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Abstract 

Reducing the energy consumed by a car-like mobile robot makes it possible to move at a 
lower cost, yet it takes more working time. This paper proposes an optimization algorithm 
for trajectories with optimal times and analyzes the consequences of restricting the energy 
consumed on the trajectory obtained for a car-like robot. When modeling the dynamic 
behavior of the vehicle, it is necessary to consider its inertial parameters, the behavior of 
the motor and the basic properties of the tire in its interaction with the ground. To obtain 
collision-free, minimum-time trajectories quadratic sequential optimization techniques 
are used, where the objective function is the time taken by the robot to move between two 
given configurations. This is subject to constraints relating to the vehicle and tires as well 
as the energy consumed, which is the basis for this paper. We work with a real random 
distribution of consumed energy values following a normal Gaussian distribution in order 
to analyze its influence on the trajectories obtained by the vehicle. The energy consumed, 
the time taken, the maximum velocity reached and the distance traveled are analyzed in 
order to characterize the properties of the trajectories obtained. The proposed algorithm 
has been applied to 101 examples, showing that the computational times needed to obtain 
the solutions are always lower than those required to realize the trajectories. The results 
obtained allow us to reach conclusions about the energy efficiency of the trajectories. 

 
Keywords: Energy consumed, car-like mobile robot, robot dynamics, tire interaction, minimum-
time trajectory, collision-free trajectory, working parameters. 

1. Introduction 

Autonomous vehicles, or car-like robots, are transforming the way we conceive transport. 
Their use has increased notably in recent years due to advances in sensor and control systems. 
These vehicles range from the Google car to the modern AGV (automated guided vehicle) used 
in industrial applications to move materials in manufacturing, value-added and storage operations. 
The most important advantages of autonomous vehicles are related to the safety of driving, 
efficiency in energy consumption, the fluidity of transport, the release of users or operators from 
the monotonous task of driving and the enormous potential for use by all types of people, 
applications and companies. 

In obtaining the motion to be followed by the autonomous vehicle, it is very useful to generate 
optimal trajectories. This is a field that is still open and has traditionally been very fertile, where 



researchers have made great contributions. One of the most recent works on this particular matter 
appears in [1], where a trajectory generation algorithm that is especially well suited to wheeled 
mobile robots (WMRs) is presented. Linear and angular velocities of the WMR are specified as 
Bézier polynomials. The algorithm helps to avoid slipping and skidding of the WMR, since 
smooth starting and braking can be achieved by proposing suitable linear and angular velocities. 
In [2] the state of the art and the latest studies on motion planning for autonomous robots are 
detailed. A compilation of the most important contributions during recent decades from a different 
point of view can be seen in [3]. In [4] a review of motion planning is provided, focusing 
specifically on autonomous vehicles, with a comparison between some of the techniques used. 

Another aspect that needs to be considered in motion planning for car-like robots is their dynamic 
model, including characterization of the tire’s interaction with the terrain. Dynamic modeling of 
the robot is fundamental in order to determine whether or not the vehicle will be able to describe 
the calculated trajectories. In addition, it brings a degree of realism to the analysis of the vehicle’s 
behavior that increases the more accurate the model is. On the other hand, the forces between tire 
and terrain have a great effect on the efficiency with which the trajectory is carried out. 

A study that makes use of dynamic modeling of the robot and its interaction with the terrain can 
be seen in [5]. The author models forces, but does not delve into the nature of them, over-
simplifying the way they are obtained. 

In [6] the authors analyze the problem of finding optimal trajectories for autonomous vehicles 
considering the dynamic model of the vehicle, but treating its behavior as a particle and thus 
losing generality for the analysis of specific robots that do not admit such simplification. 

An important part of dynamic modeling is the interaction forces between the tire and the terrain. 
In [7] a comprehensive analysis is made of these forces for planetary rovers. This paper discusses 
the significance of the study of wheel-soil interaction mechanics of planetary rovers and 
summarizes the differences between planetary rovers and terrestrial vehicles. 

A more recent paper, which analyzes the influence of friction forces on the execution of optimal 
trajectories, can be seen in [8]. In this paper a dynamic model of the car-like robot is used, in 
which the driving, friction forces and tire-ground interactions are clearly distinguished. 

