –freeze Signal ‘X’

Pulse(Signal, Duration)
set Value [examine Signal]

force –freeze Signal [expr $Value^1] –cancel Duration

Bit-Flip(Signal)
set Value [examine Signal]

force –deposit Signal [expr $Value^1]

Delay(TimeVar, Duration) change TimeVar Duration

Simulator commands avoid instrumenting the model by changing the value of
signals/variables at run-time to simulate the effect of faults [19]. Particularly,
the ModelSim/QuestaSim [112] environment can use the following commands to
induce faults into the DUT at run-time: (i) [examine Signal] – it returns the
current value of a signal/variable, (ii) [force -freeze Signal Value -cancel T] – it
assigns a new value to a signal and retains it for T time units or until it is cancelled
by a noforce command, (iii) [force -deposit Signal value] – it assigns a new value
to a signal and releases it immediately, so the signal remains driven by the model,
(iv) [change Var Value] – it assigns a new value to the VHDL Variable (similar
to force -deposit for signals). Table 3.2 lists the RT-level injection procedures for
most commonly used logic fault models.

Most notable tools supporting SBFI by simulator commands are MEFISTO [80]
and VFIT [15] tools. An alternative command-based approach [44] injects stuck-
at faults into Verilog models by including Verilog instructions in the testbench.
The approach proposed in [122] injects logic faults at gate-level with a rate depen-
dent on the switching activity of the netlist. Even if the set of logic fault models
that can be injected using simulator commands is smaller than instrumenting the
model, this is the preferred technique to reduce the time overhead induced on sim-
ulations. However, the same approaches used for RTL models cannot be applied
to implementation-level ones, as simulator commands sequences do not take into
account the particular architecture of macrocells (see Fig.2.4 for details), which
may result in an unexpected behaviour of the target component in presence of
faults.

41

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

3.3.2 Insufficiency of RT-level fault injection

SBFI experiments are commonly conducted using the source RTL model, which
describes the design in terms of registers and data flow between them. De-
spite some works [157] establish the correlation between RT-level and gate-level
SBFI results, RTL models still provide rather limited capabilities with respect
to dependability assessment. On the one hand, RTL models do not support the
simulation of faults in combinational logic, since its actual structure only becomes
known after logic synthesis. On the other hand, the representativeness of injec-
tion experiments targeting the sequential logic (registers) may be affected by the
various optimizations that EDA tools can introduce during the implementation
of HW designs. Some EDA optimizations such as duplication, elimination, and
balancing of registers (among others) [90] may prevent the systematic use of RTL
models for taking decisions regarding the dependability features of the design.

FSM
Encoding
Algorithm

Resulting
encoding

FF

Compact

S0: 000
S1: 001
S2: 010
S3: 110
S4: 100

3

One-hot

S0: 00001
S1: 00010
S2: 00100
S3: 01000
S4: 10000

5

Speed

S0: 1000000
S1: 0100100
S2: 0010010
S3: 0000111
S4: 0001001

7

S0

dout=000

S1

S2

S3

XST
Synthesis
(Artix7)

type state_type is (s0, s1, s2, s3, s4); -- enumerated type for FSM
signal state : state_type; -- register for current FSM state
...

S4
din=1

dout=001

dout=010

dout=011dout=100

Figure 3.3: Impact of Finite-State Machine (FSM) encoding option on sequential logic
(FF) produced by synthesis tool

Max fanout
FF count

Total / replicated
Max replicas per bit

10 83 / 33
4: a_reg_1  a_reg_1_1,

a_reg_1_2,
a_reg_1_3

1000 54 / 4
3: a_reg_1  a_reg_1_1,

a_reg_1_2

31 30 29 ... 3 2 1 0

optimized-out

signal pc_reg : std_logic_vector(31 downto 0);
....

 if inst(63) = '1' then
 pc_reg <= inst(29 downto 0) & "00";
 else

 pc_reg <= std_logic_vector(unsigned(pc_reg) + 4);

inferred FFs

Synthesis

A [15 : 0]

B [15 : 0]

op [1 : 0]

res [15 : 0]

ALU
(mul, add,

...)

Synthesis

(b) (a)

Figure 3.4: Optimization of the sequential logic during logic synthesis: removal of redun-
dant registers (a), and register duplication (b)

Let us consider the case of a bit-flip injected in the finite state machine (FSM)
displayed in Fig. 3.3. The state register of this 5-state FSM is defined as a signal

42

3.3 Simulation-based fault injection

Figure 3.5: Impact of retiming in HW implementations

of type state_type. At RTL level, the state register can only adopt one of the 5
possible values (s0, s1, s2, s3 and s4) in the enumeration state_type. This register
can be encoded in the implementation in one way or another depending on the
value of certain options of the synthesis tool. In the case of the XST tool, the FSM
encoding option can adopt, among others, the values compact, one-hot or speed
(see Fig. 3.3). As a result, the state_type can be encoded, and the state register
implemented, using 3, 5, or 7 bits. From a fault injection perspective, the RTL
representation of the state register does not allow the injection of all possible
value-faults of such flip-flops, whereas the binary representation obtained after
the model synthesis does. As a result, the effect of bit-flips cannot be accurately
reproduced at RTL.

Other synthesis optimizations affecting the structure of the inferred sequential
logic may also condition the level at which faults can be injected. Consider
now the example of the register removal (Fig .3.4-a) and the register replication
(Fig. 3.4-b) synthesis optimizations. The former prevents the inference of redun-
dant or unused Flip-Flops, while the latter, on the contrary, replicates them to
reduce the fan-out, attending to constrains that can be either explicitly specified
or implicitly required by the implementation technology. From the perspective
of fault injection this means that, on one hand, optimized-out register bits in
implementations should be excluded from SBFI experiments carried out at RTL
in order to get comparable results. On the other hand, since duplicated registers

43

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

do not appear at RTL descriptions, the effect of faults affecting such registers can
only be studied by considering lower level (post-synthesis) models.

The re-timing approach, also known as register balancing, is another widely used
synthesis technique to increase the frequency of implemented circuits by reduc-
ing the delay of their critical paths. Fig. 3.5 shows a circuit with a delay of 3
LUTs (LookUp Tables) between the first and second D flip-flop and a delay of
1 LUT between the second and the third flip-flop. By activating the retiming
optimization, the design becomes more balanced in terms of delays, which results
in a critical path with a delay of 2 LUTs. Whenever this technique is applied,
the configuration of the circuit changes, although from a functional viewpoint, it
behaves the same. As a result, an RTL model is not appropriate to estimate the
impact that this type of optimizations may have in the behavior of circuits in the
presence of faults.

As it can be seen, there are many situations leading to the need of considering very
detailed models during SBFI. This subsection has only presented some of them,
but they are sufficient to show the type of changes and optimizations introduced
in the structure of circuits that will be neglected when implementation models
are not considered. Nevertheless, RTL models are useful to accelerate the SBFI
experiments by following a mixed-level and multi-level fault injection approaches,
as it will be shown in Section 6.3.1. Particularly, RTL models can be used for the
study of the impact of faults in those elements that can be mapped on lower level
(and more detailed) models.

3.3.3 Performance and accuracy challenges of implementation-level
SBFI

Simulation-based fault injection is commonly applied to RTL models due to the
uniformity of involved procedures, and the low computational cost of the sim-
ulation process. At the same time, as it has been previously discussed, the
dependability assessment of HW designs cannot rely solely on RTL-level SBFI.
Very detailed implementation-level models should be considered to take into ac-
count the impact of the target technology and EDA optimizations on resulting
implementations. However, SBFI at implementation level faces two important
challenges.

The first challenge is related to the very high computational complexity of imple-
mentation-level models. First, simulation components provided by device vendors
(known as macrocells, as explained in Section 2.1.3) describe very accurately the
timing behaviour of components. An inverter which is defined as 1 line in RTL (a

44

3.3 Simulation-based fault injection

process(inp_a, inp_b, aluop)
 begin
 case aluop is
 when "000" => res <= inp_a + inp_b;

 when "001" => res <= inp_a * inp_b;

Q

Q

CLR

S

R

Q

Q
SET

CLR

S

R

Register Transfer Level model

Gate-level model

Implementation-level model

Bit-flip
Stuck-at
Indetermination

Sequential

Bit-flip
Stuck-at
Indetermination
pulse

Sequential
Combinational

Bit-flip
Stuck-at
Indetermination
Pulse
Short / Open
Delay

Sequential
Combinational

Level of detail (accuracy)

Applicable fault models | Targeted logic

Processes, signals, arith/boolean expressions
Cycle-accuracy

Inferred logic (functional netlist)
approx. propagation delays

Technology-specific macrocells
Accurate timing

Logic synthesis

Map, place, route

Complexity of robustness assessment
Number of Targets × Simulation Effort

N × T

~10 N × ~103 T

~10 N × ~102 T

...

Q

XFF a_reg[0]

IBU F…

XSFF aluop(…)

XFF b_reg[0]

XMUX4
C

CE

D

CLR

Q

IBU F…

C
CE

D

CLR

Q

IBU F…

C
CE

D

CLR

XCARRY4

Figure 3.6: Relative accuracy and complexity of fault injection experiments at different
levels of HDL description

<= not b) is translated into the macrocell described in Listing 2.1 with 40 lines
of code (removing comments and blank lines), without considering the code of
required libraries. Second, a simple combinational component like an 8-bit adder
which is defined in 1 line in RTL (result <= a + b) is translated into a set of
34 interconnected macrocells (16 input buffers, 8 output buffers, 8 look-up tables
and 2 carry chains). This level of detail implies a drastic increase of the simula-
tion effort, as the model approaches to implementation level, slowing down from
2 to 4 orders of magnitude with respect to a similar RTL model [150], Fig. 3.6
summarises this discussion. In practice this may lead to very high (even unfeasi-
ble) SBFI effort, especially under complex experimentation scenarios considering
multiple (alternative) implementations.

Another challenge concerns injection the procedures themselves, as they are not as
straightforward as at RTL. Indeed, macrocells should comply with the standards
and guidelines established for a selected description language. This is to ensure the
compatibility of defined models with off-the-shelf simulators and also improve the
simulation performance. Particularly the basis for VHDL models is established
by the VITAL standard, discussed in Section 2.1.3.2. The complex structure
and performance-aware optimizations of VITAL-compliant macrocells prevents
the usage of the same injection procedures as at RTL.

For instance, Fig.3.7 illustrates the result of applying the same bit-flip injection
script to the RT-level and the implementation-level model of a 3-bit counter. The
implementation-level model is built by Xilinx ISE suite in the basis of Xilinx’s

45

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

Q(2:0)
Counter

clk

signal reg (2 : 0)
I

CLK
RST

OO

O

A_3 OA_4
A_5

I

CLK
RST

O

I

CLK
RST

OCLK

reg_0 : X_FF

reg_1 : X_FF

reg_2 : X_FF

LUT_6

LUT_6

LUT_6

signal reg (2 : 0)
Q (2:0)

...

A_4
A_5

...

A_5

...

set cv [examine cnt/reg(0)]

if {$cv == 1} { set nv 0 }

else { set nv 1 }

force -deposit cnt/reg(0) $nv 0

(b) Implementation-level model (Xilinx’s SimPrim)(a) RTL model

bit-flip stuck-at?

Figure 3.7: Applying the same injection script to the same node within the counter model
at two description levels: implementation-level model fails to reproduce the expected bit-flip
effect

VITAL-compliant SimPrim library. The injection script is applied at both lev-
els to the same node ’reg[0]’ at the same time instant 232 ns using ModelSim
as simulator. As it can be seen, at RTL this injection procedure produces the
expected effect: after flipping the ’reg[0]’ signal, it is recovered at the following
clock cycle; so the counter continues its operation merely missing one clock cycle.
While at implementation level the ’reg[0]’ signals hangs in a faulty state, being
this behaviour generally not representative of a bit-flip effect. The explanation
of this unexpected behaviour relies on the detailed study of X_FF macrocell’s
internal structure and underlying VITAL semantics, which will be provided in
Section 4.2.3.

Although, comprehensive guidelines for VITAL-based component modelling have
been presented in [118] and [41], the fault injection problem has not been covered.
Furthermore, existing proposals dealing with fault injection in VITAL descriptions
lack practical details and/or are highly intrusive. In such a way, a very global
view on this problem has been presented in [53] without taking into account the
representativeness and accuracy of considered fault models. A ’mutant-based’
SBFI solution, specifically targeting ASIC standard cell libraries has been pre-
sented in [145]. It covers some aspects of VITAL level-0 and level-1 compliance.

46

3.3 Simulation-based fault injection

However, it presents at the same time a rather high-intrusiveness and does not
address the problems arising when carrying out SBFI experiments by means of
simulator commands.

3.3.4 SBFI tools

Fault injection procedures enabling the dependability assessment of final imple-
mentations and the verification of deployed non-functional strategies, must be
at the core of any dependability-driven approach within the semi-custom design
flow. Likewise, all these approaches should seamlessly integrate into this flow,
enabling the use of any standardized HDL, off-the-shelf EDA tools, manufacturer
libraries, and implementation technologies in a transparent way.

Nowadays, there exists a wide range of SBFI tools that could be considered for
their integration into the semi-custom design flow under the stated conditions.
The MEFISTO tool [80], for instance, targets RTL and technology-independent
implementation-level HDL models. It supports the use of simulator commands
and saboteurs. It speeds up the execution of fault injection campaigns by schedul-
ing the simulations on a network of workstations. However, it only works on mod-
els defined in the VHDL language. The VFIT [15] tool supports a wider set of
fault models, but also handles only RTL models specified using VHDL. Likewise,
ALIEN [139] targets RTL models, but relies on highly-intrusive (mutant-based)
injection approach. The VERIFY [149] tool supports both RTL and generic
netlists, while keeping simulation time manageable thanks to the use of multi-
threaded fault injection. The limitation in this case is related to the need for
instrumenting vendor-specific libraries using an extension of the VHDL language,
as well as for custom simulators supporting these extensions. The ASPHALT
tool [190] develops the fault-models by abstracting the effects of low-level (in
fact gate-level) faults to RTL. Through this process the simulation remains inde-
pendent from the implementation details, despite obtaining accurate results and
introducing a low overhead. However, ASPHALT only targets processor models.

Therefore, as it is summarized in Table 3.3, none of these tools completely meets
the accuracy and performance requirements to support the dependability-driven
processes identified within the semicustom design flow. Among other limitations,
they cannot be easily extended to support new fault models, provide very basic
analysis and reporting facilities, and provide very limited measures to speed-up
the remarkably slow simulation of implementation-level models.

47

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

Table 3.3: Characterization of some well-known SBFI tools

HDL Abstraction level Fault Intrusiveness Speed-up Analysis1

netlists models Low High strategies

Tool V
H
D
L

Ve
ril
og

Sy
st
em

Ve
ril
og

Sy
st
em

C

RT
L

Te
ch
no

lo
gy

-
in
de
pe

nd
en
t

Te
ch
no

lo
gy

-
de
pe

nd
en
t

Fu
lly

ro
ut
ed

Va
lu
e

T
im

in
g

R
ou

tin
g

Si
m
ul
at
or

co
m
m
an

ds

M
ut
an

ts

Sa
bo

te
ur
s

Fa
ul
tlo

ad
op

tim
iz
at
io
n

M
ul
tip

ro
ce
ss
in
g

O
th
er
s

St
at
ic

re
po

rt

In
te
ra
ct
iv
e

w
eb
-

ba
se
d

MEFISTO [80] X X X X X3 X X X
ASPHALT [190] X X X X X
VERIFY [149] X X X X X X
VFIT [15] X X X X2 X3 X X X X X
ALIEN [139] X X X X X X
1 All tools provide failure mode analysis and latencies estimations.
2 Synthesisable RTL models usually consider timing just at a clock-cycle granularity.
3 Saboteurs enable the emulation of routing-related problems at RTL models from a high level perspective.

3.4 FPGA-based fault injection

FPGA-based fault injection (FFI) has notably evolved during the last two decades.
Early solutions [98] [7] [6] treated FFI as an efficient means to speed-up model-
based fault injection experiments, considering a wide range of faults models. At
the same time, the steady trend towards employing SRAM-based FPGAs in criti-
cal applications requires to use FFI for assessing the dependability of final systems.
In this case FFI usually focuses on emulating the occurrence of SEUs in FPGA
configuration memories, as they pose the highest dependability threat. On the
one hand, modern FPGAs allow to deploy the complete FFI flow on chip, thus
eliminating most performance bottlenecks of earlier solutions. On the other hand,
the lack of instrumental support to relate the utilized FPGA fabric resources with
the underlying CM cells complicates the deployment of fine-grained FFI experi-
ments. Following subsections study existing FFI techniques (Section 3.4.1), the
approaches they use to identify relevant fault targets in FPGA configuration mem-
ories (Section 3.4.2), and the tools supporting those techniques and approaches
(Section 3.4.3).

48

3.4 FPGA-based fault injection

3.4.1 FFI techniques

The intensive adoption of SRAM-based FPGAs as target implementation tech-
nology in critical applications makes FFI an indispensable technique for the as-
sessment of final implementations, rather than just a faster alternative to SBFI.
There exist two major approaches for emulating faults in FPGAs: (i) instrument-
ing the implementation-level model, and (ii) using the runtime reconfiguration
capabilities of modern FPGAs.

HDL MODEL

FAULTLOAD
SUPPORTED BY

BITSTREAM
MANIPULATION API

IMPLEMENT &
GENERATE BITSTREAM

CONFIGURE FPGA

PICK NEXT FAULT CONFIGURATION

INSTRUMENTATION

HDL MODEL

CONFIGURE FPGA

FAULTLOAD
SUPPORTED BY

INSTRUMENTATION

IMPLEMENT &
GENERATE BITSTREAM

PICK NEXT FAULT CONFIGURATION

RUN UNTIL INJECTION TIME

ACTIVATE FAULT INJECTION
CIRCUITRY

DEACTIVATE FAULT INJECTION
CIRCUITRY

RUN FOR FAULT DURATION

RUN UNTIL WORKLOAD
COMPLETION & TRACE EFFECTS

ANOTHER
INSTRUMENTATION

REQUIRED?
NO

YES

RESET DUT TO INITIAL STATE RESET DUT TO INITIAL STATE

RUN UNTIL INJECTION TIME

B
IT

ST
R

EA
M

 M
A

N
IP

U
LA

TI
O

N
 A

P
I

PARTIAL RECONFIGURATION FOR
FAULT INJECTION

RUN FOR FAULT DURATION

PARTIAL RECONFIGURATION FOR
FAULT REMOVAL

RUN UNTIL WORKLOAD
COMPLETION & TRACE EFFECTS

END OF EXPERIMENT END OF EXPERIMENT
M

o
re

 r
u

n
s

M
o

re
 r

u
n

s

(a) (b)

Figure 3.8: FPGA-based fault injection flow: (a) based on model instrumentation, (b)
based on runtime reconfiguration

Instrumentation-based approaches integrate into the original HDL design an addi-
tional control logic that, similarly to saboteur-based SBFI, allows to inject faults
into selected design nodes. Instrumentation can be accomplished at RT level be-
fore synthesis, as proposed in [39], or at a lower (netlist) level, as proposed in
[162]. The bitstream of the resulting instrumented design is generated and down-
loaded to the FPGA. During the execution of the Golden-run the fault control
circuitry remains inactive. In subsequent runs, the fault control signals are ac-
tivated in a way that is determined for each fault configuration to emulate the

49

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

occurrence of a given fault. The supported faultload is completely determined
by the given instrumentation. Therefore, the FPGA utilization may limit the in-
strumentation of all fault targets at once, thus requiring several instrumentation
steps until the whole set of fault targets is covered. The instrumentation-based
FFI flow is depicted in Fig.3.8-A.

The main advantage of instrumentation-based FFI is the low time overhead of the
injection process. The fault injection can be accomplished while the DUT keeps
running, not requiring to pause the workload execution. The main challenge usu-
ally addressed by instrumentation-based techniques is the reduction of the area
overhead imposed by the fault control circuitry. Another important limitation
of this approach is the high degree of intrusiveness it induces into the consid-
ered DUT. Indeed, it must be ensured that the integrated fault injection control
logic does not interfere with the DUT. But even in this case, any modifications
committed at RTL or netlist level, may impact the synthesis/placement/routing
results, in such a way that the resulting implementation may significantly differ
from the one that would be produced when fault injection is not considered. This
may be acceptable when the goal of using FFI is to speed up RTL-level SBFI,
but it will be inappropriate when using FFI for assessing the dependability of the
final implementation of a particular design (unless all deployed instrumentation
logic remains in the final system).

An alternative FFI approach, which has received more attention during the last
two decades, relies on the use of the runtime reconfiguration (RTR) capabilities
of modern FPGAs. Earlier proposals emulated faults in FPGA fabric by altering
the circuitry implemented in the FPGA using vendor-specific APIs. Particularly,
the Jbits library supported by Xilinx devices of earlier Virtex series, allowed
to transparently update the CM content in accordance with the modifications
applied at the netlist level. In such a way, a proposal in [5] defined a set of
operations, which can be applied to reconfigurable elements (LUTs, FFs, MUXes,
pass transistors) through the Jbits API, to emulate the effects of a wide range
of transient and permanent faults affecting the FPGA fabric. Particularly, by
monitoring the current state of logic gates, manipulating their interconnections,
and allocating the additional logic primitives at runtime, it emulated the bit-
flip, stuck-at, pulse and short faults. By altering the routing and allocating the
additional logic cells, it increased the fan-out of selected nets, thus emulating the
delay faults. Fig.3.8-B illustrates the generic workflow of RTR-based FFI.

The main advantage of RTR-based FFI is its low intrusiveness, since faults are
emulated in the original circuit merely by manipulating the FPGA configuration
memory (CM). At the same time, the applicable faultload in this approach is
determined by the capabilities of APIs available for the bitstream manipulation.

50

3.4 FPGA-based fault injection

The Jbits library is currently obsolete without any equal replacement. Hence,
RTR-based FFI tools relying on modern Xilinx devices should develop their own
custom solutions for CM manipulation.

Another challenge addressed by early RTR-based FFI was the reduction of time
overheads introduced into the experimentation process by runtime reconfiguration
procedures. One of the major performance bottlenecks of earlier proposals was
that the injection process was controlled from the host PC, accessing the CM
through the relatively slow JTAG Test Access Port (TAP).

The lack of instrumental support for bit-accurate bitstream manipulations com-
plicates the application of these earlier fault emulation procedures to modern
FPGA devices.

On the one hand, these procedures can be adapted by relying on the Xilinx’s
RapidWright framework [96], which automates the manipulation of low-level
netlists similarly to the Jbits API. For instance, a work in [94] relied on the
first generation of this framework (called RapidSmith) to inject faults into FP-
GAs by applying modifications at the netlist level. This framework, however, is
not capable of reflecting the netlist changes directly into the bistream. Instead,
the updated netlist should be supplied to the Vivado/ISE suite to load and pro-
cess the design and generate the partial bitstream. The bitstream can be then
loaded to the device to emulate the fault effect. Hence, as this adapted procedure
requires the invocation of the Vivado-based software stack at FFI runtime, it sig-
nificantly limits the experimentation performance. Despite this approach can be
useful for very targeted experiments to test FPGA-specific fault tolerance mech-
anisms (like the one demonstrated in [94]), its application to the dependability
assessment of complex designs leads to rather unfeasible experimentation time.

On the other hand, FFI does not necessary deal with sophisticated fault models
that require alterations at the netlist level of the targeted system. Indeed, when
FFI is used for dependability assessment of FPGA-based designs, it usually fo-
cuses on the emulation of upsets in FPGA configuration memory, as these faults
pose the primary threat for SRAM-based FPGAs. Furthermore, modern FPGAs
are able to internally access and manipulate their own configuration memory
(CM). Hence the complete fault injection process can be deployed directly on
chip, eliminating most of the aforementioned performance bottlenecks.

In such a way, most recent works in this field focus on emulating SEUs in us-
ing the Xilinx’s Internal Configuration Access Port (ICAP) [184]. Some of these
works [138] rely on the use of proprietary IP soft-cores, like Xilinx’s Soft Error
Mitigation (SEM) core [182], to emulate SEUs in CM cells. Others [124] [142]

51

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

propose custom fault injection infrastructures, usually based on the Xilinx’s Mi-
croblaze soft-core processor. In such a way, they have a more precise control over
the fault injection process and they are able to define more elaborated injection
scenarios than those that can be defined using proprietary IPs. As [34] showed,
a complete reimplementation of ICAP libraries can notably accelerate the access
to CM. Despite their benefits, common disadvantages of on-chip fault injectors
operating through ICAP are that i) they share the reconfigurable fabric with the
DUT, reducing the resources available for the target implementation, and ii) they
require additional constraints to isolate the injector from the DUT to prevent
occasional interferences.

Finally, alternative proposals [163] rely on the use of the Xilinx’s Processor Con-
figuration Access Port (PCAP) [188], instead of ICAP, to access the CM from the
hardwired processor core embedded into Xilinx’s Zynq devices. This significantly
reduces the interference of the injector with the DUT and accelerates the injection
process, specially when PCAP drivers are also reimplemented [164].

Accordingly, the approach based on runtime reconfiguration can be considered
as the most suitable one for the dependability assessment of FPGA-based imple-
mentations. On the one hand, its low intrusiveness is favourable for reducing the
perturbation induced by the FFI process on the target system under analysis.
On the other hand, by eliminating the host-to-FPGA communication bottleneck
(using ICAP or PCAP interfaces), the FFI performance can be improved.

3.4.2 Locating the fault targets in the FPGA configuration memory

Dependability assessment through FFI usually deals with the emulation of SEUs
in configuration memory (CM), as these faults pose the primary dependability
threat for SRAM-based FPGAs. The general procedure for emulating CM upsets
is quite straightforward: after pausing the DUT clocking at the injection time,
a certain CM cell (target) is selected, its value is read from the device, inverted,
and written back to the device; after that the DUT clocking is resumed to analyse
the effect of the injected upset. At the device level all CM cells are arranged into
Frames. A Frame is the smallest addressable unit of the configuration memory,
which can be independently read/written from/to the CM. In Xilinx 7-Series
FPGAs, it comprises 101 memory words of 32 bits each. The frame address
(FAR) comprises five fields, listed in Table 3.4. It is worth noting that the frame
addresses are sparse and strongly related to the alignment of fabric resources
within the given device. The procedures for accessing (reading and writing) the
configuration memory frames through different interfaces (defined on the basis of

52

3.4 FPGA-based fault injection

publicly available Xilinx’s documentation and related works), are formalized in
Section A.1.

Table 3.4: Frame address composition for Xilinx 7-series FPGA family

FAR filed Description
FAR [25:23] block type; CLB configuration/LUT content is located in the Frames of type-0 (000);

BRAM content is located in Frames of type-1 (001)
FAR [22:22] Top (0) or bottom (1) part of the device
FAR [21:17] clock row counted from the center to top/bottom (as depicted in Fig.2.2)
FAR [16:07] major Frame address corresponds to the Tile column, i.e. XTile coordinate
FAR [06:00] minor Frame address within the column; e.g. CLB columns comprise 36 minor frames

The selection of relevant fault targets is one of the major challenges at FFI.
The simplest strategy is to treat the FPGA design as a blackbox and target
every CM cell available in FPGA. However, given that modern FPGAs have
tens to hundreds of megabits of configuration memory, this strategy leads to
an unaffordable experimentation effort. Even if the test is not exhaustive, but
restricted to a sample of all available CM cells, the FFI process will remain very
costly and inefficient from a time perspective.

One of the ways to address this problem is to restrict the injection of faults to
the so-called Xilinx essential bits [97]. These essential bits are those CM cells
which determine the circuit functionality and integrity, i. e. those that are used
by the design under evaluation. Xilinx EDA tools (ISE and Vivado) export this
information in the form of a text-formatted bitmask file (*.ebc). This bitmask
was originally intended to be used by the Xilinx Single Error Mitigation IP [182],
which corrects the SEUs in the FPGA’s CM by scrubbing those bits included in
the bitmask. Nevertheless, it can be also used for FFI purposes, allowing to make
the fault injection process much more selective in comparison to a completely
blind strategy.

However, the use of the Xilinx’s essential bits does not completely support the fine-
grained FFI. First, the related bitmask only considers non-changeable CM, thus
leaving registers and memories out of consideration. Second, it does not allow to
selectively locate the CM cells pertaining to the particular design modules and/or
types of logic primitives. Though earlier Xilinx tools (ISE suite) considered the
possibility of exporting essential bits in a hierarchical way [97], the documentation
of Vivado (IDE supporting modern Xilinx devices) does not mention this feature.
Finally, the bitmask file (a file with an ebc extension or EBC file for short) itself is
not self-descriptive, since the mask is not annotated with frame addresses. Hence
to make use of this mask, it should be first mapped onto a list of valid frame
addresses for a given device.

53

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

M
IN

O
R

=
 0

M
IN

O
R

=
 1

M
IN

O
R

=
 2

M
IN

O
R

=
 1

2
7

…
…
…
…
…

..

 MAJOR = XSLICE

W
O

RD
S

0
 :

 4
W

O
RD

S
5

 :
 9

W
O

RD
S

9
1

 :
 9

5
W

O
RD

S
9

6
 :

1
0

0
..

.
..

.
W

O
RD

5

0

H
C

LK
 R

O
W

 =
 1

RAMB 18

XSLICEY1

(TOP)

RAMB 18

XSLICEY0

(BOTTOM)

R
A

M
B

 3
6

X
S

LI
C

EY
0

RAMB 18

XSLICEY19

(TOP)

RAMB 18

XSLICEY18

(BOTTOM)

R
A

M
B

 3
6

X
SL

IC
EY

9

TO
P
 =

 1

B
LO

CK
 T

YP
E

=
 1

Frame
address

Frame
offset Slice XY Ram:Bit

0x00C20100 ... RAMB18_X2Y1 BIT 1

... ... RAMB18_X2Y1 BIT 3

...

0x00C2017F ... RAMB18_X2Y1 BIT 32767

0x00C20100 ... RAMB18_X2Y0 BIT 0

... ... RAMB18_X2Y0 BIT 2

...

0x00C2017F ... RAMB18_X2Y0 BIT 32766

Logic location file (*.ll)

Figure 3.9: Mapping of RAM blocks onto the FPGA configuration memory: logic allocation
(LL) file locates all 18K/36K bits of used BRAM18/BRAM36 slices without distinguishing
between essential and non-essential bits

The first mentioned limitation of the Xilinx’s bitmask can be addressed by com-
bining it with the Xilinx’s logic allocation (LL) file. This file locates the registers
and memories within the CM. The location of registers is quite straightforward,
as for each FF/Latch, the LL-file lists its corresponding readback cell in the CM.
For the memory blocks (BRAM), the LL file lists the location of each separate
bit of each used BRAM cell. Xilinx 7-series netlists include two kind of BRAM
cells: BRAM36 and BRAM18.

The analysis of LL files shows that the content of both types of BRAM spans
across 128 Minor frames of type-1, within a given major frame (coinciding with
the Xslice coordinate). In the case of BRAM36, its content corresponds to 10 con-
secutive words within each of these 128 frames, as depicted in Fig.3.9. The data
bits corresponding to BRAM36 cell are listed in LL file in the range [0:32767],
where bits are marked as Ram=B:BIT. Each 64 data bits have 8 corresponding
parity bits, which are used in simple dual port mode (SPD) under a 512x64 align-
ment pattern [177]. In the LL file parity bits are marked by Ram=B:PARBIT.
Each BRAM36 can be seen as a tuple of BRAM18 cells, whose content is in-
terleaved as follows: BRAM18 on the bottom (even Y coordinate) includes even

54

3.4 FPGA-based fault injection

data bits, while BRAM18 on the top (odd Y coordinate) includes odd data bits.
Unlike FF/latch mapping, the LL file does not list any information regarding the
source design nodes for the BRAM cells. All entries are identified by the tuple
(Slice XY, Ram:Bit), being those listed for the complete BRAM BEL, even if it
is used just partially to implement the small RT-level memory. This obfuscated
and redundant BRAM mapping style significantly complicates the use of LL files
in the context of FFI campaigns requiring a bit-accurate fault injection.

Slice M (L)
XS : 0

Slice L
XS+1 : 0

Tile XT : 0

Slice M (L)
XS : 24

Slice L
XS+1 : 24

Tile XT : 24

Slice M (L)
XS : 25

Slice L
XS+1 : 25

Tile XT : 25

Slice M (L)
XS : 49

Slice L
XS+1 : 49

Tile XT : 49

..
.

..
.

..
...
.

W
O

R
D

0

 :
1

W
O

R
D

48

 :
 4

9
W

O
R

D

5
0

W
O

R
D

51

 :
 5

2
W

O
R

D

99
 :

 1
00

M
IN

O
R
=

33

M
IN

O
R
=

34

M
IN

O
R
=

35

M
IN

O
R
=

26

M
IN

O
R
=

27

M
IN

O
R
=

28

M
IN

O
R
=

29

MAJOR = XT

M
IN

O
R
=

32

H
C

LK
 R

O
W

 =
 1

W
O

R
D

0
: 1Slice M (L)

XS : 50
Slice L

XS+1 : 50

Tile XT : 50

Slice M (L)
XS : Y

Slice L
XS+1 : Y

Tile XT : Y

..
.

..
.

W
O

R
D

K
 :

K
+1

W
O

R
D

9

9
: 1

00

Slice M (L)
XS : 99

Slice L
XS+1 : 99

Tile XT : 99

..
.

..
.

TO
P
 =

 1

W
O

R
D

0
: 1Slice M (L)

XS : 100
Slice L

XS+1 : 100

Tile XT : 100

…
…

..

W
O

R
D

99

 :
 1

0
0

Slice M (L)
XS : 149

Slice L
XS+1 : 149

Tile XT : 149

TO
P
 =

 0

…
…

..

H
C

LK
 R

O
W

 =
 0

H
C

LK
 R

O
W

 =
 0

X

Y

15

0

31

16

47

32

63

48

15

0

31

16

47

32

63

48

W
O

R
D

KLU

T

B
LU

T

A
15

0

31

16

47

32

63

48

15

0

31

16

47

32

63

48

LU
T

D

LU
T

C

0
1

5
16

31

W
O

R
D

K

+1

0
15

16
31

M
IN

O
R
=

2
6

M
IN

O
R
=

2
7

M
IN

O
R
=

2
8

M
IN

O
R
=

2
9

[22]
TOP

[21:17]
HCLK ROW

[16:7]
MAJOR

[6:0]
MINOR

WORD
0 - 100

FRAME ADDRESS REGISTER (FAR)

BIT
0 - 31

BITSTREAM COORDINATES

even X slice
coordinate

odd X slice
coordinate

[25:23]
BLOCK TYPE

Figure 3.10: Coarse-grained mapping of Look-up tables onto the configuration memory

For the mapping of the rest of fabric resources a very scarce information is cur-
rently available. Several notable works have dealt with the mapping problem

55

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

for modern FPGA devices. First, the COMET tool [30] allows to visualize and
manipulate the Xilinx bitstreams, though not detailing a bit-accurate mapping
between the CM cells and the underlying logic and routing resources. The PyXEL
framework [31] allows to manipulate the bitstreams of 7-series Xilinx FPGAs, as
well as to analyse the effects of SEUs in FPGA routing resources. PyXEL in-
ternally maps the routing resources (Programmable interconnection points, PIP)
onto the CM in order to enable or disable the specific PIPs. However, it does
not detail the mapping algorithms and, to the best of authors knowledge, it does
not list essential CM cells for individual netlist primitives (macrocells and routed
nets). Likewise, the BitMan tool [131] allows low-level bitstream manipulations
for Xilinx FPGAs. Particularly, it allows to extract and update the LUT con-
tent, however with rather coarse granularity – it is unknown how each of the
64 bitstream bits (extracted for a given LUT BEL) is mapped to the LUT logic
function (INIT). The work in [34] describes the LUT-to-bitstream mapping for
Xilinx 6-series FPGAs, and provides a low-level ICAP API to manipulate the
LUT content on the device, but again with a coarse granularity. Despite that bit-
accurate mapping algorithms remain unavailable, useful information regarding
the coarse-grained LUT mapping can be extracted from these works.

Each LUT cell in the netlist has an associated INIT value, which determines its
logic function (truth table, LUT content). In the simulated netlist, the LUT
content is modelled as a 2N -bits register, where N is the number of LUT inputs.
At the device level, LUT cells are mapped to LUT6 or Bels, which have 64 and 32
bits of CM, respectively. Any LUT cell can be located by the coordinates of the
LUT BEL where it is placed. This includes the grid XY coordinates of a CLB
slice and the LUT Bel label within the slice (A6/A5, B6/B5, C6/C5, D6/D5).

Fig. 3.10 illustrates the relationship between LUT BEL coordinates and the frag-
ment of configuration memory storing its INIT content. Each major frame config-
ures two columns of CLB slices (each CLB Tile comprises two slices). The LUT
content for slices with an even coordinate XS is located in four consecutive minor
frames 32-35, whereas the LUT content for slices with an odd XS is located in
minor frames 26-29. Two consecutive words in each of these four frames store
the content of all four LUTs in a slice (LUTs A, B, C, D bottom to top). Hence,
the bitstream fragment corresponding to a LUT Bel comprises four half-words of
four consecutive frames as depicted in Fig. 3.10. It must be noted that word 50
in each frame is reserved for the configuration of clock lanes.

Finally, the work in [81] detailed a bit-accurate LUT-bistream mapping, in order
to reconstruct the LUT logic function (LUT cell INIT) from the bistream content.
However, this mapping is valid only for a certain type of LUTs (type L), and only
when LUT cell inputs are mapped onto the LUT BEL pins in a direct way, i.e.

56

3.4 FPGA-based fault injection

whenever A0 corresponds to I0, A1 to I1 and so forth.. Note that Vivado decides
the mapping of LUT cell inputs I0− I5 to LUT BEL pins A1−A6 to reduce the
critical path.

Combining the coarse-grained LUT mapping with Xilinx’s essential bits could
enable the location of LUT-specific essential bits within a selected design scope.
However, as it will be evidenced in Section 5.3, the bitmask reported by Xilinx
Vivado is often redundant, since all LUT bits are always marked as essential even
when a LUT is used just partially.

3.4.3 FFI tools

A major problem of FFI tools is that they are tightly related to the vendor-specific
technologies, thus quickly becoming obsolete as vendors release new FPGA ar-
chitectures, EDA tools, and APIs. Despite the big assortment of FFI solutions
available in the literature, only few of them can be applied to modern FPGAs.
Some solutions, like those proposed in [54] [55], rely on circuit instrumentation,
being highly-intrusive. Their main usefulness consists in speeding-up the injection
of faults in models providing a faster alternative than the ones proposed by con-
ventional instrumentation-based SBFI. Other solutions, like the one introduced
by [94], rely on netlist manipulations through the Xilinx RapidSmith/Rapid-
Wright frameworks. This provides very limited performance due to the involve-
ment of Vivado/ISE stack and due to the existence of host-to-FPGA communi-
cation bottlenecks.

Most FFI tools aiming at dependability assessment, deploy the fault injection flow
directly on chip (through ICAP or PCAP) and focus on the injection of single or
multiple bit upsets in the configuration memory. Some of them [138] rely on the
use of proprietary injection IP cores, provided by Xilinx [182] and Intel [78] for
their devices. Others develop their own injection cores operating through ICAP,
like in the case of the FIRED tool in [124], or through PCAP, like the solution
in [163]. The main limitation of these solutions is that they do not relate the
targeted CM bits with the hierarchy of the DUT scope and/or logic primitives.
So, basically, they propose a blind fault injection process either targeting all CM
configuration bits or at best relying on Xilinx essential bits mask. Furthermore,
custom FFI tools are rarely publicly available, which prevents a detailed analysis
of their capabilities and limits the reproducibility of experiments.

57

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

3.5 Existing strategies for improving fault injection
performance

Improving the accuracy and reducing the experimentation effort are two conflict-
ing goals in the dependability assessment of HDL designs. On the one hand,
accuracy requires the consideration of very detailed implementation-level models,
which offers a great potential for providing evaluation metrics with a higher sta-
tistical significance than those that can be reported when relying on more simple
RTL models for experimentation. On the other hand, the use of implementation-
level models increases the experimentation effort potentially beyond the affordable
time limits. This problem becomes especially challenging under complex experi-
mentation scenarios where, for instance, the dependability of multiple alternatives
must be assessed. Thus, one challenge of utmost importance when dealing with
implementation-level fault injection is the ability to conduct as many injection
runs as possible in the shortest possible time frame.

State of the art solutions address the aforementioned challenge from two different
perspectives: by reducing the total number of injection runs to be carried out,
and by speeding-up the execution of individual injection runs. The number of
injection runs is reduced by two main techniques: fault collapsing and statistical
fault injection. The former identifies equivalent faults in the fault space. The
latter reduces the number of faults to inject by focusing the campaigns only on
a sample of all the potentially injectable faults. At the same time, there exists
a wide variety of techniques to accelerate each individual injection run. This
sections details the main advances in the field of improving the performance of
fault injection campaigns.

3.5.1 Optimizing the fault space through fault collapsing

Fault injection experiments characterize the DUT behaviour with respect to a set
of possible fault configurations defined in a multidimensional fault space. These
dimensions commonly include the type of fault, the location of the fault target
within the DUT, the time of fault occurrence, and its duration [191]. The more
complex the HDL design and its workload, the larger the fault space to explore.

Fault collapsing is a common approach for the reduction of the fault space. It
consists in identifying equivalence and dominance relations between the generated
fault configurations. In the Automatic Test Pattern Generation (ATPG) domain,
a fault Fi is said to dominate fault Fj if every test that detects Fj also detects
Fi [134]. Thus if Fi dominates Fj , and Fj is detectable, only Fj needs to be
considered during test generation, since Fi will be detected by the same test.

58

3.5 Existing strategies for improving fault injection performance

When several faults are detected by the same tests (dominate each other), they are
referred to as functionally equivalent, and only one of them needs to be considered
at test generation.

The adaptation of the fault collapsing approach to the RT-level fault injection
has been proposed by [24]. It defined three different fault collapsing techniques.
The first one, referred to as workload independent fault collapsing, analyses the
topology of the RT-level model to determine the equivalent SEUs in FFs. For
instance, faults in any register Ri connected directly and exclusively to another
register Rj belong to the same category as faults of Rj . The experimental gain
of this optimization is reported to reduce the fault list by nearly 10% on average
[24].

The second technique, referred to as workload dependent fault collapsing, relies
on simulation to trace read and write operations on memory elements. SEUs are
then collapsed using two rules: (i) all SEUs between any operation and any write
operation can be omitted since their effects are masked, (ii) all SEUs between
any operation and read operation are equivalent. This optimization is reported
to reduce up to 80% of fault configurations [24].

Finally, the third technique, referred to as dynamic fault collapsing, analyses the
DUT state C(t) at several simulation time instants t. If a SEU Fi injected at
time ti is not activated until a certain time te > ti, then another SEU Fe injected
into the same memory element but at time te, can be omitted from the fault list
since it is considered equivalent to Fi. Conversely, if during the simulation, some
fault Fi is identified as equivalent to some previously simulated fault Fe (with
injection time te > ti), the simulation can be stopped, reporting the same fault
effect as the one observed for Fe.

Despite a quite notable reduction of the fault space (up to an order of magnitude
on the whole), this proposal only is only applicable to RT-level models and, to the
best of author’s knowledge, it has not been adapted so far to the implementation-
level models based on technology-specific macrocells that this thesis focuses on.

3.5.2 Statistical fault injection

Statistical sampling is the process of drawing conclusions for an entire population
after conducting a study on a sample taken from that population [82]. In statistics,
a population denotes a large group consisting of individuals having at least one
common feature, while a sample is nothing but a part of the population that is
selected in order to represent the entire group. Representativeness is a primary
concern in statistical sampling, since non-representative samples of the population

59

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

may lead to results that will be different from those generated by considering the
entire population.

More formally, statistical sampling [159] consists in selecting a subset of individu-
als from a population to estimate the characteristics of the whole population (N).
Assuming that these characteristics follow a normal distribution and that indi-
viduals are randomly selected following a uniform distribution, then the margin
of error (e) represents the maximum difference between the estimation provided
by the sample and the actual value of the characteristic for the whole population,
with a given confidence interval (represented by t). If these assumptions hold, the
minimum sample size (n) required to achieve a desired error margin with a given
confidence interval can be computed by Equation 3.1. A common assumption in
statistics is considering a confidence interval of a 95% (t = 1.96). This means
that the difference between the estimation provided by the sample and the actual
value for the whole population will be no greater than the specified margin of
error in 95% of the cases.

n = N

1 + e2 × N−1
t2×p×(1−p)

(3.1)

As shown in Equation 3.1, the sample size is also affected by p, which represents
the probability of an individual to exhibit the characteristic being estimated. As it
is unknown before SBFI/FFI experiment, then the worst case scenario is assumed
(the individual may exhibit the characteristic or not with the same probability,
p = 0.5) and a larger sample size is hence required. Likewise, it is possible to
estimate the margin of error for a given sample size through Equation 3.2.

e = t×

√
p× (1− p)

n
× N − n
N − 1 (3.2)

The analysis of these equations shows that the increase of population size (N)
leads to the increase of required sample size (n) only until reaching a certain
population size threshold. As it is depicted in Fig. 3.11, such threshold equals
roughly 104 individuals for e = 5%, 106 individuals for e = 1%, and 108 individu-
als for e = 0.1%. Larger populations (even infinite ones) can be representatively

60

3.5 Existing strategies for improving fault injection performance

n=381

n=9534

n=949529

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Sa
m

p
le

 s
iz

e
(n

)

Population size (N)

n(e=5%,p=0.5) n(e=1%,p=0.5) n(e=0.1%,p=0.5)

Figure 3.11: Sensitivity of sample size n to the increasing population size N

sampled using simplified Equation 3.3, which is obtained from Equation 3.1 by
ignoring the finite-population correction, as it is explained in [159].

n = t2 × p× (1− p)
e2 (3.3)

Once these concepts are integrated into the fault injection domain, they should
be understood as listed in Table 3.5.

Table 3.5: Statistical sampling concepts mapped to the fault injection domain

Sampling Fault injection

Population (N)
Any fault that can potentially affect each possible circuit (combinational
and/or sequential) element or memory cell in each possible clock cycle.

Sample size (n)
Number of faults to consider (faultload), assuming the injeciton of one
fault per experiment.

Characteristic (P) Failure modes rate
Margin of error (e) Margin of error
Confidence interval (t) Confidence interval

The research carried out in [100] established the basis for applying the notion
of statistical sampling to the injection of HW faults in integrated circuits. In
this study, the considered population was defined as all the possible faults (soft
errors in fact) that can potentially affect an integrated circuit. As a result, an
individual is a fault, i.e. a type of fault (fault model) that may affect a particular

61

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

circuit location during a concrete execution cycle. The common feature shared
by all individuals was defined in terms of their ability to provoke failures, i.e.
the probability of a fault to result in one of the considered failure modes. It
is also explained that under the assumption that such features follow a normal
distribution and each circuit location has the same probability being affected by
a fault, a representative sample can be defined following a uniform distribution
for the selection of individuals during statistical (random) sampling. Under such
hypotheses, authors showed that it was possible to obtain very precise results
about the robustness of a circuit while injecting only a very small portion (sam-
ple) of all the possible considered faults. As an example, only 384 experiments
were enough to achieve a 5% margin of error with a 95% of confidence in the
estimation of the various failure modes that can affect a circuit! Although this
level of precision may seem enough for regular designs, it will not be enough in the
case of safety-critical systems, where the robustness of designs under study must
be estimated as precisely as possible. Keeping the confidence in the reported esti-
mations to 95%, but decreasing the expected error from 5% to 0.1%, the number
of experiments will increase from only 384 to nearly 790000.

3.5.3 Speeding-up fault injection runs

Even after reducing and sampling the fault space, the required experimentation
effort may still remain very high. Particularly, when targeting implementation-
level models, the simulation effort raises up to three orders of magnitude with
respect to RTL. This requires additional speed-up measures at the level of the
scheduled injection runs. State of the art solutions address this problem from
different perspectives.

First of all, exploiting run-time partial reconfiguration capabilities of modern FP-
GAs for fault emulation has attracted very high attention over the last decade [5] [46].
The most promising proposals focus on exploiting the ability of modern FPGAs
to internally access and manipulate their own configuration memory (CM) to em-
ulate the occurrence of Single Event Upsets (SEUs). Thus, the fault injection
process is internally managed on chip, eliminating communication bottlenecks
with the host. As discussed in section 3.4, FFI solutions relying on the use of
SoC platforms (e.g. Zynq) are especially useful, since they avoid the interference
between the injector and its target [163].

FPGA-based methods drastically accelerate fault injection experiments - several
orders of magnitude with respect to simulation-based techniques. However, their
applicability for robustness assessment is limited to FPGA-based designs, since
considered measurements to derive target DUT robustness metrics are often spe-

62

3.5 Existing strategies for improving fault injection performance

cific to the particular implementation technology. Moreover, they usually rely on
vendor-specific technologies and device-specific architectures that quickly become
obsolete when FPGA changes. Simulation-based solutions, on the other hand,
allow fault simulation for any implementation technology defined in a library of
macrocells, thus being much more generic and flexible.

The proposal in [24], in addition to previously described fault collapsing ap-
proaches, proposed three run-time optimization techniques. The first one called
early stop identifies as early as possible the effect of faults during simulation to
stop its execution as soon as possible. The second optimization, referred to as
hyperactivity, proposes to disable the tracing of intermediate fault effects in those
cases when the injected fault causes an excessive number of mismatches during
the simulation. The fault effect is thus determined by analysing the results at the
end of the workload. Finally, the optimization referred to as smart resume pro-
poses to reuse the launched simulation session to simulate subsequent faults when
the effects of previously injected fault disappeared from the circuit. The speed-
up potential is workload-dependent. This approach, however, is described in a
very abstract way, not covering neither its practical aspects, nor its application
to implementation-level SBFI.

The multi-level fault injection is another known concept in model-based SBFI,
which aims at simulating faults effects at the highest possible (less costly) level
of the design flow. The main challenge here is the identification of representative
fault targets at the high abstraction level. However, one should not forget that
some faults in state elements (registers/memories) cannot always be properly sim-
ulated at RT level. This limitation is related to the impact of implementation
technology and EDA optimizations, as discussed in Section 3.3.2. The work in
[99] partially addresses this problem. It considered the state registers as the most
critical fault targets and demonstrated the feasibility of carrying out a representa-
tive simulation of some FSM faults at RT level. To this end it generated RT-level
FSM mutants, which take into account the partial post-synthesis information.
The reported results showed good correlation between different description levels.
However, the scope of this proposal is limited to FSMs, while the mutant-based
injection approach is generally considered as highly intrusive.

A closely related approach is presented in [190], which develops fault-models by
abstracting the effects of low-level (in fact gate-level) faults to RTL. It reports
that the simulation remains independent from the implementation details, despite
obtaining accurate results and a low overhead. However, the approach only targets
processor models.

63

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

Checkpointing is a generic technique which can be also exploited for speeding-up
the experimentation process. The idea behind it is to save the intermediate sim-
ulation states during the golden run, and to recover them in subsequent injection
runs to reduce the simulation time. Despite being a well-known technique, the
practical application of checkpointing to SBFI/FFI platforms is rarely discussed.
The most notable contribution, exploiting the checkponting in SBFI, is described
in [129]. The use of checkpointing in FPGAs is often discussed from the fault
tolerance viewpoint [92], but not for speeding-up the FFI experiments. Likewise,
the attainable speed-up gain has not been widely discussed by existing proposals.

Finally, multiprocessing allows running several fault injection experiments in par-
allel. The main challenge here is to exploit the available computing resources in
the most efficient way. The resulting speed-up gain is directly proportional to the
amount of available processing resources (PC cores, grid nodes, FPGA boards).
For instance, the proposal in [80] speeds up the SBFI campaigns by scheduling
the simulations on a network of workstations and combining such approach with
checkpointing in order to reduce the warm-up time of each simulation to the strict
minimum. The proposal in [56] relies on a stack of FPGA boards to execute FFI
experiments in parallel, thus the reduction of experimental time is related to the
number of FPGA boards available for experimentation.

Some works also propose the development of specialized fault simulators, like the
one proposed in [119] for IcarusVerilog models. Others rely on the high perfor-
mance offered by today’s GPGPUs to accelerate the injection of faults on simu-
lated models [93]. Although these GPU-powered techniques seem quite promising
(speeding up fault injection in up to two orders of magnitude), they encounter
problems of flexibility and scalability. To the best of authors knowledge, no
GPU-powered solution has been proposed so far that would completely support
the standard Verilog/VHDL-VITAL models.

3.6 Conclusions

Simulation-based fault injection (SBFI) and FPGA-based fault injection (FFI)
are two valuable techniques supporting the dependability assessment and veri-
fication along the semicustom design flow. The SBFI technique covers several
major phases of the design flow – from the high-level (RT-level) HDL model, up
to the technology-specific post-place-route model (implementation-level). Being
applied at RT-level, SBFI allows the early identification of dependability bottle-
necks in the design, but operates with a very limited set of fault models (those
affecting the sequential logic), and does not take into account neither the synthesis

64

3.6 Conclusions

optimizations nor the impact of the implementation technology. Implementation-
level SBFI, on the other hand, can potentially provide accurate technology-specific
dependability estimates, taking into account the impact of synthesis, placement,
and routing optimizations, but becomes available much later in the design flow
and requires much higher experimental effort. In case of FPGA-based design
flows, the FFI technique can be used at the later design stages (when an FPGA
prototype becomes available) for the evaluation of FPGA-specific faults, such as
SEUs in configuration memory, which can only partially be evaluated by means
of implementation-level SBFI.

The practical application of these techniques, however, requires to address several
accuracy-related and performance-related challenges. First of all, to obtain cred-
ible level of dependability measures, the fault injection process should reduce as
much as possible the level of intrusion into the DUT. This increases the interest
in those solutions which do not rely on DUT instrumentation, such as SBFI based
on the use of simulator commands, and FFI based on the runtime reconfiguration
capabilities of FPGAs. Despite that several existing SBFI solutions make use of
simulator commands, they mostly focus on RT-level models, being in many cases
inapplicable to the technology-specific implementation-level models. In fact, to
properly simulate the fault effects at the implementation-level, existing fault injec-
tion procedures should be revisited to take into account the internal structure and
semantics of underlying macrocell libraries used for the circuit implementation.

With respect to FFI, the accuracy challenge concern is related to the fine-grained
location of the essential CM cells that should be targeted during experimentation.
Despite the existence of the Xilinx essential bits information and several third-
party bitstream manipulation tools, the provided information is not enough to
allow the identification of CM cells corresponding to a selected design scope or
a particular type of logic primitives in FPGA fabric. Inaccurate (or redundant)
location of essential bits may degrade the accuracy of dependability estimations
and it may also slow-down the experimentation. Therefore, a particular problem
to be addressed with respect to fine-grained FFI is the bit-accurate mapping of
CM cells to the primitives available in the netlist.

Another identified challenge relates to the reduction of the experimentation effort,
while ensuring acceptable levels of confidence in resulting dependability metrics.
Existing approaches in this domain focus on (i) reducing the number of experi-
ments to carry out through fault collapsing and statistical sampling, (ii) speeding-
up the individual injection runs by abstracting the fault to inject to a higher level,
using FPGA-based emulation, checkpointing, and so on, and (iii) parallelizing the
execution of experiments. These approaches provide an important performance
gain. Particularly, statistical injection may provide an impressive speed-up gain

65

Chapter 3. Fault Injection for Dependability Assessment of HW Designs

in case of rough robustness estimations, but might be insufficient when accurate
estimations are required (narrow error margin). The multi-level injection and
checkpointing require to address many practical aspects of their application to
SBFI and FFI environments.

Finally, the analysis of existing SBFI and FFI tools has shown that they do not
support their seamless integration into the semicustom design flow. Available
tools are usually very specific (limited) to a particular HDL representation level,
set of fault models, simulation tools, etc. A more generic and customizable in-
jection tool is thus required to completely cover the diverse dependability-related
requirements existing along the semicustom design flow.

66

Chapter 4

Enabling Low-intrusive
Simulation-based Fault

Injection for
Implementation-level Models

This chapter proposes a new fault injection approach that enables the accurate
simulation of logic faults in implementation-level HDL models, while reducing to
the minimum the intrusion in targeted models. Section 4.1 describes the chal-
lenges addressed by the proposed approach. Section 4.2 defines low-intrusive fault
injection procedures for VHDL/VITAL-compliant models. Likewise, Section 4.3
defines fault injection procedures for the Verilog-based models. Section 4.4 pro-
poses a tool-independent fault dictionary format that formalizes the definition of
fault injection procedures for the diverse libraries of macrocells. Finally, Section
4.5 concludes this chapter.

67

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

4.1 Introduction

As it has been discussed in Section 3.3, the behavioural (RT-level) fault injection
provides a very limited insight on the dependability of targeted designs. On the
one hand, it allows to simulate only faults affecting the sequential logic. On
other hand, it does not take into account neither the synthesis, placement, and
routing optimizations, nor the impact of the target implementation technology on
dependability. A more elaborated dependability assessment requires to employ
implementation-level models. Being the most detailed HDL models in the design
flow, they can be used for the accurate simulation of a wide variety of faults,
including technology-specific and timing-specific ones.

Implementation-level models are represented by the so-called netlists of technology-
specific macrocells. As it has been discussed in Section 2.1.3, these macrocells are
defined on the basis of comprehensive rules and instruments (libraries) established
by VHDL/VITAL and Verilog standards, in order to make them compatible with
different simulators and to improve the simulation speed. These standards, how-
ever, do not take into account the fault injection capabilities, limiting the ability
to properly reproduce the effects of logic faults in implementation-level models.

As it has been explained in Section 3.3.3, existing simulation-based fault injection
(SBFI) solutions do not (or only partially) handle implementation-level models.
Those SBFI solutions, that are based on simulator commands, are unable to prop-
erly simulate the fault effects in implementation-level models, since they do not
take into account the structure and semantics of underlying macrocells. Those
few solutions, that handle the implementation-level models, are highly intrusive,
since they modify the original HDL model (netlist). As it has been previously
discussed, this may lead to unforeseen side-effects on the circuit behaviour, de-
grading the credibility of derived robustness estimates.

This chapter defines a new SBFI approach that addresses these limitations. By
studying the structure and semantics of VITAL-based and Verilog-based macro-
cells, Sections 4.2 and 4.3 respectively define low-intrusive fault injection proce-
dures for most common logic faults. Whenever possible these procedures rely
on the use of simulator commands. However, some faults can be injected into
VITAL-compliant models only after instrumenting the targeted macrocells. Nev-
ertheless, this approach can be considered less intrusive, since the netlist itself is
kept untouched. Furthermore, the absence of side effects can be easier verified
at the macrocell level than at the netlist level. After defining the fault injection
procedures for the common logic faults, Section 4.4 describes a new fault dictio-
nary format, that generalizes these procedures for macrocells of any complexity,
in a compact, flexible, and tool-independent way.

68

4.2 Fault simulation in VITAL-compliant models

4.2 Fault simulation in VITAL-compliant models

The complex architecture of VITAL-compliant macrocells (previously discussed
in Section 2.1.3.2) makes that fault injection procedures, commonly used at RTL,
cannot be directly applied to implementation level models. Injecting some (tran-
sient) faults requires to take into account the optimizations implemented in un-
derlying VITAL packages, whereas injecting some other faults may require to
upgrade (instrument) the macrocells. This section first defines the generic op-
erations that might be required to instrument VITAL-compliant macrocells and
to support subsequent fault injections by means of simulator commands. After
that, it describes how these operations are applied to the generic and technology-
specific macrocells in order to properly reproduce the effects of common logic
faults.

4.2.1 Definition of generic operations to support fault injection

The netlist obtained after the synthesis of an RTL model, described using VHDL,
consists of a set of interconnected VITAL-compliant macrocells. As these macro-
cells are also defined in VHDL, it is possible to use the simulator commands
approach [19] to modify the state of its internal signals and variables to repro-
duce the effect of a given fault model and observe the behaviour of the system in
presence of such fault. Table 4.1 lists the operations commonly used by state of
the art simulators to retrieve and modify the contents of signals and variables of
the model. These commands have been defined after Mentor Graphics’ Model-
sim/Questasim commands [112]. For instance, taking Listing 2.1 as a reference,
the current state of signal A_ipd can be obtained by the examine(A_ipd) oper-
ation, and the state of the YNeg_zd variable can be set to a low logic level by
the change(YNeg_zd, 0) operation. Nevertheless, not all possible elements of a
macrocell can be directly modified by following this approach, thus requiring the
definition of additional generic operations to support the required transformations
in the VITAL-compliant model.

Sometimes it would be required to modify the value of model parameters that
are defined as generic attributes, like the timing properties (delays), the truth
table of a look-up table, or the initial contents of a memory block. However, as
it is noted in Questasim commands reference manual [112], changes in generic
parameters cannot take place if the design is optimised for high simulation speed
and, even so, such changes may not be propagated to the dependent expressions.
This would prevent the injection of delays in any macrocell and SEUs in LUT
and BRAM macrocells. Thus, a new operation called generic2signal has been
defined to include supplementary signals in the macrocell that can capture the

69

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

Table 4.1: Operations on VITAL-compliant macrocells to support fault injection

Operation Type Description
examine(target) simulator command gets the current value of the target signal or variable
force(target, mode, value, duration) simulator command changes the state of the target signal to value

for duration (freeze mode) or until overwritten (deposit mode)
change(target, value) simulator command like the force command,

but the target is a constant, generic, or variable
generic2signal(target) instrumentation rule initialises an internal signal with the value of the generic

and feeds that signal wherever the generic is used
constant2signal(target) instrumentation rule like the generic2signal operation, but the target is a constant
addToList(target, signal) instrumentation rule adds the signal signal to the sensitivity list

of the process identified by the target label
encloseInProcess(target) instrumentation rule encloses the procedure identified by the target label into a process

activated by all the incoming parameters of the enclosed procedure

value of generic parameters and feed that signals to those elements using the as-
sociated generics. Thus, to make injectable the tipd_A generic from Listing 2.1,
the generic2signal(tpid_A) operation should be executed. It will take charge of:
i) creating a new signal of the same type as the generic in the declarative part
of the model architecture (lines 26–28)—SIGNAL v_tpd_A_YNeg : VitalDelay-
Type01 := UnitDelay01; ii) initialising that signal after back-annotation by in-
cluding the following assignment—v_tpd_A_YNeg <= tpd_A_YNeg—outside
any other block defined in the body of the model (lines 30–66); and iii) using
that signal instead of the generic wherever required, like in line 61—PathDelay
=>v_tpd_A_YNeg.

A similar procedure but handling constants is defined by constant2signal.

Processes are only activated upon changes on any of the signals listed in their
sensitivity list. Thus, the transformation of any generic or constant into an
internal signal that is used within a process requires also this signal to be in-
cluded into the process sensitivity list. The addToList operation takes care of this
transformation. Following the previous example, the addToList(VITALBehavior,
v_tpd_A_YNeg) operation will include the signal v_tpd_A_YNeg in the sen-
sitivity list of the VITALBehavior process in line 39—VITALBehavior : PRO-
CESS(A_ipd, v_tpd_A_YNeg).

VITAL level 1 enables the deployment of optimisations to speed up the simulation
of the model. For instance, when procedures have input parameters taken from
generics and constants they are not rechecked during simulation, as they are
not supposed to change dynamically. Thus, any fault injected in these elements
will not propagate through the model. A new operation called encloseInProcess
has been defined to insert the desired procedure within a process that will be
activated whenever an input parameter changes its value. This will ensure that
the new state of generics or constants (previously transformed by generic2signal

70

4.2 Fault simulation in VITAL-compliant models

Listing 4.1: Enabling procedures to recompute incoming generics and constants

1 encloseInProcess_w_1 : PROCESS (A, v_tipd_A)
2 BEGIN
3 w_1: VitalWireDelay (A_ipd , A, v_tipd_A);
4 END PROCESS ;

or constant2signal operations) will be recomputed within the process. So, for
the VitalWireDelay procedure call in line 33 to be aware of a change in its input
v_tipd_A (resulting from the transformation of tipd_A generic into an internal
signal), the operation encloseInProcess(w_1) will transform it into the code listed
in Listing 4.1. It must be noted that, although this process describes exactly
the same functionality as the original procedure, it does not comply with the
requirements for VITAL level 1, as aWire Delay block can only contain concurrent
procedure calls. The instrumented model will be still compliant with VITAL
level 0 and it will maintain most of the optimisations available for VITAL level 1,
although this particular one (preventing the recomputation of expressions based
on generics and constants), will be forfeited.

4.2.2 Stuck-at, pulse, and indetermination faults

The permanent persistence of stuck-at faults makes that their injection into imple-
mentation level models could follow exactly the same procedure used for RTL
models. In this case, it is just a matter of targeting the signal connected to the
output of the selected macrocell instead of dealing with the internal complexities
of the component. As the signal will be permanently set to the injected value,
it does not matter whether the internal state of the macrocell is really stuck or
not. Thus, causing a stuck-at-1 to a flip-flop driving a signal named ff_o will be
accomplished by using the operation force(ff_o, freeze, 1).

As pulse fault models affect combinational components, and these macrocells do
not store any logic value, it is also possible to just target the signal driven by the
macrocell. For instance, a pulse can be injected for 10 ns to a look-up-table driving
a signal named lut_o by means of these operations newValue = (examine(lut_o)
== 0) ? 1 : 0; force(lut_o, freeze, newValue, 10 ns). Fig. 4.1 displays the
injection of two consecutive pulses in the output of an X_LUT6 macrocell from
the Xilinx’s SIMPRIM library [174].

Permanent indetermination faults can be treated as stuck-at faults, and transient
indetermination targeting combinational elements can follow the same approach
as pulses, but setting the target signal to an ‘X’ value.

71

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

recovery recovery

Figure 4.1: Injecting two consecutive pulses into a combinational component

4.2.3 Bit-flip faults in registers

Bit-flip faults can be injected by inverting the logic value of RTL signals that
represent sequential elements, like flip-flops. However, when applying that same
procedure to the signal driven by the output of the sequential macrocell, the ob-
served behaviour is not the one expected. As depicted in Fig. 4.2a, once the fault
has been injected, the flip-flop’s state is not restored on the following rising clock
edge. On the next simulation event after the fault injection, the VITALBehav-
ior process is activated (see Fig. 2.4). As this is a rising edge active flip-flop,
the Functionality section recomputes the ‘zero-delay’ output. However, as O_zd
equals the previously scheduled value (Path Delay checks), the output retains its
current (faulty) value to optimize the simulation.

To bypass this check, the fault injection procedure should also invert the value of
the O_zd variable. The simulated fault effect in this case is illustrated on Fig.
4.2b – on the falling clock edge the schedValue is changed, thus on the next rising
clock edge it does not coincide with the O_zd anymore; therefore the Path Delay
procedure continues its execution, recovering the flip-flops’ output value.

However, if no event occurs after the injection, the next rising clock edge updates
the logic value on O_zd to ‘1’. As this is exactly the value that was previously
scheduled, the output will retain its faulty logic value. This is a case of injection
after the falling clock edge, illustrated in Fig. 4.2c. Thus, the scheduled value
should also be targeted to prevent this erroneous behaviour. However, the first
action within the Path Delay section updates this value according to the last
value stored to prevent glitches. Hence, the O_GitchData.LastValue variable
should also be modified.