An improvement in the motion optimization of car-like robots comes from considering the energy 
that will be consumed by the robot to perform the planned trajectories. The relationship between 
the energy available and the energy consumed is fundamental for the autonomous vehicle to work, 
since the vehicle has a limited amount of energy and this approach seeks to reduce consumption. 
A lower consumption means increasing the working time. In addition, the more efficient and the 
lower the energy consumption, the more economical driving will be. Obviously, it is necessary to 
optimize the amount of energy that an autonomous vehicle will use to carry out operations. 
In [9] the problem of minimum-energy trajectory planning for differentially-driven car-like robots 
was addressed. This paper proposes the minimum-energy rotational trajectory for a wheeled 
mobile robot (WMR) that minimizes the energy drawn from the batteries. Optimal control theory 
is used to achieve the energy-optimal velocity profiles. 

In [10], the problem of finding optimal trajectories that minimize the energy consumed during 
motion of a car-like robot on flat surfaces is analyzed. They separate the problem into two parts, 
trying to obtain optimal energy velocities profiles and optimal energy path profiles. A very 
important drawback of this work is that it does not take into account the dynamic characteristics 



of the car-like robot. They try to optimize the energy simply by improving the acceleration and 
deceleration profiles of the DC electric motor used by the robot based on simplifications of the 
forces acting on the robot. They also fail to consider the existence of potential obstacles that could 
collide with the robot. 

A cost function that weights force inputs, area covered by an unmanned ground vehicle (UGV) 
and motor efficiency to create an optimal trajectory is presented in [11]. The trajectory is 
constrained to follow a described path. The trade-offs are discussed (including the time required 
to cover the region and the energy required to complete the trajectory). The authors over-simplify 
the dynamics of the robot by considering it as a point. Also, when seeking a path that optimizes 
the energy consumption, the algorithm becomes more and more complex. The dynamics come 
from the Wong’s model in [12]. The algorithm is very costly. This paper builds on previous work 
carried out by the authors in [13].  
In [14] the authors propose the minimization of the energy expended by a car-like robot when 
moving along a road with a known profile. The constraints are given by means of a simple model 
of the longitudinal dynamics. 

In [15] a Model Predictive Control (MPC) strategy for energy-efficient motion control of car-like 
vehicles is presented. The resulting strategy drives the vehicle along energy-efficient trajectories 
around the desired one. The distance between the closed-loop trajectories and the desired 
trajectory provided by the user is guaranteed to be ultimately bounded. Numerical results show 
the effectiveness of the proposed control strategy for the case of a car driven over flat land or 
mountainous terrain. The authors work with the bicycle model of the car-like robot. In [16] a new 
method of optimal motion planning is presented, which aims to minimize the energy consumption 
of a wheeled mobile robot in robot applications. First a model that can be used to formulate the 
energy consumption for kinetic energy transformation and to overcome traction resistance is 
developed. This model will provide a base for minimizing the robot’s energy consumption 
through proper motion planning. An A* algorithm is employed to generate an energy-efficient 
path where a new energy-related criterion is utilized in the cost function. To achieve a smooth 
trajectory along the generated path, the appropriate arrival time and velocity at the defined 
waypoints are selected for minimum energy consumption. Simulations and experiments are 
performed to demonstrate the energy-saving efficiency of the proposed motion planning 
algorithm. 

A recent work that also takes into account the energy consumed by a robot can be found in [21], 
although it does not apply to a car-like robot. In it, the authors present an optimal trajectory 
planning method for industrial robots focusing on the least time and energy consumption without 
violating the kinematic constraints. 

This paper introduces an optimal trajectory planning algorithm for car-like robots. It takes into 
account the robot’s dynamic properties and works efficiently in terms of computational time. It is 
based on solving optimization problems and focuses on how the energy consumed influences 
trajectory planning and affects working parameters such as minimum-time trajectory, maximum 
speed of the robot and computational time. 

To carry out this study energy values are taken using the Montecarlo method from a normal 
Gaussian distribution that tries to reproduce real values about the robot’s energy.  

The dynamic approach includes modeling the whole car-like robot (engine and transmission 
system, tires and brakes) with the aim of calculating feasible and efficient trajectories for the robot 



and to analyze how the energy values affect the robot’s performance. This approach is different 
to other planners that only include kinematic constraints, as in Simba et al. [17], or that do not 
guarantee the feasibility of the trajectories, as in [10].  