Now, as depicted in Fig. 4.2d, the flip-flop recovers from the fault as expected. On
the rising clock edge, the scheduled value is updated with the last value and, as
being different from that captured on the clock edge, O_zd is propagated to the
scheduled and last values and the output of the flip-flop. The proposed sequence
of simulator commands-based operations is listed in Listing 4.2.

72

4.2 Fault simulation in VITAL-compliant models

recovery

no recovery

recovery

no recovery

A

B

C

D

Figure 4.2: Injection of bit-flip into a flip-flop at implementation level: by following the
same procedure used at RTL (A), taking into account zero-delay output (B - before rising
clock edge , C - after rising clock edge), taking into account zero-delay output and last
scheduled value (D - resulting fault injection procedure)

4.2.4 Delay faults

Although possible in theory, delays faults are rarely considered in RTL models,
even when implementation level models present a very accurate timing description
that enables the injection of these faults.

73

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

Listing 4.2: Proposed procedure to inject a bit-flip in the target macrocell

1 bitflip (target) {
2 newValue = (examine (target /O) == 0) ? 1 : 0;
3 force (target /O, deposit , newValue , 0);
4 change (target / VITALBehavior /O_zd , newValue);
5 change (target / VITALBehavior / O_GlitchData .LastValue , newValue);
6 }

Listing 4.3: Enabling the injection of delays in the target macrocell

1 delayInstrumentation (target) {
2 foreach (genericInput in target) {
3 if (prefix (genericInput , "tpd_") {
4 internalSignal = generic2signal (genericInput);
5 addToList (" VITALBehaviour ", internalSignal);
6 }
7 else if (prefix (genericInput , " tipd_ ") {
8 blockLabel = generic2signal (genericInput);
9 encloseInProcess (blockLabel);

10 }
11 }
12 }

All VITAL-compliant macrocells must define two main timing generic parameters:
interconnect path delays and propagation delays. Being generic parameters, it will
be necessary to include some internal signals to be able to modify their values and
pass these signals to the elements that use the original generics. In the case of
generics used in the Path Delay block, this signal must be added to the sensitivity
list of the VITALBehavior process. If the generics are used in the Wire Delay
block, then it must be enclosed into a process activated by all its input signals.
The proposed procedure for instrumenting a macrocell to support both types of
delays is listed in Listing 4.3.

Once the macrocell is instrumented, the available operations based on simulator
commands can be used to change the state of those internal signals holding the
delay values. For instance, after instrumenting the inverter modelled in Listing 2.1
by means of delayInstrumentation(std04), the propagation delay can be increased
in 2 ns by calling force(v_tpd_A_YNeg, freeze, 2 ns, 0).

Fig. 4.3a depicts a warning issued by the simulator due to a setup time violation
after increasing the interconnect delay of the data input port I of a flip-flop from
the Xilinx’s SIMPRIM library [174] in 3 ns. Likewise, Fig. 4.3b shows the case

74

4.2 Fault simulation in VITAL-compliant models

** Warning: /X_FF SETUP Low VIOLATION ON I WITH RESPECT TO CLK;
Expected := 0.3 ns; Observed := 0.1 ns; At : 25.7 ns(a) (b)

Figure 4.3: Injecting delay faults into a flip-flop: a) interconnect delay of I input, and b)
propagation delay from CLK to O path

of increasing the propagation delay from clock input CLK to data output O in 3
ns.

4.2.5 Considering FPGA-specific components: bit-flips in
configuration memory of LUTs

The proposed procedures are generic enough to be applied to any VITAL-compliant
macrocell and support the injection of any logic fault not related to the intercon-
nection of components. To show its generality, these operations will be used to
define a platform-specific fault injection approach to enable the injection of upsets
into the configuration memory of look-up tables.

The combinational logic in Field-Programmable Gate Arrays (FPGAs) is mostly
implemented by means of Look-Up Tables (LUTs). Accordingly, arithmetic and
boolean expressions of arbitrary complexity at RTL are mapped onto a set of
interconnected LUTs at the implementation-level. As depicted in Fig. 4.4, each
LUT consists of a tree of multiplexers controlled by the input address, which
selects the output from the configuration memory cells.

From a robustness assessment perspective, this means that only input/output
signals of arithmetic/boolean expressions are available for fault injection at RTL,
whereas input/output ports of all LUTs can also be targeted by faults at the
implementation level. This can be accomplished by the previously presented
injection procedure for stuck-at, pulse, and indetermination faults. However, by
considering the particular implementation of each macrocell, it is also possible to
define specific fault injection approaches like, for instance, to study the sensitivity
of configuration memory cells to bit-flip faults.

75

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

1

0

M0

M1

1

0

M2

M3

1

0

1

0

M4

M5

1

0

M6

M7

1

0

1

0

A0 A1 A2

OUT

A0
A1
A2
A3
A4
A5

OUT

X_LUT6

A0

A1

A2

OUT

X_LUT3

function lut4_mux4

data [7:0]

res

Implementation-level netlist LUT3 macro-cellRTL
entity parity is
 port (
 data : in std_logic_vector(7 downto 0);
 pbit : out std_logic);
end parity;

arc hitecture behav of parity is
 function unary_xor (vect :std_logic_vector)
 return std_logic is
 variable res : std_logic;
 begin
 res := vect(vect'length-1);
 if vect'length > 1 then
 for i in (vect'length - 2) downto 0 loop
 res := res xor vect(i);
 end loop; end if;
 return res;
 end function;
begin
 pbit <= unary_xor(data);
end behav;

(a) (b) (c)

Figure 4.4: Combinational logic: a) described at RTL, b) implemented by LUTs, and c)
macrocell’s internal structure

The logic function (truth table) implemented by the X_LUT6 macrocell, from
Xilinx’s SIMPRIM library [174], is defined as a generic parameter (INIT). This
parameter initialises an internal constant named INIT_reg, which represents the
memory cells of the macrocell. This constant is used in the Functionality section
of the VITALBehavior process to compute the expected output of the macrocell.
Accordingly, the macrocell must be instrumented to use a signal instead of a con-
stant and activate the process whenever this signal changes. The required instru-
mentation is deployed by the following operations: constant2signal(INIT_reg);
addToList(VITALBehavior, v_INIT_reg). After that, any bit of this truth ta-
ble can be modified. For instance, a bit-flip targeting the bit 0 can be injected
by means of value=examine(v_INIT_reg); force(v_INIT_reg, freeze, value xor
0x00000001, 0).

4.3 Fault simulation in Verilog-based models

Verilog HDL provides embedded features for the definition of high-performance
and portable macrocell libraries, such as logic primitives and timing specify blocks.
Verilog-based macrocells, though not restricted in their structure, may face fault
injection problems similar to those of VITAL-compliant libraries. The injection
of faults into macrocell nodes modelled by constants (parameters) can follow the
same procedure as defined for VITAL (constant2signal and addToList operations).
However the injection of bit-flips and timing faults requires to take into account
some Verilog-specific model aspects.

76

4.3 Fault simulation in Verilog-based models

4.3.1 Bit-flip faults

primitive ffsrce (q, clk, d, ce, set, rst, notifier);
 output q; reg q;
 input clk, d, ce, set, rst, notifier;

 table
 // clk d ce set rst notifier q q+;

 ? ? ? 1 0 ? : ? : 1;
 ? ? ? ? 1 ? : ? : 0;
 (01) 0 1 0 0 ? : ? : 0;
 (01) 1 1 0 0 ? : ? : 1;
 (01) x 1 0 0 ? : ? : x;

 ...

module X_FF (O, CE, CLK, I, RST, SET);

ffsrce (o_out, CLK_dly, I_dly, CE_dly, set_int, rst_int, notifier1);

 buf O1 (O , o_reg);

 always @(o_out)
 o_reg = o_out;

Specify
 (CLK => O) = (100:100:100, 100:100:100);
 (SET => O) = (0:0:0, 0:0:0);
 (RST => O) = (0:0:0, 0:0:0);

Figure 4.5: Structure of Verilog-based Flip-Flop macrocell (Xilinx simprim library)

Verilog User-Defined Primitives (UDPs) are commonly used instruments for the
definition of sequential and combinational macrocells. On the one hand, a UDP
describes the macrocell logic in the form of truth tables, which are quickly evalu-
ated at runtime, thus providing very high simulation performance. On the other
hand, UPD’s internal scope is hidden in simulation, so it cannot be traced nor
altered by simulator commands. Fig.4.5 illustrates the structure of the Verilog-
based X_FF macrocell from the Xilinx simprim library. It can be seen that the
FF state is recomputed by the ffsrce primitive and stored in o_reg node, pass-
ing through an intermediate signal o_out. The recomputed value is driven to
the output through the buffer primitive, being first delayed in the specify section
according to the timing parameters annotated from SDF.

To simulate a bit-flip the o_out signal could be toggled, as it is the source node in
this chain, using simulator commands. After flipping the o_out, it is expected to
be recomputed (recovered) on the following rising clock edge by the edge sensitive
truth table within the ffsrce primitive. However, as it can be seen from simulation
results in ModelSim, the expected recovery does not take place - Fig.4.6a. The
FF is only recovered when its input changes. This behaviour has been observed

77

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

under all ModelSim versions (10.3 to 10.7), and independently from compilation
options.

The possible explanation of this behaviour is that UDP does not update the
output when the newly computed value remains the same as the previous one.
Indeed, the reg q node (within ffsrce) equals ’1’ both before and after the rising
clock edge. The event scheduling mechanism re-evaluates the driven signal in
response to events on the driver. Thus, the signal o_out will not be rescheduled
in the absence of switching events on q. Accordingly, the actual node that should
be targeted at fault injection is the q signal. However, it pertains to the UPD’s
internal scope, which is not accessible for simulator commands.

Listing 4.4: Proposed procedure to inject a bit-flip into Verilog target macrocell

1 bitflip (target) {
2 newValue = (examine (target / O_out) == 0) ? 1 : 0;
3 force (target /O_out , deposit , newValue , 0);
4 when { expected_update_event (target / O_out)} {
5 noforce target / O_out ;
6 }
7 }

force
when {posedge CLK, posedge RST}
  noforce

recovery

no recovery

Figure 4.6: Simulation of bit-flip fault in Verilog macrocell: (a) RTL procedure, (b)
implementation-level (resulting) procedure

To overcome this problem and mimic the expected bit-flip effect, the o_out can be
forcibly recovered by means of simulator commands, as it is shown in Listing 4.4.
It relies on when clause to detect the recovery time instant (clock edge or reset),
and on noforce command to recover the targeted signal to its original state (the

78

4.3 Fault simulation in Verilog-based models

one it had before executing the force command). The resulting behaviour is
illustrated in Fig.4.6b. It can be seen that the state of the FF, after being flipped,
is properly recovered at the next rising clock edge.

4.3.2 Delay faults

Timing delays are modelled in Verilog macrocells by means the of so-called specify
section, which defines a set of propagation paths and timing checks. The nominal
delays in each path can be defined by literals or by specify parameters. At back-
annotation these nominal delays are replaced by actual values from SDF, using
port names in each path as a key for path lookup. Thus the annotation of SDF
timing does not require an explicit declaration of specify parameters. Even if
these parameters are declared, they are not accessible (hidden) in simulation. This
implicit back-annotation mechanism prevents the usage of the same procedure for
injecting timing faults as in the VITAL-compliant macrocells. Delays in Verilog
models can be changed at runtime only by annotating a modified SDF file by
means of the Verilog function sdf_annotate(sdf_file, [scope]).

The annotation of a modified SDF for the complete design may introduce a sig-
nificant time overhead during simulation. Fortunately, Verilog allows annotating
timing properties in a partial way, i.e. from separate SDF files with the granularity
of individual macrocells. Moreover, the SDF annotation function can be invoked
directly at simulation time by means of a ModelSim command call $sdf_annotate
{sdf_file}.

Thus, timing faults can be injected into Verilog macrocells according to the fol-
lowing procedure. First, the model is annotated with the reference SDF file and
simulated until the fault injection time - Fig.4.7A. At this point, a partial SDF
file is created, which specifies the increased delays for the targeted macrocell.
This partial SDF is annotated by a simulator command, as depicted in Fig.4.7B,
and the simulation continues until the end of the experiment of until the recov-
ery time. Macrocell delays can be recovered by following the same partial SDF
approach.

79

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

FF_1

CE

D
CLK

O

FF_2

CE

D
CLK

O

DUT (D, CLK, CE)

(CELL (CELLTYPE "X_FF")
 (INSTANCE DUT/FF_1)

 (DELAY (ABSOLUTE
 (IOPATH CLK O (500:3500:5000)(500:3500:5000))

Alter_FF1.sdf

(CELL (CELLTYPE "X_FF")
 (INSTANCE DUT/FF_1)

 (DELAY (ABSOLUTE
 (IOPATH CLK O (50:500:500)(50:500:500))

(CELL (CELLTYPE "X_FF")
 (INSTANCE DUT/FF_2)

 (DELAY (ABSOLUTE
 (IOPATH CLK O (200:400:1000)(200:400:1000))

TOP.sdf

call \$sdf_annotate {"Alter_FF1.sdf"}

(A) (B)

Figure 4.7: Simulation of timing faults in Verilog macrocells: (A) DUT annotated with
reference complete SDF, (B) annotation of partial SDF (for the selected macrocell) with
increased delays at run-time

4.4 Unified fault dictionary

As fault injection procedures at RTL are uniform (same sequence of simulator
commands applied to each target signal), these procedures are usually defined
directly in the SBFI tool. However, this approach is rather complex and inefficient
at the implementation level, since each macrocell requires its own fault injection
procedure for each fault model, according to its internal structure and semantics.

As VITAL-compliant macrocells share the same architecture and naming conven-
tions, this can be exploited to automatically build custom fault injection scripts
at runtime. These scripts should define a set of rules to instrument the selected
macrocells and generate the proper sequence of simulator commands to inject
a given fault. A fault dictionary format illustrated in Fig 4.8, allows to unify
the definition of fault models and decouple them from the code of SBFI tools.
The fault dictionary model comprises a set of fault descriptors that aggregate
instrumentation and injection rules that can be applied to a set of macrocells in
a uniform way.

First, for each type of macrocell it should be checked whether it satisfies the
instrumentation rules defined in the fault descriptor. If any rule is missing, it
must be applied and the macrocell recompiled. Logic fault models studied so
far have led to the definition of four different basic instrumentation rules: i)
Generic2Signal, which defines supplementary signals for generic parameters to be

80

4.4 Unified fault dictionary

Fault_Dictionary

library
Fault_Descriptor []
Trace_Descriptor [] Fault_Descriptor

fault_model
Macrocell []
Injection_Rule []
Instrumentation_Rule []

Macrocell

type
sourcefile
configuration
instrumentation_checklist

Instrumentation_Rule

generic2signal []
constant2signal []
encloseInProcess []
addToList []

code_pattern
Injection_Case [] Injection_Case

condition
label
Node []

Node

placeholder
nodename_pattern

*

*

*

*

*

*

Injection_Rule

Figure 4.8: Fault dictionary model

injectable and appends the required initialization code after back-annotation, ii)
Constant2Signal, which redefines the constant as a signal, iii) EncloseInProcess,
which forces timing routines to capture the newly injected timing values by en-
closing them in a process, and iv) AddToList, which makes a process sensitive to
changes of signals.

Once all instrumentation rules are satisfied, injection rules can be applied. Each
injection rule defines a parametrized pattern of simulator commands that is ap-
plied to the set of injection cases. Each injection case represents a particular in-
jection point within a macrocell (I/O ports, internal registers, propagation paths,
etc.), an optional iterator attribute to handle vectors and arrays, and an optional
condition for the fault to be injected.

Macrocells with similar architecture may share the same fault descriptor in some
cases. For instance, bit-flip injection rules are identical for different Xilinx Flip-
Flops (X_FF, X_SFF, and X_FDD macrocells), so just one fault descriptor is
required. However, the delay fault model requires to define individual descriptors
for each macrocell due to a different set of inputs and propagation paths. By fol-
lowing this specification model, it is possible to define fault models in a relatively
compact way for huge libraries and complex macrocells (containing thousands of
internal injection points).

The parametrization of code patterns and injection cases enables fine-tuning fault-
loads from a single configuration file. Fig. 4.9 illustrates an example of an XML
file describing the procedure required to inject delay faults into the X_FF macro-

81

Chapter 4. Enabling Low-intrusive Fault Injection for Implementation-level Models

 <instrumentation_rule>
 <generic2signal src = "v_tpd_CLK_O" dst = "tpd_CLK_O" />
 <generic2signal src = "v_tipd_I" dst = "tipd_I" />

... …
 <enclose_inprocess block_name = "VitalWireDelay" />
 </instrumentation_rule>

 <injection_rule
 code_pattern = "

 set x [split [string trim [examine #PATH/#NODE_1] "{}"]]#;
 force -freeze #PATH/#NODE_1 [join [list [expr [lindex $x 0]#FORCEDVALUE] \

" " [lindex $x 1]] ""]#;
 set x [split [string trim [examine #PATH/#NODE_2] "{}"]]#;
 force -freeze #PATH/#NODE_2 [join [list [expr [lindex $x 0]#FORCEDVALUE] \

" " [lindex $x 1]] ""]#;">

 <injectioncase label = "CLK_O" condition = "path=True"
 nodes = "#NODE_1=v_tpd_CLK_O(tr01), #NODE_2=v_tpd_CLK_O(tr10)" />

... …
 <injectioncase label = "I" condition = "interconnect=True"

 nodes = "#NODE_1=v_tipd_I(tr01), #NODE_2=v_tipd_I(tr10)" />

 </injection_rule>

......, delay into X_LUT6, bit-flip into X_FF, stuck-at into SIGNAL,......

#FaultDict.xml: fault descrption section for delay fault model into Xilinx’s X_FF primitive
<fdesc model = "delay" macrocells = "X_FF" >

#Config.xml: fault model section for delay faultload
<fault_model

 model = "delay"
 target_logic = "X_FF, X_SFF, X_LUT5, X_LUT6"
 condition = "interconnect=True"
 experiments_per_target = "1"
 injections_per_experiment = "1"
 time_start = "0.05"
 time_end = "0.15"
 forced_value = "+0.05*#CLK" />

......, stuck-at faultload, bit-flip faultload, pulse faultload,......

Figure 4.9: Excerpt from the fault dictionary file and configuration file describing the delay
fault model for a Xilinx’s X_FF macrocells and a delay faultload, respectively

cells. By following this specification, the SBFI tool first checks the instrumenta-
tion rules, particularly that timing generics are injectable and that delay processes
are sensitive to the change of timing parameters. After that, injection scripts are
generated from the injection rule by applying the code pattern to each injection
case within the macrocell (different ports and propagation paths).

The faultload is also defined by means of another XML configuration file. The
<fault_model> section defines a number of attributes that the faultload builder
shall use to generate the injection scripts. The model and target_logic attributes
state which fault description rules will be used for generating these scripts. Like-
wise, the condition attribute determines which injection cases will be applied.
Finally, the rest of the attributes determine the values for specific placeholders,
like forced value or fault duration. The condition attribute allows to filter the
injection cases for fine-tuning the faultload. For instance, the faultload depicted
in Fig. 4.9 will generate the scripts required to inject interconnect delay faults

82

4.5 Conclusions

(not propagation delays) into all the X_FF, X_SFF, X_LUT5, and X_LUT6
components of the implemented design.

4.5 Conclusions

VITAL and Verilog standards establish a comprehensive set of rules to unify the
design of macrocells libraries and EDA tools, enabling the implementation of effi-
cient optimizations for simulation speed-up. However, their rigorous requirements
make that common SBFI techniques cannot be easily applied to implementation
level HDL models defined on the basis of such macrocells libraries.

This chapter has carefully studied the architecture of VITAL-compliant macro-
cells to define generic operations that can be deployed to enable the injection of
most common logic faults into implementation-level models. Sequences of generic
simulator commands have been defined to conduct the injection of faults when-
ever possible and to reduce to the minimum the intrusion and the overhead in
the simulation time. However, some faults can only be injected after instrument-
ing the target macrocells. In such cases, the defined operations keep the func-
tionality and timing behaviour of the target macrocell while following VITAL
requirements. Only in the case of interconnection path delays, the VITAL level
of support will be degraded from 1 to 0. By instrumenting the macrocells, the
original implementation-level model and the VITAL libraries are not modified
by any means, reducing the intrusiveness of the proposed approach. Likewise,
once the macrocell is instrumented and recomplied, no further recompilations
are required, thus reducing also the experimental overhead with respect to other
common approaches. The defined operations are generic enough to be technology
independent, so they can be applied to the VITAL-compliant macrocells of any
vendor and the commands can be supported by most common industry standard
simulators.

After that, it has been shown that despite Verilog-based models face similar fault
injection problems as the VITAL-based ones, they require somewhat different
fault injection procedures. These procedures are completely non-intrusive, relying
solely on the use of simulator commands and native Verilog functions.

Finally, the definition of fault injection procedures for diverse macrocells and fault
models has been unified by means of a new tool-independent fault dictionary
format. Each fault descriptor in such dictionary defines a set of instrumentation
and injection rules, that should be followed by any third-party fault injector, to
properly simulate any given fault within any given macrocell.

83

Chapter 5

Improving the Accuracy of
FPGA-based Fault Injection

This chapter proposes an approach for bit-accurate FPGA-based fault injection
(FFI). Section 5.1 describes the problems that should be addressed to deploy FFI
experiments with a bit-accuracy. Section 5.2 describes the algorithms for bit-
accurate location of LUT and BRAM content within the configuration memory of
FPGAs. Section 5.3 describes how the bit-accurate mapping is used to generate
an optimized essential bits file that allows FFI tools to locate the relevant fault
targets (CM cells) within any given design scope. Section 5.4 describes an FFI
flow that relies on optimized essential bits, and takes into account the kind of logic
primitive configured by the targeted CM cells, in order to properly emulate upsets
in registers, changeable CM, and the non-changeable CM. Section 5.5 concludes
this chapter.

85

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

5.1 Introduction

Single Event Upsets (SEU) in configuration memory (CM) pose one of the primary
threats for the dependability of FPGA-based designs. Designers thus should
carefully evaluate the robustness of such designs against SEUs and analyse the
efficiency of integrated SEU mitigation mechanisms. FPGA-based fault injection
(FFI) is one of the main instruments allowing this kind of analysis.

An important problem that should be addressed when deploying FFI experiments
is to accurately locate the relevant fault targets within the CM, i.e. those CM
cells that configure the circuit and its constituent nodes (macrocells). The finer
is the granularity with which design nodes are related to the underlying CM cells,
the more detailed robustness estimates can be derived from FFI experiments
and the more time-efficient such experiments become. For instance, the most
straightforward FFI strategy, which blindly targets all CM cells in FPGAs, is able
to quantify only the robustness of the design as a whole, without any insights on
the robustness of its individual modules. In addition it leads to lots of useless
FFI runs, since even complex FPGA designs are very unlikely to use all available
FPGA resources.

A known approach to refine the location of relevant fault targets (CM cells) is to
rely on the Xilinx essential bits information. It provides a bitmask file (EBC file
generated by Vivado design suite) that highlights those CM cells that actually
configure the circuitry in FPGAs. On the one hand, it significantly reduces the
number of useless fault injections, since non-essential bits do not impact in any
way the behaviour nor the integrity of the circuit and, thus, can be safely omitted
from FFI experiments.

On the other hand, as it has been discussed in Section 3.4.2, Xilinx essential
bits has several limitations with respect to FFI. First of all, it considers only
non-changeable CM cells, leaving registers, LUTRAM and BRAM content out
of consideration. Second, the essential bit mask file does not relate CM cells
to individual design units and/or types of netlist primitives (macrocells). This
again leads to rather blind FFI experiments (although with a reduced injection
scope) that estimate the robustness of the implementation as a whole but do not
allow to locate the weak points of the design. Third, essential bits reported by
Xilinx may be redundant for partially used LUTs (as it will be shown later in
this chapter). Therefore, many FFI runs still could remain ineffective, wasting
experimental time and affecting the accuracy of derived robustness estimates. In
addition to that, this mask file is not self-descriptive, i.e. to make use of it, it
should be first mapped onto the configuration memory of the target FPGA. This
complicates its practical application in FFI.

86

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory

Another useful aid provided by Xilinx for the location of CM cells is the logic
allocation (LL) file. This file only considers changeable CM cells (FFs, LUTRAM,
and BRAM), so it can be potentially combined with an EBC file to cover the entire
set of CM cells that are essential for the design. However, as it has been discussed
in Section 3.4.2, LL file reports the BRAM-specific and LUTRAM-specific CM
cells in an obfuscated and redundant way, which does not relate the CM cells
with the hierarchy of the DUT and leads to considering unused CM bits.

This chapter describes a bit-accurate FFI approach that addresses the aforemen-
tioned problems. First, Section 5.2 studies the bit-accurate mapping between
some major types of netlist primitives and the CM, and proposes algorithms for
identifying LUT-specific and BRAM-specific essential bits within the CM. On
the basis of bit-accurate mapping, Section 5.3 then defines a custom essential bit
mask file that allows FFI tools to selectively target any given design unit and any
type of netlist primitives among those that can be mapped with a bit-accuracy.
So as to consider the whole set of CM bits (not only those related to the mapped
primitives) it also incorporates the information from Xilinx essential bits file, re-
sulting in an optimized essential bits file that eliminates the redundancy existing
in the EBC file and also takes into consideration changeable CM cells. Finally,
Section 5.4 describes an FFI flow that relies on the proposed optimized essential
bits file and takes into account the type of logic primitive behind the targeted
CM bits in order to properly emulate upsets in registers, changeable memories
(BRAM/LUTRAM), and in the non-changeable CM with a bit-accuracy.

5.2 Towards bit-accurate mapping of macrocells onto the
configuration memory

The objective of CM mapping is to establish a relationship between the netlist
primitives (macrocells) and the CM cells that configure these macrocells. FPGA-
based netlists comprise a wide variety of macrocells. This makes their complete
mapping onto the configuration memory quite a challenging problem. Neverthe-
less, if prioritizing the different macrocells according to their relative weights in
the netlists, it can be concluded that three components are of the utmost inter-
est for FFI experiments: (i) LUTs as the main building block of combinational
logic, (ii) CLB Flip-Flops implementing the DUT registers, and (iii) BRAMs that
implement on-chip user memories as well as the control memories of inferred FSM.

The mapping of Flip-Flops can be extracted from the logic allocation (LL) file
generated by Vivado. The mapping of BRAMs is also listed in the LL file, but in
an obfuscated and redundant way that does not provide any clear relation with

87

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

the source (RTL) design nodes and often leads to considering unused (dummy)
BRAM bits. The mapping of LUTs is not reported by Xilinx tools in any way.
Likewise, the mapping of non-changeable CM in general is not reported by Xilinx
tools.

It should be noted that routing resources, represented by programmable intercon-
nection points (PiPs) within the switchboxes are not reflected at the netlist level
(implementation-level HDL model). Hence, the mapping of routing resources is
not considered in this work.

This section, thus, studies how the LUT and BRAM macrocells can be mapped
onto the CM with a bit-accuracy and how to determine which of their correspond-
ing CM cells are actually essential.

It is worth noting that this section operates by such terms as macrocell, BEL,
and Slice. Term macrocell is used to refer to the logic primitives constituting the
netlist. For instance, the netlists generated by Vivado suite for Xilinx 7-series
FPGAs may include six types of LUT macrocells, attending to the number their
inputs: LUT_1 to LUT_6. The term BEL refers to the basic element of logic,
into which one or more macrocells are placed. A group of BELs is referred to as
Slice. For instance, Xilinx 7-series FPGAs have two types of CLB Slices – Type L,
and Type M – the former implements only the combinational logic, whereas the
latter also supports the implementation of distributed memories on LUTs. Each
CLB slice includes four pairs of LUT BELs, labelled A5/A6, B5/B6, C5/C6,
D5/D6. Each pair of LUT BELs supports the placement of two LUT macrocells
(when the LUT combining is enabled). Refer to the Section 2.1.2 for further
details regarding the terminology used in Xilinx design flow.

5.2.1 Mapping of Look-Up tables

Mapping LUT cells onto the configuration memory comprises coarse-grained and
fine-grained levels, illustrated in Fig.5.1. The former locates the bitstream frag-
ment (BF) that corresponds to the placement of a LUT macrocell. The latter
locates each individual bit of a LUT’s truth table (INIT attribute) within the BF.
The global bit-accurate LUT mapping is derived by combining these two mapping
levels, so each LUT bit is related to the coordinates of corresponding CM cells
(designated by the tuple Frame, word, bit).

The bitstream fragment, located by the coarse-grained mapping, comprises four
half-words from four consecutive frames designated by the structure (Block, Top,
Row, Major, Minor, word, bits) - as depicted in Fig.5.1. These coordinates are
calculated from the LUT placement on the design layout (LUT BEL). The LUT

88

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory

Bits
FAR.

Major
F+1
F+2
F+3
F+4

XTileRT0

W
W
W
W

FAR.
Block Word

FAR.
Top

FAR.
Row

FAR.
Minor

B
B
B
B

coordinates
{YClkReg, XSlice, YSlice, XTile, ABCD}

Slice type (L/M)

Cell-Bel pin map

Parse Netlist

LU
T

ce
ll

de
sc

ri
p

to
r

Next LUT cell

W=Y*2, B=[15:0]

Combined Cell CombCell

Global map
LUT.INIT[i]  (FAR, word, bit)

Coarse-grained mapping
Extraction of bitstream fragment (BF)

Cell.BelType

A6  0, rest unused_pins  1unused_pins  1

I5  I0

Ascending (I5,...I0)

Cell.SliceType

BF map  MP.column_MBF map  MP.column_L

unused_pins = (A6,A5,A4,A3,A2,A1) – (Cell.pins U CombCell.pins)

Bit-accurate mapping
Mapping within bitstream fragment

A5, B5, C5, D5A6, B6, C6, D6

Reduce table MP

Reorder columns in MP

Reorder rows in MP

ML

Cell.Label

W=Y*2, B=[31:16]
W=1+Y*2, B=[15:0]
W=1+Y*2, B=[31:16]

A
B
C
D

T_Rows = Rows/2,
B_Rows = Rows/2 + Rows%2

Cell.YClkReg > B_Rows-1

T=1, R=B_Rows-YClkReg - 1

List of LUT cells

y (Top) n (Bottom)

T=0, R=YClkReg – B_Rows

if W ≥ 50: W += 1

Y=Yslice MOD 50

F= 26 if (XS MOD 2 == 1) else 32

Figure 5.1: Algorithm for the bit-accurate mapping of LUT cells onto the configuration
memory (bitstream)

content is located in CM frames of Type-0. The top/bottom part T and the clock
row R are calculated from the vertical coordinate of the clock region YClkReg. The
major frame coincides with the index of the CLB column, i.e. XTile coordinate.
The four minor frames are 26–29 for the odd XSlice, and 32–35 for the even XSlice.
Finally, the word index and its part (high or low 16 bits) are calculated from the
vertical slice coordinate YSlice and from the LUT label within the slice (A,B,C,D),
according to the coarse-grained LUT mapping depicted in Fig.5.1.

The bits of the extracted BF are scrambled, so they should be properly reordered
to obtain the INIT (truth table) of the LUT macrocell. The proper order of BF
bits for the complete (6-input) LUT has been derived experimentally according
to the procedure detailed in Section A.2. Table 5.1 lists the resulting order of BF
bits in which they should be concatenated to obtain the INIT of a LUT6 macrocell

89

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

under the direct mapping of LUT inputs to BEL pins (I0:A1, I1:A2, I2:A3, I3:A4,
I4:A5, I5:A6). This order of bits is further referred to as LUT BEL mapping,
designated as table MP in Fig.5.1. Experiments detailed in Section A.2 have
shown that LUTs located in the CLB slices of type L and M have different CM
mapping. For that reason Table 5.1 has two different mapping columns (column-
L and column-M respectively). At the same time, experiments have also shown
that this mapping does not depend on the BEL location. In other words, Table
5.1 is valid for any clock region, CLB tile coordinates, and LUT label within the
CLB slice (A,B,C,D). Fig.5.2 illustrates the derived bit-accurate mapping of LUT
BELs onto the bistream for both types of slices (L and M).

LU
T

D

...

w
o

rd
 k

+1

1
6

 :
3

1

LU
T

 C

...

0
 :

15

LU
T

 B

B_00 B_01 B_09 B_08

w
o

rd
 k

3
1

B_02 B_03 B_11 B_10

B_04 B_05 B_13 B_12

B_06 B_07 B_15 B_14

B_16 B_17 B_25 B_24

B_18 B_19 B_27 B_26

B_20 B_21 B_29 B_28

B_22 B_23 B_31 B_30

B_32 B_33 B_41 B_40

B_34 B_35 B_43 B_42

B_36 B_37 B_45 B_44

B_38 B_39 B_47 B_46

B_48 B_49 B_57 B_56
B_50 B_51 B_59 B_58

1
6

B_52 B_53 B_61 B_60

B_54 B_55 B_63 B_62

LU
T

 A

A_00 A_01 A_09 A_08

1
5

A_02 A_03 A_11 A_10

A_04 A_05 A_13 A_12

A_06 A_07 A_15 A_14

A_16 A_17 A_25 A_24

A_18 A_19 A_27 A_26

A_20 A_21 A_29 A_28

A_22 A_23 A_31 A_30

A_32 A_33 A_41 A_40

A_34 A_35 A_43 A_42

A_36 A_37 A_45 A_44

A_38 A_39 A_47 A_46
A_48 A_49 A_57 A_56

0

A_50 A_51 A_59 A_58
A_52 A_53 A_61 A_60

A_54 A_55 A_63 A_62

Slice_L XY
odd X

Frame
26

Frame
27

Frame
28

Frame
29

Slice_L XY
even X

Frame
32

Frame
33

Frame
34

Frame
35

(A) Slice L

LU
T

D

...

w
o

rd
 k

+1

1
6

 :
3

1

LU
T

 C

...

0
 :

 1
5

LU
T

 B

B_08 B_09 B_00 B_01

w
o

rd
 k

3
1

B_10 B_11 B_02 B_03

B_12 B_13 B_04 B_05

B_14 B_15 B_06 B_07

B_24 B_25 B_16 B_17

B_26 B_27 B_18 B_19

B_28 B_29 B_20 B_21

B_30 B_31 B_22 B_23

B_40 B_41 B_32 B_33

B_42 B_43 B_34 B_35

B_44 B_45 B_36 B_37

B_46 B_47 B_38 B_39

B_56 B_57 B_48 B_49
B_58 B_59 B_50 B_51

1
6

B_60 B_61 B_52 B_53

B_62 B_63 B_54 B_55

LU
T

 A

A_08 A_09 A_00 A_01

1
5

A_10 A_11 A_02 A_03

A_12 A_13 A_04 A_05

A_14 A_15 A_06 A_07

A_24 A_25 A_16 A_17

A_26 A_27 A_18 A_19

A_28 A_29 A_20 A_21

A_30 A_31 A_22 A_23

A_40 A_41 A_32 A_33

A_42 A_43 A_34 A_35

A_44 A_45 A_36 A_37

A_46 A_47 A_38 A_39
A_56 A_57 A_48 A_49

0

A_58 A_59 A_50 A_51
A_60 A_61 A_52 A_53

A_62 A_63 A_54 A_55

Slice_M XY
odd X

Frame
26

Frame
27

Frame
28

Frame
29

Slice_M XY
even X

Frame
32

Frame
33

Frame
34

Frame
35

(B) Slice M

Figure 5.2: Location of LUT content within the configuration memory of 7-series FPGA

90

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory

Table 5.1: Bit-accurate mapping of LUT6 content onto the bitstream fragment under the
direct assignment of LUT inputs to the BEL pins (experimentally obtained for Xilinx 7-series
FPGA)

LUT BEL inputs LUT6.INIT
bit_index

Matching bit of
bitstream fragment

A6 A5 A4 A3 A2 A1 Slice L Slice M

0 0 0 0 0 0 0 63 31
0 0 0 0 0 1 1 47 15
0 0 0 0 1 0 2 62 30
0 0 0 0 1 1 3 46 14
0 0 0 1 0 0 4 61 29
0 0 0 1 0 1 5 45 13
0 0 0 1 1 0 6 60 28
0 0 0 1 1 1 7 44 12
0 0 1 0 0 0 8 15 63
0 0 1 0 0 1 9 31 47
0 0 1 0 1 0 10 14 62
0 0 1 0 1 1 11 30 46
0 0 1 1 0 0 12 13 61
0 0 1 1 0 1 13 29 45
0 0 1 1 1 0 14 12 60
0 0 1 1 1 1 15 28 44
0 1 0 0 0 0 16 59 27
0 1 0 0 0 1 17 43 11
0 1 0 0 1 0 18 58 26
0 1 0 0 1 1 19 42 10
0 1 0 1 0 0 20 57 25
0 1 0 1 0 1 21 41 9
0 1 0 1 1 0 22 56 24
0 1 0 1 1 1 23 40 8
0 1 1 0 0 0 24 11 59
0 1 1 0 0 1 25 27 43
0 1 1 0 1 0 26 10 58
0 1 1 0 1 1 27 26 42
0 1 1 1 0 0 28 9 57
0 1 1 1 0 1 29 25 41
0 1 1 1 1 0 30 8 56
0 1 1 1 1 1 31 24 40
1 0 0 0 0 0 32 55 23
1 0 0 0 0 1 33 39 7
1 0 0 0 1 0 34 54 22
1 0 0 0 1 1 35 38 6
1 0 0 1 0 0 36 53 21
1 0 0 1 0 1 37 37 5
1 0 0 1 1 0 38 52 20
1 0 0 1 1 1 39 36 4
1 0 1 0 0 0 40 7 55
1 0 1 0 0 1 41 23 39
1 0 1 0 1 0 42 6 54
1 0 1 0 1 1 43 22 38
1 0 1 1 0 0 44 5 53
1 0 1 1 0 1 45 21 37
1 0 1 1 1 0 46 4 52
1 0 1 1 1 1 47 20 36
1 1 0 0 0 0 48 51 19
1 1 0 0 0 1 49 35 3
1 1 0 0 1 0 50 50 18
1 1 0 0 1 1 51 34 2
1 1 0 1 0 0 52 49 17
1 1 0 1 0 1 53 33 1
1 1 0 1 1 0 54 48 16
1 1 0 1 1 1 55 32 0
1 1 1 0 0 0 56 3 51
1 1 1 0 0 1 57 19 35
1 1 1 0 1 0 58 2 50
1 1 1 0 1 1 59 18 34
1 1 1 1 0 0 60 1 49
1 1 1 1 0 1 61 17 33
1 1 1 1 1 0 62 0 48
1 1 1 1 1 1 63 16 32

In practice, however, LUTs are not constrained to the direct mapping of LUT
inputs to LUT BEL pins, so that Xilinx Vivado suite can optimize it in such a
way as to reduce the critical path. In fact, there exist 720 possible pin mappings
for the LUT6 macrocell (number of permutations of LUT inputs). Furthermore,

91

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

LUT macrocells may have less than 6 inputs, leaving some BEL pins unused.
Finally, in the case of LUT combining, some BEL pins can be used by the adjacent
(combined) LUT macrocell. All these factors must be taken into account to
properly locate the LUT content within the bitstream fragment BF.

It is important to note that, in the case of LUT combining, the A6 Bel pin is
explicitly driven to logic ’1’, thus splitting the 64 LUT bits into two independent
parts: the top 32 bits determine the O6 output and the bottom 32 bits determine
the O5 output. However, the state of unused BEL pins is not specified explic-
itly. LUT mapping experiments in Section A.2 have shown that, in the case of
underutilized LUTs (LUT macrocells with less that 6 inputs), each of its bits
maps onto several bits of the extracted bitstream fragment BF. The multiplicity
of this mapping equals 2N , where N is the number of unused BEL pins. For
instance, each bit of a LUT_4 macrocell maps onto four CM cells, as it is shown
in Section A.2. In fact, the LUT content is replicated in the bitstream in such
a way as to make the LUT output independent of unused BEL pins, i.e. unused
pins are conservatively assumed do not care levels. However, BEL pins in FPGAs
are expected to be driven to a certain predetermined logic level. By following the
experimental procedure in Section A.3 it has been found that unused pins of LUT
BELs are actually driven to the logic ’1’.

The fine-grained mapping algorithm, depicted in Fig.5.1, takes into account all
the aforementioned considerations. For each LUT macrocell in the netlist it de-
termines the location of its INIT bits within the BF by consecutively applying
the reduce, reorder columns, and reorder rows operations to the LUT mapping
table MP . The reduce operation first renames the columns labelled by BEL pins
(A) according to the inputs (I) of the mapped LUT macrocell. Unused BEL
pins are assumed a constant ’1’, except for A6, which equals ’0’ when the LUT
output is mapped into the output O5. Afterwards, all the entries in the table
MP that do not match this assumption are filtered-out. Likewise, the columns
corresponding to the unused pins are left out of consideration. In the reduced
table MP the columns I are reordered by descending indexes. Afterwards, the
rows are reordered by ascending values of LUT input vector I. As a result, the
columns L and M (corresponding to the Slices of type L and M) in the table MP
contain the bit indexes within the BF that directly correspond to the bits of the
mapped LUT macrocells in ascending order. Finally, the determined BF indexes
are used to look-up the global coordinates of CM cells for each bit of the mapped
LUT macrocell.

LUT descriptors, supplied to the mapping procedure, can be extracted from the
netlist in Vivado by means of the TCL script provided in listing A.2 (Annex-
A.4). It extracts the placement of each LUT macrocell in the netlist, i.e. XY

92

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory

coordinates of the corresponding slice, tile, and clock region, as well as the type (L
or M) and the label (A/B/C/D) of LUT BEL. For the given macrocell placement
it queries a name (path in the design hierarchy) of an adjacent LUT macrocell
(if any) that is combined with a mapped LUT within the LUT5/LUT6 BEL
pair. Finally, for each input of the LUT macrocell it queries an assigned BEL pin
(CellBelP inMap attribute). The collected LUT descriptors are exported into
a csv-formatted table - one row per LUT cell. Fig.5.3 illustrates an example of
resulting LUT descriptors. The cell path uniquely identifies the LUT macrocell
within the netlist (design hierarchy). In the case of LUT combining, the CombLut
attribute links the combined macrocells by their CellPath attribute.

It is worth noting that some LUT BELs can be utilized without any placed LUT
cell, being a part of net routing (pass-through LUTs) or driving a constant value
to the LUT output. Despite these LUT BELs are not reflected in the netlist
(not mapped), they utilize the BEL pins and, thus, impact the mapping of the
LUT macrocells when they are combined with such constant/pass-through LUTs
within the LUT5/LUT6 BEL pair. The pass-through and constant LUT BELs
are marked as unused in Vivado. The former has an output pin driven by some
of its input pins, whereas the latter has an empty pin list, but it has an assigned
equation O6/O5 = 1/0. Nevertheless, all CM cells corresponding to BF of such
LUTs are marked by Vivado as essential in the EBC file. Hence, the descriptors
exported for such LUTs by the script in listing A.2 do not include any macrocell-
related properties, but only indicate the BEL coordinates and the utilized BEL
pins.

CellPath CellType SliceXY TileXY ClkRegXY Slice.BelLabel CellINIT CombLut CellBelPinmap

…/mul_o1 LUT3 Slice_X45Y104 CLBL_X30Y104 X0Y2 SliceL.A6LUT 8’h… {O:O6}{I0:A3}{I1:A2}{I2:A4}
…/add_o9 LUT2 Slice_X45Y102 CLBL_X30Y102 X0Y2 SliceL.C6LUT 4’h… …/sub_o9 {O:O6}{I0:A3}{I1:A2}

… … … … … … … … …
…/sub_o9 LUT2 Slice_X45Y102 CLBL_X30Y102 X0Y2 SliceL.C5LUT 4’h… …/add_o9 {O:O5}{I0:A4}{I1:A5}

Figure 5.3: Example LUT descriptors extracted from the netlist in Vivado

Fig.5.4 illustrates an example of mapping a LUT3 macrocell by the proposed
algorithm. The LUT descriptor on the input (mul_o1 in Fig.5.3) has the following
attributes: slice coordinates X45Y104, tile coordinates X30Y104, BEL type L, BEL
label A6, pin mapping I0 : A3, I1 : A2, I2 : A4, and vertical coordinate of the clock
region Y2.

First, the bitstream fragment (BF) is located by means of the coarse-grained
mapping. The given FPGA (XC7Z020) has three clock rows: one in its top part
(T_Rows = 1) and two in the bottom part (B_Rows = 2). The clock region
coordinate Y2 corresponds to the first row of the top part T = 0, R = 0, as

93

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

1

 Cell-Bel pin map

I2 I0 I1 type L

↓ ↓ ↓ ↓

A6 A5 A4 A3 A2 A1 Slice
L

Slice
M

0 0 0 0 0 0 63 31
0 0 0 0 0 1 47 15
0 0 0 0 1 0 62 30
0 0 0 0 1 1 46 14
0 0 0 1 0 0 61 29
0 0 0 1 0 1 45 13
0 0 0 1 1 0 60 28
0 0 0 1 1 1 44 12
0 0 1 0 0 0 15 63
0 0 1 0 0 1 31 47
0 0 1 0 1 0 14 62
0 0 1 0 1 1 30 46
0 0 1 1 0 0 13 61
0 0 1 1 0 1 29 45
0 0 1 1 1 0 12 60
0 0 1 1 1 1 28 44
0 1 0 0 0 0 59 27
0 1 0 0 0 1 43 11
0 1 0 0 1 0 58 26
0 1 0 0 1 1 42 10
0 1 0 1 0 0 57 25
0 1 0 1 0 1 41 9
0 1 0 1 1 0 56 24
0 1 0 1 1 1 40 8
0 1 1 0 0 0 11 59
0 1 1 0 0 1 27 43
0 1 1 0 1 0 10 58
0 1 1 0 1 1 26 42
0 1 1 1 0 0 9 57
0 1 1 1 0 1 25 41
0 1 1 1 1 0 8 56
0 1 1 1 1 1 24 40
1 0 0 0 0 0 55 23
1 0 0 0 0 1 39 7
1 0 0 0 1 0 54 22
1 0 0 0 1 1 38 6
1 0 0 1 0 0 53 21
1 0 0 1 0 1 37 5
1 0 0 1 1 0 52 20
1 0 0 1 1 1 36 4
1 0 1 0 0 0 7 55
1 0 1 0 0 1 23 39
1 0 1 0 1 0 6 54
1 0 1 0 1 1 22 38
1 0 1 1 0 0 5 53
1 0 1 1 0 1 21 37
1 0 1 1 1 0 4 52
1 0 1 1 1 1 20 36
1 1 0 0 0 0 51 19
1 1 0 0 0 1 35 3
1 1 0 0 1 0 50 18
1 1 0 0 1 1 34 2
1 1 0 1 0 0 49 17
1 1 0 1 0 1 33 1
1 1 0 1 1 0 48 16
1 1 0 1 1 1 32 0
1 1 1 0 0 0 3 51
1 1 1 0 0 1 19 35
1 1 1 0 1 0 2 50
1 1 1 0 1 1 18 34
1 1 1 1 0 0 1 49
1 1 1 1 0 1 17 33
1 1 1 1 1 0 0 48
1 1 1 1 1 1 16 32

I2 I1 I0 BF
0 0 0 35
0 1 0 34
0 0 1 33
0 1 1 32
1 0 0 19
1 1 0 18
1 0 1 17
1 1 1 16

I2 I1 I0 BF
0 0 0 35
0 0 1 33
0 1 0 34
0 1 1 32
1 0 0 19
1 0 1 17
1 1 0 18
1 1 1 16

I2 I0 I1 BF
0 0 0 35
0 0 1 34
0 1 0 33
0 1 1 32
1 0 0 19
1 0 1 18
1 1 0 17
1 1 1 16

Reduce

Reorder columns

Reorder rows

BF map

Word 8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F
A
R
 0xF1A 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

0xF1B 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0xF1C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xF1D 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

LUT3.MAP = [
[0]  (0xF1B, 8, 3),
[1]  (0xF1B, 8, 1),
 …,

[7]  (0xF1C, 8, 0)]

BF - Bitstream fragment (Top=0, Row=0, Major 30)

Result: Global map LUT.INIT to bitstream

Slice X45_Y104
Tile X30_Y104
BEL A6LUT

LUT3.INIT = [BF35, BF33, BF34, BF32, BF19, BF17, BF18, BF16]

Figure 5.4: Example of bit-accurate LUT mapping

calculated by the expressions in Fig.5.1. The major frame equals the horizontal
tile coordinate (XTile = 30). The four minor frames are 26−29, since it is an odd
CLB column (SliceX = 45). Finally, the word corresponding to the LUT with
label A is computed as Y ×2 = 8 (where Y = Yslicemod50 = 4), bits [15 : 0]. The

94

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory

resulting bitstream fragment is encoded as FAR=[0xF1A,0xF1B,0xF1C,0xF1D],
word=8, bits=[15:0].

Second, the fine-grained mapping locates the LUT bits within the BF. The A
columns of the table MP are renamed according to the assigned inputs of the
mapped LUT: A4 → I2, A3 → I0, A2 → I1. Since the BEL A6 uses the output
O6 and there are no combined LUTs, the rest of unused BEL pins are assumed a
value of ’1’. The table MP is now reduced by filtering-out those rows which does
not match this assumption. The columns are reordered by descending indexes
of used LUT inputs (I2, I1, I0). Afterwards, the rows are reordered by ascending
values of LUT input vector (I2I1I0 = 000→ 111). The L column of the resulting
table now contains the indexes of BF bits, directly corresponding to the INIT bits
of the mapped LUT macrocell – BF map depicted in Fig.5.4. Finally, this BF
map is used to look-up the global CM coordinates of each LUT bit in the BF,
e.g. INIT0 → BF35 → (0xF1B, 8, 3), etc.

1

Combined
LUT2

Mapped
LUT2

1 I1 I0 I0 I1 1 type L

↓ ↓ ↓ ↓ ↓ ↓ ↓

A6 A5 A4 A3 A2 A1 Slice
L

Slice
M

0

1 0 0 0 0 0 55 23
1 0 0 0 0 1 39 7
1 0 0 0 1 0 54 22
1 0 0 0 1 1 38 6
1 0 0 1 0 0 53 21
1 0 0 1 0 1 37 5
1 0 0 1 1 0 52 20
1 0 0 1 1 1 36 4
1 0 1 0 0 0 7 55
1 0 1 0 0 1 23 39
1 0 1 0 1 0 6 54
1 0 1 0 1 1 22 38
1 0 1 1 0 0 5 53
1 0 1 1 0 1 21 37
1 0 1 1 1 0 4 52
1 0 1 1 1 1 20 36
1 1 0 0 0 0 51 19
1 1 0 0 0 1 35 3
1 1 0 0 1 0 50 18
1 1 0 0 1 1 34 2
1 1 0 1 0 0 49 17
1 1 0 1 0 1 33 1
1 1 0 1 1 0 48 16
1 1 0 1 1 1 32 0
1 1 1 0 0 0 3 51
1 1 1 0 0 1 19 35
1 1 1 0 1 0 2 50
1 1 1 0 1 1 18 34
1 1 1 1 0 0 1 49
1 1 1 1 0 1 17 33
1 1 1 1 1 0 0 48
1 1 1 1 1 1 16 32

A5 A4 I0 I1 BF
0 0 0 0 39
0 0 0 1 38
0 0 1 0 37
0 0 1 1 36
0 1 0 0 23
0 1 0 1 22
0 1 1 0 21
0 1 1 1 20
1 0 0 0 35
1 0 0 1 34
1 0 1 0 33
1 0 1 1 32
1 1 0 0 19
1 1 0 1 18
1 1 1 0 17
1 1 1 1 16

Reduce

R
eo

rd
er

 c
o

lu
m

n
s

R
eo

rd
er

 r
o

w
s

B

F
m

a
p

LUT2.INIT = [
 0  [BF39, BF23, BF35, BF19],
 1  [BF38, BF22, BF34, BF18],
 2  [BF37, BF21, BF33, BF17],
 3  [BF36, BF20, BF32, BF16]]

A5 A4 I1 I0 BF
0 0 0 0 39
0 1 0 0 23
1 0 0 0 35
1 1 0 0 19
0 0 0 1 38
0 1 0 1 22
1 0 0 1 34
1 1 0 1 18
0 0 1 0 37
0 1 1 0 21
1 0 1 0 33
1 1 1 0 17
0 0 1 1 36
0 1 1 1 20
1 0 1 1 32
1 1 1 1 16

Figure 5.5: Mapping of LUT content in case of LUT combining

It is worth noting that in the case of LUT combining, all BEL pins exclusively
used by an adjacent LUT macrocell should be assumed do not care levels. Fig.5.5

95

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

illustrates an example of mapping a LUT2 macrocell which is combined with an-
other LUT2 macrocell within a single LUT6/LUT5 BEL pair (descriptor add_o9
in Fig.5.3). The mapped LUT is placed into the LUT6 BEL (output O6), thus
unused input pin A6 should be assumed a logic level ’1’. The rest of unused pins
are assumed ’1’ as their default state. In the reduced table MP the columns
corresponding to the inputs of the mapped LUT are reordered in descending or-
der. After that, the rows are reordered by ascending input values of the mapped
LUT. Each input value of the mapped LUT is linked to four table entries (rows),
corresponding to the input values of the combined LUT. Hence, in the resulting
mapping, each INIT bit of the mapped LUT macrocell has four corresponding
BF bits (CM cells).

In general, the mapping multiplicity becomes 1→ 2N , where N is the number of
BEL pins that are used by an adjacent LUT but are not shared with the mapped
LUT. Therefore, these non-shared inputs of an adjacent LUT will determine which
of the mapped CM cells will drive the LUT output at any given time. It is
worth noting that post-place-route models exported by Vivado for simulation do
not reflect the LUT combining. With respect to the fault injection this means
that, in case of LUT combining, one fault target (LUT bit) in the simulator
may correspond to several fault targets (CM cells) in the FPGA. This may lead
to discrepancies in dependability estimates between SBFI and FFI experiments,
such as the underestimation of the number of critical bits in case of SBFI.

5.2.2 Mapping of Block RAMs

The mapping between the BRAM content and the CM can be extracted from the
logic allocation (LL) file generated by Xilinx Vivado suite. However, the mapping
provided by the LL file has two limitations. First, the BRAM macrocells are only
referenced by their slice coordinates SliceXY, without any relation with the source
tree. Second, it lists all 16Kb/32Kb of BRAM18/BRAM36 content, even when
these BRAM macrocells are used only partially. For instance, a BRAM may
implement a small RTL memory array of WD bits wide and 2WA words depth,
as depicted in Fig.5.6. The resulting LL file will include all bits in the range [0-
32767] in the case of RAMB36, or their even/odd subset in the case of RAMB18
with even/odd Y coordinate, as it has been explained in Section 3.4.2. In order
to determine which of these bits are indeed essential for the DUT, it is necessary
to establish a bit-accurate mapping between the source data structure and the
CM cells corresponding to the inferred BRAM.

The procedure depicted in Fig.5.6 accomplishes such mapping for a BRAM con-
figured in the most common TDP (true dual port) mode; only one port is used in

96

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory

0

1

2

...

i

...

...

13

WA

WPA

ADR

ALOW

AHIGH

co
n

st
 0

co
n

st
 0

0

1

2

...

i

i+1

...

15

WPD

DI

D
i_

ne
t

co
n

st
 0

WD

0

1

2

...

i

i+1

...

15

DO

D
o

_n
et

WD

u
n

co
n

n
ec

te
d

#DETERMINE THE MAPPING BETWEEN RT-LEVEL MEMORY AND BRAM BITS

BRAMCELL.TYPE

BRAMCELL.TYPE

#DETERMINE THE EFFECTIVE BRAM WORD WIDTH

RAMB36RAMB18

#DETERMINE THE ACTUAL WIDTH OF RTL_MEM WORD
#AS THE NUMBER OF CONNECTED (USED) DO PINS

WD = LEN(BRAMCELL.PINMAP { BELPIN=DO*, NET ≠ UNCONNECTED })

#DETERMINE THE ACTUAL ADDRESS RANGE OF RTL_MEM
#AS THE USED PART OF ADDRESS BUS OF BRAM CELL
A[] = BRAMCELL.PINMAP (BELPIN=ADR*, NET ≠ CONST0).SORTED()
ALOW = A[FIRST].BELPIN
AHIGH = A[LAST].BELPIN
WA = AHIGH - ALOW

WPD = 32 IF WA ≤ 10 ELSE
16 IF WA == 11 ELSE
 8 IF WA == 12 ELSE
 4 IF WA == 13 ELSE
 2 IF WA == 14 ELSE
 1 IF WA == 15

WPD = 16 IF WA ≤ 10 ELSE
 8 IF WA == 11 ELSE
 4 IF WA == 12 ELSE
 2 IF WA == 13 ELSE
 1 IF WA == 14

MAP(WORDRT , BITRT) =
 WORDRT × WPD + BITRT

NEXT BITRT IN RANGE [0 TO WD-1]

RAMB18

MAP(WORDRT , BITRT) =
 WORDRT × WPD × 2 + (BRAMCELL.Y MOD 2) + BITRT × 2

RAMB36

NEXT WORDRT IN RANGE [0 TO 2WA-1]
ALL WORD BITS MAPPED

RETURN MAP

ALL WORDS ARE MAPPED

MAP = DICT()

RTL_MEM [wordRT] [bitRT]
 wordRT = [0 : 2WA-1]

 bitRT = [WD-1 : 0]

BRAM18 [bit k]

k=[0:32767]

Adr [WA-1:0] Di [WD-1:0]

Do [WD-1:0]

ADR [WPA] DI [WPD]

DO [WPD]

Synt/Map/Place

wordRT , bitRT
MAP
?

bit k

Figure 5.6: Procedure for locating the RT-level memory content within the inferred
RAMB18 cell

the considered example. It takes into account such BRAM cell properties as slice
type (RAMB18 or RAMB36), Y slice coordinate (in case of BRAM18), and an
aspect ratio of the BRAM port. First, the actual word width WD of the source
data structure is determined as the number of used pins of the data output port
DO. In Vivado this can be accomplished by a TCL command: llength [get_nets
-of_objects [get_pins -of_objects $cell -filter {BUS_NAME=~DO*}]]. Likewise,
the actual address width WA is determined as the number of used pins of the ad-
dress bus. It should be noted that unused address pins are tied by Vivado to the
logic 0 (const0 net).

97

~

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

The width WPD of internal BRAM words does not necessarily match the actual
width of output data. It rather determines the data alignment pattern within the
BRAM, and is dependent on the predefined port aspect ratios (listed in [177] for
different RAM types and operating modes [TDP/SDP]). For instance, RAMB18
in TDP mode can be configured as 210 × 16, 211 × 8, 212 × 4, 213 × 2, 214 × 1.
The corresponding range of address pins WPA always occupies the topmost part
of address bus: [13 : 4], [13 : 3], [13 : 2], [13 : 1], [13 : 0] respectively. Accordingly,
the data alignment pattern (WPD) can be calculated from the actual address
width WA, as it is depicted in Fig.5.6.

Based on this alignment pattern it is possible to identify the location of the
actual data structure (RT-level array) within the BRAM, this location is des-
ignated by the mapping MAP(wordRT, bitRT). In the case of RAMB36 each
wordRT is mapped onto the first WD bits of BRAM macrocell, located at the off-
set wordRT×WPD. In the case of BRAM18 it is also necessary to take into account
the data interleaving between the adjacent bottom and top BRAM macrocells, as
it is depicted in Fig.5.6.

The BRAM bits in the resulting MAP dictionary are functionally essential (rep-
resent the source data structure), and should be considered as fault injection
targets. Each entry in this dictionary is annotated with the CM coordinates from
the LL file. The rest of bits listed in the LL file are non-essential and can be
omitted for fault injection.

Fig.5.7 illustrates an example of locating the content of RT-level memory within
the inferred BRAM18 by means of the proposed algorithm. The source data
structure, described by gpram signal in the behavioural VHDL model, comprises
128 words of 8 bits. It is initialized according to the pattern wordi = 0xFF − i,
i.e. word0 = 0xFF,word1 = 0xFE, ..., word127 = 0x80. This allows to highlight
this data structure within the initial content (INIT) of the inferred BRAM, in
order to verify the mapping algorithm. The ’block’ attribute, attached to the
data structure, instructs Vivado to synthesize this memory using BRAM when-
ever possible. After synthesizing and implementing this RTL model by Vivado
2018.3 suite onto the XC7Z020 device (Xilinx 7-series family), the resulting data
structure is placed into the BEL RAMB18_X2Y50. The inferred BRAM is con-
figured in TDP mode, in which only port A is used. The resulting LL file lists
all 16383 bits of the inferred BRAM, in such a way that it includes only even
bit indexes (BIT0, BIT2,...,BIT32766), since the BRAM macrocell is placed into
the BRAM18 slice with an even Y coordinate.

The mapping starts by determining the actual address word width WD and ad-
dress range WA. The data output bus of port A (DOA) has 8 leftmost pins used,

98

5.2 Towards bit-accurate mapping of macrocells onto the configuration memory

entity RAM is
 port(clk : in std_logic;

 reset : in std_logic;
 data_i : in std_logic_vector(7 downto 0);
 data_o : out std_logic_vector(7 downto 0);
 adr_i : in std_logic_vector(6 downto 0);
 wr_i : in std_logic;
 en_i : in std_logic);

 attribute bram_map: string;
 attribute bram_map of RAM: entity is "yes";

end RAM;

architecture behav of RAM is
 type ram_type is array (127 downto 0) of unsigned(7 downto 0);
 signal gpram: ram_type := (

0 => X"FF",
1 => X"FE",

...
126 => X"81",
127 => X"80");

 attribute ram_style : string;
 attribute ram_style of gpram : signal is "block";

begin
 -- behavioral RAM description below ...

Frame
address

Frame
offset Slice XY Ram:Bit

0x00800100 1632
RAMB18_

X2Y50

BIT 0
0x00800100 1648 BIT 2

...
...

Excerpt from Logic location file
(items ordered by Ram:bit)

BIT 140x00800100

INIT

1
1
...
1

BIT 16
BIT 18

...
BIT 30

0
0
...
0

...
BIT 4078 10x0080010F 1767

BIT 32766 00x0080017F 1775 ...
...

BIT 4064 00x0080010F 1639
RAMB18_

X2Y50

... ... RAMB18_
X2Y50

Bitstream.bit

13:11 10:4 3:0 15:8 7:0

15:8 7:0

ADDRA DIA

DOARAMB18 X2Y50
(port A)

const0 adr_in const0 data_inconst0

gpram_regopen

implement

m
ap

0
xF

F
0

x8
0

..
.

..
.

gp
ra

m
[0

]
gp

ra
m

[1
2

7]

Figure 5.7: Example of locating the RT-level memory content (128x8 bits) within the
inferred RAM block (18K bits listed in LL file)

i.e. WD=8. In the input address bus of port A only the pins [10:4] have an
assigned net, while the rest of them are tied to logic 0, thus the actual address
width is WA=7. It is worth noting that despite WD and WA parameters are
known a-priory from the source model in this example, it may not be the case
when using a third party IP. Since the type of inferred macrocell is RAMB18 and
WA<10, the internal data alignment pattern should be 210× 16, hence the width
of internal data words WPD=16. It can be seen that internal data words are two
times wider than source data words. Accordingly, the low half of internal words
stores the actual data, while their topmost half corresponds to the dummy data
(constant 0). That is why the topmost half of data input port (DIA[15:8]) is tied
by Vivado to const0.

The resulting mapping of the source data structure to the BRAM content can be
now determined by applying the mapping procedure in Fig.5.6:

– gpram0 → BIT {14, 12, 10, 8, 6, 4, 2, 0}
– gpram1 → BIT {48, 46, 42, 40, 38, 36, 34, 32}
– ...

– gpram127 → BIT {4078, 4076, 4074, 4072, 4070, 4068, 4066, 4064}

By looking-up the CM coordinates corresponding to the selected BRAM bits in
the LL file, it is possible to extract the initial content of the mapped (RTL) mem-

99

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

ory. In this example it is gpram0 = 0xFF ,..., gpram127 = 0x80, that matches
the initial RTL model of this data structure.

In the considered example only 1024 mapped BRAM bits are functionally essential
out of the total 16383 bits listed in the LL file. Regarding fault injection, this
allows to deploy much more selective/precise fault injection experiments to explain
the impact of SEUs affecting the mapped memory on the design behaviour with
much finer granularity than by blindly targeting all 16383 bits listed in the LL
file for that BRAM. Additionally, this significantly reduces the experimentation
effort, as only 1/16 of BRAM bits are in fact essential.

5.3 Optimized essential bits

Bit-accurate mapping of netlist macrocells can be exploited to optimize the lo-
cation of essential bits of the DUT and to address the limitations of Xilinx EBC
mask. The complete procedure for generating an optimized essential bits file is
depicted in Fig.5.8. In essence, this procedure builds a binary file comprising a
set of mask records for each CM frame. Each mask record is annotated with its
corresponding frame address (FAR) and comprises FrameSize words of 32 bits
each. Each mask word denotes the corresponding bits of the configuration mem-
ory that should be targeted at fault injection, i.e. mask[FAR][word][bit] = 1 for
those CM cells that are essential.

This procedure masks only those CM bits that correspond to the selected type
of logic cells and/or to the selected design scope, provided as input parameters
LogicType and Scope, respectively. These two parameters are internally used to
lookup the CM (bitstream) coordinates of matching CM bits within the MAP
dictionary (previously obtained by the bit-accurate mapping), as it is depicted
in Fig.5.8. It is thus possible to deploy the selective bit-accurate FFI experi-
ments for those CM cells that correspond to the mapped macrocells (Flip-Flops,
BRAMs and LUTs). CM cells corresponding to the rest of fabric resources (rout-
ing, MUXes and DSPs) can be also incorporated into this essential bits file from
the Xilinx EBC file, although with a coarse granularity (without relating them
with the DUT hierarchy).

The generation of an optimized essential bit file starts by allocating the empty
mask for a complete list of valid FAR entries FarList. In case that the CM
cells corresponding to all type of resources (all type-0 CM frames) should be
considered, the content of an EBC file is parsed (mapped onto the list of valid
frame addresses FarList for a given FPGA) and copied to the mask. After that,
the mask is updated by highlighting (setting to 1) those mask bits that match the

100

5.3 Optimized essential bits

FARLIST LIBRARY FAR PROFILING

LOGIC TYPE

FOR K = 0 ... LEN(EBC)/FRAMESIZE:
 MASK[FARLIST[K]] = EBC[K*FRAMESIZE : (K+1)*FRAMESIZE]

XILINX ESSENTIAL
BITS MASK (EBC)

TYPE 0

FOREACH FF IN SCOPE:
 FAR, WORD, BIT = FFMAP(FF)
 MASK[FAR] [WORD] |= (0X1) << BIT

FF

FOREACH BRAM IN SCOPE:
 FOREACH BRAM_BIT IN BRAM:
 FAR, WORD, BIT = BRAMMAP(BRAM, BRAM_BIT)
 MASK[FAR] [WORD] |= (0X1) << BIT

TYPE 1
(BRAM

CONTENT)

FOREACH LUT IN SCOPE:
 FOREACH LUT_BIT IN LUT:
 FORACH (FAR, WORD, BIT) IN LUTMAP(LUT, LUT_BIT):

 MASK[FAR] [WORD] |= (0X1) << BIT

LUT

LO
G

IC
 L

O
C

A
TI

O
N

 F
IL

E
 (

LL
)

FOR K = 0...LEN(FARLIST):

 MASK [FARLIST[K]] = [32'H00000000] × FRAMESIZE

NOT FOUND

FARLIST FOR DEVICE PART

LOOKUP FARLIST FOR DEVICE PART

ANNOTATE BITSTREAM DATA [DATA=TRUE]

OPTIMIZED ESSENTIAL BITS FILE (*.MSK)

BUILD OPTIMIZED ESSENTIAL BIT MASK FILE
 INPUT : LOGIC TYPE, SCOPE, DEVICE PART
 OPTIONAL INPUT : NETLIST, XILINX BITMASK (EBC), LOGIC LOCATION FILE (LL), BITSTREAM FILE

N
E

T
LI

ST

B
IT

ST
R

E
A

M

B
IN

 /
 B

IT

FILTER-OUT EMPTY FRAMES [COMPACT=TRUE]
 ∀ WORD, MASK[FAR][WORD]==0X0

FARK FLAGS {CELLTYPE, EMPTY, ...}

MASK[0] MASK[1] ... MASK[FRAMESIZE-1]

DATA[0] DATA[1] ... DATA[FRAMESIZE-1]

F
A

R
K

 ∈
 F

A
R

L
IS

T

CELL
PATH

CELL
TYPE

CELL
NODES

CELL
LOC

BITSTREAM COORD

(FAR, WORD, BIT)

../MUL_01 LUT ...