Efficient computation time is achieved by simplifying the dynamic model, rapidly evaluating 
collisions, as explained in [18], and generating a trajectory that is subject to energy constraints. 
The efficiency of the trajectory comes from the full dynamic capability of the robot and it is shown 
in the examples analyzed. A large number of examples (101) have been solved, varying the 
available energy. The results have been plotted in section 5. 

 

2. The robotic vehicle 

The RBK robot is an electric vehicle for internal transport powered by a hydrogen fuel cell and 
batteries with autonomous operation capacity (Figure 1). Its main features are rear-wheel drive, 
front-wheel steering, power 3.3 kW, mass 690 kg, top speed 32 km/h, length 2.66 m, width 1.23 
m, height 1.70 m, wheelbase L = 1.65 m, height of the center of gravity (G) h = 0.50 m, distance 
from G to the front axle La = 1.10 m, and distance from G to the rear axle Lb = 0.55 m. 

 
Figure 1. RBK car-like mobile robot 

The model used is based on the well-known “bicycle model” (Figure 2), which is defined in more 
detail in [19]. It gives rise to the following simplifying assumptions: 

• No roll and pitch motions. 
• No side-load transfer. 
• No aerodynamic effects. 
• A plane model with three degrees of freedom and a restriction associated with the steering 

angle. 
• The front wheels are simplified into one that will exert the force corresponding to both, 

and the same simplification applies to the rear wheels. 
• The steering angle corresponds to that of the single front wheel of the model. 
• Sideslip angles and their gradient are small. 

 
  

 



 
Figure 2. Bicycle model 

 
2.1. Robot kinematics 

A general trajectory, expressed in a polynomial form, as explained in section 3, is imposed on the 
center of gravity of the car-like robot (point G in Figures 1 and 2). Thus, the kinematics of the 
center of gravity G with respect to a global reference system is fully determined. It gives: 

Position of G: 

𝑥𝑥𝐺𝐺 = 𝑓𝑓𝑥𝑥(𝑡𝑡)
𝑦𝑦𝐺𝐺 = 𝑓𝑓𝑦𝑦(𝑡𝑡)   (1) 

Velocity of G: 
𝑉𝑉𝐺𝐺����⃗ = 𝑓𝑓𝑥̇𝑥(𝑡𝑡) ∙ 𝚤𝚤 + 𝑓𝑓𝑦̇𝑦(𝑡𝑡) ∙ 𝚥𝚥 
  (2) 

Considering the sideslip angle of the vehicle, 𝛽𝛽 small (see Figure 3) and 𝛽̇𝛽 negligible, the angular 
velocity of the vehicle is obtained as: 

𝜔𝜔��⃗ = 𝑓𝑓𝑥̇𝑥(𝑡𝑡)∙𝑓𝑓𝑦̈𝑦(𝑡𝑡)−𝑓𝑓𝑦̇𝑦(𝑡𝑡)∙𝑓𝑓𝑥̈𝑥(𝑡𝑡)

�𝑓𝑓𝑥̇𝑥(𝑡𝑡)�
2
+�𝑓𝑓𝑦̇𝑦(𝑡𝑡)�

2 ∙ 𝑘𝑘�⃗  (3) 

 

 

Figure 3. Kinematics and sideslip angles 

Based on the previous kinematics, the rear sideslip angle βR is: 

𝛽𝛽𝑅𝑅 = tan−1 ��𝑉𝑉𝐺𝐺
�����⃗ �𝛽𝛽−𝐿𝐿𝑏𝑏𝜔𝜔�

�𝑉𝑉𝐺𝐺�����⃗ �
  

Under the hypothesis of a small sideslip angle and considering trigonometric simplifications, it 
remains as: 

𝛽𝛽𝑅𝑅 ≈ 𝛽𝛽 − (𝑓𝑓𝑥̇𝑥(𝑡𝑡)∙𝑓𝑓𝑦̈𝑦(𝑡𝑡)−𝑓𝑓𝑦̇𝑦(𝑡𝑡)∙𝑓𝑓𝑥̈𝑥(𝑡𝑡))𝐿𝐿𝑏𝑏
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2
+�𝑓𝑓𝑦̇𝑦(𝑡𝑡)�

2
�
3/2  (4) 
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By proceeding analogously, the forward sideslip angle βF can be obtained:  

𝛽𝛽𝐹𝐹 ≈ 𝛿𝛿 − 𝛽𝛽 − (𝑓𝑓𝑥̇𝑥(𝑡𝑡)∙𝑓𝑓𝑦̈𝑦(𝑡𝑡)−𝑓𝑓𝑦̇𝑦(𝑡𝑡)∙𝑓𝑓𝑥̈𝑥(𝑡𝑡))𝐿𝐿𝑎𝑎

��𝑓𝑓𝑥̇𝑥(𝑡𝑡)�
2
+�𝑓𝑓𝑦̇𝑦(𝑡𝑡)�

2
�
3/2   (5) 

Taking 𝜃𝜃 as the orientation of the velocity 𝑉𝑉�⃗ 𝐺𝐺   in the XY plane of the global reference system, the 
normal and tangential accelerations are: 

   𝐴𝐴𝐺𝐺𝑛𝑛 = −𝑓𝑓𝑥̈𝑥(𝑡𝑡) sin𝜃𝜃 + 𝑓𝑓𝑦̈𝑦(𝑡𝑡) cos𝜃𝜃
𝐴𝐴𝐺𝐺𝑡𝑡 = 𝑓𝑓𝑥̈𝑥(𝑡𝑡) cos𝜃𝜃 + 𝑓𝑓𝑦̈𝑦(𝑡𝑡) sin𝜃𝜃

  (6) 

In the local reference system that is linked to the vehicle (see Figure 3), the lateral acceleration of 
G (direction Yl) is:  

𝐴𝐴𝐺𝐺
𝑌𝑌𝑙𝑙 = 𝐴𝐴𝐺𝐺𝑛𝑛 cos𝛽𝛽 − 𝐴𝐴𝐺𝐺𝑡𝑡 sin𝛽𝛽   

Since the angle 𝛽𝛽 is small, this equation can be written as: 

𝐴𝐴𝐺𝐺
𝑌𝑌𝑙𝑙 ≈ −𝑓𝑓𝑥̈𝑥(𝑡𝑡)(sin𝜃𝜃 + 𝛽𝛽 cos𝜃𝜃) + 𝑓𝑓𝑦̈𝑦(𝑡𝑡)(cos𝜃𝜃 − 𝛽𝛽 sin𝜃𝜃) (7) 

 
2.2. Obtaining the sideslip and direction angles 

Under the small sideslip hypothesis, it is usual to consider the lateral behavior of the tires linearly 
(with CT stiffness), so as the front and rear tires are equal, the lateral forces are: 

𝐹𝐹𝑅𝑅𝑅𝑅 = −𝐶𝐶𝑇𝑇𝛽𝛽𝑅𝑅
𝐹𝐹𝐹𝐹𝐹𝐹 = −𝐶𝐶𝑇𝑇𝛽𝛽𝐹𝐹

  (8) 

with a direction normal to the rim and opposite to the sideslip (see Figure 3). 

Setting the Newton-Euler equations for the lateral forces and the moments, the following 
expression is met: 

𝐹𝐹𝑅𝑅𝑅𝑅 + 𝐹𝐹𝐹𝐹𝐹𝐹 cos𝛿𝛿 = 𝑚𝑚 𝐴𝐴𝐺𝐺
𝑌𝑌𝑙𝑙   

where δ is the direction angle. Substituting (8) in the previous equation: 

−𝐶𝐶𝑇𝑇𝛽𝛽𝑅𝑅−𝐶𝐶𝑇𝑇𝛽𝛽𝐹𝐹 cos𝛿𝛿 = 𝑚𝑚 𝐴𝐴𝐺𝐺
𝑌𝑌𝑙𝑙 (9) 

The equation of moments is: 

𝐹𝐹𝐹𝐹𝐹𝐹 cos𝛿𝛿 𝐿𝐿𝑎𝑎 − 𝐹𝐹𝑅𝑅𝑅𝑅𝐿𝐿𝑏𝑏 = 𝐼𝐼𝑧𝑧 𝜔̇𝜔  
where Iz is the moment of inertia of the vehicle around an axis parallel to Z, passing through G, 
and operating: 

𝐶𝐶𝑇𝑇(−𝐿𝐿𝑎𝑎𝛽𝛽𝐹𝐹 cos𝛿𝛿 + 𝐿𝐿𝑏𝑏𝛽𝛽𝑅𝑅) = 𝐼𝐼𝑧𝑧 𝜔̇𝜔 (10) 

Equations (4), (5), (9) and (10) are a system from which β, δ, 𝛽𝛽𝐹𝐹 and 𝛽𝛽𝑅𝑅 can be obtained. 