INIT_7 {0X000 00F1C, 8, 0}

… …
INIT_0 {0X00000F1B, 8, 3}

../REG_A1 FF ... INIT_0 {0X000 00A1F 30, 3}

../DCACHE BRAM ...

BIT_32767 {0X008001FF, 29, 31}

… …
BIT_0 {0X008 00100, 20, 0}

MACROCELL-BITSTREAM MAP

BRAMMAP

FFMAP

LUTMAP

Figure 5.8: Procedure for generating an optimized essential bit mask file

selected design scope and that correspond to the essential BRAM bits (extracted
from the BRAM Map) and to the FF readback CM cells. The inclusion of BRAM
and FF is an extension to the Xilinx essential bits, since the latter includes only
non-changeable CM cells. Finally, the mask is set for those LUT-related CM cells
that match the selected design scope, taking into account that each LUT bit may
have several matching CM cells (as it is explained in Section 5.2.1).

It is worth noting that prior to generating a custom LUT mask, the corresponding
mask frames are cleared, since they are already highlighted in the EBC file, but

101

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

in a redundant way. Thus, replacing them with a custom LUT mask improves
the precision of resulting essential bits. Fig.5.9 exemplifies a potential benefit of
considering the custom essential bit mask for LUTs instead of the mask provided
by the EBC file. It illustrates a sample utilization of LUTs of one CLB slice,
along with the mask (custom and EBC) and corresponding bitstream fragments.
As it can be seen, EBC always masks all 64 LUT bits even when LUT is used
partially, whereas the custom mask highlights only those bits that are actually
essential. For each individual LUT with k unused input pins the mask is reduced
by (1−1/2k)×100%. A potential benefit of considering a custom BRAM mapping
instead of using the raw LL file has been discussed in Section 5.2.2.

Top = 0, Row = 0, Major Column= 39, Minor Frames = [26, 27, 28, 29], words = [69, 70]

Cell2 (lut2)
INIT=

4'h8

Cell1 (lut2)
INIT=

4'h9

O6

O5

A1

A2

A3

A4

A5

A61

Cell1.I1

Cell2.I1

Cell2.I0

unused

Cell1.I1

Cell2 (lut3)
INIT=
8'hB8

Cell1 (lut4)
INIT=

16'hE21D

O6

O5

1

unused

Cell1.I0 A1

A2

A3

A4

A5

A6

Cell1.I1

Cell1.I2

Cell1.I3

Cell2.I0

Cell2.I1

Cell2.I2

Unused

Cell1 (lut6)
INIT=

64'hFFE200E
2001DFF1D

O6

Cell1.I0

A1

A2

A3

A4

A5

A6

Cell1.I1

Cell1.I2

Cell1.I3

Cell1.I4

Cell1.I5
Unused

Cell1 (lut2)
INIT= 4'h9

O6

Cell1.I1

A1

A2

A3

A4

A5

A6

unused

unused

unused

Cell1.I0

unused

Data 00f0 000f 330f 33f0 11e1 dd2d dd2d 11e1 aaa5 99a5 55a5 66a5 f0f0 f0f0 0f0f 0f0f

Vivado
LUT mask

ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff

Optimized
LUT mask

5555 5555 5555 5555 0000 0000 ffff ffff ffff ffff ffff ffff 0000 0011 0011 0000

Reduction of
bitmask

-50% -50% 0% -93%

Figure 5.9: Example result of optimizing essential bit mask for LUTs of one CLB slice

Unlike the Xilinx EBC mask, the proposed optimized bitmask is annotated with
frame addresses. This makes it not only more manageable at FFI, but also more
compact, since unmasked frames can be removed from the mask file. A compact
file, depicted in Fig.5.8, is especially useful when the FFI tool uses on-chip memory
(very limited in size). Furthermore this accelerates the selection of fault targets
when essential bits are sparse.

Since the list of frame addresses does not appear neither in the Xilinx mask (EBC)
nor in the bitstream (bit/bin) files, it should be somehow obtained before pro-
ceeding to generating the optimized bitmask. The proposed approach to obtain
the precise list of valid FAR entries is to profile the FAR register by means of the
algorithm depicted in Fig.5.10. It is based on a frame-by-frame readback of con-
figuration memory frames in the FAR auto-increment mode. The starting valid
FAR is 32’h00000000. Once the readback transaction of each frame is completed,
the FAR register is changed automatically by an FPGA configuration controller

102

5.3 Optimized essential bits

PRECONDITION:
 FPGA CONFIGURED WITH COMPLETE BITSTREAM

INITIAL: FARLIST = []
EVEN_ODD=0X0

FAR = EVEN_ODD

EVEN_ODD 0X1

FAR.BLOCKTYPE 1

FARLIST.APPEND(FAR)

READFRAME(FAR, &DATABUF, 1)

FAR = READCONFIGREG(0X1)

EVEN_ODD += 1

RETURN FARLIST.SORT(ASCENDING)

YES

NO

YES

NO

One extra (dummy) frame is read
to complete the transaction
(FAR incremented by 2)

Sample the incremented Frame
address from FAR
(configuration Reg. address 0x1)

Figure 5.10: FAR profiling procedure used to extract the list of valid frame addresses for
any given device part

to the next valid frame address. At this point the FAR is sampled by reading
back the configuration register (register ID=0x1). This sequence is executed in a
loop until FAR is not incrementing any more or until its BlockType field exceeds
1 (out of scope of valid configuration data). Since a valid read transaction should
output one extra dummy frame (to flush the buffers as explained in [176]), the
FAR is actually incremented by 2. Thus the profiling procedure is executed twice:
first to sample the even frames (FAR starting at 0x0), afterwards to sample the
odd frames (FAR starting at 0x1). The collected list of valid FAR entries (sorted
ascending) for a given device can be cached by an FFI tool and quickly retrieved
on the next run of mask generation (or any bitstream manipulation) procedure.

Mask frames can be complemented by configuration data frames extracted from
the bitstream file (*.bit or *.bin). When injecting the faults into the non-changeable
memory (all CM cells except BRAM, LUTRAM, and FF), this allows to skip the
Readback step in the standard Readback-Modify-Write sequence, thus to addi-
tionally speed-up the fault injection process. The procedure to extract the config-
uration data frames from the bitstream is depicted in Fig.5.11. It is based on the
interpretation of configuration commands, searching for a particular sequence that
introduces the configuration data packets: write FAR command →Write config
data command →write FDRI command →number of words →data packet.

Finally, the mask record for each frame is complemented with a CellType de-
scriptor, which denotes the type of fabric macrocell being configured by the given
frame. This allows to select the proper injection procedure for any given target

103

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

Long block (otherwise):
extract word count from
following Type2 packet

BITSTREAM = READ({*.BIN, LITTLEENDIAN} OR {*.BIT, BIGENDIAN})

K = 0, FRAMEDATA=[]
SEARCH AHEAD (K+=1) FOR SYNC WORD (0XAA995566)

SEARCH AHEAD (K+=1) FOR WRITE FAR COMMAND (0X30002001)

FAR = BITSTREAM[K+1]
STARTINDEX = FARLIST.INDEXOF(FAR)

SEARCH AHEAD (K+=1) FOR TYPE1 PACKET : WRITE FDRI REGISTER (0X30004XXX)

WORDCOUNT==0

WORDCNT = BITSREAM[K+1]

LOOP FRAMECNT = 0 … WORDCNT/FRAMESIZE :
 FAR = FARLIST[STARTINDEX + FRAMECNT]
 FRAMEDATA[FAR] = BITSTREAM[K : K+FRAMESIZE]
 K+=FRAMESIZE

YES

NO

WORDCOUNT = BITSREAM[K]&0X7FF
K+=1

K+=1

RETURN FRAMEDATA

YES

K < LEN(BITSTREAM)
NO

SEARCH AHEAD (K+=1) FOR WRITE CONFIG DATA COMMAND (30008001)

Short block: word count
directly in Type 1 packet

Figure 5.11: Procedure for extraction of configuration data from the bitstream file and
their annotation with frame addresses

selected from the essential bit mask, as it will be detailed in the next Section 5.4.
Most frames are labelled by the corresponding type of fabric resources, while those
frames configuring several types of macrocells (if any) are marked as mixed-type.

5.4 Exploiting optimized essential bits for the bit-accurate
emulation of SEUs

Optimized essential bits file (MSK) can be used by FFI tools to locate the relevant
fault targets (CM cells) within the DUT (or its constituent modules) with bit-
accuracy. The FFI tool itself can be implemented on the same FPGA device
where the targeted DUT is implemented. This reduces the communication with
the host PC only to uploading the MSK file to the memory of the FFI tool and
to reporting the FFI results upon the completion of experiments.

104

5.4 Exploiting optimized essential bits for the bit-accurate emulation of SEUs

Memory Array
Input
Reg

Output
Reg/Latch

control

INIT_A/B
2x64 CM bits (Type0)

CM Frame

2 – Read (FAR)

FF/Latch (CLB slice)

CM Frame

2 – Read (FAR)

3 – Flip Frame[word][bit]

4 – Write (FAR)

INIT
64 CM bits (Type0)

CM Frame

1 – Read (FAR)

2 – Flip Frame[word][bit]

3 – Write (FAR)

FP
G

A
 f

a
b

ri
c

la
ye

r
(m

ac
ro

ce
lls

)
C

o
n

fi
g

u
ra

ti
o

n

m
em

o
ry

 la
ye

r
La

ye
r

o
f

fa
u

lt
 in

je
ct

io
n

5 – Restore
(trigger GSR)

BRAM CONTENT
18K CM bits (Type1)

INIT
1 CM bit (Type0)

TARGET.CELLTYPE

TARGET {FAR, WORD, BIT, CELLTYPE}  NEXTESSENTIALBIT(MASKFILE)

RUN WORKLOAD UNTIL TINJ

LUT BRAM

INJECTION TIME TINJ  PREDEFINED OR CALCULATED OR RANDOM

La
ye

r
o

f
e

va
lu

at
io

n
 s

ce
n

ar
io

FF/Latch

Blackbox

CM Frame (Type0)

CM Frame

1 – Read (FAR) 3 – Write (FAR)

5 – Restore
(trigger GSR)

1 – Capture
(GCAP command)

1 – Capture
(GCAP command)

3 – Flip Frame[word][bit] 2 – Flip Frame[word][bit]

Other
(unmapped EBC)

CLB LUT

Figure 5.12: SEU injection procedure based on optimized essential bits

The FFI application running on the device can be split into two layers: the evalua-
tion scenario layer and the fault injection procedures layer, as depicted in Fig.5.12.
The scenario layer is DUT-specific, being in charge of (i) generating a workload
for the DUT, (ii) checking the responses from the DUT (determining the failure
modes), and (iii) generating the faultload, i.e. the fault configurations comprising
the fault targets and the injection time. For instance, the verification of SEU
mitigation mechanisms may require to exhaustively test the effects of single-bit
upsets in all essential bits within a certain design scope. Another experimenta-
tion scenario, estimating the aggregated dependability metrics of the DUT, may
require to emulate single-bit and multiple-bit upsets randomly sampled in time
and space.

The injection layer itself is DUT-independent, being in charge of properly emulat-
ing the occurrence of SEUs in the selected fault target. To this end, it takes into
account the type of logic primitive behind the targeted CM cell. For instance,
an upset in the LUT-specific CM cell located at the coordinates FAR, word, bit
can be injected by: (i) reading the configuration data frame from the device (at
the address FAR), (ii) inverting the value of the selected bit (Frame[word][bit]),
and (iii) writing back the modified data frame. After that, changes made in the

105

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

CM are directly reflected in the LUT content. The procedures for reading and
writing the CM of Xilinx FPGAs through the ICAP and PCAP interfaces are
detailed in the Annex A.1. It is worth noting that the configuration data, being
incorporated into the bitmask file, can be used to quickly retrieve the reference
value for the targeted CM cell instead of reading it back from the device. But
this is only applicable for non-changeable CM cells, i.e. those corresponding to
type-0 frames except for FF readback cells and LUTRAM.

Injecting bit-flips into registers requires to first capture their current state in
the associated readback CM cells (selected from the MSK file). The captured
value is modified in the associated CM cell using the same procedure: Read-
back(FAR) →Flip(Frame[word][bit]) →Write(Frame, FAR). Finally, the Global-
Set-Reset (GSR) signal is triggered to reinitialize the registers to their associated
readback CM cells and, thus, to set the targeted register to a new (inverted) logic
level previously written to its corresponding CM cell. As it is explained in [67],
triggering the GSR through the configuration command ’GRESTORE’ may have
no effect. Thus, to ensure the restore operation one should trigger the GSR line
through the STARTUP primitive.

It must be noted that the clock in the targeted FPGA region should be paused be-
fore performing any CM operation in order to prevent the unexpected corruption
of the CM content.

The BRAM content is directly stored within the type-1 CM frames. Hence, the
injection of bit-flips into the BRAM content can be performed by applying the
same Read-Modify-Write procedure to the corresponding CM cell. However, the
FPGA configuration controller accesses the BRAM content through the IO ports
of the BRAM, thus sharing them with the DUT. For that reason, any read or
write operation of BRAM content alters the state of BRAM’s output register. As
a result, when resuming the DUT clocking after the fault injection, the targeted
BRAM gets desynchronized from the DUT due to the corrupted value of its output
register. This may drive the DUT to a faulty state even on simple readback
operations.

Accordingly, the injector would require to save the state of BRAM output registers
before reading or writing the BRAM content and to recover the saved register state
afterwards. The readback CM cells corresponding to the BRAM output registers
are not easily located, since they are not reported by Vivado in the EBC file nor
in the LL file. Nevertheless, there is no need to actually read these cells back from
the CM. It is enough to capture the register state in the CM by issuing a global
capture command (GCAP), before performing the read/write of BRAM frames,

106

5.5 Conclusions

and to restore it afterwards by triggering the GSR line. As a result, the BRAM
registers will be kept synchronized with the DUT after the fault injection.

It is worth noting that the global capture and restore commands can be masked
on a per-column basis. By writing a special frame with the FAR.BlockType=2
each column can be protected/unprotected from the capture/restore operations
[116]. By-default the entire device is unprotected. When the DUT is paused and
there is no other logic running in the target FPGA, the capture/restore operations
can be safely performed in unprotected mode. However, when performing these
operations on a partial region, the rest of FPGA (which keeps running) should
be protected. This protection mechanism is particularly required when the fault
injector is also implemented by the configurable logic.

Finally, the standard Read-Modify-Write procedure can be followed to inject up-
sets into the unmapped CM cells retrieved from the Xilinx EBC file, since it
reports only the non-changeable essential bits which do not require any cap-
ture/restore operations.

Once the fault is injected, the DUT clock is activated again to run the rest of
the workload. At this point, the failure mode is determined by tracing the DUT
outputs and DUT internal state. A wrong DUT output (that does not match
the golden run) is reported as a failure, either signalled or silent. Otherwise, the
DUT internal state is traced to detect latent errors. This is achieved by issuing
a capture command, followed by the readback of all those frames that contain
the state elements (registers and changeable memories). The frame addresses to
trace are extracted from the MAP dictionary (its FF and BRAM entries). Any
mismatch with the reference trace is reported as latent error. The targeted CM
cells whose upsets have led to a failure are traced through the macrocell MAP
dictionary back to the netlist level, and subsequently to the source HDL model
in order to locate the weak points of the DUT. Backtracing those CM cells whose
upsets lead to latent errors reveals the fault propagation paths within the DUT.

5.5 Conclusions

The dependability assessment of FPGA-based designs by means of FFI experi-
ments requires to accurately locate the relevant fault targets within the config-
uration memory (CM). On the one hand, targeted CM cells should be related
with the DUT hierarchy in order to identify its weak points. On the other hand,
optimizing the experimental effort requires to reduce the injection scope to only
those CM cells that are essential for a given DUT and for its individual units.
The Xilinx essential bits (EBC) and the logic allocation (LL) files are two known

107

Chapter 5. Improving the Accuracy of FPGA-based Fault Injection

aids for the location of essential cells of changeable and non-changeable CM re-
spectively. These aids, however, do not allow to deploy the FFI experiments in a
hierarchical way and lead to the consideration of redundant (non-essential) CM
cells when FPGA BELs are utilized partially.

To address these limitation this chapter has studied the bit-accurate mapping of
LUT and BRAM macrocells onto the CM and, on its basis, it has optimized the
location of essential bits. The proposed LUT mapping algorithm locates each
individual bit of the LUT’s truth table within the CM, taking into account all
placement-routing optimizations, such as LUT combining and optimized assign-
ment of BEL pins. The BRAM mapping algorithm discovers the location of each
individual bit of the source data structure within the inferred BRAM. The opti-
mized essential bits file, defined on the basis of mapping procedures, is generated
in a hierarchical way for the mapped macrocells, allowing to deploy much more
fine-grained FFI experiments and to obtain the robustness estimates for each in-
dividual module in the DUT hierarchy. At the same time, the proposed mapping
algorithm eliminates the redundancy existing in Xilinx EBC and LL files in the
location of LUT-specific and BRAM-specific essential bits, which may notably
speed-up the experimentation. Additionally, the generated essential bits file is
self-descriptive and compact, thus being more manageable for FFI experiments
than the Xilinx EBC file.

The proposed SEU injection procedure, based on an optimized essential bit mask,
takes into account the type of logic primitives behind the targeted CM cells,
allowing to emulate SEUs in registers, changeable memories, and non-changeable
CM.

To consider the rest of FPGA resources, whose mapping has not been covered by
the proposal (routing, internal slice configurations and DSPs), the Xilinx EBC
mask has been also incorporated into the optimized essential bits. Accordingly,
FFI experiments for such unmapped CM cells still remain coarse-grained (not
related to the DUT hierarchy). It is also worth noting that the proposed mapping
algorithms are limited to the Xilinx 7-series FPGA. Thus, the future research
should study the mapping of the rest of FPGA resources and consider other
FPGA families.

108

Chapter 6

Contributions in Improvement
of Fault Injection Performance

This chapter proposes a set of techniques to improve the performance of SBFI
and FFI experiments from a practical perspective. Section 6.1 introduces the pro-
posals. Section 6.2 describes two complementary techniques to reduce the number
of experimental runs. The first presented technique filters and prioritizes the
essential bits of FPGA implementation through the profiling of the switching ac-
tivity. The second technique relies on the use of statistical fault injection to reduce
the number of experiments to carry out beyond what conventional statistical fault
injection does. Section 6.3 pushes the performance improvement one step for-
ward by proposing an additional technique for speeding-up the fault injection runs
through the use of mixed-level models, multi-level fault injection, and simulation
and FPGA-based checkpointing. Each proposal is introduced and discussed from
a quantitative viewpoint, i.e. by computing the speed-up that one can obtain from
its use. Section 6.4 discusses the various proposals in the context of existing tech-
niques for speeding-up the fault injection. Section 6.5 summarizes the advantages
and limitations of proposed techniques and concludes this chapter.

109

Chapter 6. Contributions in Improvement of Fault Injection Performance

6.1 Introduction

The fault injection performance is commonly optimized from two perspectives:
the reduction of the number of considered fault configurations, and the acceler-
ation of the injection runs. Some existing proposals in this field (discussed in
Section 3.5), such as checkpointing and multilevel fault injection, are defined in
a very generic way, without any insights on how they can be applied to SBFI
and FFI experiments, and what speed-up gain can be expected from them in a
each particular case. On the other hand, under the complex experimentation sce-
narios, the speed-up provided by the existing techniques still may be insufficient.
This chapter addresses these problems in two ways: (i) by defining additional
techniques for the further improvement of fault injection performance, and (ii)
by studying the practical aspects of applying the defined and existing techniques
to SBFI and FFI, and providing the models for estimation of their attainable
speed-up gain.

The number of experiments can be reduced following a two-way strategy involving
the optimization and sampling of the considered fault space. Particularly, the bit-
accurate FFI, defined in chapter 5, can be also seen as a technique looking for
the optimization of the fault space. Indeed, it reduces the set of relevant fault
targets by being more selective in the location of essential bits than the Xilinx’s
essential bits file. A more specific optimization, proposed in Section 6.2 of this
chapter, reduces the number of relevant fault targets even further by analysing
the switching activity of DUT macrocells. The idea is to locate those CM cells,
that despite belonging to essential bits, remain inactive at the given workload,
and may be safely omitted from the faultload.

Even after deploying the platform-specific optimizations of the fault space, it
may still remain infeasible to conduct an exhaustive fault injection campaign.
In this case, the statistical fault injection approach formalized in [100], can be
exploited to reduce the faultload to an affordable size, at the cost of assuming
a certain confidence level and error margin in derived robustness metrics. This
approach, however, relies on a conservative assumption regarding the estimated
robustness metrics, that leas to overestimation of required sample size. Section
6.2 proposes an iterative statistical fault injection approach, which significantly
reduces the sample size when the actual robustness metrics significantly differ
from the conservative assumption.

After having reduced the faultload, the focus is placed on the acceleration of
the remaining fault injection experiments. Section 6.3 proposes two solutions to
this end. The first solution exploits the high-level (RTL) models to speed-up the
implementation-level SBFI in two different ways, referred to as mixed-level and

110

6.2 Strategies to reduce the number of fault injection runs

multi-level injection. The former generates an HDL model combining the targeted
unit at implementation level with the rest of the design simulated at RTL, thus
speeding-up the simulation of each injection run. The latter establishes a mapping
between the implementation-level macrocells and the source structures at RTL, in
order to identify the fault configurations that can be representatively simulated at
the faster RT level. Another speed-up solution relies on the ckeckpointing of the
DUT state in SBFI and FFI experiments. Despite the multi-level injection and
checkpointing are known concepts, their practical aspects and attainable speed-
up gain so far have been covered rather superficially. Accordingly, section 6.3
studies how these concepts can be efficiently integrated into a simulation-based
and FPGA-based fault injection flow, and how their attainable speed-up gain can
be estimated.

6.2 Strategies to reduce the number of fault injection runs

This section proposes two different techniques to reduce the faultload. The first
technique analyses the switching activity of DUT primitives to identify the in-
active CM cells that can be omitted from the faultload. The second technique
deploys the statistical fault injection in a iterative way. By taking into account the
actual estimations of robustness metrics the proposed technique can significantly
reduce the number of sampled faults with respect to the conventional statistical
approach that basically makes a priori conservative assumption.

6.2.1 Filtering and prioritization of essential bits through the
profiling of the target switching activity

Any FPGA-based implementation has its specific set of essential bits, which deter-
mine the circuit functionality and integrity. Fault injection experiments targeting
these essential bits, allow to identify which of them are critical i.e. lead to a
failure if toggled. The set of critical bits is determined attending to the circuit
and the workload, which activates a certain set of control and data paths within
that circuit. Advanced simulation tools allow to trace these paths by means
of coverage graphs. For instance, code coverage tool of ModelSim/QuestaSim
simulator keeps track of how many times each statement, branch or expression
within the design gets executed during the simulation. These metrics are com-
monly used to improve the quality of tests. Conversely under the given workload
they could indicate which parts of the design remain inactive and thus can be
omitted at fault injection. However, the configuration memory (CM) layer is not
directly reflected in coverage graphs, even by using implementation-level models.
Indeed, the netlist of macrocells must accurately model the functionality and tim-

111

Chapter 6. Contributions in Improvement of Fault Injection Performance

ing behaviour of technology primitives, but not necessarily detail their internal
structure. Nevertheless, for some macrocells with known bitstream mapping (as
detailed in Section 5.2), it becomes possible to determine which CM bits are active
under the given workload, by profiling the switching activity on the macrocells
interface.

This kind of analysis can be particularly accomplished for the Look-up tables
(LUT), which are the basic building blocks of combinational logic in FPGAs.
Structurally LUT comprises (i) an array of configuration memory cells Mi storing
a truth table (INIT) of the LUT, and (ii) a tree of multiplexers which selects
one of the Mi cells by the combination of its inputs ADR, and drives it to the
LUT’s output. Likewise LUT_X can be seen as an element of read-only memory,
which asynchronously reads one of its 2X bits to the output. For instance, as
depicted in Fig.6.1, the 3 inputs (ADR2, ADR1, ADR0) of a LUT_3 primitive
address 8 CM cells, each one containing the 1-bit output for each combination
of inputs. Under combination ADR=’000’ the topmost path is selected through
the multiplexer tree, driving to the output the content of cell M0; switching the
ADR2 to ’1’ (combination ’100’) changes the selected cell to M4, and so on.

A circuit running a workload not necessarily will access all CM cells in each LUT.
In fact, many of them may be rarely or never accessed. A CM cell can be denoted
as active at certain time instant if its value is driven (read-out) to the LUT
output. Thus the total time which CM cell determines the LUT output during
the workload execution can be denoted as its activity time.

1
0

M0

1
0

1
0

1
0

1
0

1
0

1
0

ADR0 ADR1 ADR2

OUT

M1

M2

M3

M4

M5

M6

M7

0 2

1 0

2 2

3 0
4 0

5 1

6 1

7 0

Time ADR

100.0 2

140.0 0

150.0 5

280.2 2

500.3 0

600.3 6

800.0 0

ΔT(2)=40.0
110.0

0

260.1

0
0

130.2

199.7

0

Activity Trace
(LUT3 instance path=…)

Activity Profiling Result
(LUT3 instance path=…)

INIT_reg

ΔT(2)=220.1

ADR Count
Activity

Time

Figure 6.1: Profiling of switching activity on LUT inputs to determine inactive cells of
configuration memory

The activity time of LUT-related CM cells can be estimated by profiling the
switching activity on the LUT interface. Profiling comprises two steps: (i) simula-
tion of implementation-level model of the circuit to monitor and log the switching

112

6.2 Strategies to reduce the number of fault injection runs

events on the LUT’s input ADR, and (ii) analysis of the collected logs to compute
the activity time of CM cells of each LUT.

The simulation step starts by configuring the simulation environment for tracing
of switching activity. In the ModelSim simulator activity traces can be captured
by means of the script in listing 6.1. First, the inputs of each LUTi are concate-
nated in descending order into a virtual signal ADRi, e.g. I5 to I0 for LUT_6.
Created signal is appended for monitoring to a new list window. Dedicating a
separate list to each LUTi makes logging of their switching events independent
on each other, reducing the total footprint of resulting logs and speeding-up their
subsequent analysis. Once the traces for all LUTs are configured, the simulation
is run for the workload duration. Each time when ADRi switches, its value and
a corresponding switching time are logged by the simulator to the activity trace
in the format (Time, ADR), as it is depicted in Fig.6.1. Finally, each collected
trace is exported to a tabular file for the analysis.

There are two important observations regarding the simulation. First of all, the
model must run exactly the same workload that will be used in FFI experi-
ments, since activity profile is workload-specific. Second, the simulated model
must accurately reflect the timing behaviour of the circuit, which means that a
post-place-route model (in the basis of Xilinx’s SimPrim library) with annotated
SDF file should be used.
1
2
3
4
5
6
7
8
9
10

For each LUTi in netlist:
 #concatenate separate LUT inputs into a single virtual signal
 quietly virtual signal -env LUTi.Path -install LUTi.Path \

 { ((concat_range (LUTi.size-1 downto 0)) (LUTi/I5 & ... & LUTi/I0))} ADRi
 #create a dedicated list for each LUT cell
 set Labeli [view list -new -title Labeli]
 #binary format allows fine-graned resolution of X states
 radix bin
 #append created signal to the list
 add list LUTi.Path/ADRi -window $Labeli

11 run $WorkloadDuration

12
13
14
15

For each LUTi in netlist:
 #save each trace to its dedicated file (tabular list)
 view list -window $Labeli

 write list -window $Labeli /Traces/Labeli.lst

Listing 6.1: ModelSim script to collect the activity traces for LUT cells (ModelSim com-
mands highlighted in bold red; pseudocode in italics)

During the analysis step, each collected activity trace is processed to calculate the
total activity time of each CM cell, as depicted in Fig.6.1. For instance, cell M2
(ADR=2) has been activated twice during the simulation: at time instant 100.0
ns for 40.0 ns, and at time 280.2 ns for 220.1 ns, accounting for a total activity

113

Chapter 6. Contributions in Improvement of Fault Injection Performance

time of 260.1 ns. Likewise the total number of activation events can be calculated
- see column ’Count’ in Fig.6.1.

It is worth noting that Xilinx’s simulation primitives support indetermination (X-
state) on the inputs, in the case when resolving X to either 0 or 1 doesn’t impact
the result, i.e. when both alternative branches of corresponding multiplexer drive
the same value to the LUT output. Despite the X-state is just a simulation ab-
straction, the analysis of activity traces should account the activity time interval
with indetermination to both alternative ADR values, since either of two path
may be activated in the hardware.

After completion of this analysis, all addresses in the profiling table with a zero
activity time (or with a Count value of 0) indicate those LUT bits that have
remained inactive during the simulation of the HDL model. However, being
more strict, computation of activity metrics may be not so straightforward, since
glitches also could be filtered out. These glitches are very short (multiple) tran-
sitions that may appear in signals before they become stable. Consider that cell
000 is accessed and next access goes to cell 111. In practice, changing the value of
these 3 bits may suppose to transition from 000 to 100, then to 110 until reaching
the stable address 111. This is why instead of registering all switching events, it
may be worth to take into account only effective switches, i.e. those not filtered
by the electrical characteristics of the circuit. Under the inertial delay model the
glitches are filtered, while transport delay model [118] propagates such glitches.

The profiling results can be exploited to improve the dependability assessment in
two ways. First, all CM cells that remained inactive at profiling can be skipped
at fault injection experiments, as they are non-critical. The attainable speed-up
gain equals the percentage of inactive bits within the complete set of essential
bits. Second, a hypothesis for the rest of cells is that the higher is the activity
time of a certain CM cell, the higher is the probability that its fault will not
be masked, and thus the higher is its criticality (probability to lead to a DUT
failure if toggled). Considering a limited experimentation time, it is interesting to
prioritize fault injection experiments according to the criticality of the bits they
target.

The application of obtained activity metrics to the optimization of SBFI ex-
periments is quite straightforward: each inactive bit of LUT content (INIT) is
removed from the list of fault targets. To use the activity metrics for the opti-
mization of FFI experiments, it is necessary to first map each bit of LUT content
onto the corresponding CM coordinates. This is accomplished by means of the
LUT mapping procedure, proposed in Section 5.2. It should be noted that Xil-
inx Vivado tookit may combine two LUT primitives within one LUT BEL, in

114

6.2 Strategies to reduce the number of fault injection runs

A1A2A3A4A5A6

O5 O6

I1 I0 I2 I1 I0

OO

LUT2 cell
 each bit 
 8 CMEM cells

L
U
T
A
6

B
E
L 100.0 00

Time
Compl ADR
{I1:I0}LUT2

ADR
{I2:I1:I0}LUT3

110.0 2 1
140.0 0 3

170.0 5 0
280.0 1 0
…

1

LUT3 cell
 each bit 
 4 CMEM cells

Complementary
ADR

Count

0 1

1 0
2 0
3 1

AcTime

10

0
0
30

Profiling result

ADR

0

0 1

1 0
2 0
3 0

110

0
0
0

5

…………………………………………………………….

…………………………………………………………….

a
ct

iv
e

ce
ll

s

Switching Activity Trace

Figure 6.2: Profiling of switching activity in case of LUT combining with non-shared inputs

such a way that the combined LUT primitives may have one or more non-shared
inputs. In this case, each INIT bit of mapped LUT may correspond to several
CM cells. Hence, to determine, which CM cell is active at each time instant, it
is necessary to consider the switching activity of both combined LUT primitives.
Such activity trace includes two ADR values (depicted in Fig.6.2): inputs of the
profiled LUT primitive (ADR), and those complementary inputs of adjacent LUT
primitive which are not shared with the profiled LUT. Monitoring the switching
events of this complementary ADR allows to resolve this one-to-many relation
between the INIT bits of the profiled LUT primitive and corresponding CM cells,
thus to annotate the proper activity time to each CM cell even in the case of LUT
combining.

In the example illustrated in Fig.6.2 each bit of the profiled LUT_3 has 4 cor-
responding CM cells, since the adjacent LUT_2 occupies two other inputs A5
and A4 of the same LUT BEL without sharing them with the profiled LUT_3.
The profiling monitors the switching events of the tuple comprising the ADR of
the LUT_3 and the ADR of complementary (adjacent) LUT_2. In the resulting
trace the tuple (0,0) is active for 10 ns, the tuples (0,1) and (0,2) don’t appear
(they are inactive), and tuple (0,3) is active for 30 ns. Accordingly, only the 1st
and the 4th CM cells are active, out of four CM cells mapped to the bit 0 of
LUT_3. Similarly the rest of tuples are analysed.

Fig.6.3 illustrates the complete optimized faultload generation flow, which inte-
grates the optimization of essential bits proposed in Section 5.3 and the profiling
of switching activity introduced in this section. The faultload generator first ob-
tains a list of LUT primitives cells from the netlist parser. These primitives are
subsequently mapped onto the configuration memory by the bitstream parser,
which implements the bit-accurate mapping algorithm proposed in Section 5.2.
For each mapped LUT primitive it creates a descriptor, illustrated in Fig.6.4.
The netlist parser annotates this descriptor with the properties of LUT primi-

115

Chapter 6. Contributions in Improvement of Fault Injection Performance

Estimate switching activity of netlist cells

Faultload
Generator

Bitstream
Parser

Netlist
Parser

Profiler
Fault

Injector

Build FaultLoad
Extract netlist cells (descriptors)

Map netlist cells onto bitstream

Cell Map

Parse the bitstream

List of Frames + Vivado EBC mask

Simulator
(ModelSim)

Traces

 List of profiling descriptors

analyze
switching
traces

Annotate
Cell Map
with activity time

Filter-out
inactive
CMEM bits

Prioritized
Fault List

Optimized
bitmask

Run injection
experiments

simulate

profiling rules to
simulation

environment

Figure 6.3: Interactions among entities involved in the generation of an optimized faultload
for an FPGA-based fault injection campaign

LUT celli

Type

LUT6

Netlist Path

Top/IntCore/ALU/carry...

Combined cell

LUT cellj

Location

X27 Y114

Bel

SliceL.D6

INIT

64'h...

Bel pin map

I0:A4, I1:A6,...

Nodes

INIT [0]

MAP (FAR, word, bit)

Activity time 5%

Failure mode emul Masked/Latent/Signaled/SDC

Failure mode sim Masked/Latent/Signaled/SDC

INIT [1]

...

1:N

1:N

1:N

1:1

Figure 6.4: Structure of resulting LUT cell descriptors after mapping, profiling and fault
injection

116

6.2 Strategies to reduce the number of fault injection runs

tive extracted from Vivado, such as the path, type, location, and pin mapping
(highlighted in blue). The bitstream parser annotates the descriptor with the
coordinates of CM cells corresponding to the LUT primitive.

The list of LUT cell descriptors is passed to the Profiler, which builds the pro-
filing script for a given set of LUT cells (following the pattern in Listing 6.1),
and launches it within the simulation environment. The simulator collects the
switching activity traces of each LUT cell. Collected traces are analysed by the
profiler to calculate the activity time and to count the activation events for each
bit of LUT content. Resulting activity metrics are appended to the LUT de-
scriptor (highlighted in red in Fig.6.4). The multiplicity of the relation between
the LUT bit and its activity metrics is the same as the multiplicity of mapping
between the LUT bit and its corresponding CM cells. The profiler annotates
the LUT descriptors with activity information and returns them to the faultload
generator.

Finally, the essential bit mask is build by the faultload generator, taking into
account only active CM cells for the profiled LUTs. Under the constrained ex-
perimentation time, a prioritized fault list is generated, which can be used by
the fault injector to schedule the experiments according to their activity time:
CM cells with higher activity time are targeted with higher priority, since they
are more likely to be critical. The filtered bit mask and prioritized fault list are
returned to the fault injector, which executes the scheduled experiments.

6.2.2 Iterative statistical fault injection

The use of statistical sampling for robustness assessment typically follows a very
conservative approach. As there is usually no estimation available of actual failure
rates for the target system, the worst case scenario is considered: a fault is as likely
to cause a given failure mode (let us say a Silent Data Corruption), as to not cause
it. Thus the computation of sample size by the Equation 3.1 assumes p = 0.5,
which means that we do not have any a priori knowledge on what will happen
when a fault is injected. In other words, when p = 0.5, a fault can lead to a failure
(probability of 50%) or not (the other 50%). At the same time, the analysis of
this equation shows that such conservative approach leads to much larger sample
size, than it would be required when the estimated failure rate is significantly
lower (or higher) than p = 0.5. This difference becomes especially notable when a
narrow margin of error is desired, what is common for dependability assessment
of critical designs.

117

Chapter 6. Contributions in Improvement of Fault Injection Performance

For instance, assuming an infinite population, an error margin of 0.1%, and a
confidence interval of 95%, the conservative sample size (p = 0.5) would roughly
raise a number of experiments to n = 0.96 × 106. Now assuming an estimated
failure rate of 1% (p = 0.01), the required sample size is reduced to just n =
0.038 × 106. This means that the estimation can be obtained with the specified
error margin and confidence interval by performing only 1/25 of the experiments
proposed by the conservative sampling approach.

So the problem is to use the knowledge we obtain during experimentation from
the DUT in order to iteratively adjust the sample size to the strict minimum to
guarantee the specified error margin and confidence interval in the finally provided
estimations. Equation 3.2 could be used for this purpose. The conservative
approach will lead to much narrower error margins than those required when
estimated value is farther away from the worst case scenario (p = 0.5). This
means that an even smaller sample size would be actually necessary to obtain the
desired margin of error. This is an important observation for the dependability
community, as the rate of failures (although unknown) is usually expected to be
relatively low. This is because dependable systems are designed to keep the value
of p (probability of failure), usually below 5%.

The proposal is to deploy an iterative strategy that dynamically schedules the
fault injection experiments (samples the fault space), and that relies on a realistic
(instead of a pessimistic) estimations of the actual sample size required for a given
margin of error.

The basic experimentation strategy is driven by error margin, i.e. the goal is to
estimate the failure modes exhibited by the considered target with the required
margin of error with the minimum possible number of experiments (smallest pos-
sible sample). The algorithm that describes this proposal is depicted in Fig. 6.5.

Assuming there is no estimation available for any of the considered failure modes,
it is necessary to start the process by taking into account the worst-case scenario
(where each failure mode is estimated with a probability p = 0.5) but for a wide
margin of error (E = 5%). In such a way, an initial estimation for each failure
mode rate will be obtained by running only 384 experiments.

In each iteration of the algorithm, the sample size, or number of fault injection
experiments (N), is computed attending to the currently selected margin of error
(E) and the current failure rate (P). Then the required number of fault injection
experiments beyond those already executed are carried out. Results are used to
re-estimate the rate (P) of each one of the considered failure modes, and these
estimations are used to compute the new margin of error (E) associated to the

118

6.2 Strategies to reduce the number of fault injection runs

Initial: P=0.5, E=5%,N0=0
Sample = []

N1=n(E,P)

N1-N0 > 0

Launch N1-N0 injections
(append N1-N0 points to Sample)

Compute P for Sample

Reduce error margin:
E = (E/2<goal) ? goal : E/2

E > goal

N0=N1

Result: P with E=goal

Input:
error margin (goal)

yes

no

yes

no

E = e(P,N1)

Figure 6.5: Algorithm to minimise the sample size for estimating a given failure mode with
any given goal for the error margin

reported estimations. If this margin of error is greater than the required goal,
then the currently selected error is reduced (let us say that it is halved) to slightly
increase the considered sample size in the next iteration of the algorithm.

In such a way, the sample size is iteratively increased to determine when the
required margin of error is reached. If the selected margin of error is not drastically
reduced in each iteration, this algorithm ensures that the resulting sample size
will be much closer to the minimum required to reach the margin of error than
by following the conservative approach. As failure rates are usually expected to
be very low, especially for critical systems, this proposal can greatly reduce the
required sample size and the experimentation time.

The previously described strategy can also be adapted to consider a situation
where it could be a hard limit in terms of time available for experimentation. In

119

Chapter 6. Contributions in Improvement of Fault Injection Performance

get statistics()

evaluate sample error
Ei= f(Pi , n)

max(Ei) ≤ goal
or Texec > Tmax

Faultload
generator

Fault injector

 {Pi}, n stop

continue

yes
no

Fault configurations observation traces (n)

Analyzer

Figure 6.6: Fault injection process driven by both error margin and experimentation time

that case, the error margin could be iteratively reduced until the specified margin
of error is reached or the maximum allowable experimentation time elapses.

As Fig.6.6 shows, this would require a fault injection manager that could be
constantly monitoring (at a given rate) the estimated rate of failure modes to
compute the current margin of error and schedule new fault injection experi-
ments to iteratively increment the sample size. Although similar in concept to
the previous proposal, in this case a much finer control over the sample size in-
crements (probably constant) is required so as not to inadvertently exceed the
allotted experimentation time. Thus, this procedure will either prevent unnec-
essary experimentation efforts when the error margin goal is reached, with the
available experimentation time, or when this time is exceeded, it provides the
means to quantify the error margin existing in reported estimations.

It is worth noting that if setting the error margin goal to zero, the proposed
algorithm will stop either when reaching the experimentation time limit, or when
sampling the complete population. In the latter case the true value of failure
modes will be estimated (without any error). This requires to deploy the so-
called sampling without replacement, which means that each individual (fault
configuration) can be only chosen once. In practice this will require to keep track
of already sampled individuals. In FFI based on the optimized essential bits (as
proposed in Section 5.4), this can be achieved by clearing the mask (in the mask
file) for already sampled targets.

SIS = n(p = 0.5)
n(pest)

= t2pest(1− pest) + e2(N − 1)
pest(1− pest)× (t2 + 4e2(N − 1)) (6.1)

120

6.3 Strategies to speed-up SBFI and FFI experiments

SIS(N →∞) = 0.25
pest × (1− pest)

(6.2)

0
1
2
3
4
5
6
7
8
9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sp
ee

d
-u

p
 f

ac
to

r

Estimated failure rate (p)
(P ± e)preliminary

attainable speed-up

Figure 6.7: Speed-up attainable through iterative statistical sampling with respect to
conservative approach; under infinite population and confidence interval of 95%

The experimentation speed-up achievable through the iterative approach can be
quantified by dividing the sample size for the conservative scenario n(p = 0.5)
by the size of resulting sample collected by iterative approach n(pest). For any
given failure rate estimation pest, error margin e and population size N , this
speed-up can be computed by Equation 6.1, or by simplified Equation 6.2 for
the infinite populations. The resulting speed-up can be computed only after the
completion of experiments, when pest becomes available. Nevertheless, one can
estimate the magnitude of attainable speed-up when a preliminary confidence
interval (p± e)preliminary for the estimated failure rate becomes available, as it is
depicted in Fig.6.7.

6.3 Strategies to speed-up SBFI and FFI experiments

While the previous section has focused on reducing the number of fault injection
experiments in a campaign, this section proposes different approaches to accel-
erate each one of the experiments to carry out. This goal can be attained by
reducing the complexity of considered models and the duration of each simula-
tion/emulation.

A high-level (RTL) model can be used to reduce the complexity of implementa-
tion-level SBFI experiments. This can be achieved through two different propos-

121

Chapter 6. Contributions in Improvement of Fault Injection Performance

als. The first one is to generate a mixed-level model where the targeted design
unit is described using an an implementation-level model, while the rest of the
design is modelled at RTL. The resulting model is less costly to simulate, while
allowing the same robustness estimations as those that can be obtained by us-
ing the pure implementation-level model. The second proposal relies on the fact
that the structure of sequential logic (the set of registers in a hardware design) is
usually maintained without major changes throughout the various steps (synthe-
sis, mapping, placing and routing) of the semicustom design flow. This enables
the mapping between the inferred technology-specific structures representing the
sequential logic at the implementation level and the source registers specified at
RTL. Thanks to this, fault injection experiments targeting a design’s sequential
logic can be carried out using a multi-level fault injection approach: faults injected
into mapped registers will be carried out using the related RTL model (which is
fast in simulation), while for the rest of registers (replicated, and/or affected by
retiming) the implementation-level model will be considered.

In order to reduce the time required to cope with each simulation/emulation, the
use of checkpointing techniques becomes essential. The idea is to capture the
DUT execution context at several uniformly distributed time instants during the
golden run. Each of the subsequent injection runs will start with the recovering
of the checkpoint with the closest timestamp. This will reduce the total run time
of each injection experiment.

The following subsections further explain to what extend each experiment in a
fault injection campaign can be accelerated thanks to the use of mixed-level and
multi-level models and the deployment of checkpointing techniques.

6.3.1 Mixed-level and multi-level fault injection

As it has been discussed in Section 3.3, RT-level models are relatively fast in sim-
ulation, but not detailed enough to draw the confident conclusions regarding the
dependability of of a system. Implementation-level models, however, reflect most
relevant implementation details of resulting circuits, including the target technol-
ogy, timing, and EDA optimizations. This level of detail, makes implementation-
level models very slow in simulation. Exploiting the advantages of both models
within the same SBFI campaign may allow to speed-up the experimentation with
respect to the pure implementation-level SBFI.

Implementation-level models consist of hundreds of thousands of different basic
elements whose simulation, even for simple workloads, may take a very long time.
Hence, the first proposed optimization focuses on reducing the complexity of that

122

6.3 Strategies to speed-up SBFI and FFI experiments

Testbench

Target unit at
implementation-

level

Netlist hierarchy

design root

.VHD / .V

.SDF

NT_I

αT_I

NR_RTL

αR_RTL

+ delays

Rest of the design

at RTL

Figure 6.8: Mixed-level model comprising behavioural and implementation-level compo-
nents

model by using a mixed-level HDL model. This optimization can be applied
when dealing with a complex system, consisting of different modules or parts, so
that experiments could be scheduled to inject faults in each particular module
selectively. In such a way, the target module is simulated at the very detailed and
slow, but highly accurate, implementation level, whereas the rest of the system is
simulated at the fast RTL (see Figure 6.8).

The attainable simulation speed-up of using a mixed-level design directly depends
on the weight of the implementation-level component within the entire DUT, as
well as on the switching activity of its constituent elements, as it is expressed by
an approximated speed-up model in Equation 6.3.

SMM = NT_I × αT_I +NR_I × αR_I

NT_I × αT_I +NR_RTL × αR_RTL
(6.3)

where:

NT_I , NR_I , NR_RTL, are the number of signals of the target unit (T) and the
rest (R) of the design at the implementation level (I), and of the rest of the
design at the RTL, respectively

αT_I , αR_I , αR_RTL, are the switching activity rate of signals of the target unit
and the rest of the design at the implementation-level, and the rest of the
design at the RTL, respectively

Assuming that αT_I = αR_I = αR_RTL and NR_RTL � NT_I , then the speed-
up factor of using a mixed-model will be SMM ≈ 1 + NR_I/NT _I . Accordingly,

123

Chapter 6. Contributions in Improvement of Fault Injection Performance

the smaller is the size of the target unit at the implementation-level model with
respect to the rest of the design, the higher is the attainable speed-up.

Building this mixed model is not as straightforward as it could seem. First, a
hierarchical netlist should be obtained from the source RTL model by enabling
the Keep Hierarchy synthesis option. Although the hierarchy tree is retained all
interfaces are flattened (buses transformed into several individual signals), so the
interfaces between the implementation-level model and the RTL model should be
reconnected. Furthermore, the implementation model includes the actual tim-
ing behaviour of the target device described in a Standard Delay Format (SDF)
file. As RTL includes no timing behaviour, the incoming signals from RTL to
the implementation-level model should be delayed. To prevent the timing viola-
tions, these delays should at least satisfy the setup/hold times of input registers
on the implementation side, which can be extracted from SDF of hierarchical
netlist. Depending on the particular design hierarchy, this may also require to
take into account the delays of combinational paths before and after the RTL-
implementation connection point.

An alternative approach of exploiting RT-level models for speeding-up of SBFI
experiments consists in distributing the faultload between RTL and implemen-
tation levels. In such a way, the logic that is represented at RT-level with enough
detail, namely registers which have not been optimized during the synthesis and
implementation, can be targeted at the RT-level, while the rest of logic is targeted
at the implementation level.

In practice, this can be achieved through the inter-level model matching pro-
cedure, which automates the selection of proper fault targets at different lev-
els of HDL description. It traces the macrocells from lower-level model, the
implementation-level in our case, back to source logic structures at higher levels,
the RTL in this case. The basic idea is to determine which fault targets can be
covered at higher description levels, thus with a lower simulation (temporal) cost.
Matching RTL and implementation-level descriptions means determining which
RTL signals represent the actual set of registers in the implementation-level model
generated by EDA tools. Fig. 6.9 illustrates this matching process.

First, both (RTL and implementation-level) models are parsed to extract the
set of logic primitives existing in their respective (RTL and IMPL) design trees.
This parsing process, defined as Phase_1: Model Parsing in the figure, is very
simple and relies on the identification of signals of embedded and custom types at
RTL, and macrocell’s basic types specified by vendor-specific libraries (describing
flip-flops, look-up tables, etc.) at implementation-level. It is worth noting that
the signals represented by complex data types at RTL (arrays and structures)

124

6.3 Strategies to speed-up SBFI and FFI experiments

RTL Implementation toolkit

Netlist (IMPL_1)

Naming
conventions

Synthesis/Map/Place-Route parameters

Group = r/exec/res[4]

Model = RTL
Nodes[] = {IU/r.exec.res[4] (Signal)}

Model = IMPL_1
Nodes[] = {IU_r_exec_res_4_BRB1 (X_FF),

IU_r_exec_res_4_BRB2 (X_SFF)}

Matched_nodes [Registers]

Group = r/fetch/pc[0]

IU

Top

R.exec.res[4] (Signal)

R.fetch.pc[0] (Signal)

...
Top

IU_Mux_R_fetch_eqn1 (X_LUT)

IU_R_exec_res_4_BRB2 (X_SFF)

IU_R_exec_res_4_BRB1 (X_FF)

RTL design tree IMPL_1 design tree

Signals
(std_logic, integer, enum)

Phase_3: Register matching

Sequential macrocells
X_FF, X_SFF, X_DFF

Combinational
macrocells

Phase_2: Logic classification

Phase_1: Model Parsing

Library of
macrocells

Model = RTL
Nodes[] = {IU/r.fetch.pc[0] (Signal)}

Model = IMPL_1
Nodes[] = {IU_fetch_pc_0 (X_FF)}

Figure 6.9: A method to match the sequential logic between the behavioural (RTL) and
implementation levels of HDL description

are parsed up to their simplest primitives representing single bits, integers and
enums. This parsing results in two different design trees, called the RTL and
implementation design trees, respectively.

In the second phase of the approach, named Logic classification, the informa-
tion contained in both trees is filtered in order to focus the matching process
only on those RTL signals that can represent registers and those macrocells at
implementation-level that are related to sequential logic. This is why only signals
of types std_logic, integer or enum are considered from the RTL design tree,

125

Chapter 6. Contributions in Improvement of Fault Injection Performance

while only sequential macrocells (representing flip-flops of any type, i.e. X_FF,
X_SFF, X_DFF) remain after filtering in the implementation design tree.

Then, the approach only needs to establish a correspondence between the infor-
mation remaining in the RTL and implementation design trees. In order to cope
with such matching, the use of the naming conventions is essential to assign a
generic internal name to each logic primitive, and subsequently to decide which
RTL signal is the source of a certain group of implementation-level macrocells.
The naming conventions are usually explicitly declared by EDA vendors. These
conventions are essential in order to ensure the proper structure of the various in-
termediate models generated by each tool in the EDA toolkit under use. Thanks
to such conventions, it is possible, for instance, to declare a hierarchy of compo-
nents, or specify when a register has been duplicated. Consider the RTL example
provided in Fig. 6.9 in the expression IU/r.exec.res[4]. This expression represents
the bit 4 of register r.exec.res of the Instruction Unit (IU). However, this bit
is duplicated in the implementation level, where bits IU_r_exec_res_4_BRB1
and IU_r_exec_res_4_BRB2 can be found. In addition, this encoding reflects
the fact that such duplication has been carried out using a Backward Register
Balancing (BRB) technique for retiming, as shown in Fig. 3.5. In this particular
case, the naming conventions under consideration are those defined by Xilinx for
its XST synthesizer, which are defined in the Chapter 16 of [187].

The result of all this process is a set of matched nodes. Each element of the
set represents a group including two tuples (model, nodes). The name of the
group reflects the name of the particular register it represents. As the tuple
(model, nodes) is concerned, it reflects an RTL signal and locates the signal in
the model. The same applies to the second tuple, but in this case, it reflects an
implementation-level macrocell or a set of them. It is worth mentioning that,
in most of the cases, the multiplicity of the relationship in a matching group is
expected to be 1 (RTL) to 1 (implementation-level), but it may also be 1 (RTL)
to N (implementation) in case of, for instance, register duplication. In case of
elimination of registers (1 to 0 relation), the matching group will not be created,
since those registers do not exist in final implementations and thus, they are not
relevant from the perspective of fault injection.

This is how the proposed approach exploits the idea of multi-level fault injection:
inject faults at RTL signals when targeting sequential macrocells with an entry in
the resulting register matching; otherwise, inject faults at implementation-level.
The match rate (percentage of matched registers) and the multiplicity of each
relationship will determine the speed-up benefit in each practical case.

126

6.3 Strategies to speed-up SBFI and FFI experiments

6.3.2 Simulation-based and FPGA-based checkpointing

The execution of each injection run encompasses several steps: i) DUT initial-
ization, e.g. execution of a bootloader that initializes the register file, memory
controllers, UARTs, timers, and the like; ii) workload initialization including the
execution of an operating system or various applications before starting the work-
load execution; iii) workload execution, where the selected workload is actually
run and fault injection takes place at a certain instant of time, and iv) readout of
workload processing results. Although the two first initialization stages may not
be required for many different designs, they are fairly common when considering
microprocessors as target designs. All the stages preceding the workload execu-
tion may be attributed to warm-up overhead, required to bring the DUT into an
initial state, as denoted by Tinit in Fig.6.10. Likewise, the part of the workload
execution interval preceding the fault injection instant TINJ , can be attributed
to the runtime overhead, since the actual observation of fault effects starts only
after TINJ .

Checkpoint0

δ

Workload interval Tw
Initialization
interval Tinit

Observation interval Tobs

Tc

Injection time TINJ
CheckpointK CheckpointM

Tsim

Readout
interval TRD

Figure 6.10: Restoring execution from clustering checkpoint to speed-up the fault injection
experiments

Reducing the aforementioned warm-up and runtime overheads by means of check-
pointing may greatly improve the performance of SBFI/FFI experiments. Check-
point is a dataset containing the DUT execution context at a certain time instant,
which can be captured and recovered on demand by the SBFI/FFI environment.
During the execution of the GoldenRun a set of M checkpoints is stored. The
first one is captured (C0) just before starting the execution of the workload (at
the end of the initialization stages). The rest M − 1 checkpoints split the ex-
ecution time (Tw) into M sub-intervals of duration Tc, as depicted in Fig.6.10.
Accordingly, each subsequent injection run is started by restoring the checkpoint
CK corresponding to the state of the system just previous to its fault injection
time TINJ .

Since the checkpoints may require a considerable amount of RAM/storage space,
it is usually not feasible to create a checkpoint for each time instant of the sched-
uled fault list. Hence, this approach groups the experiments into M clusters in

127

Chapter 6. Contributions in Improvement of Fault Injection Performance

such a way that all the experiments whose injection time fall into the same clus-
ter will use the same checkpoint. The total execution time of each injection run
comprises the observation interval Tobs, and the time difference δ between the
injection time TINJ and the timestamp of the corresponding (closest) clustering
checkpoint CK , as depicted in Fig.6.10.

The execution time of each injection run should also take into account the time
overheads for restoring the checkpoint, which is platform-dependent. In simulation-
based fault injection the checkpoint management relies on the embedded features
of the used simulation tool. For instance, in ModelSim the simulation state can
be saved at any time point (when simulation is paused) by means of the simula-
tor command [checkpoint ChekpointFile.sim], and recovered by command [restore
ChekpointFile.sim]. It is worth noting that ModeSim captures and recovers only
the internal objects such as model state, observation lists, etc. The simulated
design thus should not use any external resource (e.g. open file descriptors) to
allow the use of checkpointing. Our experiments show, that checkpoint recovery
in ModelSim is as fast as resetting the simulation to its initial state (time 0), and
even faster than loading the simulation state from scratch. Hence, checkpoint
recovery doesn’t induce any time overhead in the SBFI flow. Accordingly, the
total speed-up, attainable through the use of checkpointing in a simulation-based
fault injection campaign of N runs, can be quantified by dividing the total time
that should be simulated in a non-optimized flow by the time resulting from the
use of the presented checkpoint-assisted flow, as it is expressed by Equation.6.4.

SCC = N × (Tinit + Tw + Trd)
Tinit +

∑N−1
i=0 (Tobs_i + δi + Trd)

(6.4)

To estimate the attainable speed-up in practice it is necessary to assume the
particular workload and faultload parameters. For instance, the model in Listing
6.2 can be used to estimate the speed-up in the case when fault injection instants
are uniformly distributed along the workload time. Assuming the sampled number
of injection runs N , workload time Tw, result readout time Trd, and initialization
time Tinit proportional to Tw, it estimates the attainable speed-up factor SCC and
the mean distance to the checkpoint δ. Fig.6.11 illustrates the results obtained
under N = 10000, Tw = 100.0 ms, Trd = 0 ms, increasing initialization time
Tinit = 0/Tw/5Tw, and increasing number of checkpoints (M = 1→ 50).

128

6.3 Strategies to speed-up SBFI and FFI experiments

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

import random
#models linking of checkpoints to uniformly distributed injection runs
#returns the estimated speed-up factor and mean distance to the checkpoint (delta)
#inputs: N - number of injection runs
Tinit - duration of initialization interval
Tw - duration of workload interval
Trd - duration of result readout interval
M - number of checkpoints
def Speedup(N, Tinit, Tw, Trd, M):

#allocate M checkpoints within workload interval Tw
Tc = Tw/M
checkpoints = [Tinit + i*Tc for i in range(M)]
#generate N injection instants, uniformly distributed within the workload
Tinj = [random.uniform(Tinit, Tinit+Tw) for i in range(N)]
#link injection instants to the closest checkpoint
linked_cp = [max([c for c in checkpoints if (t-c)>=0]) for t in Tinj]
#compute distance to checkpoint for each injection run
delta = [Tinj[i] - linked_cp[i] for i in range(N)]
#compute observation time for each injection run
Tobs = [Tinit+Tw-Tinj[i] for i in range(N)]
#compute the speed-up factor
SCC = (N*(Tinit + Tw)) / (Tinit + sum([delta[i]+Tobs[i]+Trd for i in range(N)]))
return(SCC, sum(delta)/len(delta))

N = 10000
Tw = 100.0
Trd = 0.0
Tinit = 5*Tw
for M in range(1,50,2):
 SCC, mean_delta = Speedup(N, Tinit, Tw, Trd, M)
 print('{0} ; {1:.2f} ; {2:.2f}'.format(M, SCC, mean_delta))

Listing 6.2: Model for estimating the checkpointing-related speed-up under uniformly
distributed injection time instants (executed by python)

(a) (b)

1

3

5

7

9

11

0 10 20 30 40 50

Sp
ee

d
-u

p
 f

ac
to

r
(S

C
C

)

M (number of checkpoints)

SCC(Tinit=0) SCC(Tinit=1*Tw) SCC(Tinit=5*Tw)

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

m
ea

n
 d

is
ta

n
ce

 t
o

 c
h

ec
kp

o
in

t
(δ
)

M (number of checkpoints)

delta(Tinit=0) delta(Tinit=1*Tw) delta(Tinit=5*Tw)

Figure 6.11: Speed-up factor (a) and mean distance to checkpoint (b), estimated under
increasing number of checkpoints (1→50) and increasing duration of initialization interval

First of all, a significant speed-up is achieved by checkpointing of the initializa-
tion interval, especially under Tinit � Tw. Analytically this can be seen from
Equation 6.4 by assuming that all experiments start from the same checkpoint
at the beginning of the workload interval (M = 1): SCC = N×(Tinit+Tw)

Tinit+N×Tw
. Under

the increasing number of clusters M the speed-up grows will slowdown, being

129

Chapter 6. Contributions in Improvement of Fault Injection Performance

generally limited by a factor of two. Under M = 20 it reaches roughly 90% of its
maximum value. Further increase of M provides a very small additional benefit,
at a cost of significantly increasing number of checkpoints. As Fig.6.11-B shows,
this is correlated with the mean distance to the closest checkpoint δ, which is
rapidly reduced until M reaches a value of 20. Accordingly, in case of a uniform
distribution of injection instants, splitting the workload interval into 20 clusters
can be seen as a reasonable trade-off between attainable speed-up and the storage
footprint.

FPGA-based frameworks usually lack of the instrumental support for checkpoint-
ing management. Thus, FFI tools themselves should be in charge of capturing
and restoring the DUT state. Several works in the domain [67][92][143] provide
basic instructions for capturing and recovering the DUT state in FPGA.

The general idea of FPGA checkpointing concerns with making a snapshot of
state elements, such as CLB registers, user memories (BRAM and LUTRAM),
and registers within the DSP and BRAM slices. Most state elements in the
Xilinx design flow are attributed to changeable CM cells, that can be localized
by means of the logic allocation file (*.ll). At the beginning of each time cluster
within the workload interval the DUT clocking should be paused, and the capture
command should be issued to the FPGA configuration controller, in order to copy
the state of all FPGA registers into the corresponding INIT/readback cells [67].
All the data frames with state elements can be subsequently read back from the
configuration memory. Finally, the captured frames, representing the DUT state
at the time TK , can be enclosed into the configuration sequence, and the latter
can be annotated with a time stamp TK .

The resulting partial bitstream can be directly supplied to the PCAP/ICAP re-
configuration interface, in order to recover the DUT state. An additional bit-
stream modification could be required to properly recover the BRAM content,
as it is pointed out by [67]. This bitstream can be maintained as dataset in the
RAM, or stored into a file on the external storage (e.g. SD card).

The collected set of checkpoints can be used to speed-up FFI experiments. How-
ever, it should be noted that checkpoint recovery time may exceed the time re-
quired to simply reset the DUT and re-run it from scratch until the fault injection
time. Accordingly, before injecting faults into the target system, the checkpoint
recovery time TREC should be measured, and at the beginning of each injection
run the injection time instant TINJ should be compared to the checkpoint recov-

130

6.4 Discussion

ery time, in order to determine whether checkpoint recovery could provide any
speed-up benefit with respect to resetting and warming-up the DUT from scratch.

SCC_FFI = N×(Tinit+Tw+Trd)
(N−NREC)×(Tinit+Tw+Trd)+

∑NREC−1
i=0

(Tobs_i+δi+TREC+Trd)
(6.5)

Accordingly, if denoting the number of times the DUT is recovered from the
checkpoint by NREC , the Equation 6.5 can be used to estimate the FFI speed-up
attainable by means of checkpointing. By measuring the TREC for a particular
DUT and taking it into account in the model in Listing 6.2, the attainable speed-
up can be estimated similarly to the SBFI case.

It should be noted, however, that implementing FPGA checkpointing in practice
should address some additional problems, like those related to the recovery of
those registers that do not appear in the bitstream (e.g. DSP registers and BRAM
pipeline registers), synchronization in case of multiple clock domains, as well as
ensuring safe interruption of tasks and transactions (atomic IO transactions) [12].
In addition to all this, the main problem is recovering the state of elements that
are outside the FPGA fabric, like shared RAM memory, ARM cores, etc. These
problems are out of the scope of this thesis, thus this section should not be treated
as a complete solution for FPGA checkpointing, but rather as a general model to
analyse the potential FFI speed-up.

6.4 Discussion

The existence of various state of the art speed-up solutions (discussed in Section
3.5), may lead the reader to the question of how they are related and compared
to the proposed techniques. Their comparison from the viewpoint of attainable
speed-up benefit would require to consider particular benchmark design and in-
jection platform. This analysis is accomplished in Chapter 9 (experimental eval-
uation). Nevertheless, it is worth mentioning several general remarks regarding
the usefulness of the proposals within the context of existing techniques.

The profiling may be compared with the workload-dependent fault collapsing ap-
proach described in [24]. Both solutions allow the identification of ineffective
faults, whose effects (masking) can be determined without fault injection. How-
ever, they solve the problem from different perspectives. The approach in [24]
identifies ineffective faults along with fault equivalences by analysing the prece-
dence of read and write operations in RT-level memories. Whereas the profiling
approach proposed in this chapter identifies ineffective faults at the implemen-

131

Chapter 6. Contributions in Improvement of Fault Injection Performance

tation level, specifically targeting the combinational logic implemented on LUTs.
Despite a LUT can be seen as a read-only memory element, it is in fact an FPGA-
specific combinational primitive. To detect the accesses to the LUT-related CM
cells it takes into account a number of implementation and technology-specific
factors, including (i) mapping of LUT cells to configuration memory, (ii) LUT
combining, (iii) filtering or propagation of glitches. Furthermore, the profiling
approach not only removes the ineffective fault configurations (inactive CM cells)
from the fault list, but also prioritizes the criticality of the rest of faults through
the measured activity time. Section 9.2 will provide the experimental support for
the hypothesis that the criticality of CM cell increases as its activity time does.

The iterative statistical fault injection approach is, in fact, a further development
of the standard statistical injection formalized in [100]. The main difference of
these techniques is the paradigm of scheduling the injection runs. The classic
approach makes a conservative assumption regarding the estimated metrics (i.e.
the probability of failure that maximizes the sample size), and after samples
this (overestimated) number of faults. The iterative approach on the contrary
dynamically extends the sample until reducing the error margin to the required
threshold. Replacing the standard statistical approach by the iterative one, would
provide an additional speed-up as quantified by Equation 6.1.