3. Trajectories 

This section explains how the trajectory modeling is done and how the collision-free     minimum-
time trajectory is obtained. 

3.1. Modeling the trajectory 

The vehicle’s center of gravity, G, must pass through a sequence of m + 1 passing points joined 
by m polynomial segments (according to expression (11)) that make up the trajectory, so that the 
following is met in section j: 

𝑥𝑥𝐺𝐺𝐺𝐺 = 𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑑𝑑𝑥𝑥𝑥𝑥𝑡𝑡2 + 𝑒𝑒𝑥𝑥𝑥𝑥𝑡𝑡3

𝑦𝑦𝐺𝐺𝐺𝐺 = 𝑎𝑎𝑦𝑦𝑦𝑦 + 𝑏𝑏𝑦𝑦𝑦𝑦𝑡𝑡 + 𝑑𝑑𝑦𝑦𝑦𝑦𝑡𝑡2 + 𝑒𝑒𝑦𝑦𝑦𝑦𝑡𝑡3
 (11) 



∀𝑡𝑡 ∈ �0, 𝑡𝑡𝑗𝑗�, t being the time variable associated with the robot’s motion. 
This sequence of m polynomials should meet the following (8 (m-1)) continuity conditions: 

• Continuity in positions. In each section, the initial and final position must be coincident 
with the passing point that defines it; (4 (m-1)) equations are set. 

• Continuity in velocities. The initial and final velocities of the trajectory must be zero; 4 
equations are set. The initial velocity of each section must be equal to the final velocity 
of the previous one; (2 (m-2)) equations are set. 

• Continuity in accelerations. The initial acceleration of each section must be equal to the 
end of the previous one; (2 (m-2)) equations are set. 

Once the times associated with the different intervals forming the trajectory are known, a 
linear system of (8 (m-1)) equations is available, which makes it possible to obtain the 
coefficients of the polynomials (11) that define the intervals so that the trajectory is fully 
determined. 
3.2. Minimum-time trajectory 
The aim is to obtain a trajectory of the type defined in section 3.1. that passes through a series 
of m + 1 intermediate points and is of a minimum time. To achieve this, a problem of non-
linear optimization with non-linear constraints is posed, then the objective function and the 
constraints of the problem are specified. 

3.2.1.  Objective function  

The trajectory will consist of m intervals or sections between the m + 1 intermediate 
positions, where tj for j = 1..m are the times associated with the intervals that match the 
equations of type (11) and the associated conditions, so that the objective function is: 

𝑓𝑓(𝑡𝑡) = ∑ 𝑡𝑡𝑗𝑗𝑚𝑚
𝑗𝑗=1    (12) 

3.2.2. Constraints 
i. The initial orientation of the robot θi, corresponding to the initial position. 
ii. The steering wheel angle does not exceed the specified value δmax. 

iii. The maximum speed of the vehicle cannot exceed Vmax. 
iv. The driving force is limited by the torque curve of the engine. 
v. The adhesion of the tires to the terrain is limited. 

vi. The energy consumed by the vehicle is limited. 
This is an optimization problem with nonlinear constraints, whose solution is obtained by the 
NLPQLP Quadratic Programming Algorithm with Distributed and Non-Monotone Line 
Search created and proposed by Professor Klaus Schittkowski. It should be considered that, 
in each iteration, the linear system associated with obtaining the coefficients of the equations 
of type (11) will be solved using the normalized time method (see [20]) so as not to penalize 
the computation times and, additionally, the derivatives of the constraints are obtained by 
finite differences. 
3.3. Obtaining the collision-free trajectory 
The problem is to obtain an efficient and collision-free trajectory for a mobile robot in an 
environment with static obstacles. A trajectory is called efficient when it is near the minimum 
time with a low computational cost and it matches the restrictions imposed on the robot, as 
defined in Section 3.2.2. Collision detection is specific for each type of standard obstacle, 
considering the mobile robot as a rectangular shape that is delimited by four segments. For 
circles, the distance from each segment to the center of the circle is calculated and if it exceeds 



the radius there is no collision. For polygons, it is verified that there is no intersection between 
the segments corresponding to the mobile robot and those of the obstacles. 