The proposed mixed and multi-level injection approaches can be compared to the
multi-level injection presented in [99]. The latter adapted the multi-level injection
paradigm to simulate the effects of faults in the finite state machines (FSM). The
proposed approach on the one hand, adapted the multi-level paradigm to any type
of registers; on the other hand an alternative mixed-level optimization allows to
speed-up the fault simulation for the rest of implementation primitives as well.
Another important difference is that the former relies on the use of mutants to
inject the faults, while the proposal is based on the use of simulator commands,
being low-intrusive. Additionally, the proposed approach allows quantification of
attainable speed-up on the basis of model properties.

The checkpointing proposal, although relying on the use of a well-known concept
[129], remains interesting from a practical viewpoint for SBFI and FFI. Particu-
larly, the proposal defines a model for estimating the attainable speed-up under
different workload parameters, and can be used to find a trade-off between the
number of clustering checkpoints (storage footprint) and the speed-up gain.

Finally, most speed-up techniques are rather complementary than alternative,
i.e. they can be used all at the same time for obtaining a cumulative speed-
up gain. For instance, in addition to the techniques proposed in this chapter,
multiprocessing can be used to speed-up the experiments even further.

132

6.5 Conclusions

6.5 Conclusions

Enabling the dependability assessment of implementation-level models requires to
improve as much as possible the performance of fault injection experiments. On
the one hand, a high number of logic primitives, which can be targeted within the
detailed models, combined with complex workloads, leads to huge fault lists. On
the other hand, the high simulation effort of implementation-level models leads
to very long run times. This chapter has proposed four techniques to improve in
practice the performance of SBFI/FFI experiments from these two perspectives,
namely: (i) reducing list of faults to consider while keeping the statistical rep-
resentativeness of derived metrics, and (ii) accelerating each individual injection
run. The benefits and limitations of proposed techniques are summarized below.

First, the fault list for implementation-level models can be reduced by profiling
the switching activity of it’s constituent macrocells. Particularly, when targeting
the models in the basis of FPGA libraries, the profiling of LUTs allows to locate
those cells of underlying configuration memory which remain inactive for a given
workload. All such inactive CM cells can be omitted from the fault list, while the
rest of them can be prioritized in the fault list according to their activity time.
The attainable performance gain of this optimization is directly proportional to
the percentage of inactive (filtered-out) CM bits within the whole set of essential
bits. The main limitation of the proposed profiling technique is that it currently
targets only LUT-specific CM cells. Despite LUTs cover the major part of the
combinational logic in an FPGA, they account for less than 30% of CM cells. Thus
a future work should extend this approach to a wider set of components (MUXes,
DSPs, routing resources, etc.). Furthermore, to provide the actual SFBI/FFI
performance gain, the profiling itself should be implemented in a very efficient
way, so that it would require less time than the filtered-out injection runs.

After filtering the fault list through profiling, it may still remain too huge for
exhaustive experimentation. In this case, the iterative statistical sampling is
employed to reduce it to an affordable size, by assuming a certain error margin in
the derived metrics. In comparison to the standard sampling approach, it leads
to a much smaller sample size. The gain may be particularly high when the
estimated metric is far from the conservative assumption, which is quite common
for critical designs, whose estimated failure rates are expected to be low. The
iterative statistical approach by itself has the same limitations as the standard
statistical fault injection: it is applicable only for the estimation of aggregate
dependability metrics (expressed as the sample proportion), such as failure rate.
As already mentioned, the iterative sampling is expected to provide a significant

133

Chapter 6. Contributions in Improvement of Fault Injection Performance

benefit with respect to the conservative approach only when the estimated metrics
are very low or very high (far-distant from 50%).

Speeding-up of individual injection runs encompasses the optimization of model
complexity and the reduction of simulation time overheads. The complexity of the
model is reduced by mixed-level and multi-level injection techniques. Mixed-level
technique integrates the targeted module at implementation level into RTL model
of the rest of design, providing a speed-up gain roughly equal to the proportion
of targeted unit in the entire design. The multi-level model traces the sequential
logic from implementation level back to source RTL structures in order to dis-
tribute the faultload between different representation levels. In such a way, the
simulation cost is significantly reduced, while most synthesis and implementation
logic optimizations are taken into account. Both mixed-level and multi-level tech-
niques are limited to SBFI experiments.

Finally, the clustering checkpointing technique provides a significant speed-up in
the case of long DUT initialization time. In the absence of initialization time, the
attainable speed-up is strongly conditioned by the faultload. Particularly, in case
of uniform distribution of faults along the workload, the speed-up is limited by a
factor of two, and 90% of this speed-up gain is achieved by splitting the workload
time in 20 clusters. The rest 10% gain is achieved by a significant (generally un-
limited) increase in the number of checkpoints (storage footprint). Furthermore,
in case of FFI the checkpointing is efficient only under long workloads, when the
checkpoint recovery becomes faster that reinitializing and rerunning the DUT
from scratch.

134

Chapter 7

Contributions in
Dependability-aware Design

Space Exploration

Optimal tuning of design parameters (offered by EDA tools and IP cores) con-
cerns with the design space exploration (DSE), which is a very resource-intensive
process in the context of dependability. Its feasibility is determined by two main
factors: i) effectiveness of the selected exploration strategy, measured as the total
number of configurations that should be sampled from the design space, and ii)
fault injection effort required to evaluate the dependability of each sampled config-
uration. This chapter proposed two solutions for the time-efficient dependability-
aware DSE. Section 7.1 introduces the proposals in the context of exiting DSE
approaches. After that, Section 7.2 describes a DSE approach that reduces the
experimentation effort by minimizing the number of sampled configurations by
means of design of experiments (DoE) methodology. Section 7.3 then proposes
an iterative selection technique that allows to efficiently adapt the genetic algo-
rithms (GA) for dependability-aware DSE. Finally, Section 7.4 summarizes the
advantages and limitations of the proposed approaches.

135

Chapter 7. Contributions in Dependability-aware Design Space Exploration

7.1 Introduction

Design space exploration strategies aim at determining the (sub)optimal solutions
in the design space by evaluating the minimum possible number of individuals
(configurations of design parameters). According to [128], existing DSE strategies
are based on i) heuristics, e.g. simulated annealing; ii) genetic algorithms (GA),
iii) statistical techniques with domain knowledge, e.g. techniques relying on a
Markov Decision Process, and iv) statistical techniques without domain knowl-
edge, like those usually based on the design of experiments. The efficiency of each
strategy is context-dependent.

Simulated annealing (SA) and genetic algorithms (GA) are two very popular
optimization approaches, relying on iterative convergence to (sub)optimal so-
lution from the initial random points in the design space. The former (SA)
moves through the design space in the direction which improves the solution
(hill-climbing), combining it with random probabilistic moves in order to prevent
trapping in local optima [1]. The latter (GA) converges towards the optimal so-
lution by iteratively applying the selection, crossover and mutation operators to
the population of competing individuals (configurations). The more iterations
are carried out, the closer to the global optimum become the selected individu-
als. The usage of conventional GA for the DSE problems within the HW design
flow has been formalized in [49], which has focused on optimization of VLSI cell
placement. DSE proposals dealing with multicriteria optimization often combine
the conventional GA with Pareto optimization, in order to determine a set of
non-dominated solutions, as for instance it has been proposed in [71] to study a
trade-off between the performance and area results of high-level synthesis.

GA-based solutions often calibrate the selection, crossover and mutation processes
in order accelerate the convergence towards the global optima. Nevertheless, their
experimentation effort still may be prohibitive in dependability domain, since the
required number of GA iterations (evaluations) is a-priori unknown due to the
stochastic nature of involved processes. Even though the dependability evaluation
of each individual can be accelerated by adopting the techniques in Chapter 6,
the resulting performance still may be insufficient in the context of dependability-
driven DSE.

It has been shown in [17] that the usage of domain knowledge to setup the DSE
as a discrete-space Markov Decision Process reduces drastically the number of
required evaluations. However, when considering the problem of tuning the EDA
toolkits, those strategies requiring domain knowledge become less useful since the
impact of available parameters on the dependability of resulting implementations
is rarely known a-priori.

136

7.1 Introduction

Statistical strategies without domain knowledge are much more flexible. They rely
on the Design of Experiments (DoE) methodology to sample the design space in a
statistically representative way, and on its basis quantify the contribution of each
optimized parameter towards the implementation goals. Existing proposals in
this field usually focus of PPA attributes [146], neglecting the impact of optimized
parameters on dependability. Adaptation of these strategies to the dependability
context requires to care about the pertinence of selected DoE technique [114].
The selected DoE should minimize as much as possible the number of sampled
individuals, while maximizing the ability to observe all significant effects of tuned
design parameters.

Being well-balanced and orthogonal, fractional factorial designs are the most rig-
orous DoE today. They allow to estimate the parameters’ main effects, as well
as their interactions without confounding the estimators. In practice the lowest-
resolution factorial designs are used for screening of main effects, since observation
of interactions significantly increases the design (sample) size: the higher is the
order of interactions – the bigger the sample required. An important limitation
of orthogonal designs is that they are not applicable to irregular design spaces,
i.e. those containing incompatible configuration of parameters. Any configura-
tion that is inaccessible for evaluation invalidates the design orthogonality and
its statistical representativeness. Furthermore, orthogonal designs in practice are
rarely inferred (by off-the shelf statistical tools like Matlab) for parameters with
more than two treatment levels, while reasonable quantification of parameters at
two levels becomes less feasible in modern design flow.

This chapter addresses the aforementioned limitations of DoE-based and GA-
based DSE, which they expose in the dependability context. First of all, Section
7.2.2 defines a dependability-aware DSE approach based on fractional factorial
designs, which is the most rigorous exploration approach for the regular design
spaces with two-level factors. After that, Section 7.2.3 proposes a DoE-based
approach which handles irregular designs spaces with multilevel parameters by
means of more flexible (but less rigorous) D-optimal designs. Thanks to the aug-
mentation capability of D-optimal deigns, the DSE is deployed as iterative process
starting from the smallest possible design, which after checking the quality of de-
rived results is refined until satisfying the predefined quality indicators. Finally,
Section 7.3 proposes an iterative dependability-driven selection algorithm, which
further develops the idea of iterative statistical fault injection in application to
the GA-based DSE. By dynamically adapting the confidence intervals of depend-
ability estimates to the actual diversity in population, it allows to confidently
select the best (most robust) individuals from the population by smallest possible
number of injection runs.

137

Chapter 7. Contributions in Dependability-aware Design Space Exploration

7.2 DSE based on the design of experiments

This section proposes two DoE-based DSE approaches aiming at dependability-
aware optimization of EDA/IP parameters. The first approach relies on fractional
factorial (orthogonal) designs, and handles regular design spaces with two-level
factors (e.g. LUT combining: enable/disable, optimization effort: high/low, etc.).
Another approach relies on the D-optimal designs (which can be dynamically
repaired and augmented, while preserving their optimality), and allows to ex-
plore the irregular design spaces with multilevel parameters by minimum possible
number of experimental trials. Both approaches are supported by the DAVOS
toolkit, which is described in detail in the next Chapter 8. Before describing
the approaches, this section summarizes the background on the used statistical
techniques.

7.2.1 Background on design of experiments and its statistical
analysis

A DSE experiment that exhaustively evaluates each individual in the design space
is described by a full factorial design, in which every setting of every factor appears
with every setting of every other factor. Factors (Xi) are those process inputs
(in this case EDA/IP parameters) that are deliberately changed to observe their
effect on the response variables (Vj) (resulting PPAD attributes). As previously
discussed, estimating the response variables even for a single combination of fac-
tors settings is a very time-consuming problem in dependability domain, and the
exploration of a full factorial design becomes unfeasible with increasing number
of factors.

A selected subset of factors’ settings form a fractional factorial design, which
considerably reduces the design space and, thus, the time required to estimate
the effect of those factors. The fractional factorial design of experiments exploits
two main principles [172] [50] to reduce the design space without affecting the
validity of drawn conclusions: i) sparsity of effects, which states that the number
of relatively important effects and interactions in a factorial design is small, and
ii) hierarchical ordering, which states that lower order effects are more likely to
be important than higher order effects, main effects are more likely to be im-
portant than interactions, and effects of the same order are equally likely to be
important. The combinations of factors settings should be carefully chosen so
the design is both balanced (the combination of factors settings for any group of
factors have the same number of observations) and orthogonal (the effects of any
factor balance out (sum to zero) across the effects of the other factors) [123]. Fur-
thermore, it is necessary to take into account the resolution of the design, which

138

7.2 DSE based on the design of experiments

describes the degree to which estimated main effects are aliased (or confounded)
with estimated low-level interactions [83]. The resolution of a design is one more
than the smallest order interaction that some main effect is confounded with.
Accordingly, to precisely determine the contribution of each factor towards the
implementation goals, a fractional factorial design with resolution IV should be
considered, so main effects are not confounded among one another nor with any
two-factor interaction.

Fractional factorial designs are commonly denoted as IK−PR , where I is the number
of possible settings (levels) of each factor, K is the number of factors, R is the
resolution of the design, and 1/IP is the size the fraction with respect to a full
factorial design. According to [113], ‘two-level designs (I = 2) should be the
cornerstone of industrial experimentation for product and process development,
troubleshooting, and improvement.’ In fact, many EDA parameters present a
dual nature (‘Yes/No’, ‘True/False’, ‘Enable/Disable’), whereas some others can
be modelled as a maximum and minimum threshold (‘0%/100%’). Nevertheless,
there exist some situations in which it could be necessary to consider factors
at more than two levels (‘Normal/High/Fast’, for instance), at the cost of an
even larger design space. If all factors are quantitative, then two-level designs
with centre points should be employed [113]. Otherwise, existing algorithms,
like the one proposed in [57], can be used to generate the required mixed-level
fractional factorial design. In practice, though, orthogonal multilevel designs are
not generated by off-the-shelf statistical suites (like Matlab), but are subject of
custom implementation for a particular use-case.

The analysis of variance (ANOVA) is used to determine whether there are sig-
nificant differences between the means of two or more independent (unrelated)
groups [123]. The null hypothesis to be tested is that there is no difference in the
population means of the different levels of a given factor. This procedure splits
the total variation in the response variable into a part due to random errors (sum
of squares of error) and a part due to changes in the levels of the selected factor
(sum of squares of treatment). The degrees of freedom are split in the same way,
and are used to compute the mean square for treatments and errors. If the null
hypothesis is true, then both mean squares estimate the same quantity and its
ratio (F-test) should be close to 1. If the probability (p-value) of an F value being
greater than or equal to the observed value is less than or equal to the significance
level (α, usually 0.05), then the null hypothesis is rejected, meaning that setting
a given factor to one level or another has a statistically significant impact in the
response variable observed.

Regression analysis is a statistical technique that can be applied in this context
to estimate the parameters of an equation relating a particular response variable

139

Chapter 7. Contributions in Dependability-aware Design Space Exploration

to a set of factors. In such a way, it is possible to predict the value of the
response variables for the whole design space even when only just a fraction has
been actually explored. A linear regression model assumes that the relationship
between the response variable and the factors is linear (V = β0 + β1X1 + . . . +
βnXn) [58]. The coefficient of determination (R2) explains the proportion of the
variance in the response variable that can be explained by the factors, i.e. how
well the model fits the data (values for the response variable obtained through
the fractional factorial design). In case the linear regression model does not
adequately fit the data, then a more complex generalized linear regression model
can be used. The generalized linear regression can be used to predict responses
for both variables with discrete distributions or which are not linearly related to
the predictors.

7.2.2 Exploring regular design spaces by means of fractional
factorial designs

All the previously described statistical techniques are the cornerstones of the
proposed method, whose flowchart is depicted in Figure 7.1. It comprises four
main steps: (i) sampling the configurations from the design space through DoE,
(ii) evaluation of sampled configurations, (iii) statistical analysis, and (iv) multiple
response variable optimization.

At the initial (DoE) step each EDA/IP parameter is denoted as a factor Xi with
I treatment levels. As previously explained, this approach focuses on two level
fractional factorial designs (I = 2) since they can be generated and analyzed by
standard off-the-shelf tools, and present an affordable size. The factors along
with their selected treatment levels are specified by the designer within the XML-
formatted DAVOS configuration file (as detailed in the next chapter 8).

To estimate the precise contribution of each factor towards PPAD goals, the reso-
lution of the experiment should be at least IV (the effects of the main factors are
not confounded with any two-factor interactions). Resulting fractional factorial
design forK two-level factors with resolution IV is denoted as 2K−PIV , and consists
of aK×2K−P table where each cell (Lc,i) defines the setting of each factor (Xi) at
the given treatment combination (c). Predefined designs for up to 11 factors can
be found in [29] and [113], whereas MATLAB’s Statistics and Machine Learning
Toolbox [158] can be used to generate two-level fractional factorial designs with
2K−P experiments and a given resolution using the Franklin-Bailey algorithm.
For instance, a 212−7

IV design can be obtained by running the MATLAB code from
Listing 7.1. The resulting table is stored in a csv-formatted file. This step of

140

7.2 DSE based on the design of experiments

 <Factor name = “X01” parameter = "opt_mode" phase = "Synthesis">
 <setting factor_value = "0" parameter_value = "Speed" />

 <setting factor_value = "1" parameter = "Area" />
 </Factor>

 <Factor name = “X20” parameter = "resource_sharing" phase = "Synthesis">
 <setting factor_value = "0" parameter_value = "NO" />

 <setting factor_value = "1" parameter_value = "YES" />
 </Factor>

....................................

Quantify at I=2 levels

EDA/IP parameters

Design of Experiments
(DoE)

 X01 X02 … X30
Conf_01 1 0 ... 1
Conf_02 0 1 … 1 resolution

Implementation and
PPA evaluationHDL design

Dependability evaluation
(fault injeciton)

configurations

2K-P samples for response variables Vi

PPA

D

Multiple regression
analysis

Regression models
Vi=Const +β1X1 +β2X2…

Optimization
MCDMOptimization goals

Best configuration of EDA/IP parameters {X}
wrt. optimization goals

Fractional factorial design 2R
K-P

ANOVA

Significant effects

Figure 7.1: DSE flow to optimize EDA/IP parameters though the fractional factorial design
of experiments

DSE flow is automated by the DoE tool, which forms a part of DAVOS decision
support core (see Fig.8.1).
1
2
3
4
5
6
7
8
9
10

factors = 'a b c d e f g h i j k l';
aliases = {'X1' 'X2' 'X3' 'X4' 'X5' 'X6' 'X7' 'X8' 'X9' 'X10' 'X11' 'X12'};
Resolution = 4; %main effect and two-factor interactions without confounding
FractionSize = 5; %design of 32 configurations

generators = fracfactgen(factors, FractionSize, Resolution);
[dff, confounding] = fracfact(generators);

writetable(cell2table(num2cell(dff), 'VariableNames', aliases), ...
 'FracFactDesign.csv', 'WriteRowNames', true);

Listing 7.1: Fractional factorial design generation with MATLAB

On the second (evaluation) step each sampled configuration from the factorial
design is used to configure the IP cores within the HDL design, and EDA tools
(synthesis, map, place-route) used in the implementation flow. Each EDA tool
executes a parameterized shell/TCL script, whose parameters are replaced by
the actual values from the input configuration. The implementation process may

141

Chapter 7. Contributions in Dependability-aware Design Space Exploration

be iterative in case of optimizing maximum achievable clock frequency (perfor-
mance attribute) through the gradual strengthening of timing constraints. After
implementing each design configuration, its PPA attributes are evaluated using
the vendor-specific EDA tools: (i) performance is estimated through static tim-
ing analysis, (ii) area is retrieved from utilization reports in terms of the number
of used BELs, (iii) power consumption is estimated by the power analysis tools
with the prior simulation of switching activity. Finally, each implemented con-
figuration is supplied to either SBFI or FFI tool for evaluation of dependability
attributes. This evaluation step is automated by the DAVOS PPAD evaluation
engine, described in Section 8.4.2.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Factors = {'X01', 'X02', 'X03', 'X04', 'X05', 'X06', 'X07', 'X08', 'X09', 'X10', 'X11', 'X12'};
RespVar = 'FIT'
sample = readtable('Sample.csv');
Threshold = 0.9

%ANOVA
[prob_F, detail]= anovan(table2array(sample(:, RespVar)), table2array(sample(:,Factors)), ...

 'model','linear', 'varnames', Factors);

%select factors with statistically significant effects
SignFactors = {}
for i = 1:(size(prob_F, 1))
 if(prob_F(i) < 0.05)

 SignFactors{end+1} = Factors{i}
 end
end

%infer generalized linear regression model (significant factors)
Model= fitglm(sample(:,[SignFactors, RespVar]), 'linear' , 'ResponseVar', RespVar, ...

 'CategoricalVars', SignFactors, 'Distribution', 'normal')

%try to improve the determination coefficient by including interactions (all factors)
if(Model.Rsquared.Adjusted < Threshold)
 Model= stepwiseglm(sample(:,[Factors, RespVar]), 'interactions' , 'ResponseVar', RespVar, ...

 'CategoricalVars', Factors, 'Distribution', 'normal')
end

%export resulting model to csv
writetable(Model.Coefficients,'Result.csv','WriteRowNames',true);

Listing 7.2: N-way ANOVA to identify the significant effects and regression modeling to
relate the response variables to the factors

On the third (analysis) step the collected sample is used for ANOVA analysis
and for regression modeling. The ANOVA is used to determine whether each
considered factor Xi statistically significantly contributes to each PPAD response
variable V . As previously stated, this is the case when the obtained p-value is
below the significance level (usually 0.05). Those p-values can be easily computed
by the MATLAB’s Statistics and Machine Learning Toolbox [158], by using the
anovan() function. By comparing the p-value of each factor to the significance
level (0.05), the statistically significant factors’ effects can be selected, as exem-
plified in Listing 7.2.

142

7.2 DSE based on the design of experiments

Subsequently, a generalized linear regression model is inferred, which allows to
predict the value of the response variables for any setting of EDA/IP parameters.
The eligible distribution is ’Poisson’ for discrete response variables (utilization
of BELs, number of critical bits), or ’Normal’/’gamma’/’inverse gaussian’ for
continuous variables (frequency, consumption, failure rate). It is usually worth
to consider only the significant factors (previously determined by ANOVA) at
regression modeling. Otherwise (when all factors are considered), the statistical
significance of the obtained model terms should also be assessed, by checking
the p-value to be less than the significance level (usually 0.05). Likewise, the
coefficient of determination R2 denotes the proportion of the variance in the re-
sponse variable that can be explained by the factors. When the quality of inferred
model is considered insufficient to predict the responses (an R2 threshold should
be defined), a more complex model is computed instead, which takes into account
the interaction terms (the model type is changed from ‘linear’ to ‘interactions’).
The used stepwiseglm() function iteratively evaluates the benefit of appending the
terms to the model, and keeps them only when they improve the determination
coefficient of resulting model.

Finally, on the optimization step, the inferred regression models are used to com-
pute the expected PPAD attributes for the whole set of 2K possible configuration
of EDA parameters. This enables to determine the best configurations of EDA
parameters attending to the given implementation goals. In the particular case
of implementing a design on FPGA, those implementation goals are usually con-
flicting, as for instance increasing the clock frequency is likely to increase also the
dynamic power consumption. In such cases, when there is no information about
the particular preferences of the designer, it is sufficient to provide the Pareto op-
timal set (or Pareto frontier). It consists of all those configurations in which it is
impossible to improve a response variable without making worse another one. As
no subjective information is provided, all of those configurations are considered a
good solution towards optimizing the implementation goals.

However, if the designer formalizes the preferences about which implementation
goal is more important than other (usually in the form of weights), then it is pos-
sible to estimate the best configuration of EDA parameters according to differ-
ent multi-criteria decision making (MCDM) methods. Although several different
MCDM methods exists, the simplest Weighted Sum Method (WSM) [160] can
be generally used to combine the different response variables into a single score,
accounting for the quality of the implementation according to the designer’s goal.
It must be noted that, in case of dealing with response variables expressed in dif-
ferent units, it is necessary to normalize (usually between 0 and 1) the predicted
values prior to computing the WSM. In this case, Equation 7.1 can be used to

143

Chapter 7. Contributions in Dependability-aware Design Space Exploration

normalize predicted response variables according to whether they should be inter-
preted as the-higher-the-better values, like clock frequency, or the-lower-the-better
ones, like power consumption. Equation 7.2 shows how to compute the final score
S according to the weights (ω) defined by the designer for each predicted response
variable after normalization (V ∗′).

V ∗
′

=
{
V ∗/V ∗MAX , if the-higher-the-better response variable
V ∗MIN/V ∗, otherwise

(7.1)

where:

V ∗MAX : maximum V ∗ across all configurations

V ∗MIN : minimum V ∗ across all configurations

S =
M∑
i=1

ωi × V ∗
′

i (7.2)

where:

M : number of response variables

The configuration obtaining the highest score will be that optimizing the imple-
mentation goal according to the designer’s preferences.

7.2.3 Exploring irregular design spaces through iterative refinement
of D-optimal designs

The valuable feature of orthogonal experimental designs is that they allow es-
timation of main effects and factor’s interactions without confounding. On the
other hand, they also expose two limitations. First of all, the tuning of EDA/IP
parameters often deals with irregular design spaces, that contain incompatible
combinations of parameters (which are inaccessible for evaluation). Encountering
these combinations within the fractional factorial designs invalidates its balance
and orthogonality, degrading its statistical representativeness. Second, parame-
ters in practice often can’t be reasonably quantified at two levels. Despite the
existence of proposals for generation of fractional factorial designs for multilevel
parameters [57], these algorithms are non-standard and are not supported by off-
the-shelf statistical suites. Furthermore, resulting designs still may be quite huge,

144

7.2 DSE based on the design of experiments

thus exceeding the experimentation time budgets (especially in dependability-
aware context).

Optimal designs are suitable to handle these challenges. In general, this type of
designs requires less number of experiments than non-optimal ones to estimate
the same set of parameters with the same precision. From a statistical viewpoint,
parameters are estimated without bias and with minimum variance with respect
to a selected statistical criterion, which is always related to the variance-matrix of
the estimator. For instance, D-optimal designs maximize the determinant of the
variance-matrix defined by selected experiments. From a practical viewpoint, this
means that D-optimal designs select experiments with the goal of maximizing the
coverage of the design space under exploration. This is a feature of the utmost
interest when the experimentation time is limited and the sample cannot be as big
as one may want. In the particular case of EDA/IP tuning, d-optimal designs are
well suited for i) the consideration of EDA toolkits offering multi-level parameters,
ii) the replacement of invalid configurations by new (valid) ones without affecting
the statistical significance of the ongoing experimentation and, when necessary,
iii) the iterative improvement of the statistical representativeness of estimators
on the basis of adding new experiments to already executed ones. Further details
about the d-optimality of optimal designs can be found in [60].

Multiple Linear Regression

design

Determination
Coefficient

Optimal configurations

Evaluation of input
configurations

Invalid configurations

Augment D-optimal design

Remove invalid configs
constrain design

Best resulting configurations for each PPAD

D-optimal design

Parameters under study X1..XN

Optimization

Evaluation of (sub)optimal
configurations

Invalid configurationsDerive suboptimal
configurations

Regression models

y

< threshold

n

≥ threshodDetermine configurations with
best possible PPAD responses

from regression model

y

n

Second best response
from regression model
(test each parameter)

Figure 7.2: Iterative D-optimal design-based DSE

145

Chapter 7. Contributions in Dependability-aware Design Space Exploration

The flowchart of proposed iterative methodology is depicted in Fig.7.2. Simi-
larly to the previous approach, the considered parameters are denoted as factors
X1...XN in the factorial design space, but this time they can be quantified at any
number of treatment levels. The degrees of freedom of each parameter is one less
that its number of treatment levels, e.g. a parameter with 4 treatment levels has
3 degrees of freedom.

The D-optimal design is generated attending to the parameters offered by the
toolkit under evaluation and their degrees of freedom. The minimal size of
a design is the sum of degrees of freedom of all the parameters, plus one. If
the EDA toolkit offers, for instance, 4 parameters, two of them with 2 degrees
of freedom and the other two with 3, then the design must have, at least, 11
experiments. There exist many statistical tools, like the Matlab’s Statisticals
and Machine Learning ToolboxTM , to obtain a D-optimal design of experiments.
Matlab’s function cordexch(Nfactors,TreatementLevels,Nruns,model, . . .) uses a
coordinate-exchange algorithm where i) the factors to consider and their treat-
ment levels are specified by the value Nfactor and the vector TreatmentLevels,
respectively, ii) the number of experiments in the design is limited by Nruns, and
iii) the type of regression model that will be later used for inference (purely linear,
quadratic or it can consider interactions among parameters) is defined by model.

Similarly to the previous approach, the resulting set of design configurations is
evaluated by the DAVOS PPAD Evaluation Engine. However, some of these con-
figurations may contain specific interactions among parameters that may prevent
the actual implementation of the design or lead to implementations that do not
meet the required constraints. These invalid configurations must be excluded
from the design, and a set of new configurations must be appended to repair it.
Following with the Matlab example, the number of experiments of the D-optimal
design can be augmented by using the daugment(. . . ,filter) function, where filter
specifies a callback function, which filters-out the invalid configurations from the
new design. An interesting feature of D-optimal designs is that they can be re-
paired on the basis of the experiments already carried out. As a result, new
designs will contain all valid configurations exercised so far.

The collected sample is used to derive generalized regression models for each
response variable. For each multilevel categorical factor resulting model includes
as many terms as the number of degrees of freedom of that factor, i.e. for each
factorXi withKi treatment levels [0, 1, . . . , Li−1] the linear predictor will include
a component (Xβ)i = βi,1(Xi = 1) + βi,2(Xi = 2) + ...βi,Li−1(Xi = Li − 1).
The complete linear predictor is calculated as Xβ = Intercept +

∑N
i=1(Xβ)i,

where Intercept is a constant corresponding to the default setting 0 of all factors.

146

7.2 DSE based on the design of experiments

The response variable is consequently calculated using the mean function, whose
canonical form depends on the assumed distribution or response variable: (i)
V = Xβ (identity) for normally distributed variables, (ii) V = 1/Xβ in case of
gamma distribution, (iii) V = exp(Xβ) in case of Poisson distribution, etc.

A compact yet statistically representative regression model can be derived using
stepwise regression, implemented by the Matlab function stepwiseglm(. . . , Crite-
rion=Deviance, Penter=Threslod). Starting by an intercept term, it iteratively
appends (removes) those terms to the model, whose p-value of an F-test of the
change in the deviance that results from adding (removing) the term is less than
a Threshold (assumed 0.05 by-default).

The determination coefficient (R2) of each inferred regression model is then com-
puted to check the percentage of the variability of estimated PPAD features that
is explained by the model. A value of R2 = 0.7 implies that the model explains
70% of the variability of the estimated feature, while a value of 100% means that
the model completely explains the variability of that feature, i.e. it provides its
exact value. So, as previously, a threshold must be defined in order to guide
the acceptance or rejection of the computed regression models. Consequently,
accepted models will be those explaining PPAD features with, at least, the es-
tablished percentage threshold. The rejection of a model means that it does not
explain the estimated feature with enough accuracy, thus the size of the design
must be augmented to get a more precise estimation. The proposal is to augment
the initial size of the D-optimal design each time a model is rejected in small
portions (by a number of configurations which can be evaluated in parallel). Ac-
cordingly, new configurations must be selected and evaluated within an iteratively
repeated process until the computed regression model meets the desired accuracy.

Once all regression models for all PPAD features have been inferred, it is possible
to analytically determine which configuration optimizes each of these features. In
case of pure linear models, this multi-objective optimization can be carried out by
simply setting each factor to the level providing the best improvement according
to the regression model. If the interaction model is considered, then one can
iterate through the whole design space calculating the model response for each
configuration.

It must be noted that, despite taking care of removing all invalid configurations
from the D-optimal design, nothing guarantees the validity of optimal configu-
rations. This is not surprising since they may have not been exercised during
experimentation. So, before accepting an optimal configuration, it must be also
evaluated by the PPAD evaluation engine. If the engine determines that the con-
figuration is invalid, then an alternative must be found. In the methodology, an

147

Chapter 7. Contributions in Dependability-aware Design Space Exploration

iterative process searches for the best sub-optimal configuration that can be im-
plemented. This is done by deriving from the optimal (but invalid) configuration
a new set of sub-optimal (but maybe valid) configurations. Each sub-optimal
configuration is computed by changing a parameter, that is set to its second
best treatment level according to the regression models. The resulting set of sub-
optimal configurations are then evaluated and ranked, choosing the best one from
those that can be implemented.

7.3 Speeding-up the GA-based DSE by means of iterative
selection

Genetic algorithms (GA) is a popular approach to setup a DSE as an iterative
process, converging to (sub)optimal solution from initial set of random points in
the design space. Each sampled configuration of parameters in GA context is
referred to as individual, while the set of competing individuals is referred to as
population.

Conventional GA can be seen as iteratively repeated sequence of evaluation, se-
lection, crossover, and mutation operations, which gradually improves the fitness
(quality) of individuals in population [49]. Initial population includes N randomly
generated individuals. Each iteration starts by implementing new individuals in
population, and evaluating their PPAD attributes. Evaluated individuals are sub-
sequently ranked attending to the optimized PPAD attribute (e.g. robustness).
Despite basic GA optimizes a single PPAD attribute, it can be adapted to mul-
ticriteria context by aggregating several PPAD attributes within a weighted sum
model (WSM), so that GA is driven towards maximization of WSM score. K top-
ranked individuals are selected for the inclusion into the next population. Selected
configurations are crossed over (the setting S of each factor X in the offspring is
randomly chosen from those of its two parents) to generate new offspring config-
urations. After that, a random factor of each offspring configuration is mutated
(changed to a random setting within its range) with a certain probability.

Finally, randomly selected individuals from the offspring pool are added to the
current population to bring it back to N configurations (recombination). This
procedure is iteratively applied until meeting the stop condition: once top-ranked
individual reaches the desired level in its optimization goal, or once reaching the
convergence (fitness of top-ranked individual is not improving since several last
iterations), then DSE is terminated, and the top-ranked individual is returned as
the best (optimal) configuration.

148

7.3 Speeding-up the GA-based DSE by means of iterative selection

The cost of each GA iteration is determined by the PPAD evaluation step, in
particular by the performance of dependability evaluation. Depending on the
particular experimentation scenario, several strategies presented in chapter 6 can
be usually combined to speed-up as much as possible the dependability evaluation
of individuals in population. When targeting FPGA designs, a basic strategy
(referred to as combined sampling from now on) could be to rely on statistical
fault injection, targeting optimized essential bits, while accelerating the individual
injection runs through checkpointing and multiprocessing.

Stop condition reached?

 Implement (Population)

IterativeSelection(K, Population):
 …………………….

 return (Population[0:K-1])

Crossover(Selected,
method=Uniform)

Mutation(Offspring)

Population =
Selected + Offspring

Selected
(K individuals with best dependability)Offspring

Mutated offspring

Result  Top ranked Individual in Population

yes

 CombinedSampling (
 Individual,
 goal = SampleSize)

Individual.SampleSize += δ

Individual.Robustness ± EM

Population  N random configurations (individuals)

Input: parameters to tune (X1,…,XP)

no

Figure 7.3: Single-objective GA-based DSE algorithm with iterative selection

The statistical fault injection used in combined sampling can follow either a con-
ventional (conservative), or an optimized (iterative) approach as proposed in Sec-
tion 6. In either way, it requires to define beforehand an error margin goal that
should be reached for the estimated dependability attributes. However, it is usu-
ally not feasible to define a-priory such error margin that would be narrow enough,
as to allow the ranking and selection of individuals, but not too strict, as to lead
to very long evaluation time. Hence, to allow the confident selection, a conserva-
tively strict error margin should be usually assumed, which leads to excessively
long evaluation time.

The proposal to deal with this problem is to adapt the error margin of each indi-
vidual to the actual diversity in population, in such a way as to obtain narrower
error margins for those individuals that compete (overlap) among themselves dur-
ing the selection. This can be achieved by transforming the consecutive evaluation
and selection steps into an iterative selection process. The optimized selection al-

149

Chapter 7. Contributions in Dependability-aware Design Space Exploration

gorithm is described in Listing 7.3, whereas its integration into the score-based
GA-based DSE flow is depicted in Fig.7.3.

The novel selection algorithm starts by executing just a small fraction (δ) of
injection experiments for all competing individuals in population, and computes
their dependability attributes, taking into account the actual margin of error
EMF , so they are bounded within the confidence interval FailureRate± EMF .
The latter is converted to Score± EMS in case of multi-objective selection.

Listing 7.3: Proposed selection algorithm based on iterative refinement of dependability
confidence intervals
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

IterativeSelection(K, Designs, RankSelected):
Foreach DUT in Designs :

 DUT.SampleSize = 384 #start by preliminary rough estimation
Pool ← Designs #References to DUTs to be evaluated
#Evaluate and rank
While not Pool.empty():
 #Obtain/Refine the dependability estimates (Injection Runs)
 Foreach DUT in Pool:

 DUT.Stats = CombinedSampling(DUT.MaskFile, DUT.SampleSize)
 #Rank DUTs in Designs attending to their score (best to worst) 1, 2

 Foreach DUT in Designs:
DUT.{Score ± EMS}= WSM(DUT.Stats.{Metrics±EMF}, DUT.PPA, Designs)

 Designs.sort (Descending, key=Score)
 #Check whether confidence intervals of K best DUTs overlap with the rest of Designs
 Pool ← []
 Foreach Top in Designs[0:K-1] :

 Foreach Bottom in Designs [K, Designs.length–1] :
 If overlap(Top.{Score±EMS}, Bottom.{Score± EMS}) :

 #Schedule more injections to refine overlapping confidence intervals2
 If (Top.EMF > EMThreshold) and Top not in Pool:

 Pool.append(Top)
 If (Bottom.EMF > EMThreshold) and Bottom not in Pool:

 Pool.append(Bottom)
#Check whether confidence intervals of K best DUTs overlap among themselves
If RankSelected == True:

 Foreach A in Designs[0:K-1] :
 Foreach B in Designs[0:K-1] :

 If A != B :
 If (A.EMF > EMThreshold) and A not in Pool:

 Pool.append(A)
 If (B.EMF > EMThreshold) and B not in Pool:

 Pool.append(B)
 Foreach DUT in Pool:

 DUT.SampleSize += δ
Return(Designs [0:K–1])

1 Score aggregates considered robustness and PPA metrics under weighted sum model (WSM)
2 EMF, EMS – error margins of robustness metrics (max) and score respectively
 EMThreshold – smallest error margin that is considered for robustness metrics

The individuals are sorted by the mean value (best to worst). After that the
confidence intervals of top K individuals are compared to the rest of population,
to determine whether they overlap. If there is no overlapping, then those N −K
low-ranked individuals can be confidently rejected, since even though their exact

150

7.3 Speeding-up the GA-based DSE by means of iterative selection

robustness metric is still unknown, it will never reach that metric of K top-ranked
individuals. Increasing their sample size will just narrow the margin of error, but
not improve their robustness. In case that some overlapping exist, then the sample
size for the involved individuals is slightly increased to reduce their margins of
error and proceed again to their comparison. This process continues until the K
most robust (best score) alternatives can be clearly distinguished from the rest
of population. At this point no further refinement of dependability attributes is
required (Pool of evaluated individuals becomes empty), and the K top-ranked
individuals are selected.

If a final rank is desired (RankSelected=True), then the confidence intervals of K
top ranked individuals are compared among themselves as well. This procedure
keeps running until the confidence intervals of all selected alternatives do not
overlap.

Stop condition reached?

IterativeSelection(N, Population):
#N equals population size – rank all
individuals attending to robustness

Crossover(Parents,
method=Uniform)

Mutation(Offspring)

Population =
Selected + Offspring

Result  Pareto-efficient configurations F1

yes

no

 CombinedSampling (
 Individual,
 goal = SampleSize)

Individual.SampleSize += δ

Rank ordering
of Pareto fronts (Population)

Binary Tournament
Selection (Population) Individuals ranked

by Pareto efficiency and crowding distance

 Implement (Population)

V1 (min)

V2 (min)

F1
F2

F3

Individuals with non-overlapping
dependability confidence intervals

Individual.Robustness ± EM

Population  N random configurations (individuals)

Input: parameters to tune (X1,…,XP)

Offspring

Mutated Offspring

Selected=Population[0:N/2]

Parents (couples)

Figure 7.4: Multiobjective GA-based DSE, combining iterative selection and non-
dominated sorting

In multi-objective context GA is often combined with the Pareto-optimization,
by means of Non Dominated Sorting Genetic Algorithm (NSGA) [45]. Fig.7.4 il-
lustrates an NSGA-based DSE flow, optimized by means of the proposed iterative
selection.

151

Chapter 7. Contributions in Dependability-aware Design Space Exploration

This algorithm determines the fitness of individuals through the rank ordering
of Pareto fronts [71]. At each GA iteration individuals are stored in the pool
and sorted into several consecutive Pareto sets: all non-dominated individuals
(such that none of their PPAD features can be outscored without degrading any
other PPAD) are included into the primary set F1 and removed from the pool.
The remaining individuals from the pool are then sorted again to determine the
lower-rank (secondary) Pareto set F2. This procedure is repeated, obtaining
even lower-rank Pareto sets (F3, F4, etc.), until pool becomes empty. Since rank
ordering of Pareto fronts requires a pairwise comparison of each individual in
the pool with each other, all of them should have non-overlapping robustness
confidence intervals. This doesn’t allow to quickly reject any configurations by
rough robustness estimation. Nevertheless, optimized iterative selection still may
be beneficial in NSGA context: by invoking it with K = N , and RankSelected =
True, it will execute the minimum number of injection runs, that is required to
confidently distinguish robustness of all individuals, and subsequently to perform
the rank ordering.

After each rank-ordering the primary Pareto set F1 is checked against the stop
condition: if at least one of the PPAD features has improved during several last
iterations (e.g. by more than 5%), then NSGA continues. In this case, individuals
in population are sorted by two criteria: (i) by ascending Pareto rank (lower
Pareto rank is at higher priority), (ii) within each Pareto rank by descending
crowding distance [45], which prioritizes more outstanding individuals (located
further from its neighbours) in order to preserve the population diversity. The
N/2 top-ranked individuals are selected for the inclusion into the next population.
The parents for the offspring are selected through the binary tournament selection,
which randomly picks two individuals and selects the one that has better (lower)
Pareto rank, otherwise (under equal Pareto ranks) the one with higher crowding
distance. The crossover, mutation and recombination operators remain the same
as in the previously described basic GA. Once the stop condition is reached, the
primary Pareto set F1 is returned as the best trade-off between the (potentially)
conflicting optimization goals, so the designer is in charge of selecting one or
another, attending to the requirements for the optimized PPAD attributes.

The attainable reduction in the number of experiments is dependent on each par-
ticular DSE scenario, and it will be exemplified in Section 9.3 through a concrete
case study. It is worth noting that in a very unlikely worst-case scenario this
enhancement will take the same number of experiments as the common selection
strategy. So, it can only improve, and never penalise, the number of experiments
to be carried out.

152

7.4 Conclusions

7.4 Conclusions

Despite the parameters of EDA tools and IP cores may significantly impact the
attainable dependability properties of resulting HW implementations, no solu-
tions have been developed so far for obtaining the most suitable configurations
of these parameters for a given scenario. Enabling the tuning of these param-
eters requires to devise an efficient DSE strategy, which would reduce as much
as possible the amount of costly fault injection experiments required to evaluate
the dependability features of alternative configurations sampled from the design
space. This chapter proposed two approaches to deal with this problem from
different perspectives.

The first proposed approach reduces the DSE effort by minimizing the number of
evaluated configurations. It relies on (i) the design of experiments (DoE) method-
ology to representatively sample the design space using the smallest possible set
of trials, (ii) regression analysis to quantify the contribution of each parameter
towards each PPAD feature and to infer a predictive model for PPAD attributes,
and (iii) MCDM techniques to derive the optimal settings of parameters with re-
spect to any optimization scenario. Within this (DoE-based) strategy two alter-
native experimentation flows have been defined. The first one, based on fractional
factorial designs, estimates the main effects and second-order interactions with-
out estimators confounding, but handles only regular design spaces with two-level
parameters. Another optimization flow, based on iteratively refining D-optimal
designs, supports irregular design spaces with multilevel parameters. However, it
is more appropriate for estimating main effects, since it does not guarantee the
design orthogonality and, thus, the absence of correlation between low-order and
higher-order estimators. At the same time, the D-optimal DSE flow allows to
reduce the sample size even beyond fractional factorial designs and, if necessary
to improve the quality of obtained results by means of iteratively augmenting the
design.

The second proposed approach improves the performance of GA-based DSE, by
reducing the number of injection runs that should be carried out to select the
best individuals at each GA iteration. It deploys the dependability evaluation
and selection processes in an iterative way, so that fault injection is executed
only for those individuals that compete for the selection and whose dependability
confidence intervals overlap. Researchers do not need to decide beforehand the
required error margin for dependability attributes, as they are dynamically refined
until several best individuals can be confidently selected from the population.
The speed-up gain is expected to be proportional to the diversity of dependability
estimates of individuals in the population. Therefore, even though GA-based DSE

153

Chapter 7. Contributions in Dependability-aware Design Space Exploration

techniques may sample more individuals than DoE-based ones, in some cases they
may actually require lower fault injection effort.

The particular advantage of the GA-based technique is its ability to optimize any-
order interactions between the parameters of the design. Despite its convergence
to the global optimum may require a considerable number of GA iterations, it
can be stopped at any time, providing the best suboptimal solution found up to
that point. The DoE-based DSE approach is more appropriate when the exper-
imental time is strictly limited and/or when it is required to explain (quantify)
the contribution of each parameter towards each PPAD feature.

154

Chapter 8

DAVOS Toolkit

This chapter presents DAVOS, an EDA toolkit which (i) addresses the limitations
of currently available fault injection solutions, (ii) implements all accuracy-related
and performance-related fault injection optimizations proposed in this thesis, and
(iii) provides a customizable framework for a wide range of dependability-driven
design and verification processes.

8.1 Introduction

The integration of dependability-driven strategies into the semicustom design flow
requires an efficient and flexible fault injection solution that should meet several
requirements:

– support HDL models defined in diverse HDLs and at different representation
levels;

– support low-intrusive injection procedures for diverse fault models and imple-
mentation technologies;

– improve as much as possible the experimentation performance, especially in
complex scenarios dealing with multiple alternatives;

– feature fine-grained injection, analysis, and reporting capabilities to enable
the identification of weak points in the design.

155

Chapter 8. DAVOS Toolkit

The analysis of existing fault injection tools, presented in Section 3.3.4, has shown
that they are commonly tailored for a certain HDL, representation level, or imple-
mentation technology. Furthermore, they cannot be easily extended to support
new fault models, provide very basic analysis and reporting facilities, and do not
take benefit of existing approaches to speed-up the remarkably slow simulation
of implementation-level models. Accordingly, none of them is able to completely
support the dependability-driven processes of the hardware design flow.

This chapter presents DAVOS (Dependability Assessment, Verification, Optimiza-
tion, and Selection), an EDA toolkit that seamlessly integrates dependability-
driven processes into the semicustom design flow. On the one hand, it provides a
generic fault injection solution, which satisfies the aforementioned requirements,
and implements all accuracy and performance improvement techniques proposed
in this thesis. On the other hand, it provides a rich infrastructure, enabling i)
the robustness assessment and identification of dependability bottlenecks in hard-
ware designs, ii) the verification of deployed dependability-related strategies, iii)
the dependability benchmarking (selection) of alternative IP cores, EDA tools,
and implementation technologies, from a performance, power, area, and depend-
ability (PPAD) perspective, and iv) the design space exploration (DSE) to tune
the configuration parameters of IP cores and EDA tools for optimizing PPAD
goals. DAVOS toolkit supports all these scenarios while remaining interoperable
with existing standard HLDs and off-the-shelf EDA tools, including synthesizers,
placers, routers, and simulators.

The rest of this chapter is structured as follows. Section 8.2 presents the archi-
tecture of DAVOS toolkit. Section 8.3 describes in detail the SBFI and FFI tools,
which cover the dependability assessment and verification scenarios. Then, Sec-
tion 8.4 describes the PPAD evaluation engine, which automates the evaluation
of alternative HW implementations with flexibility and performance in mind. Fi-
nally, Section 8.5 describes a decision support tool that automates benchmarking
and DSE experimentation scenarios.

8.2 DAVOS architecture

The core of DAVOS is a set of custom python modules that can be executed
in any operating system under the basic Python distribution. These modules
pertain to one of two categories: (i) DAVOS tools, which can be invoked from
command line in standalone mode to perform some dependability-driven process,
and (ii) support modules, which perform their dedicated functions at the request
of DAVOS tools. Both tools and support modules are configured using XML-

156

8.2 DAVOS architecture

formatted project configuration file that hierarchically describes all required data
and/or configuration parameters. Interactive monitoring and data visualization
capabilities are provided via web interface. The internal architecture of DAVOS,
depicted in Fig. 8.1, responds to the necessity of defining a common interface
to make DAVOS tools interoperable among themselves as well as with standard
off-the-shelf EDA tools. Each of these modules provides the following basic func-
tionality.

Design of
experiments

(DoE)

Regression
Analysis

Decision Support tool

Data Model Controller

Report builder

Simulation-based
fault injection

tool (SBFI)

FPGA-based
fault injection

tool (FFI)

Implementation
support tool

Bitstream parser

PPAD evaluation engine

DAVOS (Config.xml)

PPAD
responces

ConfigurationDesign space
parameters Sampled

configurations

SQLite

XML/scv
Monitoring

Queries

Reports

Design

ImplementationFlow

FactorialConfig

GenericProperties

SBFIConfig FFIConfigDerivedMetrics

MCDM

Configurations

MCDM

PPAD

GA-
optimization

Netlist parser

Profiler

Web-interface

Figure 8.1: Architecture of DAVOS toolkit

1. Implementation support tool is in charge of running the semi-custom design
flow for each design/configuration and the selected implementation technology.
Different EDA tools can be assigned to each implementation phase. Performance,
power, and area (PPA) attributes are estimated for each implemented design.
This tool is not required when analysing behavioural/RTL models.

2. Simulation-based fault injection tool (SBFI) is at the heart of the process
for estimating the dependability-related attributes of HDL models described in
any standard HDL at any representation level. Fault dictionaries, defined after
the proposal is Section 4.4, can be supplied to the SBFI tool to support custom
fault models for any macrocell library. It can be used in conjunction with any
commercial simulator that supports simulator commands similar to those used in

157

Chapter 8. DAVOS Toolkit

Chapter 4. Out-of-the-box SBFI tool is configured for Mentor Graphics’ Mod-
elSim/QuestaSim simulator. This tool can be omitted when focusing on PPA
attributes.

3. FPGA-based fault injection tool (FFI) is in charge of estimating the depend-
ability attributes of HW implementations targeting Xilinx’s FPGAs. This tool is
used for emulating SEUs in configuration memory, block memory, and registers
after the approach described in Section 5.4. For any other fault model and/or
implementation technology, SBFI tool should be used instead.

4. PPAD evaluation engine is a support module that automates the implemen-
tation and evaluation of PPAD attributes of multiple alternative designs and/or
their parametrized configurations. It provides a configurable evaluation pipeline,
built upon the API of SBFI, FFI, and implementation support tools. Each eval-
uation stage processes multiple designs in parallel, attending to the capabilities
of the target computing platform, such as number of available grid nodes/PC
threads (implementation and SBFI stages) and number of connected FPGA eval-
uation boards (FFI stage). Evaluation stages can be configured in arbitrary order,
activated/deactivated, and customized through the dedicated sections of the con-
figuration XML file (the same XML tags used by the implementation, SBFI, and
FFI tools in standalone mode). Before returning the processed configurations to
the requester, they are attributed by a number of user-defined metrics, computed
on the basis of source PPAD attributes.

5. MCDM-Lib is a support module that implements a set of ranking algorithms
used in multi-criteria decision making, including those based on WSM-scores and
those based on the Pareto-efficiency.

6. GA-Lib is a support module that implements the genetic algorithms with
iterative selection used for DSE purposes, as proposed in section 7.3.

7. Design of experiments (DoE) is a support module in charge of sampling the
design space, attending to the given hypothesis (type of regression model to fit)
and desired properties (Orthogonality, D-optimality, etc.) By interacting with
Matlab statistical toolbox, it supports the generation of full factorial, fractional
factorial, and D-optimal experimental designs, as well as the extension and repair
of D-optimal designs. The resulting design is returned to the requester in the
form of a table in which each row denotes one factorial configuration.

8. Regression analysis is a support module in charge of: (i) estimating each fac-
tor’s significance, (ii) inferring the regression models for PPAD attributes, (iii)
compiling the regression models into the compute-efficient form (native python-
based or CUDA-based), and (iv) using the compiled models to predict the PPAD

158

8.2 DAVOS architecture

responses for any configuration of factors from the design space. To estimate the
significance of effects and to infer the regression models this module interacts with
Matlab statistical toolbox. Regression model parameters (order of effects, distri-
bution, p-value threshold for terms acceptance, etc.) can be specified separately
for each PPAD attribute through the XML configuration file. Otherwise, most
suitable regression parameters are determined automatically in a way that max-
imizes the model fit and reduces the deviation: (i) normal, gamma, and inverse
Gaussian distributions are tested for continuous PPAD attributes, while Poisson
and binomial distributions for discrete ones, (ii) a pure linear model for signifi-
cant factors is tested first, whereas a model with interaction terms is tested (if the
sample size allows) when the purely linear model has low explanatory potential.

9. Decision support tool automates those experimentation scenarios that involve
decision making in a space of alternatives, such as dependability benchmarking
and design space exploration. In case of benchmarking, alternative designs (eval-
uated by the PPAD engine) are ranked attending to the user-defined WSM-scores
and/or Pareto-efficiency. Under the DSE scenario, it reports the best configura-
tions of parameters for each optimization goal, Pareto-optimal configurations for
different combinations of PPAD parameters, as well as the contribution of each
factor towards the PPAD results.

10. Data Model Controller is a support module which collects and synchronizes
the data among all DAVOS modules. It also performs the object-relational map-
ping between the internal data model and an SQLite database, and provides the
interface for database queries.

11. Report builder is a support module in charge of exporting the web-based
reports for different experimentation scenarios. It also performs the database
queries on the request of web-based reporting and monitoring interfaces.

12. Web-interface is a collection of HTML5/AJAX and Javascript files that pro-
vides a user interface for process monitoring, data querying, and visualization of
results.

By properly configuring how these modules coordinate their work, it is possible to
support a wide range of PPA-driven and/or dependability-driven scenarios. Ta-
ble 8.1 details which DAVOS tools and modules are employed in various supported
dependability-driven scenarios.

159

Chapter 8. DAVOS Toolkit

Table 8.1: Sample application scenarios detailing which DAVOS tools and modules are
used in each of them

Tools Support Modules

Experimentation Scenarios

SB
F

I

F
F

I

Im
p

le
m

en
ta

ti
o

n

Su
p

p
o

rt

D
ec

is
io

n
 S

u
p

p
o

rt

P
P

A
D

 e
v

al
u

at
io

n

en
gi

n
e

M
C

D
M

-L
ib

G
A

-L
ib

D
o

E

R
eg

re
ss

io
n

 A
n

al
y

si
s

R
ep

o
rt

 b
u

il
d

er

D
ep

en
da

bi
lit

y
as

se
ss

m
en

t

Identify which components of HW design architecture are most
sensitive to transient/permanent faults

 

Assess the fault coverage of self-checking/fault-tolerant HW design
implemented on standard cells

  

Estimate the failure rate of HW design implemented on Xilinx Zynq SoC   

B
en

ch
-

m
ar

ki
ng

 Determine which of 3 synthesizers promises the best PPAD trade-off
for a microcontroller implemented on standard-cells or arbitrary FPGA

     

Determine which of 3 alternative soft-core processors features better
PPAD trade-off when implementing on Xilinx 7-series FPGA

     

D
SE

Quantify the impact of synthesis parameters on PPAD results, and
determine optimal configuration of these parameters, when targeting
arbitrary implementation technology

       

Tune the parameters of Xilinx EDA tools (ISE/Vivado) towards the best
PPAD results, when experimentation time is not strictly limited, and
optimization of multi-parameter interactions is desired

      

8.3 Fault injection tools for dependability assessment

The most basic experimentation scenario supported by DAVOS is that related
to the assessment of dependability-related properties of hardware designs and/or
verification of their fault tolerance mechanisms. This experimentation scenario,
automated by means of DAVOS SBFI and FFI tools, comprises three steps:

– customizing an SBFI/FFI environment attending to the given DUT and
configuring fault injection experiments;

– executing the configured experimental set-up on the selected platform by
invoking an SBFI/FFI tool with the configuration XML file as input:

’DAVOS/> python SBFI.py config.xml’ ;
’DAVOS/> python FFI.py config.xml’ ;

– analysing collected statistics through the interactive reporting interface.

This section details the architecture, configuration, and the workflow of DAVOS
SBFI and FFI tools.

160

8.3 Fault injection tools for dependability assessment

8.3.1 DAVOS-SBFI tool

Simulation-based fault injection tools (SBFI) is the keystone for all dependability-
related scenarios dealing with HDL models at different description levels. The
architecture of SBFI tool is depicted in Fig. 8.2. It comprises four main modules
that control four subsequent SBFI phases. Each SBFI phase is configured by a
dedicated section of the input XML configuration file. The main SBFI configura-
tion options are listed in Table 8.2.

Fault Dictionary

RTL model
Implementation-level

models

macrocell library

Configuration

Faultload builder

Injection targets
(match groups)

Trace script

P
ro

fi
le

r

SBFI scripts

checkpoints

Injection traces
& reference

Experiment
specification

Off-the-shelf simulator

analyzer

SBFI report (Web)

SQLite

XML/CSV

Data manager

Initializer (parse & match HDL models)

Report builder

Grid SGE (ssh/sftp)

Multicore (localhost)

Experiment scheduler

Figure 8.2: Architecture of Simulation-based fault injection tool

After invoking the SBFI tool, first, the initializer module parses incoming HDL
model(s) in order to build a list of fault targets and a trace script. The list of
fault targets includes all those design nodes located within the specified Injec-
tionScope, whose basic type matches the target_logic property of the faultload
configuration. When deploying a multilevel fault injection, the initializer also
performs the register matching (as proposed in Section 6.3.1), using the RT-level
list of nodes (specified in match_pattern_file) as a reference. In this latter case
the resulting list of targets comprises a set of match groups that map each RTL
register to the group of inferred (and possibly replicated) implementation-level
macrocells.

161

Chapter 8. DAVOS Toolkit

The generated trace script instructs the target simulator to capture observation
traces. The entries of the trace script correspond to those design nodes that match
the ObservationScope section of SBFI configuration and configure whether they
should trigger the sampling of observation vectors. By-default (ObservationScope
kept empty) all DUT outputs and all state elements are traced and any change
of their value is logged to the observation dump. When dealing with the post-
synthesis models, the register_reconstruction option can be activated in order to
log the corresponding state elements as a merged (RT-like) virtual register. This
reduces the size of resulting traces and accelerates their analysis.

On the second SBFI phase, the faultload builder processes the Faultload configu-
ration, the fault dictionary, and the fault list, in order to generate a set of SBFI
scripts (one script per each injection run). Each Fault_model configuration in
the Faultload section corresponds to one or more fault dictionary entries, as it
has been explained in Section 4.4. Basically, it specifies the fault model (such as
bit-flip, stuck-at, delay, etc.) and the type of targeted logic (macrocells), along
with such parameters as fault multiplicity, fault duration, injection time, injec-
tion mode (sampling, exhaustive), and sample size. For each injection case within
each matching macrocell, the faultload builder checks the instrumentation rules
(if any), computes the parameters of the corresponding injection rule and, on its
basis, exports a fault simulation script for the target simulator. The generated
faultload is saved to the database and exported in the form of a CSV/XML-
formatted specification file for the subsequent SBFI steps.

The default Verilog-based and VHDL-based fault dictionaries, supplied with the
toolkit, cover most widely used fault models (bit-flip, stuck-at, indetermination,
pulse, delay) applied to RTL primitives, as well as to post-synthesis (unisim) and
to post-implementation (simprim) Xilinx macrocells. These dictionaries include
ModelSim-specific injection rules so, whenever a different simulator is used, the
injection rules from these dictionaries can be adapted accordingly.

The profiling of switching activity (defined in Section 6.2.1) can be activated by
means of the profiler option of the SBFI configuration. The fautload builder
in this case interacts with the support modules (netlist parser and profiler) as
depicted in Fig. 6.3, and generates an optimized fautload, which includes only
the active fault targets prioritized by their activity time.

It is worth noting that before the generation of SBFI scripts, the faultload builder
performs the golden run (to obtain the reference trace) and stores the clustering
checkpoints (to support the checkpointing speed-up strategy). The number of
checkpoints to generate is configured by the workload_split_factor parameter (see

162

8.3 Fault injection tools for dependability assessment

Table 8.2: Main options of DAVOS_SBFI tool, that should be configured to set-up an
SBFI experiment

Configuration Tags Property Description
SBFI

platform Kind of multiprocessing: ‘Multicore’ (local) or ‘Grid’ (SGE)
maxproc Number of tasks run in parallel
workload_split_factor Number of clustering checkpoint intervals
force_reinitizlize ‘on’/’off’ - Cleanup and rebuild the SBFI experimental environment

(backup previously collected results)
profiler ‘on’ / ’off’ – profiling of switching activity for optimized faultload
injector ‘on’ / ‘off’ – run injection phase for existing SBFI environment
reportbuilder ‘on’ / ‘off’ – build SBFI report for collected traces/result
fault_dictionary Path the fault dictionary file (XML) for used macrocell library

 Initializer
register_reconstruction ‘on’ / ‘off’ – merge related FFs/Latch outputs into virtual signals at

tracing instead of logging them separately (reduces the logfile size)
match_pattern_file List of RTL design nodes, used for multilevel registers matching

 InjectionScope
unit_path Path to design unit that should be targeted at injection
node_prefix Include into the fault list only those nodes that start with this prefix

 ObservationScope
unit_path Path to design unit that should be traced (logged)
node_prefix Log only those nodes that start with this prefix
sampling_options Specify ‘-notrigger’ to prevent logging of trace vectors on switching

events of the nodes in this scope
 WorkloadConfig

compile_script Custom TCL script to build the simulation environment for the DUT
run_script Custom TCL script to run the DUT simulation
std_init_time Initialization time interval, preceding to the workload
std_workload_time Workload time interval (duration), considered at fault injection
timeout_flag Custom signal (if any) denoting workload completion

 Faultload
 Fault_model

model Fault model referenced from the dictionary (‘bit-flip’, ‘delay’, etc.)
target_logic Macrocell type referenced from the dictionary (‘X_FF’, ‘X_LUT’, etc)
faults_per_target Number times each macrocell can be targeted at injection (‘1’ for

sampling without replacement)
time_mode ‘Absolute’ / ‘Relative’ / ‘CLOCK’– bounds of injection interval are

specified – in absolute time units (ns) / as percentage of workload
duration / in clock cycles

injection_time_start /
injection_time_end

Starting and Ending time of injection interval; to inject at particular
time instant ending time should coincide with the start time

sample_size Number of fault configurations sampled using uniform distribution
in time and space, ‘0’ – for exhaustive experimentation

max_error_margin Desired error margin for iterative sampling (empty to disable)
 Analyzer

quick_mode ‘on’ - Analyse the failure mode using single trace vector at workload
completion (first vector with raised timeout flag), ‘off’ – analyse all
vectors in the trace file to enable computation of error and failure
latencies

error_flag Alarm signal activated by the DUT on error detection (used to
distinguish between signalled failures and silent data corruption)

error_flag_active_value Active value of error_flag, indicating the error detection

1:1

1:N

1:N

1:1

1:N

1:1

Table 8.2). Subsequently, each generated SBFI script is linked to its corresponding
(closest) checkpoint.

163

Chapter 8. DAVOS Toolkit

On the third phase, the experiment scheduler runs the generated SBFI scripts
on the target computing platform: Sun-Grid-Engine-based computing cluster or
multicore PC (locally). In both cases, the number of parallel simulation processes
is configured by means of the maxproc parameter. In case of a grid platform, all
SBFI scripts are distributed between the available grid nodes, being grouped into
grid jobs in such a way as to balance their corresponding simulation effort. The
execution of grid jobs is managed by the Sun Grid Engine, so the experiment
scheduler is in charge of simply monitoring the status, reporting the statistics,
and handling the exceptions. In the case of local (multicore) platform, the SBFI
scripts are launched dynamically by the scheduler upon availability of computing
resources.

On the fourth phase, all the collected SBFI traces are processed by the analyzer
module. Each trace is parsed into a sequence of trace vectors, representing a state
of the DUT outputs and DUT’s internal states at the different time instants. By
comparing the injection traces with the reference one (golden run), the analyzer
determines the failure mode in each SBFI run (masked, latent, silent data corrup-
tion, signalled failure - as depicted in Fig 3.1) and computes the latencies. The
alarm signal (if supported by the DUT) should be specified through the configu-
ration property error flag. By enabling the quick mode the analyzer is instructed
to perform the reduced/quick analysis, which determines the failure mode merely
by analysing the last captured vector corresponding to the workload completion
time. The outcome of each SBFI run is stored to the database, while traces are
attached to the database as a separate (compressed) zip package.

Finally, SBFI tool launches the report builder module, which loads all the col-
lected results from the database, computes the aggregated metrics (such as failure
rate, mean latencies, etc.) for each DUT and for each fault model, and exports a
web-based report into the specified directory on the web-server.

8.3.2 DAVOS-FFI tool

DAVOS FFI tool provides an instrumental support for the dependability assess-
ment of FPGA-based designs. It integrates the accuracy and performance-related
optimizations proposed in this thesis, including the optimized essential bits, profil-
ing of switching activity, iterative statistical fault injection, and multiprocessing.

The major part of the fault injection flow has been deployed internally on the
Xilinx’s Programmable SoCs, i.e. chips integrating an ARM microprocessor (PS)
and programmable fabric (PL). This enables a drastic reduction of the communi-

164

8.3 Fault injection tools for dependability assessment

Inject
Recover

PS
(Hardwired Processor ARM)

SDK (xsct)

UART

Clk/rst
Control

registers

Run N
cycles

EMIO
GPIO

tests
responces

clk

reset

IO ports

DUT

Co
n

fig
ur

a
tio

n
m

em
or

y

Co
n

fig
ur

a
tio

n
m

o
du

le

Core 0
(target 2)

Trace

PCAP
DevC
DMA

Memory
Ctrl.

PL

InjectorLib.c

Injector Application

Job descriptor (.dat)

bitstream (.bin)

App executable (.elf)

Vivado

HW description (.hdf)

Logic location (.ll)

Essential bits (.ebc)

Build design files

INJECTOR.py

HOST SIDE

BOARD SIDE

Injection statistics run on HW target[ID=2]

RAM
(DDR)

Extended bitmask (.msk)

Xilinx HW server, drivers

d
ow

n
lo

a
d

co
m

pi
le

FFI report (Web)

SQLite

XML/CSV

Data manager Report builderExperimental
results

Figure 8.3: Architecture of FPGA-based fault injection tool

cations with the external host controller, which are limited to just uploading the
initial configuration and the provision of statistics issued from injections.

The architecture of FFI tool comprises three main components, depicted in Fig. 8.3:
i) a set of Xilinx Zynq prototyping boards (board side), ii) a standalone fault
injection application executed within these boards, and iii) an experimentation
management application running on a PC, which represents the host side. The
injection workflow encompasses 3 phases: the initial setup, the realization of the
injections, and the monitoring of results.

The host side runs the setup phase. During this phase, all the files required for
the execution of all the fault injection experiments are generated and uploaded
to the prototyping boards. They include i) the injector application required to
control the experiments in each board (.elf files), ii) the bitstream files (.bit/.bin)
for the implemented DUTs, iii) the optimized essential bit mask file (.msk), which
locates the potential fault targets within the DUT, and finally iv) the experiment
descriptor, which configures the fault injector application on each board.

The on-board application is responsible for: i) supplying the workload to the
DUT, ii) the emulation of SEUs within the randomly or exhaustively selected
bits of the optimized essential bitmask, iii) the observation of the DUT behaviour,
and periodically, vi) the (re)computation of robustness metrics (exhibited failure

165

Chapter 8. DAVOS Toolkit

modes) along with their respective error margins, which are logged to the host
through the selected communication interface (serial port by-default).

The injector application is defined on the basis of a custom library InjectorLib.c.
This library provides a rich API for the definition of autonomous FPGA/SoC-
based fault injectors that can operate through the PCAP or ICAP configuration
interfaces. A fault injector application for a particular design can be easily ob-
tained from the included application template. It requires to customize two DUT-
specific callback functions: (i) the DutEnvelope(), which supplies the workload to
the DUT and verifies the DUT processing results, returning a non-zero result
in case of mismatches, and (ii) the TriggerGSR() function, which activates the
global set-reset signal (required to reinitialize the PL registers and latches from
associated CM cells). The access to the GSR line can be obtained by instanti-
ating the StartupCtrl module (provided as a part of the injector library) within
the block design, and by connecting it to the PS (e.g. through the GPIO inter-
face). The customized injector application is compiled for the target HW platform
(board support package generated by Vivado) and the resulting executable (*.elf)
is uploaded to the board.

The fault experiment itself is configured using the FFI section of the XML con-
figuration file. Table 8.3 lists the main parameters used to generate the opti-
mized essential bitmask and the job descriptor files. The former locates the fault
targets of the selected type of target_logic (FF/LUT/BRAM/TYPE0), within
the selected dut_scope, after the algorithm proposed in Section 5.3. The cus-
tom_lut_mask can be enabled for the improved (bit-accurate) identification of
LUT-specific essential bits, whereas the profiling parameter can be enabled to
filter-out the inactive bits. The job descriptor communicates the rest of injection
parameters to the injector application, including the operation mode (sampling,
exhaustive), the sample size, the error margin, the fault multiplicity, etc. When
the tracing of latent errors is not required, it can be disabled for the sake of higher
experimentation performance, as it will spare the time-consuming readback-verify
operations of changeable CM frames.

Once all the files are uploaded to the board, the host starts the injector application
and enters the monitoring phase, which runs in parallel to the execution phase on
the board. The goal is to enable the host to analyse the various received logs in
order to determine whether the experimentation should terminate (the required
error margin/sample size has been reached) or not. Once this decision is taken,
the logged results are saved to the database and the report builder is invoked
to export the fault injection report to the selected directory on the web-server.
In the case of running the FFI tool from within the top-level framework (e.g.

166

8.3 Fault injection tools for dependability assessment

Table 8.3: Main options of DAVOS_FFI tool, that should be configured (in FFI tag of
XML configuration file) to set-up an FFI experiment

FFI configuration
parameters

Description

dut_scope
Path to the design unit, that will be targeted at fault injection
(e.g. ‘DUT/Top/Core’)

target_logic

Type of logic primitives that will be targeted at fault injection:
‘FF’ / ‘LUT’ / ‘BRAM’ - selectively target these primitives using optimized essential
bits mask; ‘TYPE0’ – unmapped mode targeting all CM cells included into Xilinx
Essential Bits mask

custom_lut_mask
‘on’ - Enable bit-accurate mapping of LUTs onto configuration memory,
‘off’ – use LUT mask generated by Vivado

profiling
‘on’ / ‘off’ – profiling of LUT switching activity to filter-out inactive CM cells and
prioritize active ones

mode

‘1XX’ – injection using (optimized) essential bit mask:
 ‘101’ – iterative sampling mode

 ‘102’ – exhaustive mode
‘2XX’ – injection using fault list, prioritized by activity time (LUTs only)
‘0XX’ – service modes:

 ‘000’ – handshake identify all available (connected) devices (targets)
 and relate them with their serial ports

 ‘001’ – cleanup the cache on the target devices (bitstream and bit mask files)
 ‘004’ – profiling of FAR register – retrieves a list of valid frame address for

 a target device part (used for CM mapping, bitstream/bitmask parsing)

error_margin_goal
Error margin threshold in derived robustness metrics (percentage points between
‘0.0’ and ‘100.0’).

sample_size_goal Minimal number of fault configurations to be sampled.
fault_multiplicity Number of upsets per injection run, e.g. 1 – single bit upset, ≥ 2 – multiple bit upset

injection_time

Clock cycle at which faults are injected
 ‘0’ – random injection time (within workload duration)
 ‘1’ – inject at workload start
 ‘N’ – inject at N-th clock cycle

recovery_nodes Name of BRAMs, whose content should be forcibly recovered after each injection run
injectorapp_path Path to precompiled InjectorApp (*.elf)

memory_buffer_address
Memory offset on the target device, pointing to a buffer (min 16MB) dedicated for
data interchange between InjectorApp and host app.

platformconf

Predefined list of targets linked to their serial ports, e.g.
"[{'TargetId':'2', 'PortID':'COM3'}, {'TargetId':'6', 'PortID':'COM1'}]" – two targets (2
and 6) linked to comports 3 and 1 respectively. If empty “[]” – handshake will be
carried out automatically prior to running the fault injection.

PPAD evaluation engine), the report builder is skipped and the raw dependability
estimations are returned to the evaluation requester.

To support the iterative selection process, the board-side application caches the
bitstream, the updated state of essential bit mask (targeted bits are excluded from
the bitsmask), and the collected injection statistics on the SD card. Accordingly,
once the FFI tool is requested to refine the robustness metrics for one of the
previously tested DUTs (with narrower error margin or increased sample size),
the compilation and uploading steps are skipped, thus minimizing the overhead
for the restoration of the injection process.

167

Chapter 8. DAVOS Toolkit

8.3.3 Interactive reporting interface

a

b

c

Figure 8.4: Interactive web-based fault injection report: (a) summary page, (b) query
interface, (c) detailed trace

168

8.4 Automated PPAD evaluation of parametrized designs

Experimental results collected in the database are visualized through the inter-
active reporting interface, illustrated in Fig. 8.4. The main screen (Fig. 8.4a)
of the fault injection report displays a summary of the whole set of SBFI/FFI
experiments, including the distribution of failure modes and latencies. Reported
results are grouped by the DUT, by the fault model, and by the type of targeted
logic. It also provides access to the detailed trace information for each particular
injection run (Fig. 8.4c) and another screen for custom queries.

These custom reports can be tailored according to a number of filters, like fault
models, target logic, and/or resulting failure mode, among others. Likewise, the
HDL model can be hierarchically navigated, displaying the results obtained for
each of its constituent parts. For instance, Fig. 8.4b depicts the failure modes
distribution for the permanent interconnect delays affecting the I port of X_FF
primitives of the DUT (LEON3 microprocessor). A 29.44% of the experiments
led to silent data corruption (SDC). By navigating its hierarchy, it can be seen
that the execute (e) and exception (x) pipeline stages are the ones contributing
the most to SDC, with 7.83 and 7.61 percentage points, respectively.

Finally, the table on the bottom on the query screen lists the details of each
injection run that satisfies the filters. The index cell navigates to the detailed
trace (build on demand), which highlights all the mismatches (with respect to
the golden run) on the DUT’s outputs (failures) and on the internal nodes (er-
rors). It is worth noting that the dump trace feature is only supported for SBFI
experiments, since the FFI traces are analysed completely on the board side and
not dumped to the host for the sake of experimentation performance.

8.4 Automated PPAD evaluation of parametrized designs

The implementation support tool and the PPAD evaluation engine are two instru-
ments offered by DAVOS for the automated implementation and for the PPAD
evaluation of parametrized design alternatives. The former links the diverse EDA
tools into a custom design flow, recognizes their parameters (flags), tunes them
(with input configurations) to produce the DUT implementations, and evaluates
their PPA attributes. The latter (evaluation engine) encapsulates the implemen-
tation support tool, SBFI tool, and FFI tool within an integrated evaluation flow,
which processes multiple design alternatives (configurations) in parallel. This sec-
tion details the customization and the workflow of the aforementioned tools.

169

Chapter 8. DAVOS Toolkit

<Phase name = “Synthesis”
 script_builder = "XilinxTK"
 next = "Translate"
 postcondition = "#FILEXIST#*.ngc, *.syr">

 <Parameter name = "opt_mode" default = "Speed" />
 <Parameter name = "resource_sharing" default = "YES" />
 <Parameter name = "p" default = "7a100tcsg324-2" />

<Phase name = “Translate”
 ..

<Phase name = “Trace”
 script_builder = "XilinxTK"
 next = "BuildNetlist"
 postcondition = "#FILEXIST#*.twr"
 result_handler = "ProcessXilinxReports">

<Constraint template_file = "./const.ucf"
 placeholder = “#ClkVal”
 goal = "min"
 eval_property = "ClockPeriod"
 start_value = "15.0"
 adjust_step = "0.5"
 return_to_phase = "Translate"/>

....

......, BuildNetlist, Simulate, PowerAnalysis,

............., Map, PlaceRoute,

def XilinxTK(phase, config):
 #configure EDA tool with input options

 #return shell script to run EDA tool

def ProcessXilinxReports(phase, config):
 #Retrieve resulting implementation properties from
 #Xilinx-specific reports: Res={Power, Performance, Area}

#config.xml: section for implementation flow
<ImplementationFlow EntryPhase = “Synthesis”>

#Defines all vendor-specific functions referenced from config.xml
VendorSpecific.py

Implementation Support
Tool

Source (RTL) design

Configuration of
parameters

Implementation
flow

Implemented design + PPA

Figure 8.5: Excerpt from an example configuration file, defining an implementation flow
under Xilinx ISE toolchain

8.4.1 Implementation support tool

The integration of diverse third-party EDA tools within a single design flow re-
quires to adapt all their specific configuration/invocation methods, data, and
reporting formats. This need for flexibility and adaptation has led to the defi-
nition of a custom implementation flow as a part of an XML configuration file
that must be customised according to the desired control flow. For instance, the
excerpt displayed in Fig. 8.5 generates all the required scripts to run the imple-
mentation module in association with the Xilinx ISE toolchain.

Each EDA tool or suite comprises a number of different phases, each one with dif-
ferent configuration parameters, that should be consecutively executed to obtain
the final implementation of the design. Accordingly, the <ImplementationFlow>
section of the configuration file includes a <Phase> subsection for each one of
the stages of that particular instance of the semi-custom design flow.

170

8.4 Automated PPAD evaluation of parametrized designs

Each Phase includes the following attributes: name, used as identifier; next, which
states the following phase to be executed after that phase successfully finishes;
postcondition, assertion that must be held true after finishing that phase, like
#FILEXIST#*ngc, *.syr that checks, for the Xilinx’s XST synthesiser, that the
netlist file (ngc extension) and the synthesis report file (syr extension) exist;
result_handler, which references a Python custom function in charge of processing
the information obtained from this phase and generating the associated reports
in the required format; and script_builder, which references a Python custom
function that generates the command line script required to execute the associated
module and/or tool as defined in that subsection.

Additionally, it can include any number of <Parameter> subsections, which de-
fine the default values for the given configuration parameters, and <Constraint>
subsections, which iteratively tune the implementation constraints to ensure it
meets the desired requirements. For instance, the Constraint subsection displayed
in Fig. 8.5 aims at attaining an implementation with the highest possible clock
frequency (minimum clock period). It iteratively decrements the clock period
requirement by 0.5 ns, starting at 15 ns, and returning to the Translate phase
to rerun the implementation with the new constraint. Once constraints are so
tight that the design cannot be implemented, they are set to the last known valid
value.

Finally, a result_handler references another custom function (defined in the sup-
port script VendorSpecific.py), which extracts the PPA features from the vendor-
specific reports and returns them in the form of a python dictionary.

Thus, using new modules and/or EDA tools involves the definition of new custom
Python files to generate the required command line scripts and obtain the data
to be processed by the report management module. After that, configuration files
can be customized to integrate these tools into the control flow for any application
scenario.

8.4.2 PPAD evaluation engine

The PPAD evaluation engine manages the parallel implementation and PPAD
evaluation of multiple design configurations. This module, once instantiated by
the evaluation requester, creates a pool of evaluation processes (linked by a set of
queues) configured by the dedicated sections of an XML configuration file. For in-
stance, a configuration DAVOS.EvalSteps = ’Implementation, FFI’ instructs the
evaluation engine to assign the first pool of evaluation processes to the implemen-
tation support tool, and the second pool to the dependability evaluation using

171

Chapter 8. DAVOS Toolkit

<Metric
 name = "MTTF"
 handler = "Derive_MTTF_FPGA"
 CustomArg = "{'k' : 21, 'FIT.CRAM' : 76E-9, 'FIT.BRAM' : 73E-9}"/>

#Config.xml: section for derived metrics
<DerivedMetrics>

#callback function invoked by PPAD evaluation engine to compute custom metric, derived from:
#{metrics} – PPAD results obtained by SBFI/FFI/Implementation tools,
#{CustomArg} - external argument, converted to dictionary at invocation
def Derive_MTTF_FPGA(metrics, custom_arg):

 LambdaCRAM = metrics[‘EssentialBits.Type0’]*metrics[‘SDC.Type0]*CustomArg[‘FIT.CRAM’]
 LambdaBRAM = metrics[‘EssentialBits.BRAM]*metrics[‘SDC.BRAM’]*CustomArg[‘FIT.BRAM’]
 Lambda = CustomArg[‘k’]*(LambdaCRAM + LambdaBRAM)
 return(1/Lambda)

#Defines callback functions for computation of custom metrics
CustomMetrics.py

………………………………………..

Figure 8.6: Excerpt from configuration file defining custom PPAD metrics

FFI tool. The number of processes in the implementation pool is configured by
the maxproc property of DAVOS.Design.ImplementationFlow section. The FFI
pool is configured by DAVOS.FFI.platformconf property (see Table 8.3) or (if
kept empty) it is configured by the automatic target detection mechanism.

It is worth mentioning that the term configuration refers to the object of DAVOS
datamodel which describes a design alternative. It encapsulates such properties as
setting of architectural/EDA parameters, dictionary of PPAD attributes, model
path, etc.

The configurations can be evaluated by the evaluation engine in a blocking and
non-blocking mode. In the former case, the requester invokes the evaluate(DutList)
method, which pushes all the configurations to the input queue of the evaluation
engine and returns when all configuration get processed by the engine (receive
their PPAD attributes). In the latter case, the requester pushes the configura-
tions directly to the input queue of the evaluation engine (without blocking the
requester’s process) and periodically checks the availability of evaluated configu-
rations in the output queue of the engine.

Before returning the evaluated configurations, they are attributed by a set of cus-
tom metrics derived on the basis of the raw PPAD estimations. These derived
metrics are defined by designers in the dedicated XML section, as it is depicted
in Fig. 8.6. Each derived metric is computed by a custom python function (linked
by the handler attribute). Such custom functions have access to all the previously
obtained PPAD metrics (such as frequency, power, area, distribution of failure
modes), as well as to the dictionary of constants defined in the CustomArg at-
tribute. For instance, an example in Fig. 8.6 illustrates the computation of the

172

8.5 Decision support tool for selecting and optimizing HW designs

mean time to failure on the basis of utilization of essential bits (in Type0 and
BRAM frames), their respective percentage of silent data corruption, the failure
rate constant (FIT) for the selected FPGA, and the altitude-related failure rate
derating factor (k) [136].

Figure 8.7: Monitoring interface, showing the current status of PPAD evaluation process
and summary of collected results

The status and the details of an ongoing evaluation process are visualized through
the web-based monitoring interface, depicted in Fig. 8.7. This interface lists the
status of each configuration submitted to the evaluation engine (queued, in pro-
cess, completed), the time taken for each evaluation step, the number of iterations
(in the case of constraint adjustment), and the obtained PPAD results. Finally,
each cell in the table navigates to the detailed log of the corresponding imple-
mentation/evaluation process.

8.5 Decision support tool for selecting and optimizing HW
designs

The decision support tool is in charge of those experimentation scenarios which
concern with the evaluation of alternatives, namely the dependability benchmark-
ing (selection), and the design space exploration. The experimentation scenario
is selected by setting the mode property of the DecisionSupport section of the
configuration XML file to one of the following values:

- ’BENCHMARK’ to run the score-based dependability benchmarking;
- ’DSE-GA’ or ’DSE-NSGA’ to run the design space exploration using the
score-based GA or using the non-dominated sorting GA, respectively;

173

Chapter 8. DAVOS Toolkit

<MCDM>
 <Scenario name = "Automotive" scoremodel = "WSM">

 <variable goal = "max" name = "FREQUENCY" weight = "0.40"/>
 <variable goal = "min" name = "POWER" weight = "0.10"/>
 <variable goal = "max" name = "MTTF" weight = "0.50"/>

 </Scenario>

 <Scenario name = "Mobile" scoremodel = "WSM">
 <variable goal = "max" name = "FREQUENCY" weight = "0.25"/>
 <variable goal = "min" name = "POWER" weight = "0.50"/>
 <variable goal = "min" name = "AREA" weight = "0.10"/>
 <variable goal = "min" name = "SDC" weight = "0.15"/>

 </Scenario>
</MCDM>

<Model label = "Microblaze" path = "../IpCores/Microblaze" />
<Model label = "MC8051" path = "../IpCores/MC8051" />
<Model label = "AVR" path = "../IpCores/AVR" />

#Config.xml: section for Decision Support tool
<DecisionSupport mode = "Benchmark">

..

Figure 8.8: Sample configuration of the decision support tool for the dependability bench-
marking: two weighted-sum models, and three alternative IP cores

- ’DSE-FACT’ or ’DSE-DOPT’ to run the DoE-based design space explo-
ration using the fractional factorial designs or using the D-optimal designs,
respectively.

The benchmarking experiment comprises two steps: the evaluation of PPAD at-
tributes of alternative HDL designs and their ranking attending to the Weighted
Sum Method [160]. It is worth noting that the term alternative from the DAVOS
viewpoint encompasses the HDL model, the EDA tools used for its implemen-
tation, and the target implementation technology. Alternatives are supplied for
benchmarking by specifying a Model subsection (within the DecisionSupport con-
figuration) for each DUT, as it is depicted in Fig. 8.8. Those models that do
not share the rest of configuration sections (implementation flow, SBFI, FFI) are
specified in a separate XML configuration files. In this case a list of prepared
configuration files is supplied to the decision support tool. The decision support
tool uses the PPAD evaluation engine to implement all the considered alternatives
in parallel and to evaluate their PPAD attributes.

On the second step, each considered model receives a set of WSM scores, which
quantify their relative goodness for different application scenarios. The WSM
scores are defined by means of Scenario configuration subsection (as exemplified in
Fig. 8.8). Each scenario considers a certain set of PPAD attributes (including the
derived metrics) specified within the variable subsections. The variables should
be either maximized or minimized (goal property) and their relative importance is
specified by means of the weight property. Computed scores for each scenario are

174

8.5 Decision support tool for selecting and optimizing HW designs

#Config.xml: section for Factorial design
<FactorialDesign ConfigTable = “FactorialConfig.csv”>

 <Factor name = “X01” option = "opt_mode" phase = "Synthesis">
 <setting factor_value = "0" option_value = "Speed" />

 <setting factor_value = "1" option_value = "Area" />
 </Factor>

 <Factor name = “X20” option = "resource_sharing" phase = "Synthesis">
 <setting factor_value = "0" option_value = "NO" />

 <setting factor_value = "1" option_value = "YES" />
 </Factor>

....................................

....................................

Figure 8.9: An example of configuration section defining the factorial design: each factor
denotes one EDA parameter, and has two or more treatment levels

visualized through the monitoring interface of the PPAD evaluation engine (along
with the PPAD features), so designers can select the top-ranked configuration for
each of the defined scenarios.

The DSE experimentation scenario takes place when designers need to configure
the optimisation flags of selected EDA tools and/or the architectural parameters
of considered IP cores to attain the best possible implementation. As in the case
of dependability benchmarking, this will also depend on the criteria defined for
each application domain.

For DAVOS to generate the required design of experiments, it requires all the
optimisation parameters to be considered and the levels at which they can be
set. This is accomplished by customising the <FactorialDesign> section of an
XML configuration file. For each parameter, a new <Factor> subsection must
be appended, specifying the option of the EDA tool and the phase of the semi-
custom design flow in which it is used. Additional <setting> subsections define
the levels considered for the design of experiments (factor_value attribute) and
the actual value of this tool option (option_value attribute). Fig. 8.9 depicts an
excerpt of this configuration file (for the Xilinx XST synthesiser). For instance,
the opt_mode synthesis option is denoted as factor X01 and can be set to either
Speed (X01=0) or Area (X01=1).

The particular exploration method should be selected attending to the properties
of the design space and to the experimentation time constraints. For instance,
the DSE based in genetic algorithms is most suitable in the absence of any hy-
pothesis regarding the order of significant effects or the type of regression model,
as well as when the experimentation time is not strictly limited. When this
method is selected, the decision support tool follows the optimized GA/NSGA

175

Chapter 8. DAVOS Toolkit

algorithms, proposed in Section 7.3. The GA-based DSE is customized by means
of a GA subsection in the DecisionSupport configuration. Particularly, a goal
property specifies either a comma-separated list of PPAD attributes, which will
be optimized using NSGA (when mode=’DSE-NSGA’), or a name of WSM score
to optimize using score-based GA (when mode=’DSE-GA’). Other parameters
that can be customized are PopulationSize (default 12), SelectionSize (default
6), CrossoverType (default ’Uniform’), and MutationRate (default ’0.5’). The
convergence process, along with the evaluated configurations, are logged into the
CSV-formatted file and visualized through the monitoring interface of PPAD
evaluation engine.

In the case of limited experimentation time, the DoE-based DSE methods are
more suitable. When all the design parameters are quantified at two levels and in
absence of incompatible configurations in the design space, the fractional factorial
method can be used (mode=’DSE-FACT’). Otherwise a more flexible D-optimal
method is appropriate (mode=’DSE-DOPT). In either way, the decision sup-
port tool first generates the corresponding experimental design (table of sampled
configurations) by invoking the DoE support module. Consequently, the sam-
pled configurations are evaluated (using the PPAD evaluation engine). Using the
regression analysis module, the obtained results are statistically analysed to de-
termine the significant effects, infer regression models on their basis, and compile
them into a compute-efficient form. Finally, the best configurations are deter-
mined by the factor-wise optimization (selecting the level for each factor that
provides the best response from the regression model) or by exhaustively check-
ing the responses for each configuration in the design space (when interaction
terms are considered).

The DSE results are reported to the DSE summary screen, exemplified in Fig. 8.10.
In addition to the best configuration for each score-based optimization scenario,
it also displays a graph with Pareto-efficient configurations highlighted (for which
it is not possible to improve one PPAD property without negatively impacting
another). In the example showed in Fig. 8.10, there are two configurations that
maximise MTTF or clock frequency in detriment of the other, whereas other two
configurations find a trade-off between them. This Pareto-optimal graph can be
of interest when no particular application domain is considered and, thus, no
weights have been defined for selected criteria.

176

8.6 Conclusions

Figure 8.10: Example of Web-based DSE report

8.6 Conclusions

This chapter has presented DAVOS, an EDA toolkit that seamlessly integrates
into the common semi-custom design flow to offer support for the dependability-
driven processes, such as assessment, verification, optimisation (DSE), and selec-
tion (benchmarking). Its flexible and modular architecture makes it compatible
with the standard HDLs, off-the-shelf EDA tools, and implementation technolo-
gies, enabling its extension to support any other processes (even those not depend-
ability related). An interactive web-based interface provides custom query and
visualisation features to ease the analysis of obtained data.

Currently, DAVOS offers native support for Xilinx’s ISE toolchain, Xilinx’s Vi-
vado suite, Mentor Graphics’ Precision RTL synthesiser and ModelSim simulator.
Although several configuration files should be customised to put into practice the
most demanding scenario (dependability-driven DSE), it can be achieved by fol-
lowing the guidelines described in this chapter.

177

Chapter 8. DAVOS Toolkit

The integration of any other EDA tool in the implementation module requires the
development of custom Python functions to generate the appropriate command
line scripts and to process the resulting reports. The definition of a new fault
dictionary may be required to integrate a new simulator into the SBFI flow or to
support a new implementation technology (macrocell library). Existing files for
already supported tools can be used as templates.

Although several fault injection tools exist, they are rarely available. Thus, re-
searchers usually develop their own tools and cross-comparison of results is barely
possible.

DAVOS is published at https://github.com/IlyaTuzov/DAVOS as a free and
open-source toolkit under the MIT license. In such a way, the community will
benefit from the integration of new modules and EDA tools, and researchers could
share their results in a compatible format.

A future work on DAVOS development may focus on: i) extending the toolkit so
it can be easily configured through a web-based interface, ii) defining novel fault
models for different implementation technologies, iii) extending the FFI tool to
support devices other than Xilinx’s 7-Series FPGA/SoC, and iv) improving the
analysis and reporting capabilities.

178

https://github.com/IlyaTuzov/DAVOS

Chapter 9

Experimental Evaluation

This chapter evaluates the efficiency and illustrates the usefulness of the proposed
methods and tools through a case study of three soft-core processors (DUTs). The
case study is structured into three parts according to the dependability-driven sce-
narios supported by DAVOS. Section 9.2 illustrates the dependability benchmark-
ing of considered DUTs at different design representation levels. After benchmark-
ing the DUTs under the default configuration of synthesis, mapping, placement
and routing (EDA) parameters, Section 9.3 studies the impact of these parame-
ters on the resulting dependability. To this end, it carries out several design space
exploration experiments which quantify the contribution of individual EDA param-
eters towards each PPA and dependability metrics, and illustrate the dependability
improvement attainable by means the proper tuning of these parameters. Finally,
Section 9.4 illustrates the dependability assessment of a resilient HW design and
verification of its fault mitigation mechanisms, in application to the instrumented
version one of the DUTs (that will be selected at benchmarking). Within the
context of aforementioned experimentation scenarios this chapter evaluates the
speed-up gain attainable by means of proposed SBFI/FFI optimizations.

179

Chapter 9. Experimental Evaluation

9.1 Introduction

This chapter illustrates the application of the proposed fault injection methodol-
ogy to the dependability-driven processes of FPGA-based design flow through a
case study of three soft-core processors (DUTs): an AVR IP core [144], an MC8051
IP core [126], and a Xilinx’s Microblaze IP [181]. The case study comprises three
parts. The first part considers the DUTs at three representation levels, illus-
trating how the proposed methodology improves the accuracy and performance
of dependability benchmarking experiments. The second part of the case study
illustrates how the PPA and dependability of considered DUTs can be improved
by tuning the synthesis, mapping, and placement-routing parameters of a tar-
get EDA suite (Xilinx Vivado) through the proposed DSE approaches. Finally,
the third part of the case study will instrument one of the DUTs (selected at
benchmarking) with SEU mitigation mechanisms, in order to illustrate how the
proposed methodology improves the dependability assessment and verification of
resilient HW designs.

All the considered DUTs are very similar in size (complexity), and can be consid-
ered as fair alternatives from the benchmarking viewpoint. The top-level architec-
ture of considered DUTs is provided in Fig B.1. All three DUTs are implemented
using the Xilinx’s Vivado 2018.3 suite onto the Zynq-7000 SoC (xc7z020).

All the DUTs run the same synthetic matrix manipulation workload, adapted
for each DUT from the MiBench suite [66] in a reduced format. The workload
is compiled by the C/C++ compiler corresponding to each DUT: (i) CA51 Kit
of the Keil µVision compiler [11] for MC8051 IP, (ii) gcc-avr compiler for AVR
IP, (iii) mc-gcc C/C++ compiler [180] from Xilinx SDK suite for Microblaze.
Table 9.1 lists the number of clock cycles required by each DUT for initialization,
workload execution, and readout of results.

Table 9.1: DUT simulation/emulation phases in clock cycles

DUT
DUT

Initialization
Workload
execution

Result
readout

MC8051 0 35000 4000
AVR 0 14000 6000

Microblaze 0 25000 20000

The considered faultload will be detailed further in each part of this case study.
It is worth noting, though, that the main fault model considered along the case
study is a single event upset (soft error) in the cells of configuration memory
(CM), as these faults are of higher priority for SRAM-based FPGA devices [72].

180

9.2 Dependability benchmarking of soft-core processors

A DUT failure is defined as any mismatch of DUT processing results (resulting
integer matrix) with those of the fault-free run (golden run), as well as the absence
of such results after the predefined time-out. The source versions of the considered
DUTs are not equipped with any error signalling mechanism, thus all their failures
are reported as silent data corruption (SDC). After instrumenting the selected
DUT with SEU mitigation and error detection mechanisms (in the third part of
the case study), the failures will be classified into signalled failures and SDC.

9.2 Dependability benchmarking of soft-core processors

The dependability features of alternative soft-core processors can be assessed and
compared at different design representation levels. Each representation level ex-
hibits its specific advantages and limitations related to the accuracy of supported
analysis and experimental effort. This section illustrates the dependability bench-
marking process in application to the previously described soft-core processors
(DUTs) implemented on the Xilinx 7-series SoC FPGA.

First, the dependability of considered DUTs will be assessed at the RT level,
implementation level, and FPGA level. After that, the DUTs will be ranked
attending to single-objective and multi-objective dependability-aware criteria. It
will be shown why the decision regarding the selection of alternative soft-core
design must be taken at the FPGA level. Finally, this section will discuss the
accuracy and performance improvements attained by the proposed methodology
with respect to the existing fault injection approaches.

9.2.1 Experimental procedure

The experimental procedure comprises three steps: (i) defining the DUT rank-
ing criteria and the respective faultload, (ii) running DAVOS to implement the
DUTs onto the target FPGA, and to estimate the required PPAD attributes at
different representation levels, (iii) analysing the obtained dependability metrics,
and ranking the DUTs.

The DUTs will be ranked attending to the individual PPAD attributes, as well
as to the multi-criteria WSM scores. The considered PPAD attributes include:

- the workload execution time as an attribute of performance;
- the power consumption, estimated by means of Xilinx power analysis tool
with prior simulation of switching activity,

- the utilization of Flip-Flops and LUTs as an attribute of silicon area,

181

Chapter 9. Experimental Evaluation

- the SEU-related failure rate λ as an attribute of dependability of FPGA-
based implementations.

The failure rate λ for each DUT is computed by aggregating the failure rates
of different types of constituting components: Flips-Flops (λFF), Block RAMs
(λBRAM), distributed memory (λLUTRAM), and configuration memory (λCM). It
is worth noting that the first three components are attributed to the changeable
memory of FPGA, whose SEUs may be recovered on their own by normal circuit
operation. Whereas in the case of non-changeable CM the soft error persist in
the CM cells until scrubbing or reconfiguration takes place. The failure rates are
computed attending to the equation 2.3, in which the upset rate is assumed 75
FIT/Mb for CM and LUTRAM, 72 FIT/Mb for BRAM [179], 2 FIT/Mb for Flips-
Flops [72]. Assuming the the harsh application environment (at high-altitudes),
the failure rate derating factor is K = 327.8, as it is explained in [136]. Finally,
the device vulnerability factor DV F is estimated by SBFI and FFI experiments,
as the percentage of upsets that lead to a failure (SDC percentage).

The multicriteria ranking is based on the three weighted sum models, listed in
Table 9.2. Each defined ranking criteria takes into account the PPAD attributes
with different weight coefficients: mission critical score focuses on minimization of
failure rate, cost-critical score aims at minimization of area, mobile score aims at
minimizing the power consumption without sacrificing too much the performance.

Table 9.2: Weights of PPAD attributes in three considered multi-objective ranking scenarios

Scenario
Performance
(Exec. Time)

Power
Consumption

Area Failure Rate
(SER) FF LUT

Mission-critical 0.2 0.2   0.6
Cost-critical 0.2 0.1 0.3 0.3 0.1

Mobile 0.3 0.6   0.1

The DUTs are implemented by means of DAVOS implementation support tool in
conjunction with the Xilinx Vivado suite. implementation support tool is config-
ured for iterative adjustment of clock constraints to reach the maximum possible
clock speed, under the default configuration of synthesis, mapping, placement-
routing parameters. Only for the purpose of analysis of register mapping and
LUT mapping results, two additional implementations are considered for MC8051
IP: (i) the one which limits the netlist fanout by a factor of 10 (default is 10000),
and (ii) another one which disables the LUT combining. The resulting clock fre-
quencies of default configuration are: 26.1 MHz for MC8051, 71.4 MHz for AVR,
142.8 MHz for Microblaze.

182

9.2 Dependability benchmarking of soft-core processors

The resulting amount of utilized logic resources, and the corresponding fault
targets at different representation levels are listed in Table 9.3. As it can be seen,
the three soft-core processors are quite similar in terms of logic utilization. The
most significant difference is the amount of instantiated BRAM, which however
is not expected to lead to significant diversity in terms of dependability metrics,
since only a small part of BRAM cells are actually used under the given workload.
It is worth commenting that only Microblaze instantiates the distributed memory
(LUTRAM) to implement the register file, while in the rest of DUTs the registers
are implemented completely on Flip-Flops.

It can be also seen that under the default configuration of EDA parameters the
registers are synthesized without logic replication, resulting in close to 100%
match at register mapping. When limiting the fanout, many registers become
replicated, thus reducing the match rate to just 67%. It is important to note that
Microblaze is not available in source codes (as RTL model), but only as macro IP
in Vivado suite, therefore it will be only targeted at implementation level (SBFI),
and at FPGA level (FFI).

Table 9.3: Fault targets at different design representation levels

RTL (signals) Implementation-level
(macrocells)

FPGA configuration memory (Kb)

Total
Matched Reg.1 Changeable Non-changeable

bits % FF LUT BRAM LUTRAM BRAM LUTs Rest

MC8051
- Default 1280 569 99% 576 2573 18 0 645.1 144.3 330.3

- Fan-out
limit 10 1280

576
(521)2 67% 778      

- No LUT
combining         185.9 364.8

AVR 2461 423 100% 423 1747 2 0 73.7 98.6 244.3

Microblaze3 – – – 982 1303 32 4.0 1179.6 71.9 279.8

1 RTL registers are located by means of register mapping procedure
2 Non-replicated registers (direct match 1:1)
3 Xilinx IP (source RTL model is not available)

The faultload considered at different representation levels for each DUT is listed
in Table 9.4. First, the stuck-at-1/0 faults are analysed at RTL and implementa-
tion levels only to illustrate the gap in dependability estimates existing between
these levels. These faults are not taken into account for the ranking of DUTs,
as the latter focuses only on soft-errors. Stuck-at faults are injected following an
exhaustive approach, since the population of fault configurations is reasonably
small (stuck-at are injected at the workload start).

183

Chapter 9. Experimental Evaluation

Table 9.4: Faultload considered at different design representation levels

Fault Model
Injection level

Sampling method Inj. Time RTL
(SBFI)

IMPL
(SBFI)

FPGA
(FFI)

Stuck-at-1/0   Exhaustive 0
Bit-flip in registers    Statistical 𝑒𝑆𝐷𝐶 = 0.5% Random
Bit-flip in LUTRAM   Statistical 𝑒𝑆𝐷𝐶 = 0.1% Random
Bit-flip in BRAM   Statistical 𝑒𝑆𝐷𝐶 = 0.1% Random
Bit-flip in CRAM (all)  Statistical 𝑒𝑆𝐷𝐶 = 0.1% 0
Bit-flip in CRAM (LUTs)   Exhaustive 0

Bit-Flips in the registers are injected at all representation levels. The fault space
for the bit-flips includes all possible injection points (FFs) at each clock cycle of
the workload, resulting in 20.16, 5.92, and 13.75 millions of fault configurations
for MC8051, AVR, and Microblaze respectively. Accordingly, bit-flips will be
injected following the iterative statistical approach, with the goal of reaching the
0.5% error margin for SDC percentage. The fault space for the rest of changeable
memory cells (LUTRAM and BRAM) is even larger, while their SDC percentage
is expected to be much lower than that of FFs due to the low utilization rate of
LUTRAM/BRAM cells. Thus, to keep a statistical significance of derived results,
bit-flips into LUTRAM and BRAM are injected with a narrower error margin goal
of 0.1%.

Unlike changeable memory, the upsets in non-changeable CM are not recovered
by normal circuit operation. As such, they can be treated as permanent (in the
absence of CM scrubbing), and can be injected at the beginning of the workload.
This results in the smaller fault space, which nevertheless still accounts for 0.35
to 0.50 millions of fault configurations. Non-changeable CM cells are split in
two subsets: (i) those that store the configuration of netlist macrocells (mainly
LUT content), and (ii) the rest of them that configure the interconnection and
routing. The former subset accounts for 20% to 30% of CM cells, and is reflected in
the post-implementation netlist in form of INIT_reg attributes of corresponding
macrocells; their upsets can be thus analysed both by means of implementation-
level SBFI, and by means of FFI experiments. The larger subset of CM cells
(configuring the routing) is not reflected in the post-implementation model. The
upsets in these CM cells can be thus analysed only at FPGA level by means of
FFI experiments. Under the absence of any hypothesis regarding the possible
magnitude of SDC percentage, the conservatively narrow error margin of 0.1%
has been selected as a goal for the statistical injection into the CM. Additionally,
to verify the LUT profiling approach, a subset of CM cells attributed to the LUT
content will be targeted following an exhaustive injection approach.

184

9.2 Dependability benchmarking of soft-core processors

The scheduled SBFI and FFI experiments have been executed using the DAVOS
evaluation engine. SBFI experiments are performed on the Grid computing plat-
form, in which the fault injection campaign has been split into 100 parallel jobs.
To perform the FFI experiments the evaluation engine has been equipped with
two Zynq ZC702 boards, thus allowing to evaluate the dependability of two DUTs
in parallel.

9.2.2 Fault injection results and dependability metrics

The datasets, containing the resulting fault injection logs with an attached report-
ing interface for each DUT, are publicly available at [161] (DOI of the dataset:
10.5281/zenodo.3996297). This subsection analyses the obtained results.

9.2.2.1 Stuck-at faults

The stuck-at faults have been first analysed following a common approach, in
which all model nodes available at both RTL and implementation levels are tar-
geted without distinguishing between sequential and combinational logic. Fig. 9.1-
a illustrates a huge gap existing between RT-level and implementation-level re-
sults, obtained following this blind approach. In some cases (AVR) the RT-level
SBFI underestimates the SDC by 20 percentage points. By enabling the mapping
of registers in DAVOS this gap is reduced to less than 2 percentage points in all
cases. As it can be seen from the Fig. 9.1-b, the distribution of failure modes
for the stuck-at faults in mapped registers at RT-level is very close to that at
implementation level. Minor discrepancies in the percentage of latent errors (in
case of AVR) can be explained by the existence of additional (replicated/inferred)
registers at the implementation level.

9.2.2.2 Bit-Flips in registers

The bit-flips in registers can be analysed in the proposed methodology at three
representation levels: RTL, implementation (IMPL), and FPGA (FFI). Fig. 9.2-
A illustrates the resulting distribution of failures modes for each DUT. As it can
be seen, the results obtained at different levels match quite well: the difference of
SDC percentage between all representation levels is less than the sampling error
(0.5%) in all cases. Some minor discrepancies (less than 3 percentage points)
have been observed only for the latent errors. They can be partially explained by
the impact of synthesis/implementation-time optimizations that are not related
to the register replication/removal, and partially by the impact of timing delays

185

https://doi.org/10.5281/zenodo.3996297

Chapter 9. Experimental Evaluation

(a) SBFI targeting all model nodes (blind target selection) (b) SBFI with register mapping enabled (targeting only registers)

69.7

37.4

56.4

45.5

42.1

15.5

31.3

26.9

20.6

54.3

14.8

31.4

16.7

33.9

3.6

0.0 20.0 40.0 60.0 80.0 100.0

I M P L

I M P L

R T L

I M P L

R T L

M
IC

R
O

B
L

A
Z

E
A

V
R

M
C

8
0

5
1

(D

E
F

A
U

L
T

)

STUCK-AT-1
SDC Latent Masked

58.2

51.5

52.0

30.7

30.8

28.0

22.9

20.9

63.0

64.5

13.8

25.5

27.1

6.3

4.7

0.0 20.0 40.0 60.0 80.0 100.0

I M P L

I M P L

R T L

I M P L

R T L

M
IC

R
O

B
L

A
Z

E
A

V
R

M
C

8
0

5
1

(D

E
F

A
U

L
T

)

STUCK-AT-1
SDC Latent Masked

53.0

32.2

46.8

40.1

32.7

5.0

27.9

21.5

3.2

4.5

42.0

39.9

31.8

56.7

62.8

0.0 20.0 40.0 60.0 80.0 100.0

I M P L

I M P L

R T L

I M P L

R T L

M
IC

R
O

B
L

A
Z

E
A

V
R

M
C

8
0

5
1

(D

E
F

A
U

L
T

)

STUCK-AT-0
SDC Latent Masked

50.9

42.3

44.4

20.3

21.0

7.2

27.9

30.0

6.9

5.5

41.9

29.8

25.6

72.8

73.5

0.0 20.0 40.0 60.0 80.0 100.0

I M P L

I M P L

R T L

I M P L

R T L

M
IC

R
O

B
L

A
Z

E
A

V
R

M
C

8
0

5
1

(D

E
F

A
U

L
T

)

STUCK-AT-0
SDC Latent Masked

Figure 9.1: Distribution of failure modes estimated for the stuck-at-1/0 faults by means of
RT-level SBFI and implementation-level SBFI, when blindly targeting all model nodes (a),
when enabling the register mapping to target only the sequential logic at both levels (b)

at implementation level. The resulting failure rate λFF (depicted in 9.2-B) also
matches quite well between all representation levels.

Obtained results indicate that under the default configuration of EDA parame-
ters, analysis of bit-flips in registers can be representatively accomplished at any
description level. Register mapping in this case is useful to automatically locate
the relevant fault targets, i.e. those RTL signals that correspond to the inferred
FFs and latches. Under the aggressive register optimization/replication one can
not rely solely on RT level SBFI for estimation of bit-flips. For instance, in case of
MC8051 with limited fanout 33% of registers were replicated, and the multi-level
SBFI has been used instead of pure RT-level SBFI. In this case all replicated reg-
isters (detected by mapping) were targeted at implementation level, while the rest
of them were targeted at RTL. As it can be seen from the Fig 9.2, the multi-level
results match quite well with those obtained by pure implementation-level SBFI.

Apart from analyzing the robustness of the design as a whole, a more fine-grained
analysis can be performed by means of DAVOS. For instance, from the distribu-
tion of SDC percentage along the Microblaze design tree (depicted in Fig. 9.3)

186

9.2 Dependability benchmarking of soft-core processors

(a) Distribution of failure modes (b) Failure Rate in FIT units (FF)

8.4

7.6

12.2

11.9

12.4

10.1

9.7

9.7

10.7

11.0

10.4

7.7

5.0

43.1

42.9

39.8

46.1

46.0

46.6

61.4

60.2

61.2

83.9

87.4

44.7

45.2

47.8

43.8

44.3

43.7

27.8

28.8

28.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F P G A

I M P L

F P G A

I M P L

R T L

F P G A

I M P L

M U L T I L E V E L

F P G A

I M P L

R T L

M
IC

R
O

-B
L

A
Z

E
A

V
R

M
C

8
0

5
1

 (
L

IM
IT

E
D

F
A

N
O

U
T

)
M

C
8

0
5

1
 (

D
E

F
A

U
L

T
)

SDC Latent Masked

1.6E-04

1.5E-04

1.0E-04

1.0E-04

1.0E-04

1.6E-04

1.5E-04

1.5E-04

1.2E-04

1.3E-04

1.2E-04

0.0E+00 5.0E-05 1.0E-04 1.5E-04

F P G A

I M P L

F P G A

I M P L

R T L

F P G A

I M P L

M U L T I L E V E L

F P G A

I M P L

R T L

M
IC

R
O

-B
L

A
Z

E
A

V
R

M
C

8
0

5
1

 (
L

IM
IT

E
D

F

A
N

O
U

T
)

M
C

8
0

5
1

 (
D

E
F

A
U

L
T

)

Failure Rate Flip-Flops (FIT)

Figure 9.2: Bit-flips in registers at different representation levels: distribution of failure
modes and estimated failure rate

Figure 9.3: Contribution of Microblaze modules into SDC percentage (estimated by FFI)

it can be seen that the DUT scopes that are most vulnerable to the register
bit-flips are operand select (1.87% of SDCs out of total 8.40%), and instruction
fre-fetch (1.38% SDC)). Likewise, the most vulnerable AVR module is the register
file, which contributes 7.7% of SDCs out of total 12.2%. The MC8051 registers
that contribute the most into the failure rate are R0, R1, and PC (located in
the control memory), being they responsible for 2.9%, 1.6% and 2.5% of SDC
respectively (out of total 10.1%).

187

Chapter 9. Experimental Evaluation

9.2.2.3 Bit-Flips in LUTRAM and BRAM

Bit-flips in distributed memory (LUTRAM) and in block memory (BRAM) have
been analysed at the implementation level (SBFI), and at the FPGA level (FFI).
It is worth noting that among the considered DUTs only Microblaze utilizes the
LUTRAMs.

The resulting distribution of failure modes for the bit-flips in LUTRAM, and
corresponding failure rates λLUTRAM are depicted in Fig. 9.4. As it can be seen,
there are no statistically significant discrepancies in the distribution of failure
modes between the two representation levels. The percentage of SDC is roughly
three times less than in case of registers, while the resulting failure rate is two
orders of magnitude higher. This is explained by the higher number of targeted
bits in LUTRAM, as well as by the higher FIT per megabit in case of LUTRAM.

(a) Distribution of failure modes (b) Failure Rate in FIT units (LUTRAM)

3,6

3,8

66,3

66,6

30,1

29,7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F P G A

I M P L

M
IC

R
O

B
L

A
Z

E

(
D

E
F

A
U

L
T

)

SDC Latent Masked

1,11E-02

1,16E-02

0,0E+00 5,0E-03 1,0E-02

FPGA

IMPL
M

IC
R

O
B

L
A

Z
E

(D
E

F
A

U
L

T
)

Failure Rate LUTRAM (FIT)

Figure 9.4: Bit-flips in LUTRAM obtained by SBFI and FFI: distribution of failure modes
and estimated failure rate

(a) Percentage of non-signaled failures (SDC) (%) (b) Failure Rate in FIT units (BRAM)

0.65

0.6

3.36

3.67

0.40

0.33

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

FPGA

IMPL

FPGA

IMPL

FPGA

IMPL

M
C

8
0

5
1

A
V

R
M

ic
ro

b
la

ze

SDC (%)

0.30

0.28

0.18

0.19

0.34

0.28

0.00 0.10 0.20 0.30 0.40

FPGA

IMPL

FPGA

IMPL

FPGA

IMPL

M
C

8
0

5
1

A
V

R
M

ic
ro

b
la

ze

FAILURE RATE BRAM (FIT)

Figure 9.5: Bit-flips in block RAM obtained by FFI: distribution of failure modes and
estimated failure rate

Fig. 9.5 illustrates the resulting percentage of SDC and the corresponding failure
rate (λBRAM) for the bit-flips in BRAM. It can be seen that the difference between
the SBFI and FFI results does not exceed the sampling error. Estimated SDC
percentage of MC8051 (0.42%) and Microblaze (0.65%) is much lower than that

188

9.2 Dependability benchmarking of soft-core processors

of AVR (3.36%). This is due to the fact AVR has less addressable BRAM, but
its utilization rate is much higher that in the case of MC8051 and Microblaze.
At the same time, the resulting failure rate (λBRAM) computed on the basis of
SDC percentage by equation 2.3, does not differ that much between the DUTs.
Furthermore, AVR is seemingly more robust to BRAM bit-flips (0.18 FIT) than
MC8051 (0.30 FIT) and Microblaze (0.35 FIT).

9.2.2.4 Upsets in non-changeable configuration memory

The non-changeable CM cells are divided into two subsets: those that configure
the combinational logic (LUT content), and the rest of them (mainly configuring
the routing). The CM cells attributed to the LUTs can be targeted both at the
level of implementation-level HDL model, and at the level of FPGA prototype.
Those CM cells that configure the routing are not reflected in HDL models (even
in implementation-level ones), and can only be targeted at FPGA level.

Fig. 9.6 illustrates the resulting SDC percentage and the corresponding failure rate
(λCM), estimated for the LUT-specific CM cells at the implementation level, as
well as for the entire set of CM cells at FPGA level. In terms of SDC percentage
the Microblaze is the least robust DUT at both description levels, while the
MC8051 is the most robust one. In terms of resulting failure rate the situation
is more complex. With respect to the LUT-specific CM cells, the Microblaze is
better (exhibits lower failure rate) than the rest of DUTs. However, with respect
to the entire set of CM cells at the FPGA level, the Microblaze is significantly
worse (has higher failure rate) than the rest of DUTs. It is also important to note
that the contribution of LUT-specific CM cells into the total CM-related failure
rate is quite low, ranging between 8% and 18%. Likewise, by comparing these
results with the previously presented ones, it can be seen that the CM-related
failure rate is more than an order of magnitude higher than that of BRAM,
LUTRAM and FF put together.

Additionally, the LUT-specific CM cells have been targeted exhaustively, after
profiling their activity time. It is worth noting, that all non-essential LUT bits
have been filtered-out before SBFI/FFI experiments by means of LUT mapping.

Fig. 9.7 illustrates the percentage of LUT-specific CM cells with respect to the
profiled activity time, splitting them into several groups: inactive cells, cells that
are active less that 0.1% of workload duration, cells that are active 0.1% to 1%
of workload duration, and so on. For each group it plots the corresponding SDC
percentage, estimated by means of SBFI and FFI experiments. As it can be
seen, the major part of CM cells remain inactive (up to 57% in case of MC8051).

189

Chapter 9. Experimental Evaluation

(a) Percentage of failures (SDC) (%) (b) Failure Rate in FIT units (CM)

12.59

17.62

24.316

7.92

12.49

19.16

0 5 10 15 20 25

M C 8 0 5 1

A V R

M I C R O B L A Z E

M C 8 0 5 1

A V R

M I C R O B L A Z E

C
M

 A
L

L
 (

F
F

I)
C

M
 L

U
T

 (
IM

P
L

)

SDC (%)

4.20

4.27

5.69

0.68

0.74

0.46

0.00 1.00 2.00 3.00 4.00 5.00 6.00

M C 8 0 5 1

A V R

M I C R O B L A Z E

M C 8 0 5 1

A V R

M I C R O B L A Z E

C
M

 A
L

L
 (

F
F

I)
C

M
 L

U
T

 (
IM

P
L

)

CM (FIT)

Figure 9.6: Robustness estimates obtained for the bit-flips in non-changeable CM at the
level of implementation-level HDL model (LUT-specific CM cells), and at the FPGA level
(all essential CM cells)

Percentage of CRAM cells wrt. activity time (FFI) Percentage of CRAM cells wrt. activity time (SBFI) SDC (%) (FFI) SDC (%) (SBFI)

(a) MICROBLAZE (FFI) (b) AVR (FFI) (c) MC8051 (FFI and SBFI)

48.8

19.9

11.2
9.4 8.8

2.0

0

10

20

30

40

50

60

70

80

Inactive
bits

0 - 0.1 0.1 - 1 1 - 5 5 - 50 50 - 100

ACTIVITY TIME % WORKLOAD DURATION

35.2

25.8

15.6
13.1

9.9

0.4
0

10

20

30

40

50

60

Inactive
bits

0 - 0.1 0.1 - 1 1 - 5 5 - 50 50 - 100

ACTIVITY TIME % WORKLOAD DURATION

56.7

20.6

7.0 7.3 6.9

1.5

57.1

20.3

6.9 7.3 6.9

1.5

0

10

20

30

40

50

60

70

Inactive
bits

0 - 0.1 0.1 - 1 1 - 5 5 - 50 50 - 100

ACTIVITY TIME % WORKLOAD DURATION

Figure 9.7: Percentage of LUT bits with respect to the profiled activity time, and respective
percentage of failures (SDC)

Conducted FFI and SBFI experiments confirm that their upsets never lead to a
failure. For the rest of LUT bits it can be seen that groups with higher activity
time tend to be more critical (show higher SDC percentage) than the groups with
the lower activity time. It can be noted, though, that in the case of MC8051 this
correlation is less pronounced than in the case of Microblaze, and AVR. Overall
this supports the hypothesis that the higher is the activity time of a certain LUT
bit, the more critical it becomes, i.e. it is more likely that its upset will cause a
DUT failure.

From the practical viewpoint this has two implications. First, inactive LUT bits
can be safely left out from consideration at SBFI/FFI experiments, since their

190

9.2 Dependability benchmarking of soft-core processors

upsets can be a-priory accounted as masked. Second, when the SBFI/FFI exper-
iment aims at identification of most critical CM bits in less possible experimen-
tation time, it is worth to target with the higher priority those CM cells, whose
activity time is higher.

Finally, thanks to the bit-accurate LUT mapping, it becomes possible to cross-
compare the SBFI results with the FFI results. This analysis has been performed
for the MC8051. It can be noted that the number of fault targets at implementa-
tion-level SBFI is slightly lower than that at FFI; this is due to the fact that some
LUT bits are mapped onto several CM cells in case of LUT combining with non-
shared inputs (as explained in Section 5.2.1). Fig. 9.7-C illustrates the obtained
SBFI results alongside with FFI results. It can be seen, that SBFI results per
activity group match quite well with FFI results. At the bit granularity 99.9% of
SBFI runs resulted with the same failure mode as corresponding FFI runs. The
minor discrepancy of 0.1% can be explained by the imperfections of annotated
timing model (SDF). The overall 99.9% match indicates the uniformity of injection
procedures deployed at the level of implementation-level HDL model, and at the
FPGA level.

9.2.3 Ranking of DUTs

The considered DUTs can be compared on the basis of dependability and PPA
attributes available at different design representation levels. Table 9.5 summarizes
the obtained PPAD attributes, in order to determine which soft-core processor
better satisfies the design goals when implementing them on the selected FPGA.

The RTL models are least informative from the benchmarking viewpoint, since
they don’t reflect any implementation-specific details. In such a way, the area
and power consumption attributes are unavailable at this level. The performance
can be compared in terms of clock cycles required for the workload execution –
the AVR is the best DUT from this viewpoint. The dependability comparison at
this level can take into account only the dependability metrics of the sequential
logic. The AVR is the best DUT in this category, since it provides the lowest
register-related failure rate λFF . Finally, the Microblaze cannot be compared to
the rest of DUTs at this level at all, since its RTL model is not available.

At the level of implementation-level HDL models (after the design is synthesised,
placed and routed), the comparison of DUTs becomes much more informative, and
all three DUTs can be now taken into account. The best DUT in terms of area is
AVR, since it utilizes the least total number of BELs (FFs and LUTs). The per-
formance now takes into account the maximum clock frequency reached by each

191

Chapter 9. Experimental Evaluation

Table 9.5: Comparison of considered DUTs attending to individual PPAD metrics and
WSM scores

Benchmark Metric
Benchmark circuits

MC8051 AVR Microblaze

R
T

L
 Performance Workload exec. time (cycles) 35000 14000 -

Dependability Failure rate registers FF (FIT) 0.00012 0.00010 -

Im
p

le
m

en
ta

ti
o

n
-l

ev
el

H

D
L

 m
o

d
el

Area
FF BELs 576 423 982
LUT BELs 2187 1484 1089

Performance
Frequency (MHz) 26.1 71.4 142.9
Workload exec. time (ms) 1.34 0.20 0.17

Power Consumption (W) 0.015 0.022 0.033

Dependability

Failure rate  (total, FIT) 0.976 0.914 0.814

FF 0.00012 0.00010 0.00017

LUTRAM 0.000 0.000 0.011

BRAM 0.300 0.178 0.340

CM_LUT 0.676 0.736 0.463

F
P

G
A

 p
ro

to
ty

p
e

Area
FF BELs 576 423 982
LUT BELs 2187 1484 1089

Performance
Frequency (MHz) 26.1 71.4 142.9
Workload exec. time (ms) 1.34 0.20 0.17

Power Consumption (W) 0.015 0.022 0.033

Dependability

Failure rate  (total, FIT) 4.499 4.446 6.04

FF 0.00012 0.00010 0.00017

LUTRAM 0.000 0.000 0.011

BRAM 0.300 0.178 0.340

CM_ALL 4.199 4.268 5.690

MTTF (h) 6.78×105 6.86×105 5.04×105
Mission Time (RTh=0.999) (h) 678 686 504

Score
Mission-Critical 0.82 0.91 0.73
Cost-Critical 0.59 0.87 0.75
Mobile 0.74 0.78 0.65

DUT on the selected FPGA; Microblaze is the best in this category since it fea-
tures the fastest absolute workload execution time. It is interesting to note that in
terms of performance the Microblaze and AVR outscore the MC8051 nearly by an
order of magnitude. In terms of power consumption the best solution is MC8051,
which is explained by its much lower clock speed in comparison to other DUTs.
The comparison of dependability now takes into account the estimates obtained
for all technology-specific sequential and combinational macrocells, namely the
failure rate of FF, LUTRAM, BRAM, and of the LUT-related CM cells. As it
can be seen, in this category the Microblaze in this category is better than the
rest of DUTs by 10% to 20%.

Switching to the level of FPGA prototype doesn’t change the ranking from the
viewpoint of performance, power, or area, but notably changes it from the view-

192

9.2 Dependability benchmarking of soft-core processors

point of dependability. The only dependability component that can be addition-
ally taken into account at the FPGA level with respect to the implementation-level
model, is the one related to the routing-specific CM cells. This additional compo-
nent, however, has a dominating impact on the resulting failure rate, increasing
it by 5 to 7 times with respect to the total failure rate estimated at the level of
implementation-level model. Accordingly, as it can be seen from the Table 9.5,
the best (lowest) failure rate is provided by AVR (4.446 FIT), which is also quite
close to the failure rate of MC8051 (4.499 FIT). Both of them outscore the failure
rate of Microblaze by roughly 25%. All the reliability metrics derived on the basis
of the failure rate (MTTF and mission time), lead to the same ranking.

From the Table 9.5 it can be also noted that the resulting failure rate is mostly
determined by the CM upsets λCM (93% to 96% contribution). This indicates
that non-changeable memory should be given the highest priority in dependability
assessment, as well as in protection of considered DUTs against the soft errors
(SEUs).

Finally, under the multi-objective ranking AVR receives the highest score in all
three defined scenarios: mission-critical (0.91), cost-critical (0.87), and mobile
(0.78). Accordingly, since providing both the best dependability, and the best
trade-off between dependability and the rest of PPA attributes, AVR is selected
as the best soft-core processor among the considered alternatives for implementa-
tion on the selected FPGA.

9.2.4 Experimental effort and speed-up

As it has been explained in Chapter 6, the experimental effort is optimized in
two ways: (i) by accelerating the execution of individual injection runs through
the checkpointing and multi-level SBFI, and (ii) by reducing the total number of
required fault injection runs through the optimization of essential bits, profiling,
and iterative statistical fault injection.

Table 9.6 lists the mean SBFI and FFI time per injection run, measured for the
considered DUTs in the absence of any optimization. As it could be expected,
the FFI experiments provide the lowest time per injection run, being FFI roughly
two orders of magnitude faster than RT-level SBFI, and four orders of magnitude
faster than implementation-level SBFI. When scaling these numbers for the size of
injection campaign, the resulting experimental time may seem very high, or even
prohibitive in case of implementation-level SBFI. For instance, non-optimized
SBFI experiments for MC8051 would require 32/58 hours for the analysis of bit-
flips in registers (for the default implementation and implementation with limited

193

Chapter 9. Experimental Evaluation

fanout respectively), 802 hours for the bit-flips in BRAM, and 87 hours for the
upsets in LUTs.

As it can be seen from the Table 9.7, by applying the proposed optimization,
these numbers are reduced to just 0.05 and 3.9 hours for the bit-flips in registers
(default implementation and implementation with limited fanout), providing a
speed-up factor of 640 and 7.8 respectively, to just 12.6 hours for BRAMs (speed-
up factor of 64), and to 26 hours for LUTs (speed-up factor of 3.4). A slightly
lower, but also notable speed-up is achieved in case of FFI experiments. The
contribution of each optimization into the resulting speed-up is further analysed
in this subsection.

Table 9.6: Non-optimized SBFI and FFI time (per injection run)

DUT

Mean time per injection run (sec) [std. deviation]

SBFI
RTL

SBFI
Implementation

FFI
(trace latent
errors = off)

FFI
(trace latent
errors = on)

MC8051 default 1.6 [0.5] 301 [93] 0.008 [0.000] 0.026 [0.000]
MC8051 limited fanout 1.6 [0.5] 490 [108] 0.009 [0.001] 0.018 [0.001]
AVR 2.0 [0.1] 72 [8] 0.005 [0.001] 0.026 [0.000]
Microblaze  421 [19] 0.007 [0.000] 0.055 [0.000]

Table 9.7: Estimated non-optimized and optimized (resulting) experimental time per
MC8051 fault injection campaign

Fault model/
Target logic

Non-
optimized
time (h)

Optimized
time (h)

Applied optimizations
Multilevel
injection

Check-
pointing

LUT
mapping

Profiling
Iterative
sampling

Bit-flip/Registers
Default (SBFI*) 32.2 0.05   

Limited fanout (SBFI) 51.8 3.9   

Bit-Flip/BRAM (SBFI) 802.7 12.6  

Bit-Flip/LUT content
Default (FFI) 1.04 0.59  

No_LC (SBFI) 87.3 26.0  

No_LC (FFI) 1.34 0.69  

Upset/CRAM (FFI) 2.29 1.56  

* SBFI experiments are performed with parallelization factor of 100 (using Grid computing cluster)

Before analysing the speed-up provided by each optimization, it is worth to make
several observations. First, the total time per SBFI/FFI campaign scales propor-
tionally to the used number of computing nodes (parallel simulation/emulation
processes). In this case study SBFI experiments have been carried out using
the Grid computing cluster with a maximum of 100 parallel simulation jobs. It

194

9.2 Dependability benchmarking of soft-core processors

should be noted, however, that the effective parallelization factor in many cases
remained lower than the desired 100, since some simulation jobs were waiting for
availability of computing nodes (being scheduled by Sun Grid Engine).

Therefore, to properly estimate the speed-up provided by each proposed optimiza-
tion, the estimations of experimental time provided in this section are based on
the pure runtime logged by the simulator for each individual injection run. The
estimations of total run time assume the optimistic parallelization factor of 100.
Likewise, FFI experiments have been distributed between two available ZC702
evaluation boards for evaluating two different DUTs in parallel. Therefore the
FFI parallelization factor for each individual DUT is assumed equal to 1.

Second important observation concerns the impact of DUT tracing procedure
(analysis of failure modes) on the resulting experimental time. As it can be seen
from the Table 9.6, enabling the tracing of latent errors increases the FFI run
time by 2 to 8 times with respect to FFI that analyses only DUT responses (fail-
ures). This is explained by the relatively high time overheads (in comparison
to the workload execution time) required to readback those frames that contain
the state elements (FF, LUTRAM, BRAM), and to compare them with the ref-
erence trace. Especially notable this overhead becomes when the state frames
are numerous and sparse, since at least on the selected platform (Xilinx SDK
2018.3, ZC702 evaluation board), the PCAP was unable to readback multiple
non-aligned (sparse) frames in a single transaction, thus requiring to split the
readback in multiple PCAP transactions. Accordingly, when the computation of
dependability attributes doesn’t take latent errors into account (e.g. the SDC
percentage estimated in this section), the tracing of DUT internal state can be
disabled in the configuration of DAVOS FFI tool for the sake of much higher FFI
performance. In case of SBFI the time overheads imposed by the DUT tracing
are significantly less pronounced, generally not exceeding a factor of 1.5 (with
respect to SBFI that traces only DUT responses).

9.2.4.1 Checkpointing

The speed-up gain provided by the clustering checkpoints (using 20 clustering in-
tervals) in implementation-level SBFI experiments ranges between 1.32 and 1.67.
This result generally coincides with the expected speed-up, estimated by DAVOS
(at workload generation) using the model defined in Listing 6.2. Table 9.8 lists
the optimized time per injection run for each DUT, and compares the expected
speed-up factors with the experimentally obtained ones.

195

Chapter 9. Experimental Evaluation

The speed-up gain in case of RT-level SBFI is lower than in the case of imple-
mentation-level SBFI. This is explained by the relatively low simulation effort at
RT level, under which the checkpoint recovery time (around 0.5 to 1 seconds)
takes a notable part of total run time (1.0 to 2.0 seconds). Nevertheless, since
the checkpoint recovery is slightly faster than the complete simulator restart, the
checkpointing may only improve and never penalise the SBFI performance.

Table 9.8: SBFI time under the checkpointing optimization enabled (20 clustering inter-
vals), expected and resulting speed-up factors

DUT

SBFI RTL SBFI Implementation
Time per

inj. run (sec)
[std. deviation]

Speed-up
experimental/

expected

Time per
inj. run (sec)

[std. deviation]

Speed-up
experimental/

expected
MC8051 default 1.2 [0.5] 1.33 / 1.60 181 [93] 1.67 / 1.69
MC8051 limited fanout 1.2 [0.5] 1.33 / 1.60 299[149] 1.64 / 1.69
AVR 1.6 [0.5] 1.25 / 1.52 48 [16] 1.50 / 1.52
Microblaze   320 [74] 1.32 / 1.35

Regarding FFI checkpointing, the time required to reload the CM frames with
state elements and user memories from a snapshot (up to 20 ms depending on the
number and sparsity of CM frames) exceeded the workload execution time itself
(5 ms to 26 ms). For that reason, no speed-up gain could be obtained from FFI
checkpointing in this case study.

9.2.4.2 Multilevel fault injection

As it has been previously shown in this section, to obtain the accurate dependabi-
lity estimations by means of RTL-level SBFI, it is necessary to locate those nodes
of RTL model that represent the sequential logic, as well as to take into account
the logic optimizations performed at synthesis. The proposed register mapping
technique has automated this process. When the percentage of mapped registers
is close to 100% (under the default configuration of synthesis parameters), the
very costly implementation-level SBFI can be safely replaced by much faster RT-
level SBFI. As it can be seen from the Table 9.9, the attainable speed-up gain for
the considered DUTs ranges between 30 (AVR) and 150 (MC8051 default).

Customization of synthesis parameters may lead to the aggressive optimization or
replication of registers, thus significantly reducing the register match rate. In the
presented case study this has been illustrated by the implementation of MC8051
with the limited fanout, in which roughly 33% of registers have been replicated. In
this case the faultload must be distributed between the RTL and implementation-

196

9.2 Dependability benchmarking of soft-core processors

Table 9.9: Speed-up gain achieved by multi-level SBFI with respect to implementation-level
SBFI when evaluating the effects of bit-flips in registers

DUT
Matched
registers

Experimental Time* (hours)
Speed-up

Implementation Multi-level
MC8051 default 100% 7.54 0.05 150.8
MC8051 limited fanout 67% 11.63 3.87 3.0
AVR 100% 2.27 0.08 30.0

level SBFI in such a way that non-optimized registers are targeted at RTL, while
the optimized/replicated registers are targeted at implementation level. As it
has been shown in Fig 9.2, this multi-level SBFI provides the same dependability
estimates as the purely implementation-level SBFI, while the experimental effort
is reduced by 3.0 times: 3.87 hours for multi-level SBFI compared to 11.63 hours
for implementation-level SBFI (see Table 9.9).

9.2.4.3 Optimized essential bits and profiling

Bit-accurate LUT mapping and profiling of switching activity are two optimiza-
tions that reduce the number of injection runs when targeting the combinational
logic of FPGA. The LUT mapping identifies those LUT bits that are actually es-
sential for the targeted design, reducing the number of fault targets with respect
to the redundant essential bits reported by Vivado suite. The profiling deter-
mines which of those essential bits remain inactive under the given workload, and
thus can be removed from the fault list, as their upsets do not impact the DUT
behaviour.

Table 9.10: Percentage of CM essential bits filtered-out by LUT mapping and profiling,
and the resulting speed-up

Xilinx
Essential bits

Optimized
essential bits

 Active optimized
Essential bits

Non-
optimized
run time
(hour)*

Overheads
(hour)

Optimized
run time
(hour)*

Speed-up
factor

(Kb)
Abs
(Kb)

Reduction
(%)

Abs
(Kb)

Reduction
(%)

LUT
mapping

Profiling

MC8051 default (FFI) 144.4 113.8 -21.2% 52.9 -63.3% 1.04 0.02 0.19 0.59 1.75
MC8051 no_lc (FFI) 186.0 125.7 -32.4% 54.8 -70.6% 1.34 0.02 0.28 0.76 1.93
MC8051 no_lc (SBFI) 186.0 125.7 -32.4% 54.8 -70.6% 87.3 0.02 0.28 26.0 3.36
AVR 98.6 78.6 -20.3% 50.9 -48.4% 0.58 0.02 0.07 0.39 1.48
Microblaze 71.9 32.2 -55.2% 16.5 -77.1% 1.10 0.02 0.14 0.41 2.69

* based on mean time per injection, assuming parallelization factor 100 for SBFI, 1 for FFI

Table 9.10 lists the speed-up provided by these optimizations under the exhaustive
simulation/emulation of LUT upsets for the considered DUTs. As it can be seen,
the LUT mapping has filtered-out 21%, 20% and 55% of LUT-specific essential

197

Chapter 9. Experimental Evaluation

bits, reported by Vivado for MC8051, AVR, and Microblaze respectively. When
disabling the LUT combining at implementation of MC8051, the percentage of
filtered-out bits increases to 32%, being the absolute number of essential bits very
similar to those of the default implementation (55 Kb and 53 Kb respectively). By
means of FFI experiments it has been verified that bit-flips in these filtered-out
bits don’t impact the DUT behaviour, thus being non-essential.

In this case study 35% (AVR) to 56% (MC8051) of remaining essential bits were
reported as inactive by the profiling of switching activity. Thus, the resulting
reduction of faultload (with respect to the essential bits reported by Vivado)
amounted to 63% for MC8051, 48% for AVR, and 77% for Microblaze. When
taking into account the time overheads for LUT mapping and profiling, the re-
sulting speed-up factor in this case study reaches 2.7 for FFI experiments, and
3.4 for SBFI experiments. It is worth noting, however, that LUTs account for
less that 30% of total essential bits. Therefore with respect to the entire set of
essential bits the resulting reduction of fault targets amounted to just 19% for
MC8051, 14% for AVR, and 16% for Microblaze. A further research is thus re-
quired to analyse the possibility of similar optimizations for the routing-related
essential bits (which can be targeted only by means of FFI experiments).

9.2.4.4 Iterative statistical fault injection

 (a) MC8051 (b) AVR (c) Microblaze

e ≤ 0.5%
(15000)

Conservative
sample (38342)

9.5

10

10.5

11

11.5

12

12.5

0 10 20 30 40

Si
le

n
t

D
at

a
C

o
rr

u
p

ti
o

n
, %

 p
o

in
ts

Sample size (thousands)

e ≤ 0.5%
(17000)

Conservative
sample (38247)

11

11.5

12

12.5

13

13.5

0 10 20 30 40
Sample size (thousands)

e ≤ 0.5%
(12000)

Conservative
sample (38309)

7.5

8

8.5

9

9.5

10

0 10 20 30 40
Sample size (thousands)

Figure 9.8: SDC confidence intervals obtained by iteratively appending 1000 fault con-
figurations to the sample, in comparison to conservative statistical approach (bit-flips in
registers, error margin threshold 0.5%)

Iterative statistical fault injection reduces the number of fault injection runs with
respect to the common (conservative) approach by periodically recomputing the

198

9.2 Dependability benchmarking of soft-core processors

robustness estimates along with their respective error margins, and thus termi-
nating the experiment as soon as all error margins reach the predefined threshold.
As it has been explained in Section 6.2.2, the further from 50% is the robustness
estimate, the higher speed-up gain the iterative approach is expected to provide
with respect to the common (conservative) approach. Fig. 9.8 illustrates speed-up
gain attained by this approach for the case of bit-flips in registers (estimated by
FFI). DAVOS FFI tools keeps appending 1000 of fault configurations (injection
runs) to the sample, until the error margin of SDC metric reaches a threshold
of 0.5%. This required 12000 (Microblaze) to 17000 (AVR) of injection runs to
reach the desired error margin (under the 95% confidence). Whereas under the
conservative sampling each DUT would require roughly 38000 of injections runs.
The resulting speed-up factor, measured during the injection of bit-flips, ranges
between 2.2 and 3.2 (AVR and Microblaze respectively).

Table 9.11: Speed-up attained by iterative statistical FFI at dependability benchmarking
in comparison to the conservative sampling approach

SBFI/FFI Experiment
Conservative sample* / Iterative sample* / (Speed-up)

MC8051 AVR Microblaze LEON3

Upsets in registers (𝑒 = 0.5%) 38 / 15 / (2.5) 38 / 17 / (2.2) 38 / 12 / (3.2) 38 / 11 / (3.5)
Upsets in LUTRAM (𝑒 = 0.1%)   951 / 138 / (6.9) 
Upsets in BRAM (𝑒 = 0.1%) 960 / 25 / (28.4) 960 / 125 / (7.7) 960 / 17 / (56.5) 
Upsets in CRAM (𝑒 = 0.1%) 304 / 217 / (1.4) 242 / 205 / (1.2) 236 / 217 / (1.09) 

Total 1302 / 257 / (5.1) 1240 / 347 / (3.6) 2185 / 390 / (5.6) 38 / 11 / (3.5)

* Thousands of fault injection runs

SBFI/FFI Experiment
Conservative sample* / Iterative sample* / (Speed-up)

MC8051 AVR Microblaze

Upsets in registers (𝑒 = 0.5%) 38 / 15 / (2.5) 38 / 17 / (2.2) 38 / 12 / (3.2)
Upsets in LUTRAM (𝑒 = 0.1%)   951 / 138 / (6.9)
Upsets in BRAM (𝑒 = 0.1%) 960 / 25 / (28.4) 960 / 125 / (7.7) 960 / 17 / (56.5)
Upsets in CRAM (𝑒 = 0.1%) 303 / 216 / (1.4) 242 / 205 / (1.2) 236 / 217 / (1.09)

Total 1302 / 256 / (5.1) 1240 / 347 / (3.6) 2185 / 390 / (5.7)

* Thousands of fault injection runs

Table 9.11 summarizes the speed-up gain provided by the iterative statistical in-
jection (with respect to the conservative approach) for the dependability bench-
marking of considered DUTs. As expected, the lower is the resulting robustness
metric, the more beneficial becomes the iterative injection in comparison to the
conservative approach. The maximum speed-up (ranging between 7.7 and 56.5)
has been achieved in case of BRAM bit-flips, since the resulting robustness esti-
mate (SDC percentage) remained below 1%. On the opposite, the lowest speed-up
up (1.09 to 1.4) has been observed in case of CM upsets. This is explained by the
combination of strict error margin (0.1%), with relatively small population size
(200 to 480 thousands of fault configurations) and high SDC percentage (12.5% to
24.0%), that have lead to the need to sample a significant part of population (50%
to 70%) both when following the conservative and iterative approaches. Based
on the total number of injection runs for each DUT, it can be concluded that
iterative fault injection has accelerated the dependability benchmarking by 3.6 to
5.7 times with respect to the common statistical injection approach.

199

Chapter 9. Experimental Evaluation

9.2.5 Discussion

It is worth commenting several practical implications following from the presented
results.

First, the case study has confirmed the gap (up to 20 percentage points) that
exists between the RT-level and implementation-level SBFI analysis, when blindly
targeting all design nodes available at these levels. To obtain more accurate
robustness estimations at RTL it is necessary to locate those RTL nodes that
correspond to the inferred (technology-specific) sequential macrocells, and take
into account the logic optimizations performed during the synthesis and imple-
mentation. The proposed register mapping technique automates this process, and
reduces the gap between RTL and implementation-level estimations to less than
2 percentage points. As a result, the robustness assessment of sequential logic can
be carried-out by means of fast RT-level SBFI with the accuracy close to that of
implementation-level SBFI and FFI experiments. In the case of high percentage
of optimized/replicated registers (reported by the register mapping) the multi-
level SBFI must be followed instead of RT-level SBFI in order to obtain more
accurate estimations, while still reducing the experimental effort with respect to
the pure implementation-level SBFI.

Second, the overall contribution of non-changeable CM (both routing and LUT-
specific) into the resulting failure rate may exceed 90%. On the one hand, this
may be specific to the selected HW designs and workload. For instance, different
workload may utilize more of allocated changeable memory (BRAM, LUTRAM,
FFs), and this may significantly increase its contribution into the resulting fail-
ure rate. On the other hand, in the absence of any SEU protection mechanism
the upsets in non-changeable CM should be still considered as potentially more
severe, since they affect the functionality/integrity of the circuit itself, and unlike
changeable memory can’t be mitigated by error correction codes. Therefore, the
dependability benchmarking of FPGA-based designs, similar to those considered
in the case study, should primarily focus on the non-changeable CM.

Third, most technology-specific faults can be accurately analysed both by means
of implemenation-level SBFI and FFI experiments, like for instance the upsets in
FF, BRAM, LUTRAM and LUT-specific CM. Nevertheless, the dependability-
aware selection of FPGA-based designs should rely on FFI experiments, because
only at FPGA level it becomes possible to take into account the failure rate of
routing-related CM cells that have a dominating contribution into the total failure
rate of FPGA implementations.

200

9.2 Dependability benchmarking of soft-core processors

Fourth, it has been shown, that the bit-accurate LUT mapping locates the LUT-
specific essential bits with finer granularity than those reported by Vivado, re-
sulting in up to 50% reduction of corresponding LUT-specific essential bits. FFI
experiments have confirmed that filtered-out bits indeed do not impact the be-
haviour of the DUTs, and can be safely left out of consideration. On the one hand,
this might improve the accuracy of those reliability estimations, that rely on the
amount of essential bits without estimating their actual criticality (conservatively
assuming all of them as critical), like for instance the work in [64]. On the other
hand, when the fault injection is used to determine the exact number of critical
bits (like in the presented case study), the bit-accurate mapping allows to reduce
the FFI experimental effort.

At the same time, the bit-accurate LUT mapping allows to estimate the activity
of LUT-specific CM cells through the proposed simulation-based profiling. The
case study has confirmed the hypothesis that increasing activity time of LUT
bits increases their criticality, i.e. the probability that their upsets will lead to a
failure. With respect to the fault injection experiments, this allows to filter-out
the inactive fault targets, and thus to reduce even further the experimental effort,
without the risk to overlook any critical bits. From the design viewpoint such ac-
tivity profiles could be useful for the optimization of SEU mitigation mechanisms,
such as CM scrubbing.

Fifth, it has been shown that the speed-up gain, attained by the proposed op-
timizations, greatly depends on the particular DUT, its representation level, as
well as on the considered fault models.

The bit-accurate LUT mapping and profiling of switching activity in conjunction
reduce the number of fault targets by 49% to 77%, and accelerate the depend-
ability assessment of LUT-based combinational logic by 1.5 to 3.4 times. This
speed-up is more pronounced in the case of SBFI experiments than in the case of
FFI, since the profiling overheads in the former case are much less significant in
comparison to the total experimental effort. However, when targeting not only the
combinational logic, but a complete set of essential bits, the resulting reduction
of fault targets becomes much lower (14% to 19%). Therefore, further research
on bit-accurate mapping of FPGA resources is required in order to deploy similar
optimizations for the rest (mostly routing-specific) essential bits.

The iterative statistical fault injection accelerated the dependability benchmark-
ing of considered soft-core processors by 3 to 6 times with respect to the the
common conservative statistical injection approach [100]. In practice, it is equally
efficient at all descriptions levels, and provides the highest speed-up gain when
the fault space is huge and the expected failure rate is low.

201

Chapter 9. Experimental Evaluation

The multilevel fault injection reaches the highest speed-up gain (two orders of
magnitude) when most implementation-level registers can be mapped onto the
source RTL model. Whereas the checkpointing is most efficient in the case of
implementation-level SBFI experiments, when the checkpoint recovery time is
negligible in comparison to the runtime of each SBFI run.

It is important to note that most of the proposed optimizations complement each
other, and can be also combined with other existing approaches. For instance, it
was possible to accelerate the analysis of bit-flips in registers of MC8051 by 620
times, by combing the multilevel injection (150x speed-up), SBFI checkpointing
(1.67x speed-up), and iterative sampling (2.5x speed-up). Some speed-up tech-
niques that can be used in addition to those presented are fault collapsing and
dynamic fault analysis. As it has been discussed in Section 6.4, the fault collapsing
filters-out the ineffective faults, and may seem similar to the proposed profiling
approach. Nevertheless, these two approaches operate at different representation
levels and target different types of logic: the fault collapsing (as it is proposed
in [24]) applies to RT-level memories, while the profiling applies to FPGA-specific
combinational logic (LUTs) at the implementation and FPGA levels. Therefore
they are not alternative, but rather complementary techniques (if generalizing
the fault collapsing for implementation-level memories). The dynamic fault anal-
ysis (that aims at early identification of fault effects [129]), despite being very
DUT/workload-specific, can be potentially used in conjunction with all the pro-
posed optimization techniques.

9.3 Dependability-aware design space exploration for optimal
tuning of EDA parameters

Vivado Design Suite is a proprietary framework that supports the last genera-
tion of Xilinx FPGAs and SoC devices. It provides a total of 30 synthesis [186]
and implementation [185] parameters that may impact the performance, power
consumption, area, and robustness of the resulting implementation. This section
presents a case study which aims at determining the close to optimal configura-
tions of Vivado parameters, that improve as much as possible the PPAD results
of considered DUTs (MC8051, AVR, Microblaze) beyond the results of Vivado’s
default configuration.

202

9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters

9.3.1 Experimental procedure

All considered Vivado parameters have been labelled as factors X01 to X30. Each
factor has S different valid settings (numbered 0 to S − 1). Considered factors
along with their treatment levels are listed in Table 9.12. The tuning of these
parameters is carried out using two different design space exploration (DSE) ap-
proaches, proposed in Chapter 7.

Table 9.12: Vivado parameters under study, default level highlighted in bold

Factor Parameter Considered levels

Sy
n

th
es

is
 p

a
ra

m
et

er
s

x01 directive 0: Default, 1: RuntimeOptimized, 2: AreaOptimized_high,
3: AreaOptimized_medium, 4: AlternateRoutability, 5: AreaMapLargeShiftRegToBRAM,
6: AreaMultThresholdDSP, 7: FewerCarryChains

x02 flatten_hierarchy 0: None, 1: full, 2: rebuilt
x03 gated_clock_conversion 0: off, 1: on, 2: auto
x04 bufg 0: 0, 1: 1, 2:5, 3: 12, 4: 100
x05 fanout_limit 0: 10, 1: 100, 2: 1000, 3: 10000
x06 retiming 0: false, 1: true
x07 fsm_extraction 0: auto, 1: one_hot, 2: sequential, 3: johnson, 4: gray, 5: off
x08 keep_equivalent_registers 0: false, 1: true, 2: off
x09 resource_sharing 0: auto, 1: on, 2: off
x10 control_set_opt_threshold 0: auto, 1: 0, 2: 1, 3: 5, 4: 10, 5: 16
x11 no_lc 0: false, 1: true
x12 no_srlextract 0: false, 1: true
x13 shreg_min_size 0: 0, 1: 3, 2: 8, 3: 16, 4: 32, 5: 128
x14 max_bram 0: -1, 1: 0, 2: 1, 3: 8, 4: 32
x15 max_uram 0: -1, 1: 0, 2: 1, 3: 8, 4: 32
x16 max_dsp 0: -1, 1: 0, 2: 1, 3: 8, 4: 32
x17 max_bram_cascade_height 0: -1, 1: 0, 2: 1, 3: 8, 4: 32
x18 max_uram_cascade_height 0: -1, 1: 0, 2: 1, 3: 8, 4: 32
x19 cascade_dsp 0: auto, 1: tree, 2: force
x20 assert 0: false, 1: true

Im
p

le
m

en
ta

ti
o

n
 p

a
ra

m
et

er
s

x21 opt_design. is_enabled 0: false, 1: true
x22 opt_design.directive 0: Explore, 1: ExploreArea, 2: ExploreSequentialArea, 3: AddRemap,

4: NoBramPowerOpt, 5: RuntimeOptimized, 6: ExploreWithRemap, 7: Default
x23 power_opt_design.is_enabled 0: false, 1: true
x24 place_design.directive 0: Explore, 1: WLDrivenBlockPlacement, 2: LateBlockPlacement,

3: ExtraNetDelay_high, 4: ExtraNetDelay_medium, 5: ExtraNetDelay_low,
6: SpreadLogic_high, 7: SpreadLogic_medium, 8: SpreadLogic_low,
9: ExtraPostPlacementOpt, 10: SSI_ExtraTimingOpt, 11: SSI_SpreadSLLs,
12: SSI_BalanceSLLs, 13: SSI_BalanceSLRs, 14: SSI_HighUtilSLRs,
15: RuntimeOptimized, 16: Quick, 17: Default

x25 post_place_power_opt_design.is_enabled 0: false, 1: true
x26 phys_opt_design.is_enabled 0: false, 1: true
x27 phys_opt_design.directive 0: Default, 1: Explore , 2: ExploreWithHoldFix, 3: AggressiveExplore,

4: AlternateReplication, 5: AggressiveFanoutOpt, 6: AddRetime,
7: AlternateFlowWithRetiming, 8: RuntimeOptimized

x28 route_design.directive 0: Explore , 1: NoTimingRelaxation, 2: MoreGlobalIterations,
3: HigherDelayCost, 4: AdvancedSkewModeling, 5: Default,
6: RuntimeOptimized, 7: Quick

x29 post_route_phys_opt_design.is_enabled 0: false, 1: true
x30 post_route_phys_opt_design.directive 0: Explore, 1: AggressiveExplore, 2: AddRetime, 3: Default

The first series of DSE experiments is based on genetic algorithm (GA) with iter-
ative selection. The goal of single-objective GA is to improve as much as possible
the dependability of considered DUTs, while reaching a clock frequency of 20 MHz
(individuals with lower frequency are filtered-out). Similarly to benchmarking sce-
nario, dependability will be quantified through the failure rate λ attribute, and

203

Chapter 9. Experimental Evaluation

will take into account only the upsets of non-changeable memory λCM , since it has
been previously shown that it has a dominating contribution (93% to 96%) into
the total failure rate. The multi-objective NSGA aims at simultaneous improve-
ment of both dependability and frequency, i.e. determines a set of Pareto-efficient
solutions with respect to these two goals. The purpose of these experiments is
to illustrate the feasibility of GA-based dependability-aware DSE, and to quan-
tify the speed-up attainable through the iterative selection with respect to the
common selection approach. The iterative selection algorithm 7.3 is configured as
follows: the error margin threshold EMF = 0.1%, and the sample size increment
δ = 10000.

The second series of DSE experiments is based on Design of Experiments (DoE).
A D-optimal DoE-based approach is selected for two reasons: (i) Vivado pa-
rameters are quantified at more then two levels, and (ii) there is no information
available a-priory regarding the compatibility of considered parameters (regular-
ity of design space). The purpose of DoE-based experiments is to (i) quantify the
contribution of each Vivado parameter towards each PPAP attribute and infer
a predictive models for each of them, (ii) determine the optimal Vivado config-
urations with respect to each individual PPAD attribute, and with respect to
multi-objective goal quantified by mission-critical score (defined in Table 9.2),
and (iii) cross-compare the optimization results obtained by the GA-based and
DoE-based approaches. To ensure the accuracy of statistical analysis in the case
of DoE-based DSE, the robustness of sampled individuals is estimated following
the iterative statistical FFI with a strict error margin goal of 0.1%. The threshold
that will serve for the acceptance of dependability regression models is set to 0.6
(model should explain at least 60% of variability of response variable). As it is
explained in Section 7.2.3, the iterative D-optimal DSE process terminates, once
all regressions models have been accepted.

9.3.2 DSE results obtained by GA-based approach

The single-objective genetic DSE process, detailed in Fig. B.2 (Annex), was de-
ployed for two selection scenarios: (i) 9 individuals out of 18 – experiments a, b,
c for MC8051, AVR, and Microblaze respectively, and (ii) 6 individuals out of 18
– experiments d, e, f. On the whole it took 4 to 6 GA iterations to reach the
convergence in all cases. In experiments b, e, and f the robustness of the circuits
gradually improved at each iteration but the last one, whereas in experiments
a, c, and d the DSE came across the close-to-optimum solution at the first GA
iterations.

204

9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters

The multi-objective NSGA-based DSE was carried out for the selection 9 indi-
viduals out of 18 (experiments g, h, i), the corresponding convergence results
are detailed in Fig.B.3 (Annex). As it can be seen from the excerpt from the
GA/NSGA results, depicted in Fig. 9.9, the frequency and failure rate are con-
flicting optimization goals. Even though at the first iteration the primary Pareto
set F1 included just two configurations, by the 5-th (last) iteration the F1 set al-
ready comprised 8 Pareto-efficient solutions, for which it is impossible to improve
the clock frequency without degrading the robustness (failure rate).

Iteration 1 (2.2 h.) … Iteration 5 (1.2 h.)

(experiment e) Single-objective GA: min. failure rate (experiment h) Multi-objective NSGA: min. failure rate, max. clock frequency

1 2 3 4 5 6

35.085.0

Failure Rate of Default configuration Rejected configurations

Filtered-out configurations (< 20 MHz) Selected configurations2.05 h.

30
80

35 40 45 50 55 60 65 70 75 80

Selected Configurations Rejected Configurations

Primary Pareto Set (F1) Default Configuration

λ=1.97 ± 0.04 FIT

1 2 3 4 5 6

1.9

2.4

2.9

3.4

3.9

4.4

4.9

5.4

Iteration of GA

F
ai

lu
re

 R
at

e
(F

IT
)

Robustness evaluation time (hours)
0.62 h. 0.73 h. 0.95 h.1.18 h. 1.24 h.

Default

2.5

2.9

3.3

3.7

4.1

4.5

4.9

5.3

5.7

35 45 55 65 75

F
ai

lu
re

 R
at

e
(F

IT
)

Frequency (MHz)

2.2

2.4

2.6

2.8

3.0

3.2

3.4

35 45 55 65 75 85

Frequency (MHz)

Figure 9.9: Excerpt from GA-based DSE results for AVR: single-objective GA (experiment
e), and multi-objective NSGA (experiment h)

It is worth noting that in all DSE experiments (a–i), the resulting solutions signif-
icantly improved the robustness of the Vivado’s default configuration. Table 9.17
lists the resulting best configurations in each experiment, along with the robust-
ness improvement ω they provide. As it can be seen, the failure rate has been
reduced by 25%− 36% for MC8051, by 46%− 52% for AVR, and by 16%− 20%
for Microblaze. Whereas multi-objective DSE discovered the configurations that
simultaneously improve the robustness and clock speed beyond the Vivado’s de-
fault results. Particularly, experiments g and h attained 15%/31% and 22%/17%
of simultaneous robustness/frequency improvement for MC8051 and AVR respec-
tively.

Even though the GA-based DSE doesn’t explain the contribution of individual
factors towards the PPAD goals, it can be noted that configurations achieving
better robustness are, in general, those minimising the area. For instance, infer-
ring distributed LUTRAMs instead of BRAM significantly increases both the area
used for control logic and the failure rate, so the BRAM utilization constraints

205

Chapter 9. Experimental Evaluation

(factor X14) should be relaxed. The same area minimization reasoning explains
why synthesis parameter flatten hierarchy, is set to full (X02 = 1, allows complete
cross-boundary optimizations) in all absolute best configurations (experiments d,
e, c) in Table 9.17. It can also be seen that the best configurations share X03 = 0
(disables gated clock conversion), X21 = 1 (enables implementation-time design
optimization), and X29 = 0 (disables post-route physical optimization). Finally,
X05 set to either 1 or 2 in all best configurations may indicate that the optimal
fanout is in the range [100 : 1000].

Table 9.13: Resulting configurations providing best robustness

Exp.
Factors’ settings1

ω2
x01 x02 x03 x04 x05 x06 x07 x08 x09 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30

M
C

8
0

5
1

 (a) 0 1 2 1 1 1 5 1 0 3 1 0 2 4 1 0 5 3 2 1 1 2 0 6 0 0 7 7 1 1 25%

(d) 2 1 0 3 1 1 1 0 0 2 0 1 1 4 0 2 4 5 2 1 1 1 0 15 1 1 6 2 0 3 36%

(g) 2 1 1 3 2 0 0 1 2 3 1 1 4 4 4 3 3 5 2 0 0 2 1 10 0 0 7 2 0 0 26%

A
V

R
 (b) 1 1 2 3 1 1 4 1 1 2 0 1 0 3 4 3 2 3 1 1 1 7 0 4 1 1 1 7 1 1 46%

(e) 6 1 0 4 2 0 4 1 1 4 1 1 3 0 1 2 4 2 1 1 1 3 1 3 0 0 7 7 0 2 52%

(h) 2 1 0 0 1 0 5 0 1 0 1 1 5 0 0 0 4 1 2 1 0 2 0 7 1 0 7 7 0 3 47%

M
ic

ro
-

b
la

ze
 (c) 1 1 0 3 2 0 2 0 2 2 0 0 3 1 3 2 1 2 0 0 1 5 1 13 1 0 2 7 0 2 20%

(f) 1 1 1 4 1 0 1 1 0 4 0 0 5 1 4 2 5 5 1 0 1 2 0 16 1 0 0 3 0 0 17%

(i) 7 0 0 4 1 1 0 0 0 1 0 0 1 0 2 2 4 0 2 1 1 4 0 16 1 0 7 6 0 0 16%

Default 0 2 0 3 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 7 0 17 0 0 0 5 0 3

1 setting coinciding with 75% of best selected individuals is highlighted in bold
2 ω - reduction of failure rate with respect to Vivado default setting

The total robustness evaluation time was roughly two times less for the single-
goal GA (3.5 hours (experiment e) to 9.7 hours (experiment f)) than in multi-
objective NSGA (7.5 hours (experiment h) to 16.6 hours (experiment i)). This
can be explained by differences in the selection process: single-goal GA only keeps
running the fault injection process until it becomes possible to select 9(6) out of 18
individuals, while NSGA requires non-overlapping confidence intervals for all 18
individuals in population. It can be also seen from Fig. B.2 that the experimental
time is unequally distributed among iterations. As the convergence process goes
on, the selection process can be faster or slower depending on how much diversity
is present among configurations.

Table 9.14 shows the accumulated number of experiments at each GA iteration for
different fault injection strategies. When no optimisations are considered, all 32
Mbit of the Zynq-7000 bitstream are targeted for each configuration, for a total of
more than 1000 millions of experiments. The speed-up provided by the proposed
iterative selection K approach ranges between 145.4 and 402.5 (experiments (i)
and (e) respectively).

Focusing on just how much improvement it provides beyond the state of the art
approaches, the final speed-up ranges between 1.8 and 3.3 in single-objective DSE,

206

9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters

Table 9.14: Accumulated millions of fault injection experiments and speed-up (in paren-
thesis) attained by the proposed iterative selection strategy

Experiment
Iteration
[#Confs]

Strategies

Without
optimisations

Optimized
essential bits

Statistical fault
injection
(e=0.1%)

Selection
of K best

Si
n

gl
e

o
b

je
ct

iv
e

o
p

ti
m

iz
at

io
n

(a
)

M
C

8
0

5
1

Se

l.
9

/1
8

 1 [18] 582 (388.0) 15.5 (10.6) 8.7 (5.9) 1.5
2 [27] 873 (349.2) 18.9 (7.7) 11.4 (4.6) 2.5
3 [36] 1164 (363.8) 22.6 (7.0) 13.9 (4.3) 3.2
4 [45] 1454 (354.6) 26.1 (6.4) 16.8 (4.1) 4.1
5 [54] 1745 (295.8) 29.1 (5.0) 19.3 (3.3) 5.9

(b
)

A
V

R

Se
l.

9
/1

8

1 [18] 582 (970.0) 5.2 (9.4) 4.5 (8.1) 0.6
2 [27] 873 (545.6) 7.2 (4.6) 6.5 (4.2) 1.6
3 [36] 1164 (465.6) 9.2 (3.7) 8.4 (3.4) 2.5
4 [45] 1454 (363.5) 11.2 (2.8) 10.1 (2.5) 4.0
5 [54] 1745 (371.3) 12.8 (2.7) 11.8 (2.5) 4.7
6 [63] 2036 (303.9) 14.7 (2.2) 13.5 (2.0) 6.7

(c
)

M
ic

ro
bl

az
e

Se
l. 9

/1
8 1 [18] 582 (388.0) 5.1 (3.3) 4.3 (2.8) 1.5

2 [27] 873 (379.6) 7.4 (3.2) 6.3 (2.7) 2.3
3 [36] 1164 (388.0) 9.0 (3.0) 7.9 (2.7) 3.0
4 [45] 1454 (259.6) 11.3 (2.0) 9.9 (1.8) 5.6

(d
)

M
C8

05
1

Se
l. 6

/1
8 1 [18] 582 (415.7) 18.3 (13.4) 10.1 (7.5) 1.4

2 [30] 970 (461.9) 23.8 (11.2) 14.1 (6.6) 2.1
3 [42] 1357 (315.6) 27.4 (6.4) 17.2 (4.0) 4.3
4 [54] 1745 (286.1) 30.7 (5.1) 20.1 (3.3) 6.1

(e
)

A
V

R

Se
l.

6
/1

8
 1 [18] 582 (831.4) 5.0 (7.3) 4.4 (6.4) 0.7

2 [30] 970 (646.7) 7.4 (5.0) 6.8 (4.6) 1.5
3 [42] 1357 (484.6) 9.8 (3.5) 9.0 (3.2) 2.8
4 [54] 1745 (447.4) 12.3 (3.2) 11.3 (2.9) 3.9
5 [66] 2133 (402.5) 14.7 (2.8) 13.5 (2.5) 5.3

(f
)

M
IC

R
O

B
L

A
Z

E

Se
l.

6
/1

8

1 [18] 582 (529.1) 5.7 (5.1) 3.9 (3.5) 1.1
2 [30] 970 (388.0) 9.4 (3.7) 7.4 (2.9) 2.5
3 [42] 1357 (347.9) 13.1 (3.4) 10.6 (2.7) 3.9
4 [54] 1745 (323.1) 16.7 (3.1) 13.6 (2.5) 5.4
5 [66] 2133 (333.3) 20.0 (3.1) 16.6 (2.6) 6.4
6 [78] 2521 (262.6) 23.4 (2.4) 19.5 (2.0) 9.6

M
u

lt
i-

o
b

je
ct

iv
e

(N
SG

A
) (g

)
M

C
8

0
5

1
 1 [18] 582 (187.7) 19.2 (6.2) 10.5 (3.4) 3.1

2 [27] 873 (145.5) 22.9 (3.8) 13.5 (2.3) 6.0
3 [36] 1164 (149.2) 27.6 (3.5) 16.9 (2.2) 7.8
4 [45] 1454 (151.5) 32.2 (3.4) 20.1 (2.1) 9.6
5 [54] 1745 (147.9) 35.7 (3.0) 23.0 (1.9) 11.8

(h
)

A
V

R

1 [18] 582 (223.8) 5.0 (1.9) 4.4 (1.7) 2.6
2 [27] 873 (203.0) 7.0 (1.6) 6.2 (1.4) 4.3
3 [36] 1164 (207.9) 8.9 (1.6) 7.9 (1.4) 5.6
4 [45] 1454 (196.5) 10.8 (1.5) 9.6 (1.3) 7.4
5 [54] 1745 (200.6) 12.4 (1.4) 11.1 (1.3) 8.7

(i
)

M
IC

R
O

B
L

A
Z

E

1 [18] 582 (176.4) 5.1 (1.5) 4.2 (1.3) 3.3
2 [27] 873 (164.7) 8.2 (1.5) 6.8 (1.3) 5.3
3 [36] 1164 (157.3) 11.5 (1.6) 9.3 (1.3) 7.4
4 [45] 1454 (153.1) 13.9 (1.5) 11.7 (1.2) 9.5
5 [54] 1745 (145.4) 16.7 (1.4) 14.1 (1.2) 12.0

and between 1.2 and 1.9 in multi-objective NSGA. This speed-up depends on each
particular scenario, but it gets the best results when there is more diversity present
in the considered configurations, which in considered case study was observed at
initial GA iterations – it can be seen from Table 9.14 that the speed-up at the
first iteration ranges between 2.8 and 8.1 in single-goal GA, and between 1.3 and
3.4 in case of NSGA.

207

Chapter 9. Experimental Evaluation

9.3.3 DSE results obtained by DoE-based approach

The DoE-based design space exploration started with the smallest allowable D-
optimal design, comprising 112 configurations, which equals the sum of degrees of
freedom of all parameters plus one. Within the initial design there were several
invalid configurations (7 in case of MC8051, 12 in case of Microblaze), i.e. configu-
rations that were either non-implementable, or not meeting the timing constraints
under any clock frequency. Following the proposed methodology, these configu-
rations have been discarded, and the new configuration have been appended to
repair the design back to 112 configurations.

The regression analysis carried out on the basis of these 112 configurations re-
vealed, that such initial design was too small to provide representative PPAD
estimators, since the determination coefficients of most PPAD (for all DUTs)
were near 0. Accordingly, the design was augmented by 50% of its initial size.
Some of new configurations in the augmented design were also invalid, so that it
has been repaired again. For the resulting D-optimal design of 168 configurations
the determination coefficients R2 of all regression models for all DUTs exceeded
an acceptance threshold (0.60). In particular, the determination coefficient ranges
between 0.83 and 0.85 for the failure rate, between 0.78 and 0.91 for the clock
frequency, between 0.60 and 0.78 for the power consumption, and between 0.80
and 0.97 for the area. The iterative refinement of D-optimal design has been thus
terminated.

The magnitude of this result can be understood if considering that for a total
number of 5.35 × 1017 configurations, just 168 were enough to explain 60% to
97% of the effect of Vivado parameters on resulting PPAD attributes.

Table 9.15 lists the resulting regression models for the failure rate, alongside with
the corresponding residual plots (difference between the observed and predicted
value for the sample). As it can be seen, regression models explain 83% to 85%
of variability of the failure rate by the effects of Vivado parameters. At the same
time, the residuals are randomly and evenly distributed, there is no observable
pattern, and the magnitude of the residuals is relatively small in comparison to
the fitted value. Therefore it can be concluded that the obtained models have
high enough quality for predicting the failure rate with respect to the arbitrary
settings of Vivado parameters.

For each significant multilevel factor the model may include as many terms as
the number of levels adopted by this factor. The response is thus computed by
including only one term per each factor (which corresponds to the given setting
X). For instance, let us consider the regression model for MC8051. When all

208

9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters

Table 9.15: Resulting regression models for failure rate (accounting for significant terms)

Residual plot Regression Model

M
C
80
51

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Fitted values

-1

-0.5

0

0.5

1

1.5

R
es

id
ua

ls

Plot of residuals vs. fitted values

λ(X) =5.27− 0.35(X01 = 1)− 0.38(X01 = 2)
− 0.45(X01 = 6) + 0.45(X02 = 2)
− 1.16(X05 = 1)− 1.26(X05 = 2)
− 1.36(X05 = 3) + 0.13(X08 = 1)
+ 0.79(X14 = 1) + 0.78(X14 = 2)
+ 0.69(X14 = 3)− 0.68(X28 = 7)
+ 0.40(X29 = 1);

R
2 = 0.85

AV
R

2.5 3 3.5 4 4.5 5 5.5

Fitted values

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
es

id
ua

ls

Plot of residuals vs. fitted values

λ(X) =4.84− 0.43(X01 = 1)− 0.76(X01 = 2)
− 0.30(X01 = 3)− 0.85(X01 = 6)
− 0.32(X02 = 1) + 0.31(X02 = 2)
− 0.71(X05 = 1)− 0.79(X05 = 2)
− 0.78(X05 = 3)− 0.11(X11 = 1)
+ 0.19(X27 = 1) + 0.25(X27 = 3)
− 0.20(X28 = 6)− 0.75(X28 = 7)
+ 0.18(X29 = 1);

R
2 = 0.83

M
ic
ro
bl
az
e

4.5 5 5.5 6 6.5 7

Fitted values

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
es

id
ua

ls

Plot of residuals vs. fitted values
λ(X) =5.84 + 0.12(X01 = 3) + 0.26(X02 = 1)

+ 0.32(X02 = 2)− 0.10(X03 = 1)
− 0.07(X03 = 2)− 0.09(X05 = 1)
− 0.14(X05 = 2)− 0.15(X05 = 3)
+ 0.16(X08 = 1)− 0.12(X11 = 1)
+ 0.18(X13 = 2) + 0.19(X13 = 3)
+ 0.13(X13 = 4) + 0.15(X13 = 5)
− 0.18(X17 = 2)− 0.10(X17 = 4)
− 0.16(X21 = 1) + 0.16(X23 = 1)
− 0.38(X24 = 16) + 0.07(X26 = 1)
− 0.12(X28 = 3)− 1.42(X28 = 7)
+ 0.07(X29 = 1);

R
2 = 0.85

factors X are set at level 0, the failure rate λ equals the intercept value (5.27 FIT).

209

Chapter 9. Experimental Evaluation

When changing the X01 (synthesis directive) to either 1 (RuntimeOptimized), or
2 (AreaOptimizedHigh), or 6 (AreaMultThresholdDSP), this value is reduced by
0.35 FIT, by 0.38 FIT, or by 0.45 FIT respectively. Setting the X05 to the level 1,
or 2, or 3 (relaxes the fanout limit to 100, 1000, or 1000 respectively) additionally
reduces the failure rate by 1.16 FIT, 1.26 FIT, and 1.36 FIT respectively (being
thus X05 = 3 the most beneficial setting). Likewise the failure rate is reduced by
0.68 FIT by setting X28 = 7. On the opposite, the failure rate is increased by
0.13 FIT when setting X05 = 1, increased by 0.79 FIT when setting the X14 = 1,
and increased by 0.40 FIT when setting X29 = 1.

The used stepwise regression included all linear terms for each significant factor.
Nevertheless, not all of these terms significantly contribute to the response vari-
able. Accordingly, Table 9.15 lists only those terms that reach the significance
threshold (p ≤ 0.05). Resulting regression models for the rest of PPAD attributes
(including all terms exported by Matlab) are provided in the Annex B.3.

It is worth commenting that the regression models for the area (utilization) are
inferred under the Poisson distribution, since it is a discrete attribute. The mod-
els for the area also take into account the interaction terms (for the significant
factors), which notably improve the explanatory potential (determination coeffi-
cient) of these models. Regression models for the rest of response variables are
inferred either under the normal distribution (failure rate, SDC percentage, clock
frequency), or under the gamma distribution (power consumption), and all of
them include only main (purely linear) terms.

It must be noted that Vivado’s default configuration doesn’t coincide with the
model intercept. Accordingly, DAVOS relies on the inferred regression models
to estimate how much the PPAD results are improved or degraded with respect
to the Vivado’s default configuration by changing the factors from their default
setting to another. These results are summarized in Table 9.16. As it can be
seen, there are three factors whose tuning improves the default failure rate by
more than 5%, namely:

– X01 = 6 enables the lower threshold for dedicated DSP block inference – de-
creases the failure rate by 10% and 19% for MC8051 and AVR respectively;

– X02 = 1 enables the full hierarchy flattening, allowing inter-module logic
optimizations – decreases the failure rate by 13.6% and 14.5% for M8051
and AVR respectively;

– X28 = 7 sets the route directive to Quick – decreases the failure rate of
MC8051, AVR, and Microblaze by 12.8%, 19.2%, and 23.8% respectively;

210

9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters

At the same time, there are three factors whose improper configuration degrades
the failure rate by more than 5%, namely:

– X05 = 0 limits the fanout by a factor of 10 – increases the failure rate by
32.1% and 17.8% for M8051 and AVR respectively;

– X14 set to 1, 2, or 3 limits the number of inferred BRAMs by 0, 1, or 8
respectively – increases the failure rate of MC8051 by 18.7%, 18.5%, and
16.5% respectively; the rest of DUTs are not affected since their BRAMs are
instantiated as macrocells (not inferred);

– X29 = 1 enables the post-route physical optimization – increases the failure
rate of MC8051 by 9.4%.

When considering the rest of PPAD attributes, one can note the opposite effects
of some factors. For instance, factor X28 = 7 (which improves the failure rate)
strongly reduces (worsens) the frequency of all DUTs by 31% to 61%, and at the
same time reduces (improves) the power consumption by a similar magnitude 31%
to 78%. Factor X29 set to 1 improves the clock frequency of MC8051 and AVR by
17% and 8% respectively, but on the opposite - worsens the power consumption
by 15% and 21%. Likewise, it can be seen that limiting the amount of inferred
BRAMs (X14 set to 1/2/3) strongly increases the utilization of LUTs and FFs of
MC8051 (307% to 379%, and by 15% to 23% respectively), increases the failure
rate (16% to 18%), but reduces the power consumption (by 14% to 16%) and
the SDC percentage (60% to 71%). Factor X05 = 0 is the only one that strongly
worsens several PPAD attributes (failure rate, power, area), without improving
any other PPAD.

On the final DSE step the inferred regression models are used by DAVOS to
identify the optimal configuration of factors with respect to each design goal.
Table 9.17 lists the resulting best configurations for each single PPAD goal, as
well as for multi-objective goals (WSM scores). It also provides the predicted
and experimentally obtained improvement, achieved by each best configuration
with respect to the Vivado’s default configuration. Each best configuration is
labelled by letter and number. The corresponding PPAD results and WSM scores
(experimental and predicted) for each DUT are listed in Table B.4 (Annex).

First of all, one can note the difference between the predicted and experimentally
obtained results. More precisely, the predictions tend to be more optimistic (show
higher improvement) than the actual result. This difference is not surprising, since
the predictions are computed by models that account for just 60% to 97% of the
variability of the considered features. On the one hand, the accuracy of the models
can be improved by considering the higher-order effects (interactions between two
and more factors). On the other hand, under high number of significant factors,

211

Chapter 9. Experimental Evaluation

Table 9.16: Percentage by which the default PPAD results are improved (highlighted in
green) or degraded (highlighted in red), when changing the setting of each factor from its
default level (listed only the effects with more than 5% impact)

Failure rate (FIT) SDC (percentage points) Frequency (MHz) Power (W) Utilization Flip-Flops Utilization LUTs
 MC8051 AVR Mic-z MC8051 AVR Mic-z MC8051 AVR Mic-z MC8051 AVR Mic-z MC8051 AVR Mic-z MC8051 AVR Mic-z

X01 1 -8.4 -9.7 0.1 44.3 -3.6  -9.7 -1.8  -0.3 -12.6 5.7 -6.2 -2.0 0 -4.99 -1.2 
2 -9.0 -17.4 1.4 2.2 -2.4  -13.1 -3.0  -3.1 -20 .0 -4.2 2.7 -5.2 0 -14.3 -16.6 
3 3.9 -6.9 2.2 8.9 8.5  -14.2 -3.6  -7.4 -19.6 -10.7 -0.3 -7.4 0 -8.5 -13.4 
4 5.3 -2.5 0.0 1.2 -0.7  16.4 3.5  12.0 -3.3 4.2 -4.1 -0.7 0 2.2 -4.6 
5 1.0 1.0 -1.3 -0.1 -0.5  3.1 -0.4  6.0 -6.4 -1.4 8.3 1.7 0 8.4 0.2 
6 -10.8 -19.4 -0.5 -2.3 -10.9  0.3 0.7  -2.1 -7.8 0 -2.0 -3.9 0 3.2 -13.4 
7 0.7 -2.9 0.4 0 0.3  13.5 0.5  5.2 -6.7 0.1 -3.5 2.8 0 2.0 6.5 

X02 0 -10.6 -7.1 -5.7 -2.4 0.9 -3.9   -5.7 -13.8 -5.4 -10.9 0.9 -0.9 16.0  -8.8 
1 -13.6 -14.5 -1.1 4.0 7.2 -0.8   -0.5 -1.4 4.7 -0.5 0.8 0.4 0.3  -4.9 

X04 1       0.7 2.4   5.6       

X05 0 32.1 17.8 2.7  3.7     8.2 22.8  29.3 35.4 2.6 25.7 24.5 

X07 1    5.1        -9.2   4.8   
 3    7.5        0.3   2.4   
 5    8.0        1.5   1.7   

X08 1 3.0 2.8 0  -2.8        2.4 25.5   9.4

X09 1    -4.4  0.8 -3.3 -2.7   -5.4       

X10 1     -0.6 0.6    -5.6 -1.0 26.9     1.1 -2.9

2     1.0 0.2    -3.9 3.6 24.6     0.3 -1.1

4     -2.4 -0.4    -9.2 4.7 -20.5     13.1 -2.4

5     -1.7 -2.0    -9.4 5.3 -15.8     6.2 4.7

X11 1 -2.5 -2.5 -2.1  -3.7 -1.0 3.6   6.0     -2.2  12.2 5.7

X13 2   4.0            18.8   
 3   4.2            16.9   
 4   3.2            21.6   
 5   3.5            17.8   

X14 1 18.7   -71.1      -15.7   23.4   379.3  
2 18.5   -66.3      -14.2   20.4   383.2  
3 16.5   -60.7      -16.8   15.7   307.8  

X17 4   -1.8    0 -0.3     -5.7     

X21 0  1.9 2.9  -1.6 -10.5 0 -1.5    30.3   56.9  7.2 20.5

X22 0    9.0              
 6    -5.2              

X23 1   2.7  -3.7 -0.8 -1.8   -10.6 0 -4.7   -2.4   4.5

X24 7   -0.2  -0.7 -0.9 6.7 -1.3          
16   -5.7  -7.1 -4.9 -4.3 -6.0          

X25 1         1.3 -7.3        

X26 1   1.2 -5.7 1.0            

X27 1  4.4                
 3  5.7                

X28 0 3.4 -2.2 1.3  0.6 0.2 6.6 3.2 0.6 -3.3 4.1 0.3      
1 8.3 0.3 2.4  -0.2 0.8 5.0 3.9 0.7 -7.1 4.8 -0.2      
2 -0.8 -5.7 1.6  -0.4 1.1 0.2 -0.7 -2.1 -11.0 -0.4 1.6      
3 0.7 -4.3 -0.9  -0.1 0.4 2.8 0.1 -0.2 -2.2 1.4 6.3      
4 5.6 -1.7 0.7  -1.1 0.5 2.2 0.7 0.3 -12.2 3.8 2.2      
6 0.2 -6.9 1.2  -2.7 0.5 -1.3 -3.7 -1.3 -3.0 -1.3 2.8      
7 -12.8 -19.2 -23.8  -8.2 -7.1 -33.8 -31.4 -61.7 -33.5 -31.6 -78.1      

X29 1 9.4 4.0 1.2  1.6 0 17.6 8.0 2.7 15.9 21.9       2.0

this would lead to exponential growth of the sample size (increased by the number
of degrees of freedom for each interaction term). Such increase of experimental
cost under most optimization scenarios will be not reasonable, since (as previously
explained) the higher order effects are considered less significant than the main
effects. Accordingly, even though the regression models are not perfect, they are

212

9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters

Table 9.17: Resulting best configurations for each optimization goal

Optimization
goal

Benchmark
circuit

Setting of factors1,2 Conf.
Label

Improvement (ω)3

x01 x02 x03 x04 x05 x06 x07 x08 x09 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 Predicted Actual

Min.
Failure Rate
 (FIT)

MC8051 6 1 - - 3 - - 0 - - 1 - - 4(0) - - - - - 0 - - - - - - - 7 0 - A1 (A2) -41 % -34 %
AVR 6 1 1 - 2 - - - - - 1 - - - - - - - - - - - - - - - 0 7 0 - B1 -59 % -50 %
Microblaze 5 0 1 - 3 - - 0 - - 1 - 1 - - - 2 - - - 1 - 0 16 - 0 - 7 0(1) - C1 (C2) -16 % -20 %

Min.
SDC (%)

MC8051 6 0 0 - - - 0 - 1 - - - - 1 - - - - - 1 - 6 - - - 1 - 5 - - A3 -95 % -70 %
AVR 6 0 0 - 2 - - - - 4 1 - - - 0 - - - - - - - 0 16 - - - 7 0 - B2 -34 % -21 %
Microblaze - 0 - - - - - 0 0 4 1 - - - - - - - - - 0 - 0 16(10) - 0 - 7 - - C3 (C4) -24 % -23 %

Max.
Frequency

(MHz)

MC8051 4 - - 1 - - - - 2 - 1 0 - - - 3 - - - - - - 0 7 - - - 0 1 - A4 +56 % +38 %
AVR 4 - - 1 - 1 - - 2 - - - - - - - 1 - - 0 1 - - 12 - - - 1 1 - B3 +18 % +8 %
Microblaze - 2 - 1 - - 1 1 - C5 +5 % 0 %

Min.
Power

(W)

MC8051 3 0 - - 2 - - - - 5 0 - - 3 - - - - - - - - 1 - 1 - - 7 0 - A5 -99 % -47 %
AVR 2 0 - 0 2 - - - 1 0 - - - - - - - - - - - - - - - - - 7 0 - B4 -42 % -55 %
Microblaze 3 0 - - - - 0 - - 4 - - - - - - - - - - 0 - 1 - - - 0 7(1) - - C6 (C7) -32 % -18 %

Min.
UTIL FF

MC8051 1 2 - - - - - 0 - - - - - 0 - - 4 - - - - - - - - - - - - - A6 -22 % 0 %
AVR 3 2 - - 3 0 - 0 - - - - - - - - - - - 0 - - - - - 0 - - - - B5 -5 % 0 %
Microblaze - 2 - - 2 - 0 0 - - 1 - 0 - - - - - - 0 1 - 1 - - - - - - - C8 -7 % 0 %

Min.
UTIL LUT

MC8051 2 - - - 3 - - - - - - - - 0 - - - - - - - - - - - - - - - - A7 -14 % -13 %
AVR 2 0 - - 1 - - - 0 4 0 0 - - - - - - - - 1 - 0 - - - - - - - B6 -21 % -20 %
Microblaze - - - - - - - 0 - 1 0 1 - - - - - - - - 1 - 0 - - - - - 0 - C9 -5 % 0 %

Max. Score
Mission-
Critical

MC8051 6 1 - - 3 - 4 - - - - - - 4(0) - - 4 - - 0 - - - - - - - 7 0 - A8 (A9) +37 % +18 %
AVR 6 1 0 - 2 - - - - 0 1 - - 0 - - - - - - - - - - - - 0 7 0 - B7 +47 % +17 %
Microblaze - 0 1 - 2 - 1 0 - 4 0 - 0 - - - - - - - 1 - 0 16 - - - 7(3) - 2 C10 (C11) +13 % +36 %

  0 2 0 3 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 7 0 17 0 0 0 5 0 3 Default  

1 statistically insignificant factors denoted by dash (these factors set at their default level)
2 alternative (second best) setting in parenthesis when absolute best is non-implementable
3 ω – percentage improvement of optimization goal with respect to the default result

still useful (accurate enough) to determine those configurations which outperform
the default one.

In such a way, the achieved (actual) reduction of failure rate (with respect to
the default configuration) amounted 34%, 50% and 20% for MC8051, AVR and
Microblaze respectively. These results are very close to those previously obtained
by the GA-based DSE: 36%, 52%, and 20% respectively. Accordingly, even though
GA-based approach implicitly optimizes both main effects and interactions (but
not quantifies their contribution into the resulting PPAD), its advantage was
rather marginal (at least under the small number of GA iterations).

A notable improvement has been observed for the rest of PPAD goals. The SDC
percentage of MC8051, AVR, and Microblaze is reduced by 70%, 32%, and 23%.
Such a high SDC improvement for MC8051 is primarily explained by the fac-
tor X14, which limits the BRAM inference, and thus drastically increases the
amount combinational logic (essential bits) used to control the distributed mem-
ory (inferred instead of BRAM). Despite the percentage of critical bits within the
inferred logic is significantly reduced, the absolute number of critical bits becomes
even higher, which in turn degrades the resulting failure rate. For that reason,
minimization of SDC percentage is relevant for dependability improvement only
when it is accompanied by simultaneous reduction of essential bits. The most
beneficial adjustment of Vivado parameters that improves the failure rate of all

213

Chapter 9. Experimental Evaluation

considered DUTs is to (i) set the synthesis strategy for DSP inference X01 = 6,
(ii) allow the full flattening of design hierarchy X02 = 1, and (iii) set the route
directive to Qiuck X28 = 7.

The frequency has been improved by 38% and 8% for MC8051 and AVR respec-
tively, whereas for the Microblaze it was impossible to improve the frequency of
default configuration. The most beneficial tuning of Vivado parameters for fre-
quency improvement is to (i) set the synthesis strategy to alternative routability
X01 = 4, (ii) set the route directive to explore X28 = 0 or to no timing relaxation
X28 = 1, and (iii) enable the post-route physical optimization X29 = 1.

The power consumption has been reduced by 18% to 55%. Among all the factors
impacting the power consumption, the most beneficial adjustment is to (i) set the
synthesis strategy to area optimized X01 = 3, (ii) disable the hierarchy flattening
X02 = 0, (iii) limit the BRAM inference X14 = 1/2/3, and (iv) set the route
directive to Quick X28 = 7.

The utilization of Flips-Flops was impossible to improve for any of the DUTs,
whereas the utilization of LUTs has been improved for MC8051 and AVR by
13% and 20% respectively. The only adjustment that notably contributed to this
improvement was setting the synthesis strategy to ’area optimized high’ X01 = 2.

Finally, the multi-criteria optimization is illustrated by maximization of mission-
critical WSM score, which balances the failure rate, performance and power con-
sumption, giving them 60%, 20% and 20% of relative importance respectively.
The resulting best configurations outscored the default configuration by 18%,
17% and 36% for MC8051, AVR and Microblaze respectively. For the resulting
mission-critical configuration the failure rate and power consumption have been
notably improved in all cases, while the frequency has been improved only in
the case of AVR. The main adjustments that lead to this improvement were the
same as in the case of single-goal (failure rate) optimization, accompanied by the
DUT-specific tuning of minor effects, as it is shown in Table 9.17.

The time required to implement and evaluate these configurations (plus the result-
ing best ones) is listed in Table 9.18. The total time required for implementation
of sampled configurations for MC8051, AVR and Microblaze amounted 59 hours,
66 hours and 33 hours respectively, while the time to evaluate their dependabi-
lity was measured as 94 hours, 91, hours and 69 hours respectively. Since both
implementation and dependability evaluation processes are running in parallel
(by PPAD evaluation engine), the total DSE time is determined by the slowest
of them (dependability evaluation).

214

9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters

Table 9.18: PPA and dependability evaluation time measured for each DSE experiment

DUT
Total

evaluated
configurations

Implementation (PPA evaluation)
time [h]

FFI (dependability evaluation)
time [h]

Total time
Per configuration

(std. dev)
Total time

Per configuration
(std. dev)

MC8051 255 58.9 1.39 (0.74) 94.5 0.74 (0.26)

AVR 261 66.1 1.52 (0.58) 91.0 0.70 (0.30)

Microblaze 187 33.3 1.07 (0.25) 69.2 0.74 (0.28)

Nevertheless, it must be noted that dependability evaluation of each configura-
tion on the average was 1.4 to 2.1 times faster than their implementation (PPA
evaluation). Only due to higher parallelism of implementation process (6 config-
urations in parallel on core-i7 machine) the total implementation time was lower
than dependability evaluation. Accordingly, if equipping the PPAD evaluation
engine with 4 more evaluation boards, the dependability evaluation would not be
the DSE bottleneck anymore. But even with the available computing resources,
it was possible to significantly improve the PPA and dependability of considered
DUTs just by properly tuning the EDA parameters. This result shows the benefits
of combining the efficient dependability-aware DSE strategy with FPGA-based
fault injection, optimization of essential bits, and iterative statistical sampling.

9.3.4 Discussion

One may argue that estimating the trend of a population of thousands of trillions
of configurations by sampling only 168 of them is clearly inadequate. On the one
hand, it is the exact purpose of Design of Experiments (D-optimal design in this
case) to representatively sample the design space by the smallest possible number
of trials. Additional experiments have been carried out (in case of MC8051 and
AVR) to increase the design size by another 50% (up to 224 configurations),
but no real benefit has been observed on estimations or actual values reported
by implemented configurations. On the other hand, (sub)optimal configurations
determined by the proposed methodology always outperform the results provided
by the default configuration of Vivado.

Likewise one may say that in case of GA-based DSE the performed number of
iterations was too small to talk about optimality of derived configurations. On the
one hand, indeed, these configurations may be not globally optimal. On the other
hand they still outperform the default configuration in all cases. By forcing the
genetic algorithm to carry out more iteration beyond the defined stop condition, it

215

Chapter 9. Experimental Evaluation

has been checked that additional iterations provide rather marginal improvement
(less than 2%) over the presented result. Additionally, the GA/NSGA algorithm
itself can be calibrated (by tuning its mutation rate, crossover method, population
size), thus preserving higher diversity under slower convergence. This might lead
to better solutions, however, the GA calibration was out of the scope of presented
work. Nevertheless, this case study has shown that the results obtained by the
GA-based approach are in general very close to those obtained by the DoE-based
approach, and in some cases even slightly better. This indicates that GA-based
DSE, at least, has adjusted all main effects, that according to the principle of
hierarchical ordering [172] are more significant than interactions (higher-order
effects).

Regarding the inferred regression models, it can be noted they are surely far from
perfection. Indeed, as it has been shown in Table B.4, there exist a discrep-
ancy between the predicted and experimentally obtained PPAD results. This is
explained by a multitude of different factors (not taken into account) that may
impact the PPAD results, including the higher-order interaction, and even those
not related to the EDA parameters under study. From the practical perspective,
however, obtained models are good enough to explain the magnitude of PPAD
increase/decrease when changing each significant parameter from one level to
another, as well as to find the suboptimal configurations for each PPAD goal.

Finally, one may also argue that the attained dependability improvement, despite
being significant, is not that impressive as to justify the high DSE experimental
effort. In other words, wouldn’t is be more beneficial for dependability improve-
ment to simply instrument the design with fault tolerance mechanisms? First,
it must be noted, that DSE not only allows to determine those configurations
that improve the default result, but also to avoid those configurations that dras-
tically degrade it. For instance, misconfiguration of Vivado suite may increase
the failure rate of MC8051 by more than 70% with respect to the default config-
uration. Second, as it will be shown in the next section, the resilient versions of
the same DUTs also gain a similar relative (and even higher absolute) reliability
benefit from optimal tuning of EDA parameters. Furthermore, PPAD attributes
can be balanced in such a way as to improve the dependability, while simultane-
ously compensating the overheads that tolerance mechanisms impose on the PPA
attributes.

216

9.4 Dependability assessment and verification of fault-tolerant HW design

9.4 Dependability assessment and verification of
fault-tolerant HW design

The mitigation of single and multiple-bit upsets is one of the major concerns in
the design of safety-critical FPGA-based systems. As it has been shown in Sec-
tion 9.2, SEUs in configuration memory (CM) are significantly more severe than
SEUs in registers, BRAM, and LUTRAM, since they corrupt the very function of
the circuit, and lead to much higher failure rates. Two common mechanisms for
mitigation of CM upsets are periodical CM scrubbing, and full or partial FPGA
reconfiguration on error detection. As it is pointed out in [121], this approach is
sufficient only when application tolerates the long error latencies, otherwise addi-
tional hardening techniques must be employed. Particularly, the triple modular
redundancy (TMR), in spite of its area and power penalties, is considered the most
generic and efficient design hardening strategy [117]. Indeed, the combination of
these two techniques is a quite common solution for FPGA reliability [25] [74].

This section will adapt this SEU mitigation approach (TMR combined with par-
tial reconfiguration) to build a resilient version of AVR core (selected among the
rest of DUTs for its overall best PPAD). On its basis this section will illustrate
(i) how DAVOS FFI tool can be exploited for the dependability assessment of re-
silient HW designs, and (ii) how the tuning of EDA parameters can be exploited
in conjunction with SEU mitigation mechanisms for obtaining even higher cumu-
lative reliability gain.

9.4.1 Experimental procedure

The defined TMR assembly of AVR core under study is depicted in Fig. 9.10. It
comprises three reconfigurable PL regions (P-blocks), and one static region. Each
reconfigurable region allocates one replica of AVR IP core. Each replica has its
dedicated data input, clock and reset lines, all driven by the PS part (Cortex-
A9 core, which runs the fault injector application). The static region allocates
three majority voters (one per replica). Each voter computes its data output
following the common majority voting scheme Res = D1D2 ∨ D1D3 ∨ D2D3,
which corrects (masks) any single error on any of its three inputs. The corrected
result from each voter is supplied to the PS part through the GPIO interface
(similarly to the simplex version). Additionally, each voter compares the result
from its associated replica with the voted (correct) result Res, and raises an error
flag in case of mismatch. This error flag is monitored by an external controller
(PS/ARM application in this case study): when the error flag is raised for one of
the replicas, the PS part reconfigures its respective PL partition by loading the
partial bitstream (stored in the DDR memory) through the PCAP. In such a way,

217

Chapter 9. Experimental Evaluation

the TMR with three voters should ensure that the design has no single point of
failure (any single upset must be masked). Whereas the reconfiguration on error
detection is supposed to prevent the accumulation of upsets in reconfigurable
regions.

It is worth noting that SEUs still may be accumulated in the static region (which
allocates the voting logic and the PS-PL interconnections). It should be thus
protected by periodical CM scrubbing, as well as by the complete reconfiguration
in case of failure. Nevertheless, since the number of essential bits in the static
region is much smaller than in reconfigurable partitions, the described replica
recovery mechanism is expected to reduce the accumulation of SEUs with respect
to the unprotected DUT. It is also worth noting that reconfiguration of failing
replicas is performed when the DUT passes into the idle mode – after completing
the workload execution (the workload is executed periodically 50 to 150 times
per second). After the reconfiguration, all TMR replicas are reset to the initial
state, thus no additional measures were required in this case study to keep TMR
replicas synchronized.

ZYNQ PS
(Cortex-A9)

M
IO

 G
PI

O
(P

S-
PL

)

AVR_core_1
(Reconfigurable PL

partition 1)
voter_1

In_1

Out_1
Error_flag_1

AVR_core_2
(Reconfigurable PL

partition 2)
voter_2

In_2

Out_2
Error_flag_2

AVR_core_3
(Reconfigurable PL

partition 3)
voter_3

In_3

Out_3
Error_flag_3

Static PL partition

(a) Vivado block design (simplified) (b) Vivado floorplan (utilized FPGA fragment)

Complete bitstream (4 Mb)

partial bitstream-3 (0.3 Mb)

partial bitstream-2 (0.3 Mb)

partial bitstream-1 (0.3 Mb)

DDR

Figure 9.10: AVR assembly under study with integrated SEU mitigation mechanism

The evaluation of defined SEU mitigation mechanism comprises three FFI tests.
First, it should be verified that resulting TMR implementation tolerates all single
upsets, i.e. has no single point of failure. To this end, the FFI flow is config-

218

9.4 Dependability assessment and verification of fault-tolerant HW design

No

(next FFI run)

Start

InjectionRun (InjTime = 0, Target = random
 essential bit (replica_1/voter_1))

error_flag_1 raised ?

Recover bitstream

Yes (replica failure)No (masked/latent)

Start

InjectionRun (InjTime = 0, Target = random
 essential bit (entire design)

Res == Reference ?

Recover bitstream

Yes (masked/latent)

Res = majority (out_1, out_2, out_3)

error flags raised ?

No (SDC)

Yes (signaled failure)

Start

InjectionRun (InjTime = 0, Target = random
 essential bit (entire design)

Res == Reference ?

Res = majority (out_1, out_2, out_3)

error flags
raised ?

No (SDC)Yes (signaled failure)

No
Reload complete bitstream

error flags
raised ?

Yes (masked/latent)

Reload partial bitstream-1

Reload partial bitstream-2

Reload partial bitstream-3

flag_2

flag_3

flag_1

Yes (error detection)

No

(a) TMR verification test
(identification of single points of failure)

(b) Test for replica/voter robustness
evaluation

(c) Test for evaluation of SEU correction
efficiency

End of FFI test

All bits tested?

Yes

Recompute robustness estimate (p ± e)

sample size
reached

No (next FFI run)

End of FFI test

Yes

Recompute robustness estimate (p ± e)

sample size
reached

End of FFI test

No (next FFI run) Yes

Figure 9.11: Adaptation of DAVOS FFI flow to the evaluation of defined resilient design

ured according to Fig. 9.11-a. Each FFI run flips the value of one essential bit,
randomly selected within the global scope (encompassing both static and reconfig-
urable partition). The DUT processing result is determined at the PS side by the
secondary majority voting among the incoming data buses out_1, out_2, out_3.
If the result matches the reference (golden run), the failure mode is reported as
masked. In the case of mismatch, the error flags from the voters are checked:
if the error is reported for at least one of the replicas, then the failure mode is
reported as signalled failure, otherwise a silent data corruption is reported. The
bitstream is recovered at the end of each injection run. In the case of proper
TMR implementation each FFI run should report the masked failure mode.

Since the first test is expected to register no failures in the case of proper TMR
implementation, the FFI experiment doesn’t quantify neither the sample propor-
tion (percentage of failures), nor its error margin. Indeed, under less than five
positive outcomes the sampling error can’t be computed, since the sample pro-
portion p would not be adequately approximated by normal distribution under
any sample size n. As it is explained in [155], such approximation requires that
n × p ≥ 5. Strictly speaking, to ensure that system tolerates all single upsets it
is necessary to exhaustively test each of its essential bits (roughly 900 Kb for the
AVR TMR assembly in this case).

Despite this can be accomplished in this case study (because of reasonably small
DUT and short workload), in the more complex cases under the limited time

219

Chapter 9. Experimental Evaluation

budget this would be infeasible. In such cases a compromise solution would be to
still rely on sampling of essential bits, and to terminate the experiment either once
the complete population is sampled, or once the time budget is exhausted. Despite
in the latter case exist a non-zero probability of missing a critical bit (among
those that have not been tested), it still should be low enough under the huge
non-biased sample. Accordingly, all FFI experiments in this section are executed
with the sample size goal of 100 thousands of injections, which is an equivalent
of one hour time budget in this case study; such sample size equals roughly 40%
of population for the simplex DUT, and roughly 15% of population for the TMR
assembly. Additionally, an exhaustive FFI experiment will be performed in the
first test (verification of TMR) to ensure that it indeed tolerates all single upsets.

Second FFI test quantifies the failure rate of an AVR replica λM , and of one of the
voters λV , in order to estimate the reliability and the mission time of the resulting
TMR assembly. The reliability of TMR with triplicated voters is calculated as:

RTMR = (3R2
M − 2R3

M)× (3R2
V − 2R3

V) (9.1)

where RM (t) = e−λM×K×t, and RV (t) = e−λV×K×t are the reliability of the
replica and of the voter respectively. The mission time is calculated as the time
in which the reliability falls below the threshold of 0.999, assuming the failure
rate derating factor K = 327.8 (high-altitude applications). The CM cells corre-
sponding to the AVR replica are located by matching the corresponding partial
bitstream with the essential bit mask file. The essential bits of the voter are iden-
tified by means of LUT mapping, since the voters are completely implemented on
LUTs. As it is depicted in Fig. 9.11-b, the injector application determines the fail-
ure mode for the AVR replica by analysing the error flags from the corresponding
voter, since the TMR is expected to mask the failures of a single replica. When
injecting SEUs into the voter, the resulting data outputs from that voter are also
checked.

Finally, an FFI test depicted in Fig. 9.11-c will be used to evaluate the efficiency of
SEU correction mechanism. This test targets the essential bits of the entire TMR
assembly. The upsets are uniformly distributed along the whole set of essential
bits, and accumulated between the injection runs. The DUT is recovered only
when asserting an error flag from its replicas. Injector application is in charge
of monitoring the error flags and reloading the partial bitstreams. The static
partition is reconfigured only in the case of TMR failure.

220

9.4 Dependability assessment and verification of fault-tolerant HW design

9.4.2 Experimental results

The TMR verification test, after performing an exhaustive FFI campaign, has
shown 100% of masked faults, which indicates that the considered TMR imple-
mentation, indeed, has no single point of failure. Furthermore, it is significantly
more robust than the simplex version when multiple-bit upsets are considered –
Table 9.19 compares the estimated failure rate between simplex and TMR for the
SEUs of increasing multiplicity (under 100 thousands sampled upsets). As it can
be seen, even when five CM cells are toggled at the same time, most TMR failures
are signalled, being the percentage of SDC (unsafe failures) below 0.1%, whereas
for the simplex version it exceeds 50%.

Table 9.19: Sensitivity to the SEUs of increasing multiplicity of simplex and protected
(TMR) version of AVR IP

SEU multiplicity
Simplex TMR

SDC SDC
Signaled
failures

1 17.57% ± 0.19% 0.0% 0.0%
2 31.42% ± 0.23% 0.008% ± 0.005% 3.21% ± 0.10%
3 42.78% ± 0.25% 0.024% ± 0.009% 6.89% ± 0.15%
4 51.94% ± 0.25% 0.047% ± 0.013% 11.51% ± 0.18%
5 – 0.075% ± 0.016% 16.174% ± 0.215%

Second FFI test, aiming at robustness evaluation of replicas and voters, has been
performed for two different TMR implementations: the default and optimized
one. The former is obtained under the default setting of Vivado parameters.
The latter is obtained the under the optimal setting (labelled B1 in Table 9.17),
previously determined for the simplex AVR version by means of DoE-based DSE.
The corresponding results of this FFI experiment are summarized in Table 9.20.
As it could be expected, the resulting failure rate for the replicas is quite similar
to that of simplex version. The optimal tuning of Vivado parameters in case
of TMR has reduced the failure rate of the replicas by 44% with respect to the
default configuration (compared to 50% reduction for the simplex). The minor
difference is explained by the fact that TMR replicas are implemented under
the area constraints (bounded within the reconfigurable region (Pblock)), which
affected the placement and routing of synthesized logic.

The deployed optimizations have lead to the significantly increased mission time.
First, the TMR increased the mission time by 1970% (700 hours for simplex
compared to 13790 hours for TMR). Afterwards, the tuning of Vivado parameters
has increased the mission time by additional 44%. The overall improvement
of mission time thus reached a factor of 28. It is worth noting that tuning of

221

Chapter 9. Experimental Evaluation

Vivado parameters has also reduced the utilization of LUTs by 11%, thus slightly
alleviating the area overheads of TMR.

Table 9.20: Resulting mission time for the simplex and TMR versions of AVR IP (under
the default and optimized EDA parameters)

Simplex TMR
Default EDA optimized Default EDA optimized

Failure rate (replica) R 4.31 FIT 2.16 FIT 4.10 FIT 2.35 FIT

Failure rate (voter) V   0.0025 FIT 0.0025 FIT
Mission Time (high-altitude)

(RTH=0.999, K=327.8)
700 h. 1410 h. 13 790 h. 19 960 h.

Finally, the SEU accumulation test has estimated the probability of DUT failure
(percentage of failures) and the mean number of upsets injected before the failure.
The corresponding results for different AVR versions (simplex, TMR and TMR
with recovery of replicas) are summarized in Table 9.21. On the average, the
simplex AVR fails after six CM upsets, the TMR AVR fails after 14 upsets,
and the TMR with the recovery of replicas fails only after injection of 323 upsets.
Accordingly, the recovery of replicas on the assertion of error flags is quite efficient
in mitigation of SEUs, since its probability of failure is 23 times less than in case
of TMR without that SEU correction mechanism. As expected, this mechanism is
not perfect, since the static PL region is not protected against SEU accumulation.
Accordingly, the CM scrubbing for the static PL region would be still required,
but the amount of scrubbed CM cells is significantly reduced (and the scrubbing
period can be increased), since the major part of essential bits (corresponding to
the TMR replicas) is protected by means of partial reconfiguration.

Table 9.21: Probability of DUT failure under SEU accumulation: simplex (non-robust),
TMR, and TMR with partial reconfiguration on error detection

Simplex TMR TMR + PR
Optimized essential bits 322936 885984 885984
Sampled upsets 100000 100000 100000

Failures
Abs. (SDC/Signaled) 17534 / 0 3 / 7231 1 / 309
p ± e 17.53% ± 0.20% 7.23% ± 0.15% 0.31% ± 0.03%

Mean upsets before failure 6 14 323

222

9.4 Dependability assessment and verification of fault-tolerant HW design

9.4.3 Discussion

Regardless of the complexity of defined fault tolerance mechanisms, the designers
must verify the correctness of their implementation. Indeed, even for the simplest
TMR assembly it must be verified that the synthesis has preserved all the voting
logic intact, and no single point of failure has been introduced during placement
and routing.

The presented experiment has illustrated how easily the DAVOS FFI tool can be
adapted to verification of fault tolerance mechanisms and to dependability eval-
uation of resulting resilient designs. In comparison to the related works [74] [64],
the proposed dependability assessment method has two advantages. On the one
hand, by combining the autonomous FFI flow (deployed completely on FPGA
chip) with optimized essential bits, the verification of fault tolerance mechanisms
becomes faster and may reach higher coverage of fault space (even exhaustive
verification becomes possible in some cases). On the other hand, by taking into
account the actual number of critical bits within each TMR module, the pro-
posed method leads to more realistic reliability estimations, than those based on
approximate estimations of essential bits [74] and conservative assumption that
every essential bit is critical [64].

Regarding the achieved reliability improvement, the careful isolation of each TMR
replica within its dedicated FPGA region has prevented the occurrence of sin-
gle point of failure. The estimated mission time of resulting resilient design (in
the absence of SEU correction) has increased by 19.7 times. By adjusting the
EDA parameters according to the optimal configuration (previously determined
by DSE for non-protected design), the mission time has been increased by addi-
tional 44%; the overall improvement of mission time thus amounted 28.5 times.
This also slightly reduced the TMR area overhead (from 3.0 times to 2.7). The
detection of errors for each replica has allowed to reduce the probability of silent
data corruption (unsafe failure) to less than 0.1% even under multiple-bit SEUs.
Finally, by activating the partial reconfiguration of replicas on the assertion of
error flags, the mean number of tolerated upsets has been increased by 23 times.
In practice this could allow to proportionally reduce frequency of CM scrubbing.

223

Chapter 9. Experimental Evaluation

9.5 Conclusions

The case study presented in this chapter has illustrated how the proposed method-
ology supports and improves the dependability-driven processes of an FPGA-
based design flow. First, within the context of dependability benchmarking it has
illustrated that (i) accurate robustness estimations can be obtained at different
design representation levels by following the proposed fault injection methodology,
(ii) upsets in the non-changeable CM have a dominating impact on the failure rate
of considered soft-core processors, and (iii) the proposed SBFI/FFI performance
optimizations notably speed-up the dependability assessment process.

After ensuring that FFI experiments are accurate and fast enough, this chapter
has illustrated that the robustness of considered DUTs can be improved by tuning
the synthesis, mapping, and placement-routing parameters through the proposed
design space exploration methodology. It has been shown that both alternative
DSE approaches (GA-based and DoE-based) notably improve the robustness and
PPA attributes of the considered DUTs beyond the results of the default con-
figuration. Resulting regression models may guide the designers in the tuning
of Vivado suite for their own designs. These results allow designers to focus on
tuning the most significant parameters (reducing the design space to explore) or
even to directly rely on provided optimal settings, since their qualitative impact
was very similar across the considered DUTs. Further research may generalize
these results by considering a wider set of benchmark circuits.

Finally, this chapter has illustrated that derived optimal configurations are also
valid for resilient designs. After instrumenting the design with SEU mitigation
mechanisms and even after defining placement (area) constraints, the resulting
reliability can still be nearly doubled by simply setting the EDA parameters to
their sub-optimal levels without repeating the DSE experiments.

More concrete conclusions drawn from this case study are summarised below
under three categories, according to the evaluated proposals of the thesis: (i)
improvement of the accuracy of dependability-driven processes, (ii) improvement
of fault injection performance, and (iii) dependability-aware design space explo-
ration.

A. Improvement of the accuracy of dependability-driven processes:

– Register mapping reduces the gap in robustness estimations between RT-
level and implementation-level SBFI by an order of magnitude;

224

9.5 Conclusions

– The proposed methodology provides accurate dependability estimations at
RTL, implementation-level, and FPGA level when representative fault mod-
els are considered at each of these levels;

– Bit-accurate LUT mapping indicates that the actual number of LUT-specific
essential bits is 20% to 50% less than reported by Vivado;

– Dependability benchmarking of soft-core processors, similar to those evalu-
ated in this case study, should primarily consider upsets in non-changeable
CM, since their contribution into the total failure rate may exceed 90%; it
should also rely on FFI experiments since only at FPGA level it becomes
possible to take into account the whole set of CM cells.

B. Efficiency of SBFI/FFI speed-up optimizations:

– Bit-accurate LUT mapping, in conjunction with the profiling of switching
activity, accelerates the analysis of LUT-specific faults up to 4 times in
comparison to the analysis relying on standard Xilinx essential bits;

– Multilevel SBFI accelerates the analysis of register-specific faults by 3 to
150 times in comparison to pure implementation-level SBFI.

– Clustering checkpoints accelerates the SBFI analysis of transient faults up
to two times; checkpointing speed-up estimated by the proposed model co-
incides with the experimentally obtained speed-up;

– Iterative statistical fault injection accelerates the dependability benchmark-
ing of FPGA designs up to six times with respect to the common conserva-
tive statistical approach;

– By combining the FPGA-based fault injection with the optimization of es-
sential bits and the iterative statistical sampling, the dependability evalua-
tion is accelerated up to the point when it cannot be considered any more
as the bottleneck for DSE experiments.

C. Dependability-aware designs space exploration:

– Optimal tuning of synthesis, mapping, and placement-routing parameters
improves the robustness of FPGA implementations by 20% to 52% with
respect to the default (vendor-defined) configuration of Vivado suite;

– Optimal configurations of EDA parameters obtained by DSE for non-protected
designs can be applied to the resilient versions of these designs and, in spite
of additional placement constraints, they still provide quite high robustness
gain (up to 44%);

225

Chapter 9. Experimental Evaluation

– Those Vivado parameters contributing the most to improve the robustness of
the final implementation are the synthesis directive and hierarchy flattening,
and the route directive parameters;

– Dependability (failure rate) and performance (clock speed) are conflicting
optimization goals. The proposed GA-based DSE approach identifies those
Pareto-efficient configurations that simultaneously improve both of these
attributes by 25% to 38%;

– The DoE-based DSE approach balances all the considered PPAD attributes
within the WSM score and identifies the best EDA configurations that im-
prove that score up to 36%;

– The GA-based DSE (implicitly optimizing both main effects and interac-
tions) and the DoE-based DSE (optimizing only main effects) reach very
similar optimization results;

– The integration of the proposed iterative selection strategy into the GA-
based DSE accelerates the experimentation up to 3.3 times under the single-
goal optimization and up to 1.9 times under the multi-objective optimiza-
tion;

– To explore a design space comprising 5.35×1017 configurations by means of
the proposed D-optimal DoE-based approach, it was enough to sample a very
small fraction (just 168) of these configurations; the predictive regression
models derived on its basis are accurate enough as to notably improve each
PPAD attribute with respect to the default configuration.

226

Chapter 10

Conclusions and Future Work

This chapter summarises the conclusions and contributions of the presented work.
Section 10.1 presents the conclusions with respect to each of the established ob-
jectives of the thesis. Section 10.2 enumerates the contributions to the field and
presents the dissemination of research results in international conferences and
journals. Section 10.3 describes the results of the international research stay car-
ried out by the student in the framework of his thesis. Finally, Section 10.4
outlines different lines for future research that might be followed on the basis of
the presented work.

10.1 Conclusions

In addition to the common performance, power consumption, and silicon area
(PPA) constraints, the design of safety-critical embedded systems must meet
rigorous dependability requirements. To this end, the common semicustom de-
sign flow should be complemented by three dependability-driven processes. First,
dependability assessment and verification characterise the robustness of the de-
sign against the representative faultload, locate its weak points, and ensure the
efficiency of integrated fault tolerance mechanisms. Second, dependability bench-
marking allows to select the most suitable alternative IP cores, EDA tools, and
implementation technologies, from the viewpoint of their dependability and PPA

227

Chapter 10. Conclusions and Future Work

features. Third, dependability-aware design space exploration (DSE) allows to op-
timally configure the parameters of selected IP cores and EDA tools to improve
as much as possible the PPAD of resulting implementations. Simulation-based
and FPGA-based fault injection (SBFI and FFI) are two main dependability
evaluation instruments at the base of these dependability-driven processes.

In order to efficiently integrate the dependability-driven processes into the design
flow, this work has tackled several research objectives. First, it was necessary to
define a fault injection methodology, covering the entire semicustom design flow
and enabling an accurate and detailed robustness analysis at each of its stages.
Second, it was necessary to reduce as much as possible the SBFI/FFI experimental
effort to make feasible the dependability assessment of complex HW designs at all
description levels. It is especially critical the reduction of the experimental effort
in the context of design space exploration, which deals with the evaluation of
numerous alternative design configurations. Hence, the third problem addressed
in this work was to define an efficient DSE strategy that would minimize the
fault injection effort at the level of DSE scenario as a whole. Finally, the fourth
objective was to develop a tool that would seamlessly integrate the dependability-
driven processes into the design flow to support different hardware description
languages, representation levels, fault models, EDA tools, and implementation
technologies.

This work has proposed solutions for each of the aforementioned objectives, sup-
porting the usefulness of the proposal by an extensive case study of three embed-
ded soft-core processors. The benefits and limitations of the proposals, as well as
the lessons learned with respect to each objective are summarised as follows.

Objective 1: Study the capabilities and limitations of existing fault injection
solutions with respect to their integration into the semicustom design flow. Define
a new fault injection methodology addressing existing limitations and allowing an
accurate and detailed robustness assessment at different stages of the design flow.

The analysis of existing fault injection solutions has shown that none of them
completely covers the needs of a dependability-driven design flow. Most SBFI
solutions focus on RTL models, ignoring the impact of the implementation tech-
nology and EDA optimizations on the resulting dependability. Those few SBFI
approaches that deal with implementation-level models are highly-intrusive and
do not take into account the optimizations imposed by Verilog and VITAL stan-
dards. Existing FFI solutions, on the other hand, were found to provide rather
coarse granularity of robustness analysis, which limits their capability to locate
the weak points of the design.

228

10.1 Conclusions

The proposed fault injection methodology has addressed these limitations. The
new SBFI approach enables the accurate simulation of logic faults in implementa-
tion-level models, while reducing to the minimum both the level of intrusion in
the DUT and the simulation time overhead. It is based on generic fault injec-
tion operations defined by studying how the macrocells’ architecture and opti-
mizations deployed by VITAL and Verilog standards impact on fault injection
capabilities. Most faults are injected by means of operations relying solely on the
use of simulator commands, being completely non-intrusive. Some faults require
operations that automatically tweak VITAL-compliant macrocells to enable the
fault injection by means of simulator commands. All the defined tweaks keep the
functionality, timing behaviour, and compatibility of macrocells with the VITAL
standard. On the basis of defined operations a new fault dictionary format has
been proposed. It unifies the specification of fault injection procedures for diverse
fault models and macrocell libraries of any complexity. The adoption of this fault
dictionary format by designers could standardize the specification of fault models
across the macrocell libraries of different vendors, being compact, extensible and
tool-independent.

The new FFI approach overcomes the accuracy limitations of existing FFI so-
lutions by optimizing the location of essential bits. To this end, this work has
studied the mapping of major types of logic resources of Xilinx 7-series FPGAs
onto the underlying configuration memory. This study has led to the definition
of bit-accurate LUT and BRAM mapping algorithms that improve the location
of essential bits with respect to the Xilinx essential bits technology. On the one
hand, the optimized essential bits refine the granularity of the FFI analysis, allow-
ing to selectively target any given design scope (for the mapped macrocells) and,
thus, to locate the weak points of the DUT. On the other hand, it also improves
the performance of FFI experiments by filtering redundant fault targets, i.e. those
LUT/BRAM-specific CM bits that are non-essential despite being conservatively
reported as essential by Xilinx Vivado suite.

The defined fault injection methodology has several advantages with respect to
existing solutions. First, it allows an accurate and low-intrusive fault analysis
at all stages of the design flow. Second, it minimizes the gap in dependability
estimations between the different design description levels. Third, the refined
granularity of supported analysis allows the accurate location of weak points of the
design with respect to its architecture and types of utilized logic resources. Two
main limitations of the proposed approach are related to the FFI analysis: (i) it
supports only Xilinx 7-series devices, and (ii) the routing-related CM cells remain
unmapped, which keeps the analysis of routing faults rather coarse-grained.

229

Chapter 10. Conclusions and Future Work

Objective 2: Define new fault injection speed-up techniques and refine existing
ones to improve as much a possible the performance (reduce the experimentation
effort) of dependability assessment at different design representation levels

Fault injection performance has been improved from two different perspectives:
reducing the fault lists and accelerating individual injection runs. Four different
approaches have been proposed to this end.

First, the fault list is reduced (i) by the optimized identification of essential bits
through the bit-accurate mapping of macrocells, and (ii) by filtering-out the in-
active essential bits through profiling the switching activity. It has been experi-
mentally found that combining these two approaches reduces the fault list up to
80% without any side effects on the accuracy of derived robustness estimates. In
addition to that, the CM cells in the fault list are prioritized according to their
profiled activity time. This allows to identify the maximum number of critical
bits (weak points) under the limited experimental time budget, since the CM
cells with higher activity time tend to be more critical than CM cells with lower
activity time (as it has been experimentally demonstrated in this work).

Second, the fault list is sampled by the iterative statistical fault injection ap-
proach, which ensures the desired error margin in robustness estimates while
significantly reducing the number of injection runs with respect to the common
(conservative) statistical injection approach. The proposed iterative approach is
most efficient under huge fault spaces and under small failure rates. It has been
experimentally demonstrated that, under such conditions, it speeds-up the ro-
bustness assessment by more than an order of magnitude beyond the common
conservative approach.

Third, the multilevel fault injection, supported by the proposed register mapping
approach, distributes the SBFI experiments between RTL and implementation-
level to minimize the experimental effort. The robustness assessment of sequential
logic can be confidently carried out at RT level when the percentage of mapped
registers is close to 100%, reducing the experimental effort up to two orders of
magnitude. Under aggressive synthesis optimizations the SBFI experiments for
the affected registers are offloaded to implementation level, while the rest of them
are targeted at RTL. This keeps the accuracy of robustness estimations close to
those obtained at pure implementation level while still reducing the experimental
effort up to an order of magnitude.

Fourth, the clustering checkpointing approach has been proposed as the means
to speed-up SBFI experiments. Its efficiency is dependent on the distribution of
fault injection instants along the workload. Under a uniform fault distribution

230

10.1 Conclusions

it nearly doubles the experimental performance. The attainable speed-up and
optimal number of clustering intervals for any given workload and faultload can
be estimated by means of the analytical model provided in this work.

The case study has shown that combining all the proposed optimizations accel-
erates the dependability evaluation process up to the point when it cannot be
considered any more as the bottleneck for the dependability-driven design flow.

Objective 3: Define a design space exploration (DSE) methodology for depen-
dability-aware tuning of EDA tools and IP cores.

Two alternative DSE approaches have been proposed for the dependability-aware
tuning of EDA/IP parameters to reduce the experimental effort from different
perspectives.

The first proposed approach relies on genetic algorithms (GA) and reduces the ex-
perimental effort by means of the proposed iterative selection approach. The main
advantage of this approach is that researchers do not need to decide beforehand
the required error margin for dependability attributes, as they are dynamically
refined until it becomes possible to confidently select the best individuals from
the population. It has been experimentally demonstrated that integrating the it-
erative selection into the GA-based DSE process reduces the total dependability
evaluation effort up to 3 times with respect to the GA relying on the common
selection approach.

The GA-based approach can be recommended as the most generic DSE solution,
as it handles the irregular design spaces with multi-level parameters and implicitly
optimizes the higher-order effects (interactions of multiple parameters). Its main
limitation is that depending on how it is calibrated, it may require to evaluate
a significant number of configurations from the design space before reaching the
close-to-optimum solution. In spite of that, in optimization scenarios similar to
the presented case study, it may be generally sufficient to evaluate less than one
hundred configurations (out of trillions of alternatives in the design space) to
adjust the most significant effects and, thus, notably improve the robustness with
respect to the default (vendor-defined) configuration.

The second proposed DSE approach reduces the experimental effort by minimizing
the number of configurations that should be evaluated from the design space. This
is achieved by combining the design of experiments (DoE) methodology with the
regression analysis. The former representatively samples the design space using
the smallest possible set of trials. The latter uses the collected sample to quantify
the impact of each parameter on each PPAD attribute and to infer a predictive
PPAD model, which in turn is used to determine a sub-optimal configuration of

231

Chapter 10. Conclusions and Future Work

parameters within the design space. Under regular design spaces the proposed
method relies on orthogonal designs, which guarantee non-confounded estimations
of parameters’ effects and provide a small and deterministic sample size. To
handle irregular design spaces with multi-level parameters this work has proposed
a DSE flow based on the iterative augmentation and repair of D-optimal designs.
Despite the latter does not guarantee the absence of correlation between the
effects, its results can be improved on demand by incrementally extending the
collected sample.

The main advantage of DoE-based approach is that it not only tunes the EDA/IP
parameters, but also explains the impact of each parameter on each PPAD at-
tribute. Its main limitation with respect to the GA-based approach is that the
tuning of higher order effects (interactions of parameters) significantly increases
the DSE effort. Nevertheless, as the case study has confirmed, interactions can
be generally left out of consideration, as they are likely to be less important than
main effects.

The experimental part of this work has demonstrated that the optimal tuning
of EDA parameters by means of the proposed DSE approaches nearly doubles
the robustness of FPGA-based designs with respect to the default vendor-defined
EDA configuration. Under multi-objective DSE, they simultaneously improve
several PPAD attributes both in the absence of subjective preferences (Pareto-
efficient solutions) and in their presence. Furthermore, it has been demonstrated
that determined optimal configurations are also valid for the resilient versions of
the same designs: they provide nearly the same robustness improvement and si-
multaneously alleviate the PPA overheads imposed by integrated fault mitigation
mechanisms.

Objective 4: Provide an instrumental support for the efficient integration of
dependability-driven processes into the semicustom/FPGA-based design flow.

All the proposed methods and optimization techniques have led to the devel-
opment of the DAVOS toolkit, which automates and seamlessly integrates the
dependability assessment, verification, optimization, and selection processes into
the design flow. Its modular architecture and rich customization capabilities make
it compatible with standard HDLs, off-the-shelf EDA tools, and implementation
technologies. At the same time, it provides an accurate and high-performance
dependability evaluation instrument (PPAD evaluation engine), that can be used
for the automation of any custom dependability-driven strategy.

It is worth noting that the DAVOS FFI tool currently supports only Xilinx 7-
series FPGA and SoC devices. On the one hand, the carefully defined DAVOS

232

10.2 Summary of contributions an publications

architecture should allow the future integration of specific modules to support
FFI experiments for the devices of other series and/or vendors. On the other
hand, DAVOS SBFI tool, being much more generic, can successfully replace the
FFI tool in most dependability-driven processes that target other devices and
implementation technologies, although with possibly lower experimental perfor-
mance.

Finally, DAVOS is published as a free and open-source toolkit under the MIT li-
cense (https://github.com/IlyaTuzov/DAVOS). Thus, the community can ben-
efit from the integration of new modules and EDA tools and researchers could
share their results in a compatible format supported by rich visualization tools.

10.2 Summary of contributions an publications

Most contributions of this thesis have been published in reputed international
journals and conferences. This section briefly describes each contribution, refer-
encing the journal and/or conference paper in which it has been published.

10.2.1 Contributions of the thesis

• Methodology for accurate simulation of fault effects in imple-
mentation-level HDL models, described in Section 4, published in [J.1]
and [C.7]. Defines the generic operators allowing low-intrusive fault injec-
tion into VITAL-based and Verilog-based macrocells. Establishes a tool-
independent fault dictionary format, generalizing the definition of fault in-
jection procedures for diverse fault models and implementation technologies.

• Bit-accurate LUT and BRAMmapping algorithms, described in Sec-
tion 5.2. Locate the LUT and BRAM content within the configuration mem-
ory of Xilinx 7-series FPGAs with a bit granularity, taking into account all
synthesis and placement optimizations.

• Optimization of essential bits, described in Section 5.3. Locates the
essential bits corresponding to the LUT and BRAM macrocells with higher
precision than by using the essential bits reported by Xilinx Vivado suite.
Reduces the fault space for the LUT-specific and BRAM-specific faults with-
out any side effects on the accuracy of SBFI/FFI analysis. Includes an
algorithm for generating an optimized bit mask file, which is used in FFI
experiments to target those CM cells that correspond to the selected design
scope and type of logic resources.

233

https://github.com/IlyaTuzov/DAVOS

Chapter 10. Conclusions and Future Work

• LUT profiling approach, described in Section 6.2.1, published in [C.5].
Identifies the inactive LUT bits, reducing the LUT-specific fault space. Pri-
oritizes the criticality of the rest of LUT bits according to their estimated
activity time.

• Register mapping approach, described in Section 6.3.1, published in
[C.5]. Locates the RTL nodes corresponding to the implementation-level
registers, taking into account the logic optimizations performed at synthesis.
Reduces the gap in robustness estimations between RTL and implementation-
level SBFI. Supports the multi-level fault injection for sequential logic.

• Iterative statistical fault injection approach, described in Section 6.2.2,
published in [C.4]. Provides robustness estimates with a predefined error
margin by sampling the smallest possible number of fault configurations.
Reduces the experimental effort with respect to the common conservative
statistical injection approach.

• Iterative dependability-driven selection algorithm, described in Sec-
tion 7.3, published in [C.1]. Selects a predefined number of best (most ro-
bust) individuals from a list of alternatives, by performing a smallest possi-
ble number of SBFI/FFI runs. Reduces the experimental effort of GA-based
DSE with respect to the common selection approach.

• DoE-based dependability-aware DSE approach, described in Sec-
tion 7.2. Reduces the DSE experimental effort by minimizing the number of
configuration sampled from the design space. Its version based on orthogo-
nal designs (in application to regular designs spaces) has been published in
[J.2] and [C.6]. Its version based on iterative refinement of D-optimal de-
signs (in application to irregular designs spaces with multilevel parameters)
has been published in [C.4].

• DAVOS toolkit, described in chapter 8, published in [C.3]. Seamlessly
integrates all the considered dependability-driven processes into the semi-
custom design flow. Includes a PPAD evaluation engine, that automates
the implementation and dependability evaluation of multiple design con-
figurations. Supports different hardware description languages, abstraction
levels, fault models, EDA tools, and implementation technologies. Available
in source codes under the MIT licence at https://github.com/IlyaTuzov/
DAVOS.

234

https://github.com/IlyaTuzov/DAVOS
https://github.com/IlyaTuzov/DAVOS

10.2 Summary of contributions an publications

10.2.2 Publications

Journal publications

[J.1] Ilya Tuzov, David de Andrés, and Juan-Carlos Ruiz. “Simulating the ef-
fects of logic faults in implementation-level VITAL-compliant models”. In:
Computing 101.2 (2019), pp. 77–96. doi: 10.1007/s00607-018-0651-4.
(JCR Rank Q2)

[J.2] Ilya Tuzov, David de Andres, and Juan-Carlos Ruiz. “Tuning synthesis
flags to optimize implementation goals: Performance and robustness of the
LEON3 processor as a case study”. In: Journal of Parallel and Distributed
Computing 112 (2018), pp. 84–96. doi: 10.1016/j.jpdc.2017.10.002.
(JCR Rank Q2)

Conference publications

[C.1] Ilya Tuzov, David de Andrés, and Juan-Carlos Ruiz. “Improving Robustness-
aware Design Space Exploration for FPGA-based Systems”. In: 2020 16th
European Dependable Computing Conference (EDCC) (Munich, Germany).
IEEE. 2020. (Distinguished paper award)

[C.2] Ilya Tuzov, David de Andrés, and Juan-Carlos Ruiz. “Robustness-Aware
Design Space Exploration Through Iterative Refinement of D-Optimal De-
signs”. In: 2019 15th European Dependable Computing Conference (EDCC)
(Naples, Italy). IEEE. 2019, pp. 23–30. doi: 10.1109/EDCC.2019.00017.

[C.3] Ilya Tuzov, David de Andrés, and Juan-Carlos Ruiz. “DAVOS: EDA toolkit
for dependability assessment, verification, optimisation and selection of hard-
ware models”. In: 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (Luxembourg City, Luxem-
bourg). IEEE. 2018, pp. 322–329. doi: 10.1109/DSN.2018.00042. (Core
conference rank: A)

[C.4] Ilya Tuzov, David de Andrés, and Juan-Carlos Ruiz. “Accurate robust-
ness assessment of hdl models through iterative statistical fault injection”.
In: 2018 14th European Dependable Computing Conference (EDCC) (Iasi,
Romania). IEEE. 2018, pp. 1–8. doi: 10.1109/EDCC.2018.00013. (Dis-
tinguished paper award)

[C.5] Ilya Tuzov, David de Andrés, and Juan-Carlos Ruiz. “Speeding-up robust-
ness assessment of HDL models through profiling and multi-level fault in-

235

https://doi.org/10.1007/s00607-018-0651-4
https://doi.org/10.1016/j.jpdc.2017.10.002
https://doi.org/10.1109/EDCC.2019.00017
https://doi.org/10.1109/DSN.2018.00042
https://doi.org/10.1109/EDCC.2018.00013

Chapter 10. Conclusions and Future Work

jection”. In: 2018 Eighth Latin-American Symposium on Dependable Com-
puting (LADC) (Foz do Iguaçu, Brasil). IEEE. 2018, pp. 97–106. doi:
10.1109/LADC.2018.00020. (Best paper award)

[C.6] Ilya Tuzov, David de Andrés, and Juan-Carlos Ruiz. “Dependability-aware
design space exploration for optimal synthesis parameters tuning”. In: 2017
47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (Denver,CO,USA). IEEE. 2017, pp. 121–132. doi:
10.1109/DSN.2017.18. (Core conference rank: A)

[C.7] Ilya Tuzov, Juan-Carlos Ruiz, and David de Andrés. “Accurately simulat-
ing the effects of faults in vhdl models described at the implementation-
level”. In: 2017 13th European Dependable Computing Conference (EDCC)
(Geneva, Switzerland). IEEE. 2017, pp. 10–17. doi: 10.1109/EDCC.2017.
26. (Distinguished paper award)

[C.8] Ilya Tuzov et al. “Speeding-up simulation-based fault injection of complex
hdl models”. In: 2016 Seventh Latin-American Symposium on Dependable
Computing (LADC) (Cali, Colombia). IEEE. 2016, pp. 51–60. doi: 10.
1109/LADC.2016.18.

10.2.3 Research projects

The presented thesis has been developed in the Fault-tolerant Systems Research
Group (GSTF) of ITACA institute of the Universitat Politècnica de València,
in the framework of the DINAMOS research project "Mecanismos de adaptacion
confiable para vehiculos autonomos y conectados" funded by the Spanish Ministry
of Economy and Competitiveness under the reference number TIN2016-81075-R,
from 30/12/2016 to 30/12/2020.

10.3 International research stay

Within the framework of the PhD internationalization programme, the student
has carried out a 3-month research stay (from 01/09/2019 to 30/11/2019) at the
University of Twente (The Netherlands), at the hosting group CAES (Computer
Architecture for Embedded Systems). The research stay has been supervised by
Dr. Daniel Ziener, a renowned expert in the domain of design and verification of
reliable FPGA-based embedded systems.

The research work carried out during this stay has focused on the development
of bit-accurate FPGA-based fault injection (FFI) techniques. The practical out-

236

https://doi.org/10.1109/LADC.2018.00020
https://doi.org/10.1109/DSN.2017.18
https://doi.org/10.1109/EDCC.2017.26
https://doi.org/10.1109/EDCC.2017.26
https://doi.org/10.1109/LADC.2016.18
https://doi.org/10.1109/LADC.2016.18

10.4 Future work

come of this work was an approach for bit-accurate LUT and BRAM mapping
and the related optimizations of essential bits, both presented among other con-
tributions in this work. Overall, the student has gained an invaluable experience
and knowledge in the domain of FPGA-based systems, that allowed to verify the
proposals and to prove their usefulness for the related research areas. In particu-
lar, the collaboration with the CAES group has allowed to extend the application
of the proposed bit-accurate FFI techniques and DAVOS toolkit to the domain
of security assessment of FPGA-based systems.

10.4 Future work

Several research lines can be followed in the future on the basis of the work
presented in this thesis.

First, a bit-accurate mapping of FPGA routing resources could be studied. This
may allow additional optimizations of essential bits, aiming at further improving
the accuracy and performance of fault injection analysis.

Second, additional strategies can be defined for further acceleration of fault in-
jection analysis and of the related dependability-driven processes.

Third, extending the activity profiles to the rest of FPGA resources could allow
to improve the efficiency of scrubbing the FPGA configuration memory. For
instance, it could be worth to study whether the criticality of CM frames can be
prioritized on the basis of aggregated activity metrics of its constituting CM cells.

Fourth, additional vendor-specific modules and fault dictionaries for the DAVOS
toolkit can be developed, thus to extend an out-of-the-box support for different
EDA tools and implementation technologies. Likewise, the DAVOS FFI tool can
be adapted to FPGAs of different series and vendors.

Finally, DAVOS toolkit can be exploited for targeting different sets of complex
IP cores considered as benchmarks and/or EDA tools. This may reveal certain
patterns and tendencies among the configuration parameters, depending on the
design characteristics or the desired trade-off, leading to the definition of guide-
lines for the robustness-aware tuning of IP cores and EDA tools.

237

Appendices

239

Appendix A

Details of Bit-accurate
FPGA-based Fault Injection

Approach

A.1 Accessing the configuration memory of Xilinx FPGAs

Configuration memory of Xilinx’s FPGAs can be accessed through three different
interfaces depicted in Fig.A.1. The JTAG TAP (test access port) provides an
external access to the CM, e.g. from host PC. It is usually considered the slowest
configuration path, although its throughput depends on the particular device.
The Internal Configuration Access Port (ICAP) provide an access to the CM
directly from reconfigurable fabric (PL), featuring the highest data rate – up to
400 MB/s. Finally, the Processor Configuration Access Port (PCAP) allows to
access the CM from the hardwired part, available in Xilinx Zynq SoC devices. The
latter is usually based on single or multi-core ARM APU. The PCAP throughput
ranges between 19 MB/s and 100 Mb/s, although some proposals accelerate it up
to 380 MB/s, as detailed in [164].

Regardless of the selected configuration path, the CM manipulation itself is per-
formed by internal configuration logic (PL configuration module) according to

241

Appendix A. Details of Bit-accurate FPGA-based Fault Injection Approach

BITSTREAM

Read buffer

Write buffer

Memory (DRAM/OCM)

Fabric

H
ar

d
w

ir
ed

 p
ar

t
(P

S)

Pr
og

ra
m

m
ab

le
 p

ar
t

(P
L)

XDcfg_Transfer
(..,Mode.WRITE)

XDcfg_Transfer
(..,Mode.READBACK)

xhwicap APIxdevcfg API

CONFIG DATA

DevC with DMA
(Device Configuration Interface)

PCAP
(Processor configuration access port)

ARM (PS software)

XHwIcap_
DeviceRead(...)

XHwIcap_
DeviceWrite(...)

PL Configuration Module
(executes configuration commands)

ICAP
(Internal configuration access port)

AXI HW ICAP

Microblaze (PL software)

TAP controller
(test access port)

Serial interface

External
software

Figure A.1: ICAP, PCAP and JTAG paths for accessing the FPGA configuration memory

the incoming configuration bitstreams. The bitstream comprises a sequence of
configuration commands and optional data packets. The bitstream commands
instruct the configuration module to perform a required set of operations (read,
write, capture, restore, protect, etc.). Hence, any CM access includes two main
steps: preparing the configuration bitstream, and transferring it to the internal
configuration module through the selected configuration path.

The bitstream composition for reading and writing of CM content (in non-secured
unprotected mode), is detailed in Fig.A.2. Both read and write sequences start
by synchronization packet, followed by various commands to prepare the CM ma-
nipulation (PO packet in Fig.A.2). Subsequently, the read or write parameters
should be configured (RP packet). First, the operation mode is set to the com-
mand register: read (0x4) or write (0x1). After that, the starting frame address
is set to the FAR register, and the total number of words to be read/written
is set to FDRO register. Important to note that valid transaction should read-
/write one additional dummy frame, to flush the data buffers, as it is detailed in
[176]. The read packet is flushed by 32 dummy words, while the write packet is
complemented by an array of CM data frames to be written to the CM. Finally,
the bitstream is complemented by de-synchronization packet. Further details on
bitstream composition can be found in [176].

242

A.1 Accessing the configuration memory of Xilinx FPGAs

Dummy Packet
Bus Width Packet (0x000000BB)
Bus Detect Packet (0x11220044)
Sync Word (0xAA995566)
NOP

 //Capture Registers State into Readback Cells
 //(GCAPTURE command)
Type1_Packet(2, CMD_Reg, 0x1)  0x12
NOP

 //Reset Capture Signal (RCAP command)
Type1_Packet(2, CMD_Reg, 0x1)  0x6

C
a

p
tu

re

Sy
n

c
P

re
p

ar
e

o
p

er
at

io
n

 (
P

O
)

R
ea

d
b

ac
k

p
ar

am
et

er
s

(R
P

)

 //Setup CMD register to read configuration (RCFG)
Type1_Packet(Write, CMD_Reg, 0x1)  0x4
NOP

 //Setup Frame Address Register
Type1_Packet(2, FAR_Reg, 0x1)  FAR

 //Setup number of words to readback in FDRO register
Type1_Packet(1, FDRO_Reg, 0)  none
Type2_Packet(1, (Nframes+1)× FRAME_SIZE)

 //Flush the packet buffer
NOP x32 words

 //Enable Global LUT mask
Type1_Packet(2, MASK_Reg, 0x1)  0x100
Type1_Packet(2, Control_Reg, 0x1)  0x000

 //Reset CRC command
Type1_Packet(Write, CMD_Reg, 0x1)  0x7

 //DESYNC command
Type1_Packet(Write, CMD_Reg, 0x1)  0x13

//Flush the packet buffer
NOP x32 words

D
es

y
n

c

WriteSequence(FAR, Nframes, DataFrames, Restore)

W
ri

te
 P

ar
a

m
e

te
rs

 (
W

P
)

 //Setup CMD register to write configuration (RCFG)
Type1_Packet(Write, CMD_Reg, 0x1)  0x4
NOP

 //Setup Frame Address Register
Type1_Packet(2, FAR_Reg, 0x1)  FAR

 //Setup number of words to write in FDRI register
Type1_Packet(1, FDRI_Reg, 0)  none
Type2_Packet(1, (Nframes+1)× FRAME_SIZE)

 //Append Data Frames, followed by one dummy frame
 DataFrames
 [0xFFFFFFFF] × FRAME_SIZE

 //Pulse GRESTORE signal – initialize Registers State
 //from Readback CM cells (GRESTORE command)
Type1_Packet(2, CMD_Reg, 0x1)  0x10
NOPR

es
to

re

ReadSequence(FAR, Nframes, Capture)

 //Reset CRC command
Type1_Packet(Write, CMD_Reg, 0x1)  0x7
NOP

 //Set Device ID Register
Type1_Packet(Write, IDCODE_Reg, 0x1)

  Devc->Config.DeviceId & 0x0FFFFFFF
NOP

 //Disable Global LUT Mask (Ctrl bit 8)
 //and Config fallback (Ctrl bit 10)
Type1_Packet(2, MASK_Reg, 0x1)  0x500
Type1_Packet(2, Control_Reg, 0x1)  0x500

Read Write

Figure A.2: Bitstream composition for reading and writing the FPGA configuration mem-
ory

Additionally, a state of the CLB registers can be readback from the device by ap-
pending a GCAPTURE command before readback parameters. This command
copies the current state of all unprotected registers to their corresponding CM
cells (INIT cells). Conversely, to change the state of fabric registers after updating
the CM content, the GRESTORE command can be appended to the bitstream af-
ter the write parameters. Although, as it suggested by [67], the restore command
in the bitstream may have no effect. In this case it may be required to forcibly
trigger the Global Set-Reset line (GSR) through the STARTUPE2 primitive af-

243

Appendix A. Details of Bit-accurate FPGA-based Fault Injection Approach

ter completing the CM write transaction. This primitive should be explicitly
instantiated within the design.

Enable PCAP clock
SystemLevelRegister[offset 0x168][bit 0] = 1

Set Config interface to PCAP mode
XDcfg_EnablePCAP(DevcI)

Check that DMA command queue not full
status = XDcfg_ReadReg(BaseAddr + 0x14)

Cache Flush

Start DMA transfer
XDcfg_Transfer(Devc,

 SourcePtr = &Bitstream,
 SrcWordLength = len(Bitstream),
 DestPtr = ReadBuffer,
 DestWordLength = (Nframes+1)× FRAME_SIZE,
 TransferType = XDCFG_PCAP_READBACK)

Wait for DMA completion
XDcfg_IntrGetStatus(DevC) [bit 13] == 0

status[31] ≠ 1

ReadCM(FAR, Nframes, Capture, *ReadBuffer)

Bitstream = ReadSequence(FAR, Nframes, Capture).{Sync, PO, Capture, RP}

Bitstream = ReadSequence(FAR, Nframes, Capture).{Desync}

Cache Flush

Start DMA transfer
XDcfg_InitiateDma(Devc,

 SourcePtr = &Bitstream,
 DestPtr = 0xFFFFFFFF,
 SrcWordLength = len(Bitstream),
 DestWordLength = 0)

Wait for DMA completion
XDcfg_IntrGetStatus(DevC) [bit 13] == 0

//Skip first readback frame (dummy frame)
Return: ReadBuffer[FrameSize : (Nframes+1)× FRAME_SIZE]

Enable PCAP clock
SystemLevelRegister[offset 0x168][bit 0] = 1

Set Config interface to PCAP mode
XDcfg_EnablePCAP(DevcI)

Check that DMA command queue not full
status = XDcfg_ReadReg(BaseAddr + 0x14)

Cache Flush

Start DMA transfer
XDcfg_Transfer(Devc,

 SourcePtr = &Bitstream,
 SrcWordLength = len(Bitstream),
 DestPtr = 0xFFFFFFFF,
 DestWordLength = 0,
 TransferType = XDCFG_NON_SECURE_PCAP_WRITE)

Wait for DMA completion
XDcfg_IntrGetStatus(DevC) [bit 13] == 0

status[31] ≠ 1

WriteCM(FAR, Nframes, *DataFrames, Restore)

Bitstream = WriteSequence(FAR, Nframes, DataFrames, Capture)

Return: none

(a) (b)

Figure A.3: Procedures to read (a) and write (b) the configuration memory through the
PCAP interface

The software stack used to supply the bitstream to the configuration module, as
well as to receive the readback data, relies on the API of the selected configuration
path. The PCAP operates through the dedicated DMA (direct memory access)
controller, and can be interacted from the PS software using the xdevcfg API.
The ICAP path is accessible from both PS and and PL (Microblaze) software
through the hwicap API. Fig.A.3 illustrates the procedures to read and write the
CM through the PCAP. First of all, the preconditions are checked: (i) the config-
uration path is set to the PCAP mode, (ii) the PCAP clock is activated, and (iii)
the DMA queue is not full. Subsequently, the configuration bitstream is build
for a selected operation (write or readback) according to the previously described
procedure. The bistream is stored in the on-chip/off-chip memory (WriteBuffer
in Fig.A.1), from where it is transferred to the configuration module by invok-
ing the XDcfg_Transfer function. The supported transfer types are defined in
the PCAP library, particularly XDCFG_PCAP_READBACK constant denotes

244

A.2 Bit-accurate mapping of LUTs onto the configuration memory

a readback transaction, XDCFG_NON_SECURE_PCAP_WRITE constant de-
notes a write transaction.

In the readback mode the DMA transaction transfers the bitstream from the
write buffer to the PL, and stores the received readback data in the selected
read buffer. It is worth noting that in the readback mode the de-synchronization
packet is transferred separately, after the readback data are received. In the
write mode the DMA transaction is unidirectional (no data are returned from
the CM), and the destination address reserved by PCAP API for this kind of
transaction is 0xFFFFFFFF. Since the PCAP-DMA transaction is non-blocking,
the PS software can perform some useful processing while waiting the DMA to
complete. In case of ICAP API, all data transfer operations are blocking, although
the throughput of ICAP path is generally higher.

A.2 Bit-accurate mapping of LUTs onto the configuration
memory

The objective of bit-accurate LUT mapping is to discover the location of each bit
of LUT’s truth table (INIT property of LUT macrocell) in the bitstream fragment
corresponding to it’s placement (BEL). In other words, how the bits of extracted
bitsream fragment should be reordered in order to obtain the INIT value of the
LUT macrocell.

This can be experimentally achieved by assigning one-hot pattern to the INIT
property of LUT macrocell (e.g. one bit set to logic 0, the rest bits are set to
logic 1), placing it into the LUT BEL with the predefined coordinates (XY, A-D),
and locating this highlighted bit (0) in the generated bitstream. By repeating this
procedure for all LUT bits, one can determine their exact location in the extracted
bitstream fragment. A detailed algorithm is depicted in Fig.A.4. It comprises two
stages: i) generations of a bitstream file for each alternative location of highlighted
bit in the LUT INIT (a total of 64 bitstream files), ii) location of this bit within
the bitstream fragment for each generated bitstream.

On the implementation stage, first, the location of LUT6 cell (labelled as iLUT)
is constrained to the LUT BEL with the predefined coordinates (e.g. X20_Y101,
A6_LUT). The mapping of iLUT inputs onto the LUT BEL pins is constrained as
well (e.g. direct mapping I0:A1, I1:A2,..., I5:A6) to prevent occasional Vivado
optimizations impacting the mapping of configuration memory. Subsequently,
one of the LUT INIT bits (with bit_index ranging from 0 to 63 (LSB to MSB))
is assigned a value of 0, while the rest of INIT bits are kept at 1. Afterwards,
the design is implemented and the bitstream is generated. This procedure is

245

Appendix A. Details of Bit-accurate FPGA-based Fault Injection Approach

Locate

D = extract_LUT_content(XY, A-D, bitstream)

MAP [bit_index] = index_of(0, D)

Return MAP

Instantiate iLUT  LUT6 unisim cell

Place iLut onto LutBel (XY, A-D)

iLUT.INIT = ~(0x1 << bit index)

Implement

Export bitstream “$bit_index.bin”

bit_index += 1

bit_index > 63 ?

bit_index = 0

MAP  int[63]

Implement

LOC Cell Pins I0:A1,…, I5:A6
bit_index = 0

bitstream  parse(“$bit_index.bin”)

bit_index += 1

bit_index > 63 ?
yesno

yes

no

Figure A.4: Algorithm for locating the bits of LUT INIT (truth table) within the bitstream
fragment

repeated for each bit_index in the range [0:63]. On the second stage the generated
bitstreams are parsed in order to extract the bitstream fragment corresponding to
the selected BEL coordinates (four halfwords are extracted from four consecutive
Frames). Finally, the location of highlighted LUT bit (bit_index is determined
within the extracted bitstream fragment, as it is depicted in Fig.A.5.

iLUT.INIT (64 bits)
BEL: A6LUT (X113_Y18)

BITSTREAM Fragment (64 bits):
TOP =1, HCLKROW=1, MAJOR = … , WORD=36, BITS [15:0] MAP

MINOR 26 MINOR 27 MINOR 28 MINOR 29
1111111111....11111111110 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 0 → 63
1111111111....11111111101 1111 1111 1111 1111 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1 → 47
1111111111....11111111011 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 2 → 62
1111111111....11111110111 1111 1111 1111 1111 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 3 → 46

...
1011111111....11111111111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 62 → 0
0111111111....11111111111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1111 1111 1111 1111 63 → 16

Figure A.5: Excerpt of LUT mapping trace for LUT6 Cell under direct ping mapping

Mapping experiments are conducted under i) different coordinates of LUT BEL,
ii) different types of CLB slice (L or M), iii) different Cell-BEL pin mapping
(e.g. direct or reverse I0:A6, I1:A5,..., I5-A1), iv) different LUT cell sizes
(LUT2/.../LUT6). Resulting mapping is summarized in Table A.1. As it can
be seen, the resulting mapping depends on the type of CLB slice (L or M), as
well as on the mapping of LUT inputs onto the BEL pins. In the case of partially

246

A.2 Bit-accurate mapping of LUTs onto the configuration memory

Table A.1: Mapping of the LUT content onto the bits of corresponding bitstream fragment

bit_index

Matching bit of bitstream fragment
LUT 6 LUT 4

Slice L
Direct pinmap1

Slice M
Direct pinmap1

Slice L
Reverse pinmap2

Slice L
Direct pinmap3

0 63 31 63 51, 55, 59, 63
1 47 15 55 35, 39, 43, 47
2 62 30 59 50, 54, 58, 62
3 46 14 51 34, 38, 42, 46
4 61 29 15 49, 53, 57, 61
5 45 13 7 33, 37, 41, 45
6 60 28 11 48, 52, 56, 60
7 44 12 3 32, 36, 40, 44
8 15 63 61 3, 7, 11, 15
9 31 47 53 19, 23, 27, 31

10 14 62 57 2, 6, 10, 14
11 30 46 49 18, 22, 26, 30
12 13 61 13 1, 5, 9, 13
13 29 45 5 17, 21, 25, 29
14 12 60 9 0, 4, 8, 12
15 28 44 1 16, 20, 24, 28
16 59 27 62 
17 43 11 54 
18 58 26 58 
19 42 10 50 
20 57 25 14 
21 41 9 6 
22 56 24 10 
23 40 8 2 
24 11 59 60 
25 27 43 52 
26 10 58 56 
27 26 42 48 
28 9 57 12 
29 25 41 4 
30 8 56 8 
31 24 40 0 
32 55 23 47 
33 39 7 39 
34 54 22 43 
35 38 6 35 
36 53 21 31 
37 37 5 23 
38 52 20 27 
39 36 4 19 
40 7 55 45 
41 23 39 37 
42 6 54 41 
43 22 38 33 
44 5 53 29 
45 21 37 21 
46 4 52 25 
47 20 36 17 
48 51 19 46 
49 35 3 38 
50 50 18 42 
51 34 2 34 
52 49 17 30 
53 33 1 22 
54 48 16 26 
55 32 0 18 
56 3 51 44 
57 19 35 36 
58 2 50 40 
59 18 34 32 
60 1 49 28 
61 17 33 20 
62 0 48 24 
63 16 32 16 

1 LOCK_PINS {I0:A1 I1:A2 I2:A3 I3:A4 I4:A5 I5:A6}
2 LOCK_PINS {I0:A6 I1:A5 I2:A4 I3:A3 I4:A2 I5:A1}
3 LOCK_PINS {I0:A1 I1:A2 I2:A3 I3:A4}

247

Appendix A. Details of Bit-accurate FPGA-based Fault Injection Approach

used LUTs, their content is replicated in the bitstream 2K times, where K is the
number of unused pins of the LUT BEL.

A.3 Determining the state of unused LUT pins

Xilinx Vivado suite replicates the content of partially used LUT BELs in such a
way as to make the LUT output independent of the unused BEL pins (they are
assumed don’t care values). In FPGA, however, unused BEL pins are expected to
have certain determined default state. The experimental setup described in this
section allows to determine the actual state of these unused LUT pins in FPGA.

Experiment considers a simple design comprising LUT3 macrocell connected to
the Zynq PS through the GPIO (three inputs, one output). The LUT inputs
are mapped onto the BEL pins according to the Fig.A.6a: I0:A1, I1:A2, I2:A3.
While the BEL pins A4,A5,A6 remain unused. The INIT property (truth table)
of the LUT can be assigned any non-trivial value, in order to prevent Vivado from
optimizing-out the LUT cell. The bitstream is exported, and a simple application
for the ARM_core0 (in PS part) is created to interact with the instantiated LUT3
macrocell through the GPIO interface - Fig.A.6b.

(a) (b)

Figure A.6: Instantiated LUT with unused pins A4/A5/A6 (a), LUT connection to PS
through GPIO interface

There exist 8 different input vectors (referred to as test sequence) 000,001,...,
111, each of them drives one corresponding INIT bit to the LUT output. In the
bitstream each of INIT bits is replicated 8 times, since there are 3 unused (don’t
care) pins A6:A5:A4. Therefore, with the original LUT content the test sequence
will output the same result independently of the state of unused pins. In order
determine the state of unused pins, the don’t care assumption should be discarded
by modifying the replicated LUT bits in such a way as to make the test result

248

A.3 Determining the state of unused LUT pins

dependent on the actual state of unused pins. For instance, the by modifying the
LUT content according to the Table A.2 should allow to uniquely detect the state
of A6:A5:A4 from the test result, as it is listed below:
A6:A5:A4 = 000 → Result = 0x11,
A6:A5:A4 = 001 → Result = 0x22,
A6:A5:A4 = 010 → Result = 0x33,
A6:A5:A4 = 011 → Result = 0x44,
A6:A5:A4 = 100 → Result = 0x55,
A6:A5:A4 = 101 → Result = 0x66,
A6:A5:A4 = 110 → Result = 0x77,
A6:A5:A4 = 111 → Result = 0x88.

Table A.2: LUT content allowing to determine the state of unused BEL pins A6:A5:A4

LUT Input LUT output Bitstream bit
A6 A5 A4 A3 A2 A1 LUT_L LUT_M

0 0 0 0 0 0 1

0x11

63 31
0 0 0 0 0 1 0 47 15
0 0 0 0 1 0 0 62 30
0 0 0 0 1 1 0 46 14
0 0 0 1 0 0 1 61 29
0 0 0 1 0 1 0 45 13
0 0 0 1 1 0 0 60 28
0 0 0 1 1 1 0 44 12
0 0 1 0 0 0 0

0x22

15 63
0 0 1 0 0 1 1 31 47
0 0 1 0 1 0 0 14 62
0 0 1 0 1 1 0 30 46
0 0 1 1 0 0 0 13 61
0 0 1 1 0 1 1 29 45
0 0 1 1 1 0 0 12 60
0 0 1 1 1 1 0 28 44
0 1 0 0 0 0 1

0x33

59 27
0 1 0 0 0 1 1 43 11
0 1 0 0 1 0 0 58 26
0 1 0 0 1 1 0 42 10
0 1 0 1 0 0 1 57 25
0 1 0 1 0 1 1 41 9
0 1 0 1 1 0 0 56 24
0 1 0 1 1 1 0 40 8
0 1 1 0 0 0 0

0x44

11 59
0 1 1 0 0 1 0 27 43
0 1 1 0 1 0 1 10 58
0 1 1 0 1 1 0 26 42
0 1 1 1 0 0 0 9 57
0 1 1 1 0 1 0 25 41
0 1 1 1 1 0 1 8 56
0 1 1 1 1 1 0 24 40
1 0 0 0 0 0 1

0x55

55 23
1 0 0 0 0 1 0 39 7
1 0 0 0 1 0 1 54 22
1 0 0 0 1 1 0 38 6
1 0 0 1 0 0 1 53 21
1 0 0 1 0 1 0 37 5
1 0 0 1 1 0 1 52 20
1 0 0 1 1 1 0 36 4
1 0 1 0 0 0 0

0x66

7 55
1 0 1 0 0 1 1 23 39
1 0 1 0 1 0 1 6 54
1 0 1 0 1 1 0 22 38
1 0 1 1 0 0 0 5 53
1 0 1 1 0 1 1 21 37
1 0 1 1 1 0 1 4 52
1 0 1 1 1 1 0 20 36
1 1 0 0 0 0 1

0x77

51 19
1 1 0 0 0 1 1 35 3
1 1 0 0 1 0 1 50 18
1 1 0 0 1 1 0 34 2
1 1 0 1 0 0 1 49 17
1 1 0 1 0 1 1 33 1
1 1 0 1 1 0 1 48 16
1 1 0 1 1 1 0 32 0
1 1 1 0 0 0 0

0x88

3 51
1 1 1 0 0 1 0 19 35
1 1 1 0 1 0 0 2 50
1 1 1 0 1 1 1 18 34
1 1 1 1 0 0 0 1 49
1 1 1 1 0 1 0 17 33
1 1 1 1 1 0 0 0 48
1 1 1 1 1 1 1 16 32

249

Appendix A. Details of Bit-accurate FPGA-based Fault Injection Approach

The resulting INIT value equals 0x8844CC22AA66EE11, which after reordering
the bits according to the LUT_L mapping, converts to the bitstream fragment
0xAAFF0A0AA0A50550. Instead of modifying the bitstream file, the LUT con-
tent can be updated directly from the PS application by means of a function
UpdateLutINIT(Top, Row, Column, XY, ABCD_index, LutContent) from the
library InjectorLib.c (part of the DAVOS toolkit). Listing A.1 illustrates an ex-
cerpt from the PS application, accomplishing the described test for discovering
the state of unconnected BEL pins.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

//Initialization of GPIO, PCAP, InjDesc

XGpioPs_SetDirection(&PsGpioPort, XGPIOPS_BANK2, 0x00000007);
XGpioPs_SetOutputEnable(&PsGpioPort, XGPIOPS_BANK2, 0x00000007);

//Update LUT content at BlockType=0, Top=0, ClkRow=0, TileColumn=20, Xs=28, Y=101, LUT_Index=0(A)
UpdateLutINIT(&InjDesc, 0, 0, 0, 20, 28, 101, 0, 0xAAFF0A0AA0A50550);

//Test the LUT output for I0-I2 = 000  111
u8 res = 0x00;
for(int i=0;i<8;i++){

XGpioPs_Write(&PsGpioPort, XGPIOPS_BANK2, i);
u8 bit = (XGpioPs_Read(&PsGpioPort, XGPIOPS_BANK2) >> 3) & 0x1;
printf("%d -> %d\n",i, bit);
res = res | (bit<<i);

}
printf("Test Result on iLUT = 0x%02x\n", res);

Listing A.1: Excerpt from the PS application used to discover the state of unconnected
BEL pins

The test result, obtained after running the application equals 0x88, which cor-
responds to value of logic ’1’ of all unconnected BEL pins (A6:A5:A4 = 111).
By repeating this experiment for different alternative LUT placements, it can be
concluded that unused LUT pins are actually driven high (logic ’1’). This can be
used to uniquely locate each LUT-specific essential bit within the bitstream, even
when the LUT used partially and it content gets replicated due to the unused
BEL pins.

250

A.4 Extracting the macrocells descriptors from implementation-level netlist

A.4 Extracting the macrocells descriptors from
implementation-level netlist

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

set exportdir [get_property DIRECTORY [current_project]]
set fout [open $exportdir/LUTMAP.csv w]
puts $fout "sep=;"
puts $fout "CellPath;CellType;SliceXY;TileXY;ClkRegionXY;Slice.BelLabel;CellINIT;CombinedLut;CellBelPinmap;"

#EXPORT PROPERTIES OF EACH LUT CELL IN THE NETLIST
foreach cell [get_cells -hier -filter {PRIMITIVE_GROUP==LUT}] {
 set bel [get_bels -of_objects $cell]
 set tile [get_tiles -of_objects $bel]
 set clkreg [get_clock_regions -of_objects $tile]
 set cellPath [get_property NAME $cell]; #Path/Name of LUT cell
 set cellType [get_property PRIMITIVE_TYPE $cell]; #LUT size (LUT1/2/3/4/5/6)
 set sliceXY [get_property LOC $cell]; #XY coord of CLB slice
 set tileXY [get_property NAME $tile]; #XY coord of CLB tile
 set clkregXY [get_property NAME $clkreg]; #XY coord of clock region
 set BelLabel [get_property BEL $cell]; #Slice type (L/M) and LUT label (A/B/C/D)
 set cellINIT [get_property INIT $cell]; #LUT INIT (truth table)
 set combinedLut [get_cells -of_objects [get_bels \

[expr {[string first "5LUT" $bel] >= 0 ? [regsub "5LUT" $bel "6LUT"] : [regsub "6LUT" $bel "5LUT"]}]]]

 puts -nonewline $fout [format "%s;%s;%s;%s;%s;%s;%s;%s;" \
$cellPath $cellType $sliceXY $tileXY $clkregXY $BelLabel $cellINIT $combinedLut]

 #extract cell-bel pinmap list of tuples {CelPin : BelPin}
 foreach cellpin [get_pins -of_objects $cell] {

puts -nonewline $fout [format "{%s:%s}" \
[get_property REF_PIN_NAME $cellpin] \
[lindex [split [get_bel_pins -of_objects $cellpin] '/'] end]]

}
puts $fout ";"

}

#EXPORT PROPERTIES OF LUT BELS NOT REFLECTED IN THE NETLIST (PASS-THROUGH OR CONSTANT)
foreach bel [get_bels -filter \
 {IS_USED==False && (TYPE==LUT5 || TYPE == LUT_OR_MEM5 || TYPE==LUT6 || TYPE == LUT_OR_MEM6) }] {

 set cellpins [get_pins -of_objects [get_bel_pins -of_objects $bel]]; #List of used bel pins
 set eqn [get_property CONFIG.EQN $bel]; #Equation implemented by LUT Bel (O5/O6= net or constant)

 if {[llength $cellpins] > 0 || [llength $eqn] > 0 } {
set slice [get_sites -of_objects $bel]
set tile [get_tiles -of_objects $bel]
set clkreg [get_clock_regions -of_objects $tile]
set BelLabel [lindex [split [get_property NAME $bel] '/'] end]; #Slice type (L/M) and LUT label
set sliceXY [get_property NAME $slice]; #XY coord of CLB slice
set clkregXY [get_property NAME $clkreg]; #XY coord of clock region
set tileXY [get_property NAME $tile]; #XY coord of CLB tile
set combinedLut [get_cells -of_objects [get_bels \

[expr {[string first "5LUT" $bel] >= 0 ? [regsub "5LUT" $bel "6LUT"] : [regsub "6LUT" $bel "5LUT"]}]]]

if {[llength $cellpins] > 0} {
#Pass-through LUT (one of the inputs forwarded to output)
puts -nonewline $fout [format "PassThrough;LUT1;%s;%s;%s;%s;;%s;" \

$sliceXY $tileXY $clkregXY $BelLabel $combinedLut]
foreach pin $cellpins {

puts -nonewline $fout [format "{I0:%s}" \
[lindex [split [lindex [get_bel_pins -of_objects $pin] 0] '/'] end]]

}
puts $fout ";"

} elseif { [llength $eqn] > 0} {
#LUT Bel used as constant (O6/O5 = 0/1)
puts $fout [format "Constant;LUT0;%s;%s;%s;%s;;%s;;" $sliceXY $tileXY $clkregXY $BelLabel $combinedLut]

}
 }
}
close $fout

Listing A.2: Vivado script for extracting the descriptors of LUT macrocells from the
implementation-level netlist into a CSV-formatted file

251

Appendix B

Case Study Details

B.1 Architecture of the DUTs

ALU
Serial IO

timer

Control (decode and execute)

RAM
128 x8

RAMX
64K x8

ROM
4K x8

Prog Mem
Even 1K x8

fetch

Data Mem
even 1K x8

Reg File
32x8

ALU
Data Mem
Odd 1K x8

execute

Prog Mem
Odd 1K x8

Dout

decode

P0_o

P1_o

P2_o

P3_o

P0_i

P1_i

P2_i

P3_i

INT_0

INT_1

... ...

fe
tc

h

d
e

co
d

e

Special
purpose
registers

ALU

Register
file

e
xe

cu
te

Local Memory
32K x32 D

at
a

L
M

B

In
st

.
L

M
B

A
X

I
G

P
IO

out [0:31]

 in [0:31]

(a) AVR

(c) MC8051

(b) Microblaze

Din

Figure B.1: Architecture of HW designs under study

253

Appendix B. Case Study Details

B.2 Convergence of GA/NSGA-based DSE

(a) MC8051: Selection 9 of 18 d) MC8051: Selection 6 of 18

(b) AVR: Selection 9 of 18 (e) AVR: Selection 6 of 18

(c) MICROBLAZE: Selection 9 of 18 (f) MICROBLAZE: Selection 6 of 18

1 2 3 4 5 6

35.0

Failure Rate of Default configuration Rejected configurations Filtered-out configurations (< 20 MHz) Selected configurations
2.05 h.

λ= 3.01± 0.07 FIT

1 2 3 4 5 6

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Iteration of GA

Fa
ilu

re
 R

at
e

(F
IT

)

Robustness evaluation time (hours)

2.05 h. 1.40 h. 1.25 h.1.08 h. 2.46 h.

λ = 2.60 ± 0.03 FIT

1 2 3 4 5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Iteration of GA

Fa
ilu

re
 R

at
e

(F
IT

)

Robustness evaluation time (hours)

1.90 h. 1.10 h. 2.43 h.3.00 h.

λ= 2.23 ± 0.06 FIT

1 2 3 4 5 6 7

1.9

2.4

2.9

3.4

3.9

4.4

4.9

5.4

Iteration of GA

Fa
ilu

re
 R

at
e

(F
IT

)

Robustness evaluation time (hours)
0.52 h. 0.89 h. 1.31 h.0.83 h. 0.68 h. 1.70 h.

λ=1.97 ± 0.04 FIT

1 2 3 4 5 6

1.9

2.4

2.9

3.4

3.9

4.4

4.9

5.4

Iteration of GA

Fa
ilu

re
 R

at
e

(F
IT

)

Robustness evaluation time (hours)
0.62 h. 0.73 h. 0.95 h.1.18 h. 1.24 h.

f=142.9 MHz

f=15.2 MHz λ= 4.39 ± 0.3 FIT

1 2 3 4 5

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

Iteration of GA

Fa
ilu

re
 R

at
e

(F
IT

)

Robustness evaluation time (hours)
1.55 h. 0.80 h. 2.59 h.0.71 h.

f= 15.1 MHz λ= 4.54 ± 0.02 FIT

1 2 3 4 5 6 7

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

Iteration of GA

Fa
ilu

re
 R

at
e

(F
IT

)

Robustness evaluation time (hours)
1.14 h. 1.43 h. 1.51 h.1.34 h. 1.06 h. 3.18 h.

Figure B.2: Convergence of GA-based DSE process (single optimization goal - failure rate)

254

B.2 Convergence of GA/NSGA-based DSE

Iteration 1 (4.3 h.) Iteration 2 (4.0 h) Iteration 3 (2.5 h.) Iteration 4 (2.4 h.) Iteration 5 (3.1 h.)

(g

)
M

C
80

5
1

Iteration 1 (2.2 h.) Iteration 2 (1.5 h) Iteration 3 (1.1 h.) Iteration 4 (1.5 h.) Iteration 5 (1.2 h.)

 (

h
)

A
V

R

Iteration 1 (4.5 h.) Iteration 2 (2.8 h) Iteration 3 (3.0 h.) Iteration 4 (2.9 h.) Iteration 5 (3.4 h.)

 (

f)
 M

IC
R

O
B

LA
ZE

Default

3.2

3.7

4.2

4.7

5.2

5.7

6.2

6.7

7.2

7.7

22 24 26 28 30 32 34

Fa
ilu

re
 R

at
e

(F
IT

)

Frequency (MHz)

Default

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

5.1

5.3

22 24 26 28 30 32 34 36

Frequency (MHz)

Default

3.2

3.6

4.0

4.4

4.8

5.2

5.6

20 22 24 26 28 30 32 34 36 38

Frequency (MHz)

Default

2.8

3.2

3.6

4.0

4.4

4.8

5.2

5.6

20 22 24 26 28 30 32 34 36 38

Frequency (MHz)

Default

3.1

3.3

3.5

3.7

3.9

4.1

4.3

4.5

20 22 24 26 28 30 32 34 36 38

Frequency (MHz)

Default

2.5

2.9

3.3

3.7

4.1

4.5

4.9

5.3

5.7

35 45 55 65 75

Fa
ilu

re
 R

at
e

(F
IT

)

Frequency (MHz)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

35 45 55 65 75 85

Frequency (MHz)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

35 45 55 65 75 85

Frequency (MHz)

2.2

2.4

2.6

2.8

3.0

3.2

3.4

35 45 55 65 75 85

Frequency (MHz)

2.2

2.4

2.6

2.8

3.0

3.2

3.4

35 45 55 65 75 85
Frequency (MHz)

Default

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

110 120 130 140

Fa
ilu

re
 R

at
e

(F
IT

)

Frequency (MHz)

Default

4.7

4.9

5.1

5.3

5.5

5.7

5.9

6.1

6.3

6.5

6.7

110 120 130 140

Frequency (MHz)

Default

4.7

4.9

5.1

5.3

5.5

5.7

5.9

6.1

6.3

6.5

110 120 130 140

Frequency (MHz)

Default

4.6

4.8

5.0

5.2

5.4

5.6

5.8

95 105 115 125 135 145

Frequency (MHz)

Default

4.8

5.0

5.2

5.4

5.6

5.8

95 105 115 125 135 145

Frequency (MHz)

30507090

35 40 45 50 55 60 65 70 75 80

Selected Configurations Rejected Configurations Primary Pareto Set (F1) Default Configuration

Figure B.3: Convergence of NSGA-based DSE process (two optimization goals: failure
rate and frequency)

255

Appendix B. Case Study Details

B.3 Regression models for PPAD attributes

Table B.1: Regression Models for dependability attributes (statistically significant terms)

Silent Data Corruption (%) Failure Rate (FIT)

Terms MC8051 AVR Microblaze MC8051 AVR Microblaze

Intercept1 13.23 18,51 20.43 5.27 4.84 5.84
X01 1 5.50 -0.67 -0.35 -0.43 0.01

2 0.27 -0.44 -0.38 -0.76 0.08
3 1.11 1.58 0.16 -0.30 0.12
4 0.15 -0.13 0.22 -0.11 0.00
5 -0.01 -0.09 0.04 0.04 -0.07
6 -0.28 -2.02 -0.45 -0.85 -0.03
7 0.00 0.05 0.03 -0.13 0.02

X02 1 0.80 1.16 0.74 -0.13 -0.32 0.26
2 0.30 -0.16 0.93 0.45 0.31 0.32

X03 1 0.07 -0.06 -0.15 -0.10
2 0.57 0.29 -0.03 -0.07

X05 1 -0.75 -1.16 -0.71 -0.09
2 -0.89 -1.26 -0.79 -0.14
3 -0.68 -1.36 -0.78 -0.15

X07 1 0.63
2 0.30
3 0.93
4 0.20
5 1.00

X08 1 -0.68 0.13 0.16

X09 1 -0.55 0.20
2 0.10 0.24

X10 1 -0.11 0.14
2 0.19 0.06
3 -0.08 0.01
4 -0.45 -0.11
5 -0.31 -0.48

X11 1 -0.68 -0.24 -0.11 -0.11 -0.12
X13 1 -0.05

2 0.18
3 0.19
4 0.13
5 0.15

X14 1 -8.83 0.79
2 -8.22 0.78
3 -7.54 0.69
4 -0.30 -0.05

X15 1 -0.05
2 0.46
3 0.07
4 0.24

X17 1 0.01
2 -0.18
3 -0.03
4 -0.10
5 -0.08

X20 1 -0.52 0.10

Silent Data Corruption (%) Failure Rate (FIT)

Terms MC8051 AVR Microblaze MC8051 AVR Microblaze

X21 1 0.29 2.56 -0.08 -0.16

X22 1 -0.50
2 -0.70
3 -0.88
4 -1.00
5 -0.77
6 -1.76
7 -1.11

X23 1 0.19 -0.18 0.16
X24 1 0.54 0.15 0.02

2 0.36 -0.02 0.05
3 0.13 -0.13 -0.16
4 0.27 0.03 0.06
5 0.80 0.38 0.07
6 0.36 -0.10 -0.02
7 0.56 0.20 -0.07
8 0.58 0.12 -0.02
9 0.15 0.20 0.04
10 0.65 -0.07 -0.12
11 0.63 0.15 0.03
12 0.47 0.33 0.04
13 0.61 0.49 -0.02
14 0.48 0.41 -0.01
15 0.44 0.35 0.00
16 -0.64 -0.77 -0.38
17 0.68 0.42 -0.06

X26 1 -0.71 0.24 0.07
X27 1 0.19

2 0.18
3 0.25
4 0.06
5 0.15
6 -0.04
7 -0.02
8 0.11

X28 1 -0.16 0.14 0.20 0.11 0.06
2 -0.19 0.21 -0.18 -0.15 0.02
3 -0.13 0.04 -0.11 -0.09 -0.12
4 -0.31 0.07 0.09 0.02 -0.03
5 -0.12 -0.06 -0.14 0.10 -0.07
6 -0.62 0.07 -0.13 -0.21 0.00
7 -1.63 -1.78 -0.68 -0.75 -1.42

X29 1 0.29 0.40 0.18 0.07
Distribution Normal Normal Normal Normal Normal Normal

Determination
Coefficient R2

0.91 0.87 0.90 0.85 0.83 0.85

1 Intercept computed under all factors set to level 0

256

B.3 Regression models for PPAD attributes

Table B.2: Regression Models for frequency and power consumption (statistically signifi-
cant terms)

Frequency (MHz) Power consumption (mW)

Terms MC8051 AVR Microblaze MC8051 AVR Microblaze

Intercept1 26.91 72.23 133.38 0.0128 39.86 26.28
X01 1 -2.50 -1.35 0.0000 6.71 -1.60

2 -3.37 -2.18 -0.0004 11.65 1.28
3 -3.67 -2.63 -0.0010 11.35 3.53
4 4.25 2.58 0.0017 1.61 -1.21
5 0.80 -0.29 0.0008 3.20 0.42
6 0.07 0.51 -0.0003 3.93 0.01
7 3.48 0.37 0.0007 3.33 -0.02

X02 1 7.24 0.0017 -4.73 -3.49
2 7.94 0.0019 -2.64 -3.64

X04 1 1.27 3.97 -3.53
2 -0.03 2.71 -1.90
3 1.10 2.17 -1.05
4 0.47 0.65 0.69

X05 1 -0.0007 8.46
2 -0.0012 9.25
3 -0.0011 8.68

X06 1 1.10
X07 1 3.01

2 1.51
3 -0.10
4 1.44
5 -0.43

X09 1 -0.86 -1.98 2.66
2 0.75 0.30 -0.62

X10 1 -0.0008 0.45 -6.27
2 -0.0005 -1.63 -5.85
3 0.0005 2.25 -1.00
4 -0.0013 -2.10 7.63
5 -0.0013 -2.33 5.56

X11 1 0.93 0.0008
X12 1 -0.58
X14 1 -0.0022

2 -0.0020
3 -0.0024
4 0.0006

X16 1 0.05
2 -0.80
3 0.50
4 0.01

Frequency (MHz) Power consumption (mW)

Terms MC8051 AVR Microblaze MC8051 AVR Microblaze

X17 1 0.46
2 -1.95
3 -0.25
4 -1.02
5 -2.66

X20 1 -1.18
X21 1 1.12 6.89
X23 1 -0.47 -0.0015 1.46
X24 1 0.32 0.73

2 -0.27 -0.71
3 0.04 0.74
4 -0.22 -2.46
5 0.20 -1.12
6 -1.73 0.17

7 1.25 -0.17
8 0.49 -0.11
9 0.31 -0.14

10 0.40 0.48
11 -0.29 0.85
12 0.61 2.55
13 -0.86 2.15
14 0.62 1.46
15 -0.04 0.05
16 -1.58 -3.69
17 -0.48 0.75

X25 1 1.76 -0.0010
X28 1 -0.41 0.45 0.19 -0.0005 -0.31 0.14

2 -1.64 -2.90 -3.71 -0.0011 1.99 -0.36
3 -0.98 -2.31 -1.03 0.0002 1.21 -1.65
4 -1.15 -1.91 -0.35 -0.0012 0.13 -0.52
5 -1.71 -2.39 -0.78 0.0005 1.83 0.10
6 -2.05 -5.13 -2.57 0.0000 2.42 -0.71
7 -10.43 -25.57 -87.51 -0.0042 23.43 105.49

X29 1 4.56 5.90 3.80 0.0022 -8.37
Distribution Normal Normal Normal Normal Gamma Gamma

Mean Func. 𝑉 = 𝑋𝛽 𝑉 = 𝑋𝛽 𝑉 = 𝑋𝛽 𝑉 = 𝑋𝛽 𝑉 =
1

𝑋𝛽
𝑉 =

1

𝑋𝛽

Determination
Coefficient R2

0.91 0.91 0.78 0.60 0.78 0.78

 1 Intercept computed under all factors set to level 0

257

Appendix B. Case Study Details

Table B.3: Regression Models for area attributes (statistically significant terms)

MC8051 AVR Microblaze

Utilization FF Utilization LUT Utilization FF Utilization LUT Utilization FF Utilization LUT
Intercept 6.49
X01=3 -0.11
X01=5 0.12
X02=1 0.27
X02=2 0.26
X05=1 0.12
X14=1 0.37
X14=2 0.44
X14=3 0.24
X17=1 -0.05
X17=4 -0.06
X01=1 : X05=1 -0.21
X01=5 : X05=1 -0.13
X01=1 : X05=2 -0.17
X01=3 : X05=2 0.13
X01=2 : X05=3 0.09
X01=3 : X05=3 0.11
X01=1 : X14=1 -0.20
X01=5 : X14=1 -0.15
X01=1 : X14=2 -0.16
X01=2 : X14=2 -0.17
X01=1 : X14=4 0.14
X02=1 : X05=1 -0.34
X02=2 : X05=1 -0.34
X02=1 : X05=2 -0.27
X02=2 : X05=2 -0.27
X02=1 : X05=3 -0.27
X02=2 : X05=3 -0.27
X05=1 : X14=1 -0.14
X05=2 : X14=1 -0.13
X05=3 : X14=1 -0.16
X05=1 : X14=2 -0.18
X05=2 : X14=2 -0.14
X05=3 : X14=2 -0.26
X05=3 : X14=3 -0.10
X05=1 : X14=4 -0.10
X05=3 : X14=4 -0.11

Intercept 8.00
X01=2 -0.15
X01=3 -0.09
X05=1 -0.22
X05=2 -0.22
X05=3 -0.23
X14=1 1.40
X14=2 1.41
X14=3 1.24
X01=1 : X14=1 -1.62
X01=2 : X14=1 0.14
X01=5 : X14=1 -0.12
X01=1 : X14=2 -1.61
X01=2 : X14=2 0.11
X01=1 : X14=3 -1.41
X01=2 : X14=3 0.10
X01=5 : X14=3 -0.12
X05=1 : X14=1 0.17
X05=2 : X14=1 0.15
X05=3 : X14=1 0.16
X05=1 : X14=2 0.17
X05=2 : X14=2 0.16
X05=3 : X14=2 0.17
X05=1 : X14=3 0.16
X05=2 : X14=3 0.15
X05=3 : X14=3 0.16

 Intercept 6.14
X02=1 0.30
X02=2 0.29
X06=1 0.03
X08=1 0.02
X01=2 : X02=1 -0.06
X01=2 : X02=2 -0.05
X01=3 : X02=2 -0.07
X02=1 : X05=1 -0.30
X02=2 : X05=1 -0.27
X02=1 : X05=2 -0.30
X02=2 : X05=2 -0.29
X02=1 : X05=3 -0.29
X02=2 : X05=3 -0.28

 Intercept 7.39
X01=2 -0.10
X01=6 -0.12
X02=1 0.15
X02=2 0.19
X05=1 -0.14
X05=2 -0.11
X05=3 -0.12
X10=4 0.12
X10=5 0.06
X11=1 0.08
X21=1 -0.07
X23=1 -0.05
X01=5 : X02=1 0.07
X01=7 : X02=1 0.07
X01=2 : X02=2 -0.08
X01=3 : X02=2 -0.08
X01=6 : X10=2 0.09
X01=2 : X10=4 -0.14
X01=3 : X10=4 -0.12
X01=4 : X10=5 0.09
X01=6 : X10=5 0.17
X01=1 : X11=1 -0.12
X02=1 : X05=1 -0.09
X02=2 : X05=1 -0.08
X02=1 : X05=2 -0.12
X02=2 : X05=2 -0.11
X02=1 : X05=3 -0.10
X02=2 : X05=3 -0.10
X05=1 : X11=1 0.08
X11=1 : X23=1 -0.04
X21=1 : X23=1 0.06

 Intercept 7.62
X02=1 -0.15
X02=2 -0.15
X05=1 -0.03
X05=2 -0.05
X05=3 -0.03
X07=1 0.05
X07=4 0.05
X08=1 0.23
X11=1 -0.02
X13=2 0.14
X13=3 0.13
X13=4 0.17
X13=5 0.14
X20=1 0.02
X21=1 -0.45
X23=1 -0.02

 Intercept 7.24
X08=1 0.09
X10=1 -0.03
X10=5 0.05
X11=1 0.06
X12=1 -0.03
X21=1 -0.19
X23=1 0.04
X29=1 0.02

Determination
Coefficient R2

0.96 0.99 0.95 0.97 0.94 0.80

Mean function 𝑉 = 𝑒𝑋𝛽 𝑉 = 𝑒𝑋𝛽 𝑉 = 𝑒𝑋𝛽 𝑉 = 𝑒𝑋𝛽 𝑉 = 𝑒𝑋𝛽 𝑉 = 𝑒𝑋𝛽
Distribution Poisson Poisson Poisson Poisson Poisson Poisson

1 Intercept computed under all factors set to level 0

258

B.4 Comparison of experimentally obtained PPAD optimization results with the predicted ones

B.4 Comparison of experimentally obtained PPAD
optimization results with the predicted ones

Table B.4: Predicted and actual PPAD results obtained for the best configurations

Label

Predicted PPAD results2 Implemented (Actual) PPAD results2

Optimization
Goal

λ
(FIT)

SDC
(%)

Freq.
(MHz)

Power
(W)

Util.
FF

Util.
LUT

Score
Mission
Critical

λ
(FIT)

SDC
(%)

Freq.
(MHz)

Power
(W)

Util.
FF

Util.
LUT

Score
Mission
Critical

M
C

8
0

5
1

A1 Failure Rate λ 2.50 12.33 18.10 0.010 640 2172 0.83 – – – – – – –
A2 Failure Rate λ1 2.55 12.63 18.10 0.010 654 2441 0.83 2.80 11.08 18.02 0.01 606 2420 0.76
A3 SDC 4.21 0.58 25.04 0.010 764 11259 0.66 5.10 3.75 26.14 0.013 824 11317 0.53
A4 Frequency 4.88 12.66 40.41 0.018 635 2417 0.62 4.64 12.81 36.04 0.021 612 2552 0.60
A5 Power 4.19 5.68 12.95 0.00009 765 9107 0.64 3.81 11.55 15.87 0.008 682 2301 0.61
A6 Util. FF 3.42 17.62 23.32 0.012 517 2509 0.74 4.22 12.35 23.81 0.013 607 2335 0.58
A7 Util. LUT 3.87 17.92 23.32 0.014 680 2027 0.67 4.35 12.50 23.81 0.014 606 1906 0.57
A8 Score Mission Critical 2.60 12.53 17.17 0.009 604 2172 0.90 – – – – – – –
A9 Score Mission Critical1 2.65 12.84 17.17 0.009 617 2441 0.89 2.89 11.65 15.87 0.008 606 2114 0.76

Vivado Default 4.22 12.41 25.83 0.01 662 2366 0.65 4.23 12.69 26.14 0.015 606 2187 0.64

A
V

R

B1 Failure Rate λ 1.80 15.42 49.96 0.014 467 1322 0.83 2.16 15.20 45.46 0.012 460 1474 0.83
B2 SDC 2.35 12.19 45.15 0.013 465 1563 0.79 2.69 14.04 45.46 0.012 471 1742 0.71
B3 Frequency 4.47 18.41 86.90 0.029 483 1464 0.60 4.25 17.98 76.93 0.023 445 1459 0.55
B4 Power 2.46 16.52 43.63 0.012 465 1214 0.78 2.78 16.14 40.00 0.010 461 1193 0.70
B5 Util. FF 3.99 20.38 70.51 0.017 439 1358 0.61 4.02 19.98 66.67 0.018 453 1273 0.56
B6 Util. LUT 3.28 17.85 70.95 0.017 465 1160 0.69 3.61 17.44 71.43 0.019 461 1193 0.60
B7 Score Mission Critical 1.94 15.42 47.78 0.014 467 1322 0.85 3.42 16.57 76.93 0.021 467 1243 0.62

Vivado Default 4.39 18.52 73.89 0.020 461 1464 0.58 4.31 17.78 71.43 0.022 453 1484 0.53

M
IC

R
O

B
L

A
Z

E

C1 Failure Rate λ 3.91 20.28 45.87 0.007 1209 1221 0.88 – – – – – – –
C2 Failure Rate λ1 4.78 21.86 132.36 0.031 1209 1221 0.75 4.59 22.10 100.00 0.016 1295 1246 0.86
C3 SDC 4.30 17.46 45.87 0.007 2326 1761 0.84 – – – – – – –
C4 SDC1 5.42 18.56 132.61 0.030 2326 1761 0.71 5.39 18.90 125.00 0.023 2150 1660 0.77
C5 Frequency 5.87 24.54 147.08 0.034 1065 1178 0.69 5.93 24.77 142.86 0.034 981 1091 0.71
C6 Power 4.44 21.33 45.87 0.006 1265 1177 0.86 – – – – – – –
C7 Power1 5.77 23.16 133.58 0.020 1265 1177 0.72 5.40 22.70 125.00 0.027 1295 1239 0.75
C8 Util. FF 5.74 23.85 140.54 0.032 991 1275 0.70 5.68 23.46 142.86 0.031 981 1276 0.74
C9 Util. LUT 5.68 24.55 140.54 0.043 1065 1093 0.70 5.64 24.10 142.86 0.043 985 1088 0.72

C10 Score Mission Critical 4.04 20.23 45.87 0.007 1268 1191 0.91 – – – – – – –
C11 Score Mission Critical1 4.98 21.80 132.36 0.024 1268 1191 0.79 4.63 22.28 111.11 0.012 1295 1257 0.92

Vivado Default 5.67 24.28 140.54 0.030 1065 1155 0.7 5.77 24.64 142.86 0.033 981 1089 0.68

1 Alternative configurations (sub-optimal) – if the global optimum is invalid (non-implementable)
2 Highlighted cells denote optimization goal

259

Bibliography

[1] Emile Aarts, Jan Korst, and Wil Michiels. “Simulated Annealing”. In:
Search Methodologies: Introductory Tutorials in Optimization and Deci-
sion Support Techniques. Ed. by Edmund K. Burke and Graham Kendall.
Boston, MA: Springer US, 2005, pp. 187–210 (cit. on p. 136).

[2] M. Alderighi et al. “Using FLIPPER to predict irradiation results for VIR-
TEX 2 devices”. In: 2008 European Conference on Radiation and Its Effects
on Components and Systems. 2008, pp. 300–305. doi: 10.1109/RADECS.
2008.5782731 (cit. on p. 37).

[3] Altera Corp. Quartus Prime Pro Edition Handbook Volume 2: Design
Implementation and Optimization. 2015 (cit. on p. 29).

[4] D. de Andrés et al. An Aspect-Oriented Approach to Hardware Fault Toler-
ance for Embedded Systems. IGI Global, 2014, pp. 123–149 (cit. on p. 30).

[5] David de Andrés et al. “Fault emulation for dependability evaluation of
VLSI systems”. In: IEEE transactions on very large scale integration (VLSI)
systems 16.4 (2008), pp. 422–431 (cit. on pp. 50, 62).

[6] David de Andrés Martínez. “Speeding-up model-based fault injection of
deep-submicron CMOS fault models through dynamic and partially recon-
figurable FPGAS”. PhD thesis. 2008 (cit. on p. 48).

261

https://doi.org/10.1109/RADECS.2008.5782731
https://doi.org/10.1109/RADECS.2008.5782731

Bibliography

[7] L. Antoni, R. Leveugle, and B. Feher. “Using run-time reconfiguration for
fault injection in hardware prototypes”. In: Proceedings IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems. 2000, pp. 405–
413. doi: 10.1109/DFTVS.2000.887181 (cit. on p. 48).

[8] Jean Arlat and Yves Crouzet. “Faultload representativeness for depend-
ability benchmarking”. In: IEEE International Symposium on Dependable
Systems and Networks (DSN) - Workshop on Dependability Benchmarking.
2002, pp. 29–30 (cit. on p. 37).

[9] Jean Arlat, J-C Fabre, and Manuel Rodríguez. “Dependability of COTS
microkernel-based systems”. In: IEEE Transactions on computers 51.2
(2002), pp. 138–163 (cit. on p. 36).

[10] Jean Arlat et al. “Fault injection for dependability validation: A methodol-
ogy and some applications”. In: IEEE Transactions on software engineer-
ing 16.2 (1990), pp. 166–182 (cit. on pp. 35, 36).

[11] Arm Keil. CA51 Compiler Kit (cit. on p. 180).

[12] Sameh Attia and Vaughn Betz. “Feel Free to Interrupt: Safe Task Stopping
to Enable FPGA Checkpointing and Context Switching”. In: ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS) 13.1 (2020),
pp. 1–27 (cit. on p. 131).

[13] Algirdas Avizienis et al. “Basic concepts and taxonomy of dependable and
secure computing”. In: IEEE transactions on dependable and secure com-
puting 1.1 (2004), pp. 11–33 (cit. on pp. 1, 2, 4, 21–23).

[14] Dimiter Avresky et al. “Fault injection for formal testing of fault tolerance”.
In: IEEE Transactions on Reliability 45.3 (1996), pp. 443–455 (cit. on
p. 34).

[15] Juan Carlos Baraza et al. “A prototype of a VHDL-based fault injec-
tion tool: description and application”. In: Journal of Systems Architecture
47.10 (2002), pp. 847–867 (cit. on pp. 41, 47, 48).

[16] Juan Carlos Baraza et al. “Enhancement of fault injection techniques based
on the modification of VHDL code”. In: IEEE Transactions on Very Large

262

https://doi.org/10.1109/DFTVS.2000.887181

Bibliography

Scale Integration (VLSI) Systems. Vol. 16. 6. 2008, pp. 693–706 (cit. on
p. 40).

[17] Giovanni Beltrame, Luca Fossati, and Donatella Sciuto. “Decision-theoretic
design space exploration of multiprocessor platforms”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 29.7
(2010), pp. 1083–1095 (cit. on p. 136).

[18] Luis Alberto Contreras Benites and Fernanda Lima Kastensmidt. “Fault
injection methodology for single event effects on clock-gated ASICs”. In:
IEEE Latin American Test Symposium. IEEE. 2017, pp. 1–4 (cit. on p. 40).

[19] A Benso and P Prinetto. Fault Injection Techniques and Tools for VLSI
reliability evaluation. Frontiers In Electronic Testing. Kluwer Academic
Publishers, 2003 (cit. on pp. 41, 69).

[20] J. Bergeron et al. Verification Methodology Manual for SystemVerilog.
Springer US, 2006. isbn: 9780387255569 (cit. on p. 12).

[21] Cinzia Bernardeschi et al. “Accurate simulation of SEUs in the config-
uration memory of SRAM-based FPGAs”. In: 2012 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT). IEEE. 2012, pp. 115–120 (cit. on p. 39).

[22] Cinzia Bernardeschi et al. “ASSESS: A simulator of soft errors in the con-
figuration memory of SRAM-based FPGAs”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 33.9 (2014),
pp. 1342–1355 (cit. on p. 39).

[23] Paolo Bernardi et al. “A hybrid approach for detection and correction of
transient faults in SoCs”. In: IEEE Transactions on Dependable and Secure
Computing 7.4 (2010), pp. 439–445 (cit. on p. 38).

[24] Luis Berrojo et al. “New techniques for speeding-up fault-injection cam-
paigns”. In: Proceedings 2002 Design, Automation and Test in Europe Con-
ference and Exhibition. IEEE. 2002, pp. 847–852 (cit. on pp. 59, 63, 131,
202).

[25] Cristiana Bolchini, Antonio Miele, and Marco D Santambrogio. “TMR
and Partial Dynamic Reconfiguration to mitigate SEU faults in FPGAs”.

263

Bibliography

In: 22nd IEEE International Symposium on Defect and Fault-Tolerance in
VLSI Systems (DFT 2007). IEEE. 2007, pp. 87–95 (cit. on p. 217).

[26] Thomas Bollaert. “Catapult Synthesis A Practical Introduction to Inter-
active C Synthesis”. In: High-Level Synthesis: from Algorithm to Digital
Circuit. Springer Netherlands, 2008, pp. 29–52 (cit. on p. 12).

[27] P. Bose. “Ensuring dependable processor performance: an experience re-
port on pre-silicon performance validation”. In: International Conference
on Dependable Systems and Networks. 2001, pp. 481–486 (cit. on p. 30).

[28] M. Boulé and Z. Zilic. Generating Hardware Assertion Checkers: For Hard-
ware Verification, Emulation, Post-Fabrication Debugging and On-Line
Monitoring. SpringerLink: Springer e-Books. Springer Netherlands, 2008
(cit. on p. 12).

[29] George E. P. Box, J. Stuart Hunter, and William G. Hunter. Statistics for
experimenters: design, innovation, and discovery. Wiley series in probabil-
ity and statistics. Hoboken (N.J.): Wiley-Interscience, 2005 (cit. on p. 140).

[30] Ludovica Bozzoli and Luca Sterpone. “COMET: a configuration memory
tool to analyze, visualize and manipulate FPGAs bitstream”. In: ARCS
Workshop 2018; 31th International Conference on Architecture of Com-
puting Systems. VDE. 2018, pp. 1–4 (cit. on p. 56).

[31] Ludovica Bozzoli et al. “PyXEL: an integrated environment for the analysis
of fault effects in SRAM-based FPGA routing”. In: 2018 International
Symposium on Rapid System Prototyping (RSP). IEEE. 2018, pp. 70–75
(cit. on pp. 40, 56).

[32] Brigham Young University. BYU EDIF Tools Home Page. 2015 (cit. on
p. 4).

[33] A. A. M. Bsoul, N. Manjikian, and L. Shang. “Reliability- and process
variation-aware placement for FPGAs”. In: Design, Automation Test in
Europe Conference Exhibition. 2010, pp. 1809–1814 (cit. on p. 30).

[34] Luis Andres Cardona and Carles Ferrer. “AC_ICAP: a flexible high speed
ICAP controller”. In: International Journal of Reconfigurable Computing
2015 (2015), p. 15 (cit. on pp. 52, 56).

264

Bibliography

[35] João Carreira, Henrique Madeira, and João Gabriel Silva. “Xception: A
technique for the experimental evaluation of dependability in modern com-
puters”. In: IEEE Transactions on Software Engineering 24.2 (1998), pp. 125–
136 (cit. on p. 36).

[36] J. Cavanagh. Verilog HDL: Digital Design and Modeling. CRC Press, 2017
(cit. on p. 15).

[37] E. Cerny et al. SVA: The Power of Assertions in SystemVerilog. Springer
International Publishing, 2014 (cit. on p. 12).

[38] Athanasios Chatzidimitriou et al. “Demystifying soft error assessment strate-
gies on ARM CPUs: Microarchitectural fault injection vs. neutron beam
experiments”. In: 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE. 2019, pp. 26–38 (cit.
on p. 36).

[39] Pierluigi Civera et al. “An FPGA-based approach for speeding-up fault
injection campaigns on safety-critical circuits”. In: Journal of Electronic
Testing 18.3 (2002), pp. 261–271 (cit. on p. 49).

[40] Cobham Gaisler AB. LEON3FT fault tolerant processor (cit. on p. 4).

[41] B. Cohen. VHDL Coding Styles and Methodologies. Springer US, 2012.
isbn: 9781461523130 (cit. on p. 46).

[42] Jason Cong et al. “High-level synthesis for FPGAs: From prototyping to
deployment”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 30.4 (2011), pp. 473–491 (cit. on p. 12).

[43] Cristian Constantinescu. “Impact of intermittent faults on nanocomputing
devices”. In: DSN 2007 Workshop on Dependable and Secure Nanocomput-
ing. 2007 (cit. on p. 38).

[44] Sunil R Das et al. “An improved fault simulation approach based on verilog
with application to ISCAS benchmark circuits”. In: IEEE Instrumentation
and Measurement Technology Conference. 2006, pp. 1902–1907 (cit. on
p. 41).

265

Bibliography

[45] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algorithm:
NSGA-II”. In: IEEE transactions on evolutionary computation 6.2 (2002),
pp. 182–197 (cit. on pp. 151, 152).

[46] Stefano Di Carlo et al. “A fault injection methodology and infrastructure
for fast single event upsets emulation on Xilinx SRAM-based FPGAs”. In:
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2014 IEEE International Symposium on. IEEE. 2014, pp. 159–164 (cit. on
p. 62).

[47] J.B. Dugan. “Reliability Analysis of Redundant and Fault-Tolerant Prod-
ucts”. In: Product Reliability, Maintainability, and Supportability Hand-
book. Ed. by M. Pecht. CRC Press, 2009, pp. 239–299 (cit. on p. 22).

[48] N. Einspruch. Application Specific Integrated Circuit (ASIC) Technology.
VLSI Electronics. Elsevier Science, 2012 (cit. on p. 15).

[49] Henrik Esbensen and Ernest S. Kuh. “Design space exploration using the
genetic algorithm”. In: IEEE International Symposium on Circuits and
Systems. 1996, pp. 500–503 (cit. on pp. 136, 148).

[50] K.T. Fang, R. Li, and A. Sudjianto. Design and Modeling for Computer
Experiments. Chapman & Hall/CRC Computer Science & Data Analysis.
CRC Press, 2005. isbn: 9781420034899 (cit. on p. 138).

[51] Z. Feng, N. Jing, and L. He. “IPF: In-Place X-Filling Algorithm for the
Reliability of Modern FPGAs”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22.10 (2014), pp. 2226–2229 (cit. on p. 30).

[52] Zhe Feng. “Logic Synthesis for FPGA Reliability”. PhD thesis. University
of California, Los Angeles, 2013 (cit. on pp. 12, 30).

[53] V Fernandez et al. “Fault Modeling and Injection in VITAL Descriptions”.
In: Third Annual Atlantic Test Workshop. 1994, o1–o4 (cit. on p. 46).

[54] Christian Fibich et al. “A netlist-level fault-injection tool for FPGAs”. In:
e & i Elektrotechnik und Informationstechnik 132.6 (2015), pp. 274–281.
doi: 10.1007/s00502-015-0315-4 (cit. on p. 57).

266

https://doi.org/10.1007/s00502-015-0315-4

Bibliography

[55] Christian Fibich et al. “FIJI: Fault InJection Instrumenter”. In: EURASIP
Journal on Embedded Systems 2019.1 (2019), p. 2. doi: 10.1186/s13639-
019-0088-7 (cit. on p. 57).

[56] Shane Fleming and David Thomas. “Injecting FPGA Configuration Faults
in Parallel”. In: International Conference on Field-Programmable Technol-
ogy (FPT). IEEE, 2018, pp. 201–208 (cit. on p. 64).

[57] Roberto Fontana and Sabrina Sampò. “Minimum-Size Mixed-Level Or-
thogonal Fractional Factorial Designs Generation: A SAS-Based Algorithm”.
In: Journal of Statistical Software 53.10 (2013), pp. 1–58 (cit. on pp. 139,
144).

[58] David A. Freedman. Statistical Models: Theory and Practice. Cambridge
University Press, 2009 (cit. on p. 140).

[59] Jesús Friginal et al. “Multi-criteria analysis of measures in benchmarking:
Dependability benchmarking as a case study”. In: Journal of Systems and
Software 111 (2016), pp. 105–118 (cit. on p. 27).

[60] S. Gazut et al. “Towards the Optimal Design of Numerical Experiments”.
In: IEEE Transactions on Neural Networks 19.5 (2008), pp. 874–882. issn:
1045-9227. doi: 10.1109/TNN.2007.915111 (cit. on p. 145).

[61] Davy Genbrugge and Lieven Eeckhout. “Chip Multiprocessor Design Space
Exploration through Statistical Simulation”. In: IEEE Transactions on
Computers 58.12 (2009), pp. 1668–1681 (cit. on p. 30).

[62] Daniel Gil et al. “Study, comparison and application of different VHDL-
based fault injection techniques for the experimental validation of a fault-
tolerant system.” In: Journal of Systems Architecture 34.1 (2003), pp. 41–
51 (cit. on p. 40).

[63] Pedro Gil et al. Fault Representativeness. Tech. rep. Dependability Bench-
marking project, 2002 (cit. on p. 37).

[64] Robért Glein et al. “Reliability of space-grade vs. COTS SRAM-based
FPGA in N-modular redundancy”. In: 2015 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS). IEEE. 2015, pp. 1–8 (cit. on
pp. 23, 201, 223).

267

https://doi.org/10.1186/s13639-019-0088-7
https://doi.org/10.1186/s13639-019-0088-7
https://doi.org/10.1109/TNN.2007.915111

Bibliography

[65] Qi Guo et al. “Microarchitectural design space exploration made fast”. In:
Microprocessors and Microsystems 37 (2013), pp. 41–51 (cit. on p. 29).

[66] Matthew R. Guthaus et al. “MiBench: A free, commercially representative
embedded benchmark suite”. In: IEEE 4th Annual Workshop on Workload
Characterization. 2001, pp. 3–14 (cit. on p. 180).

[67] Markus Happe, Andreas Traber, and Ariane Keller. “Preemptive hard-
ware multitasking in ReconOS”. In: International Symposium on Applied
Reconfigurable Computing. Springer. 2015, pp. 79–90 (cit. on pp. 106, 130,
243).

[68] Jonathan Heiner et al. “FPGA partial reconfiguration via configuration
scrubbing”. In: 2009 International Conference on Field Programmable Logic
and Applications. IEEE. 2009, pp. 99–104 (cit. on p. 4).

[69] R Hentschke et al. “Analyzing area and performance penalty of protect-
ing different digital modules with Hamming code and triple modular re-
dundancy”. In: Proceedings. 15th Symposium on Integrated Circuits and
Systems Design. IEEE. 2002, pp. 95–100 (cit. on p. 3).

[70] David M Hiemstra and Valeri Kirischian. “Single event upset character-
ization of the Virtex-6 field programmable gate array using proton irra-
diation”. In: 2012 IEEE Radiation Effects Data Workshop. IEEE. 2012,
pp. 1–4 (cit. on p. 3).

[71] Martin Holzer, Bastian Knerr, and Markus Rupp. “Design space explo-
ration with evolutionary multi-objective optimisation”. In: 2007 Interna-
tional Symposium on Industrial Embedded Systems. IEEE. 2007, pp. 126–
133 (cit. on pp. 136, 152).

[72] Ching Hu and Suhail Zain. “NSEU mitigation in avionics applications”. In:
Xilinx Application Note XAPP1073 v1. 0 (2010), pp. 1–12 (cit. on pp. 24,
180, 182).

[73] K. Huang, Y. Hu, and X. Li. “Reliability-Oriented Placement and Rout-
ing Algorithm for SRAM-Based FPGAs”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 22.2 (2014), pp. 256–269 (cit. on
p. 30).

268

Bibliography

[74] Yoshihiro Ichinomiya et al. “Improving the robustness of a softcore pro-
cessor against SEUs by using TMR and partial reconfiguration”. In: 2010
18th IEEE Annual International Symposium on Field-Programmable Cus-
tom Computing Machines. IEEE. 2010, pp. 47–54 (cit. on pp. 217, 223).

[75] IEEE Standard for Standard Delay Format (SDF) for the Electronic De-
sign Process. Standard. Institute of Electrical and Electronic Engineers,
2001 (cit. on p. 16).

[76] IEEE Standard for VITAL ASIC (Application Specific Integrated Circuit)
Modeling Specification. Standard. Institute of Electrical and Electronic En-
gineers, 2000 (cit. on p. 17).

[77] Naveed Imran, R Ashraf, and Ronald F DeMara. “On-demand fault scrub-
bing using adaptive modular redundancy”. In: Proceedings of the Inter-
national Conference on Engineering of Reconfigurable Systems and Algo-
rithms. 2013, pp. 22–25 (cit. on p. 4).

[78] Intel. Fault Injection Intel FPGA IP Core, User Guide. 2019 (cit. on p. 57).

[79] Alessio Ishizaka and Philippe Nemery. Multi-criteria Decision Analysis:
Methods and Software. Wiley, 2013, p. 310 (cit. on p. 27).

[80] Eric Jenn et al. “Fault injection into VHDL models: the MEFISTO tool”.
In: International Symposium on Fault-Tolerant Computing. 1994, pp. 66–
75 (cit. on pp. 41, 47, 48, 64).

[81] Minyoung Jeong et al. “Extract LUT Logics from a Downloaded Bitstream
Data in FPGA”. In: 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE. 2018, pp. 1–5 (cit. on p. 56).

[82] P. Jones and P.H.D. Peter Jones. Statistical Sampling and Risk Analysis
in Auditing. Taylor & Francis, 2017. isbn: 9781351898010 (cit. on p. 59).

[83] Joseph M. Juran and Joseph A. De Feo. Juran’s Quality Handbook. McGraw-
Hill Education, 2010 (cit. on p. 139).

[84] Hubert Kaeslin. Top-Down Digital VLSI Design: From Architectures to
Gate-Level Circuits and FPGAs. 1st. Morgan Kaufmann, 2014 (cit. on
p. 10).

269

Bibliography

[85] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. “FER-
RARI: A flexible software-based fault and error injection system”. In: IEEE
Transactions on computers 44.2 (1995), pp. 248–260 (cit. on p. 36).

[86] Karama Kanoun and Lisa Spainhower. Dependability benchmarking for
computer systems. Vol. 72. Wiley Online Library, 2008 (cit. on p. 26).

[87] Johan Karlsson et al. “Application of three physical fault injection techni-
ques to the experimental assessment of the MARS architecture”. In: De-
pendable Computing and Fault Tolerant Systems 10 (1998), pp. 267–288
(cit. on p. 36).

[88] Johan Karlsson et al. “Using heavy-ion radiation to validate fault-handling
mechanisms”. In: IEEE micro 14.1 (1994), pp. 8–23 (cit. on p. 36).

[89] Steve Kilts. Advanced FPGA Design: Architecture, Implementation, and
Optimization. Wiley-IEEE Press, 2007 (cit. on p. 28).

[90] Steve Kilts. “Synthesis Optimization”. In: Advanced FPGA Design. John
Wiley & Sons, 2007. Chap. 14, pp. 205–227 (cit. on p. 42).

[91] Kyechong Kim and Agis A Iliadis. “Operational upsets and critical new bit
errors in CMOS digital inverters due to high power pulsed electromagnetic
interference”. In: Solid-state electronics 54.1 (2010), pp. 18–21 (cit. on p. 3).

[92] Dirk Koch, Christian Haubelt, and Jürgen Teich. “Efficient hardware check-
pointing: concepts, overhead analysis, and implementation”. In: Proceed-
ings of the 2007 ACM/SIGDA 15th international symposium on Field pro-
grammable gate arrays. ACM. 2007, pp. 188–196 (cit. on pp. 64, 130).

[93] Michael A Kochte et al. “Efficient fault simulation on many-core proces-
sors”. In: Design Automation Conference. 2010, pp. 380–385 (cit. on p. 64).

[94] Johannes Maximilian Ku et al. “Testing reliability techniques for SoCs with
fault tolerant CGRA by using live FPGA fault injection”. In: 2013 Interna-
tional Conference on Field-Programmable Technology (FPT). IEEE. 2013,
pp. 462–465 (cit. on pp. 51, 57).

270

Bibliography

[95] Maciej Kurek et al. “Automating Optimization of Reconfigurable Designs”.
In: IEEE 22nd International Symposium on Field-Programmable Custom
Computing Machines. 2014, pp. 210–213 (cit. on p. 30).

[96] Chris Lavin and Alireza Kaviani. “Rapidwright: Enabling custom crafted
implementations for fpgas”. In: 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE. 2018, pp. 133–140 (cit. on p. 51).

[97] Robert Le. Soft Error Mitigation Using Prioritized Essential Bits. XAPP538
(v1.0). 2012 (cit. on pp. 24, 53).

[98] R Leveugle. “Towards modeling for dependability of complex integrated
circuits”. In: 5th IEEE International On-Line Testing workshop (Rhodes,
Greece). 1999, pp. 194–198 (cit. on p. 48).

[99] Régis Leveugle and K Hadjiat. “Multi-level fault injections in VHDL de-
scriptions: alternative approaches and experiments”. In: Journal of Elec-
tronic Testing 19.5 (2003), pp. 559–575 (cit. on pp. 63, 132).

[100] Régis Leveugle et al. “Statistical fault injection: Quantified error and con-
fidence”. In: Design, Automation and Test in Europe. 2009, pp. 502–506
(cit. on pp. 61, 110, 132, 201).

[101] Jens Lienig and Hans Bruemmer. “Reliability Analysis”. In: Fundamen-
tals of Electronic Systems Design. Springer International Publishing, 2017,
pp. 45–73. isbn: 978-3-319-55840-0 (cit. on pp. 21, 22).

[102] Jacques-Louis Lions et al. Ariane 5 flight 501 failure report by the inquiry
board. 1996 (cit. on p. 2).

[103] Tomislav Lovric. “Dependability Evaluation Methods”. In: Fault Injec-
tion Techniques and Tools for Embedded Systems Reliability Evaluation.
Springer, 2003, pp. 41–48 (cit. on p. 35).

[104] Henrique Madeira et al. “RIFLE: A general purpose pin-level fault in-
jector”. In: European Dependable Computing Conference. Springer. 1994,
pp. 197–216 (cit. on p. 36).

271

Bibliography

[105] Azamat Mametjanov et al. “Autotuning FPGA design parameters for per-
formance and power”. In: IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines. 2015, pp. 84–91 (cit.
on p. 30).

[106] Wassim Mansour and Raoul Velazco. “An automated SEU fault-injection
method and tool for HDL-based designs”. In: IEEE Transactions on Nu-
clear Science 60.4 (2013), pp. 2728–2733 (cit. on p. 40).

[107] RJ Martínez et al. “Experimental validation of high-speed fault-tolerant
systems using physical fault injection”. In: Dependable Computing for Crit-
ical Applications 7. IEEE. 1999, pp. 249–265 (cit. on p. 36).

[108] Peter Marwedel. Embedded system design. Vol. 1. Springer, 2006 (cit. on
p. 1).

[109] R.W. Mehler. “Library modeling”. In: Verilog HDL: Digital Design and
Modeling. Elsevier Science, 2014, pp. 337–360 (cit. on p. 15).

[110] Dimitrios Meidanis, Konstantinos Georgopoulos, and Ioannis Papaefstathiou.
“FPGA Power Consumption Measurements and Estimations Under Differ-
ent Implementation Parameters”. In: International Conference on Field-
Programmable Technology. 2011, pp. 1–6 (cit. on p. 30).

[111] Mentor Graphics. Precision RTL Plus. 2016 (cit. on p. 4).

[112] Mentor Graphics. Questa SIM Command Reference Manual 10.7b, Docu-
ment Revision 3.5. 2016 (cit. on pp. 41, 69).

[113] D. C. Montgomery. Design and Analysis of Experiments. 9th. New York:
John Wiley & Sons, 2017 (cit. on pp. 139, 140).

[114] Douglas C. Montgomery. Design and Analysis of Experiments. USA: John
Wiley & Sons, Inc., 2006. isbn: 0470088109 (cit. on p. 137).

[115] David P Montminy et al. “Using relocatable bitstreams for fault tolerance”.
In: Second NASA/ESA Conference on Adaptive Hardware and Systems
(AHS 2007). IEEE. 2007, pp. 701–708 (cit. on p. 4).

272

Bibliography

[116] Aurelio Morales-Villanueva and Ann Gordon-Ross. “HTR: on-chip hard-
ware task relocation for partially reconfigurable FPGAs”. In: International
Symposium on Applied Reconfigurable Computing. Springer. 2013, pp. 185–
196 (cit. on p. 107).

[117] Keith S Morgan et al. “A comparison of TMR with alternative fault-
tolerant design techniques for FPGAs”. In: IEEE transactions on nuclear
science 54.6 (2007), pp. 2065–2072 (cit. on p. 217).

[118] R. Munden. ASIC and FPGA Verification: A Guide to Component Model-
ing. Systems on Silicon. Elsevier Science, 2004. isbn: 9780080475929 (cit.
on pp. 46, 114).

[119] Jongwhoa Na and Dongwoo Lee. “Simulated fault injection using simulator
modification technique”. In: ETRI Journal 33.1 (2011), pp. 50–59 (cit. on
p. 64).

[120] Vijaykrishnan Narayanan and Yuan Xie. “Reliability concerns in embedded
system designs”. In: Computer 39.1 (2006), pp. 118–120 (cit. on p. 3).

[121] Michael Nicolaidis. Soft errors in modern electronic systems. Vol. 41. Springer
Science & Business Media, 2010 (cit. on pp. 3, 217).

[122] Sergiu Nimara, Alexandru Amaricai, and Mircea Popa. “Sub-threshold
CMOS circuits reliability assessment using simulated fault injection based
on simulator commands”. In: IEEE International Symposium on Applied
Computational Intelligence and Informatics. 2015, pp. 101–104 (cit. on
p. 41).

[123] NIST/SEMATECH. NIST/SEMATECH e-Handbook of Statistical Meth-
ods. 2013 (cit. on pp. 138, 139).

[124] Jose Luis Nunes et al. “FIRED–Fault Injector for Reconfigurable Embed-
ded Devices”. In: Dependable Computing (PRDC), 2015 IEEE 21st Pacific
Rim International Symposium on. IEEE. 2015, pp. 1–10 (cit. on pp. 51,
57).

[125] Serafim Opricovic and Gwo-Hshiung Tzeng. “Extended VIKOR method
in comparison with outranking methods”. In: European Journal of Opera-
tional Research 178.2 (2007), pp. 514–529 (cit. on p. 27).

273

Bibliography

[126] Oregano Systems GmbH. MC8051 IP Core, User Guide (V 1.2), 2013.
2013 (cit. on p. 180).

[127] Patrick S Ostler et al. “SRAM FPGA reliability analysis for harsh radia-
tion environments”. In: IEEE transactions on Nuclear Science 56.6 (2009),
pp. 3519–3526 (cit. on p. 3).

[128] Jacopo Panerati, Donatella Sciuto, and Giovanni Beltrame. “Optimization
Strategies in Design Space Exploration”. In: Handbook of Hardware/Soft-
ware Codesign. Ed. by Soonhoi Ha and Jurgen Teich. Dordrecht: Springer,
2017. Chap. 6, pp. 189–217 (cit. on p. 136).

[129] B Parrotta et al. “New techniques for accelerating fault injection in VHDL
descriptions”. In: ioltw. IEEE. 2000, p. 61 (cit. on pp. 64, 132, 202).

[130] C. C. Peng, C. Dong, and D. Chen. “SETmap: A soft error tolerant map-
ping algorithm for FPGA designs with low power”. In: Asia and South
Pacific Design Automation Conference. 2011, pp. 388–393 (cit. on p. 30).

[131] Khoa Dang Pham, Edson Horta, and Dirk Koch. “BITMAN: A tool and
API for FPGA bitstream manipulations”. In: Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. IEEE. 2017, pp. 894–
897 (cit. on pp. 40, 56).

[132] Christian Pilato et al. “Computational Intelligence in Expensive Optimiza-
tion Problems”. In: Springer-Verlag Berlin Heidelberg, 2010. Chap. Speeding-
Up Expensive Evaluations in High-Level Synthesis Using Solution Model-
ing and Fitness Inheritance, pp. 701–723 (cit. on p. 30).

[133] Ludovic Pintard et al. “Fault injection in the automotive standard ISO
26262: an initial approach”. In: European Workshop on Dependable Com-
puting. Springer. 2013, pp. 126–133 (cit. on p. 25).

[134] Irith Pomeranz and Sudhakar M Reddy. “Safe fault collapsing based on
dominance relations”. In: 2008 13th European Test Symposium. IEEE.
2008, pp. 7–12 (cit. on p. 58).

[135] Dyadem Press. Guidelines for failure mode and effects analysis (FMEA),
for automotive, aerospace, and general manufacturing industries. CRC
Press, 2003 (cit. on p. 25).

274

Bibliography

[136] H. Quinn and P. Graham. “Terrestrial-based radiation upsets: a cautionary
tale”. In: IEEE Symposium on Field-Programmable Custom Computing
Machines. 2005, pp. 193–202 (cit. on pp. 24, 173, 182).

[137] R. Munden. Inverter, STDN library, Free Model Foundry VHDL Model
List. 2000 (cit. on p. 19).

[138] Alexis Ramos, Juan Antonio Maestro, and Pedro Reviriego. “Character-
izing a RISC-V SRAM-based FPGA implementation against Single Event
Upsets using fault injection”. In: Microelectronics Reliability 78 (2017),
pp. 205–211 (cit. on pp. 51, 57).

[139] Chantal Robach and Mathieu Scholive. “Simulation-Based Fault Injection
and Testing Using the Mutation Technique”. In: Fault Injection Techniques
and Tools for Embedded Systems Reliability Evaluation. Ed. by Alfredo
Benso and Paolo Prinetto. Springer, 2003, pp. 195–215 (cit. on pp. 47, 48).

[140] J. C. Ruiz et al. “Generic Design and Automatic Deployment of NMR
Strategies on HW Cores”. In: IEEE Pacific Rim Int. Symp. on Dependable
Computing. 2008, pp. 265–272 (cit. on p. 30).

[141] T.L. Saaty. “Decision making with the analytic hierarchy process”. In:
International Journal of Services Sciences 1.1 (2008), pp. 83–98 (cit. on
p. 27).

[142] Aitzan Sari and Mihalis Psarakis. “A Flexible Fault Injection Platform for
the Analysis of the Symptoms of Soft Errors in FPGA Soft Processors”.
In: Journal of Circuits, Systems and Computers 26.08 (2017), p. 1740009
(cit. on p. 51).

[143] Aitzan Sari, Mihalis Psarakis, and Dimitris Gizopoulos. “Combining check-
pointing and scrubbing in FPGA-based real-time systems”. In: 2013 IEEE
31st VLSI Test Symposium (VTS). IEEE. 2013, pp. 1–6 (cit. on p. 130).

[144] Juergen Sauermann. How to design your own CPU on FPGAs with VHDL.
2010 (cit. on p. 180).

[145] Donald Shaw, Dhamin Al-Khalili, and Come Rozon. “Automatic gener-
ation of defect injectable VHDL fault models for ASIC standard cell li-

275

Bibliography

braries”. In: Integration, the VLSI Journal 39.4 (2006), pp. 382–406 (cit.
on p. 46).

[146] David Sheldon. “Design space exploration of parameterized systems using
design of experiments”. PhD thesis. UC Riverside, 2011 (cit. on p. 137).

[147] David Sheldon et al. “Application-Specific Customization of Parameterized
FPGA Soft-Core Processors”. In: IEEE/ACM International Conference on
Computer Aided Design. 2006, pp. 261–268 (cit. on p. 30).

[148] Frederick T Sheldon, Stefan Greiner, and Matthias Benzinger. “Specifi-
cation, safety and reliability analysis using Stochastic Petri Net models”.
In: Tenth International Workshop on Software Specification and Design.
IWSSD-10 2000. IEEE. 2000, pp. 123–132 (cit. on p. 23).

[149] Volkmar Sieh, Oliver Tschache, and Frank Balbach. “VERIFY: Evaluation
of reliability using VHDL-models with embedded fault descriptions”. In:
International Symposium on Fault-Tolerant Computing. 1997, pp. 32–36
(cit. on pp. 40, 47, 48).

[150] Leena Singh and Leonard Drucker. Advanced Verification Techniques. A
SystemC Based Approach for Successful Tapeout. Frontiers In Electronic
Testing. Springer US, 2004 (cit. on p. 45).

[151] D.J. Smith and K.G.L. Simpson. Safety Critical Systems Handbook: A
Straight forward Guide to Functional Safety, IEC 61508 (2010 EDITION)
and Related Standards, Including Process IEC 61511 and Machinery IEC
62061 and ISO 13849. Elsevier Science, 2010. isbn: 9780080967820 (cit. on
p. 25).

[152] Jared C Smolens et al. “Detecting emerging wearout faults”. In: Proc. of
Workshop on SELSE. 2007 (cit. on pp. 3, 38).

[153] L. Sterpone et al. “On the design of tunable fault tolerant circuits on
SRAM-based FPGAs for safety critical applications”. In: 2008 Design,
Automation and Test in Europe. 2008, pp. 336–341. doi: 10.1109/DATE.
2008.4484702 (cit. on p. 37).

[154] Luca Sterpone and Massimo Violante. “A new analytical approach to es-
timate the effects of SEUs in TMR architectures implemented through

276

https://doi.org/10.1109/DATE.2008.4484702
https://doi.org/10.1109/DATE.2008.4484702

Bibliography

SRAM-based FPGAs”. In: IEEE Transactions on Nuclear Science 52.6
(2005), pp. 2217–2223 (cit. on p. 24).

[155] D.J. Sweeney and T.A. Williams. Fundamentals of Business Statistics.
Cengage South-Western, 2010 (cit. on p. 219).

[156] Synopsys. Synplify Premier. 2015 (cit. on p. 4).

[157] Pradip A Thaker, Vishwani D Agrawal, and Mona E Zaghloul. “A test
evaluation technique for VLSI circuits using register-transfer level fault
modeling”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 22.8 (2003), pp. 1104–1113 (cit. on p. 42).

[158] The MathWorks, Inc. Statistics and Machine Learning Toolbox™User’s
Guide. 2016 (cit. on pp. 140, 142).

[159] S.K. Thompson. Sampling. CourseSmart. Wiley, 2012. isbn: 9781118162941
(cit. on pp. 60, 61).

[160] Evangelos Triantaphyllou. “Multi-Criteria Decision Making Methods”. In:
Multi-criteria Decision Making Methods: A Comparative Study. Vol. 44.
Applied Optimization. Springer US, 2000, pp. 5–21 (cit. on pp. 27, 143,
174).

[161] Ilya Tuzov, David De Andrés, and Juan-Carlos Ruiz. Dependability Bench-
marking of soft-core processors at different levels of design representation:
MC8051, AVR and Microblaze as a case study. 2020. doi: 10 . 5281 /
zenodo.3996297 (cit. on p. 185).

[162] Pierre Vanhauwaert, Régis Leveugle, and Philippe Roche. “Reduced instru-
mentation and optimized fault injection control for dependability analysis”.
In: 2006 IFIP International Conference on Very Large Scale Integration.
IEEE. 2006, pp. 391–396 (cit. on p. 49).

[163] Igor Villata et al. “Fast and accurate SEU-tolerance characterization method
for Zynq SoCs”. In: Field Programmable Logic and Applications. 2014,
pp. 1–4 (cit. on pp. 52, 57, 62).

277

https://doi.org/10.5281/zenodo.3996297
https://doi.org/10.5281/zenodo.3996297

Bibliography

[164] Kizheppatt Vipin and Suhaib A Fahmy. “ZyCAP: Efficient partial recon-
figuration management on the Xilinx Zynq”. In: IEEE Embedded Systems
Letters 6.3 (2014), pp. 41–44 (cit. on pp. 52, 241).

[165] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Cheng. Electronic
Design Automation: Synthesis, Verification, and Test. Morgan Kaufmann,
2009, p. 972 (cit. on p. 10).

[166] Jiesheng Wei et al. “Quantifying the accuracy of high-level fault injection
techniques for hardware faults”. In: 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks. IEEE. 2014,
pp. 375–382 (cit. on p. 36).

[167] Dagan White. “Considerations surrounding single event effects in FPGAs,
ASICs, and processors”. In:White Paper: Xilinx FPGAs, WP402 (v1. 0.1),
(2012) (cit. on p. 39).

[168] J.M. Williams. Digital VLSI Design with Verilog: A Textbook from Silicon
Valley Polytechnic Institute. SpringerLink : Bücher. Springer International
Publishing, 2014 (cit. on p. 17).

[169] Marko Wolf and Michael Scheibel. “A systematic approach to a qualified
security risk analysis for vehicular IT systems”. In: Automotive-Safety &
Security 2012 (2012) (cit. on p. 25).

[170] Wayne Wolf. FPGA-Based System Design. Prentice Hall, 2004 (cit. on
p. 27).

[171] Wayne Wolf. Modern VLSI Design: IP-Based Design. 4th. Prentice Hall,
2008 (cit. on p. 10).

[172] C.F.J. Wu and M.S. Hamada. Experiments: Planning, Analysis, and Op-
timization. Wiley Series in Probability and Statistics. Wiley, 2011. isbn:
9781118211533 (cit. on pp. 138, 216).

[173] Hans-Joachim Wunderlich. Models in hardware testing: lecture notes of
the forum in honor of Christian Landrault. Vol. 43. Springer Science &
Business Media, 2009 (cit. on pp. 3, 37).

278

Bibliography

[174] Xilinx. Synthesis and Simulation Design Guide, UG626 (v14.4). 2012 (cit.
on pp. 71, 74, 76).

[175] Xilinx Inc. 7 Series FPGAs Configurable Logic Block. UG474 (v1.8). 2016
(cit. on p. 14).

[176] Xilinx Inc. 7 Series FPGAs Configuration UG470 (v1.13.1). 2018 (cit. on
pp. 103, 242).

[177] Xilinx Inc. 7 Series FPGAs Memory Resources UG473 (v1.14). 2019 (cit.
on pp. 54, 98).

[178] Xilinx Inc. Command Line Tools User Guide. 2013 (cit. on p. 29).

[179] Xilinx Inc. Device Reliability Report, First Half 2018, UG116 (v10.9). 2018
(cit. on pp. 23, 24, 182).

[180] Xilinx Inc. Embedded System Tools Reference Manual, UG1043. 2019 (cit.
on p. 180).

[181] Xilinx Inc. MicroBlaze Processor Reference Guide, UG984. 2019 (cit. on
pp. 4, 180).

[182] Xilinx Inc. Soft Error Mitigation Controller v4.1. 2018 (cit. on pp. 4, 51,
53, 57).

[183] Xilinx Inc. TMRTool. 2016 (cit. on p. 4).

[184] Xilinx Inc. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Li-
braries Guide. UG953 (v2018.3). 2018 (cit. on pp. 15, 51).

[185] Xilinx Inc.Vivado Design Suite User Guide. Implementation. UG904 (v2017.4).
2017 (cit. on p. 202).

[186] Xilinx Inc. Vivado Design Suite User Guide. Synthesis. UG901 (v2017.4).
2017 (cit. on p. 202).

[187] Xilinx Inc. XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
(v 14.5). 2013 (cit. on p. 126).

279

Bibliography

[188] Xilinx Inc. Zynq-7000 SoC. Technical Reference Manual. UG585 (v1.12.2).
2018 (cit. on p. 52).

[189] Kwangsun Yoon. “A reconciliation among discrete compromise solutions”.
In: Journal of the Operational Research Society (1987), pp. 277–286 (cit.
on p. 27).

[190] Charles R Yount and Daniel P Siewiorek. “A methodology for the rapid
injection of transient hardware errors”. In: Computers, IEEE Transactions
on 45.8 (1996), pp. 881–891 (cit. on pp. 47, 48, 63).

[191] Yangyang Yu and Barry W. Johnson. “Fault Injection Techniques”. In:
Fault Injection Techniques and Tools for Embedded Systems Reliability
Evaluation. Ed. by Alfredo Benso and Paolo Prinetto. Boston, MA: Springer
US, 2003, pp. 7–39 (cit. on pp. 21, 58).

280

	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of the thesis

	2 Dependability-aware Hardware Design Flow
	2.1 Semicustom and FPGA-based design flow
	2.1.1 Model-based design
	2.1.2 SRAM-based FPGA as target implementation technology
	2.1.3 Technology-specific libraries

	2.2 Dependability assessment
	2.3 Dependability benchmarking
	2.4 Dependability-aware design space exploration
	2.5 Conclusions

	3 Fault Injection for Dependability Assessment of HW Designs
	3.1 Introduction
	3.2 Fault models
	3.3 Simulation-based fault injection
	3.3.1 SBFI techniques
	3.3.2 Insufficiency of RT-level fault injection
	3.3.3 Performance and accuracy challenges of implementation-level SBFI
	3.3.4 SBFI tools

	3.4 FPGA-based fault injection
	3.4.1 FFI techniques
	3.4.2 Locating the fault targets in the FPGA configuration memory
	3.4.3 FFI tools

	3.5 Existing strategies for improving fault injection performance
	3.5.1 Optimizing the fault space through fault collapsing
	3.5.2 Statistical fault injection
	3.5.3 Speeding-up fault injection runs

	3.6 Conclusions

	4 Enabling Low-intrusive Simulation-based Fault Injection for Implementation-level Models
	4.1 Introduction
	4.2 Fault simulation in VITAL-compliant models
	4.2.1 Definition of generic operations to support fault injection
	4.2.2 Stuck-at, pulse, and indetermination faults
	4.2.3 Bit-flip faults in registers
	4.2.4 Delay faults
	4.2.5 Considering FPGA-specific components: bit-flips in configuration memory of LUTs

	4.3 Fault simulation in Verilog-based models
	4.3.1 Bit-flip faults
	4.3.2 Delay faults

	4.4 Unified fault dictionary
	4.5 Conclusions

	5 Improving the Accuracy of FPGA-based Fault Injection
	5.1 Introduction
	5.2 Towards bit-accurate mapping of macrocells onto the configuration memory
	5.2.1 Mapping of Look-Up tables
	5.2.2 Mapping of Block RAMs

	5.3 Optimized essential bits
	5.4 Exploiting optimized essential bits for the bit-accurate emulation of SEUs
	5.5 Conclusions

	6 Contributions in Improvement of Fault Injection Performance
	6.1 Introduction
	6.2 Strategies to reduce the number of fault injection runs
	6.2.1 Filtering and prioritization of essential bits through the profiling of the target switching activity
	6.2.2 Iterative statistical fault injection

	6.3 Strategies to speed-up SBFI and FFI experiments
	6.3.1 Mixed-level and multi-level fault injection
	6.3.2 Simulation-based and FPGA-based checkpointing

	6.4 Discussion
	6.5 Conclusions

	7 Contributions in Dependability-aware Design Space Exploration
	7.1 Introduction
	7.2 DSE based on the design of experiments
	7.2.1 Background on design of experiments and its statistical analysis
	7.2.2 Exploring regular design spaces by means of fractional factorial designs
	7.2.3 Exploring irregular design spaces through iterative refinement of D-optimal designs

	7.3 Speeding-up the GA-based DSE by means of iterative selection
	7.4 Conclusions

	8 DAVOS Toolkit
	8.1 Introduction
	8.2 DAVOS architecture
	8.3 Fault injection tools for dependability assessment
	8.3.1 DAVOS-SBFI tool
	8.3.2 DAVOS-FFI tool
	8.3.3 Interactive reporting interface

	8.4 Automated PPAD evaluation of parametrized designs
	8.4.1 Implementation support tool
	8.4.2 PPAD evaluation engine

	8.5 Decision support tool for selecting and optimizing HW designs
	8.6 Conclusions

	9 Experimental Evaluation
	9.1 Introduction
	9.2 Dependability benchmarking of soft-core processors
	9.2.1 Experimental procedure
	9.2.2 Fault injection results and dependability metrics
	9.2.3 Ranking of DUTs
	9.2.4 Experimental effort and speed-up
	9.2.5 Discussion

	9.3 Dependability-aware design space exploration for optimal tuning of EDA parameters
	9.3.1 Experimental procedure
	9.3.2 DSE results obtained by GA-based approach
	9.3.3 DSE results obtained by DoE-based approach
	9.3.4 Discussion

	9.4 Dependability assessment and verification of fault-tolerant HW design
	9.4.1 Experimental procedure
	9.4.2 Experimental results
	9.4.3 Discussion

	9.5 Conclusions

	10 Conclusions and Future Work
	10.1 Conclusions
	10.2 Summary of contributions an publications
	10.2.1 Contributions of the thesis
	10.2.2 Publications
	10.2.3 Research projects

	10.3 International research stay
	10.4 Future work

	Appendices
	A Details of Bit-accurate FPGA-based Fault Injection Approach
	A.1 Accessing the configuration memory of Xilinx FPGAs
	A.2 Bit-accurate mapping of LUTs onto the configuration memory
	A.3 Determining the state of unused LUT pins
	A.4 Extracting the macrocells descriptors from implementation-level netlist

	B Case Study Details
	B.1 Architecture of the DUTs
	B.2 Convergence of GA/NSGA-based DSE
	B.3 Regression models for PPAD attributes
	B.4 Comparison of experimentally obtained PPAD optimization results with the predicted ones

	Bibliography