The initial data are: 
• Information about the robot that is needed for modeling it, as described in Section 2. 
• Information about obstacles and their locations. 
• Initial position (xGi, yGi) and orientation θi, and final position (xGf, yGf) of the mobile robot. 

The iterative procedure to obtain the collision-free trajectory is: 

a. Calculation of the minimum-time trajectory 𝑇𝑇𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 in a single interval that passes through 
the initial (xGi, yGi) and final (xGf, yGf) points. 

b. Search for collisions. 
c. For the selected path (𝑇𝑇𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚for the first iteration), the first configuration with collision cc is 

identified as the one previous to it ca (see Figure 4). This trajectory will be called the 
generator of the offspring that might be obtained in point e. 

d. Generation of adjacent positions. If the current trajectory and its generator have not collided 
with the same obstacle, four adjacent positions are generated from ca (paj; j=1,…,4 see figure 
4) by choosing the positions that are far enough from any obstacle pak (0 ≤ k ≤ 4); if none 
exist (k=0), a configuration in the previous trajectory ca-1 is searched for and the algorithm 
works recursively until it finds a configuration that results in (𝑘𝑘 ≠ 0).  
In the event that the current trajectory and its generator have collided with the same 
obstacle, it will only branch out in the same direction that gave rise to the current trajectory. 
This branching with memory makes it possible to reduce the computation time, avoiding 
the generation of trajectories that go through areas that have already been explored. 

e. Generation of offspring trajectories. For each of the adjacent positions obtained at point d. 
an offspring trajectory 𝑇𝑇𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 (0 < 𝑘𝑘 ≤ 4) is obtained, which contains all the passing points 
previous to ca, point paj and the end point of the generating trajectory. In addition, the 
algorithm associates each generated trajectory with its generating trajectory, the branching 
direction and the obstacle that has originated the collision and given rise to this branch. 

f. Selection of the trajectory. The trajectories generated at point e. are placed in a set of 
trajectories ordered by time 𝑇𝑇𝑇𝑇 = �𝑇𝑇1𝑚𝑚𝑚𝑚𝑚𝑚 …𝑇𝑇𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚�. The minimum-time trajectory within the 
set 𝑇𝑇1𝑚𝑚𝑚𝑚𝑚𝑚  is selected, taken out of 𝑇𝑇𝑇𝑇  and also checked for collisions. If there are any 
collisions, the algorithm returns to point c. This process is repeated (iterating) until a 
solution 𝑇𝑇1𝑚𝑚𝑚𝑚𝑚𝑚 without a collision is reached. 

g.  

 
Figure 4. Generation of offspring trajectories (dotted lines) from the generating trajectory 

(solid line). 



  

4. Case study 

From a given work environment with known obstacles, the autonomous vehicle should move 
from an initial configuration defined by a position and orientation to a final configuration defined 
by the vehicle’s position (see Figure 5). 

 

Figure 5. Work environment 

 

Starting from the conditions established in Figure 5, the values of the constraint related to the 
energy consumption are applied. These values are obtained from a random sample, while keeping 
the characteristics of the vehicle and its interaction with the terrain that give rise to the rest of the 
constraints of the optimization problem unchanged. In this way, 101 trajectories have been 
obtained from the examples solved. To be more precise, the obtained trajectories have been 
generated keeping all the conditions constant except for the constraint of the energy consumed by 
the vehicle while in operation. 

The energy consumed values are obtained using the Monte Carlo method applied to a variable 
subjected to uncertainty (that is, the energy consumed). To do this, a Gaussian statistical 
distribution is used with a mean m = 4800 J and a standard deviation of m / 3 and with random 
values of probability with uniform distribution. The criterion for selecting the normal distribution 
is based on the fact that random variables subjected to uncertainties are usually distributed 
normally when the number of samples is significantly high, as stated by the central limit theorem. 
In this way, it is possible to reproduce a set of real values of the energy consumed by the vehicle. 

This Gaussian distribution can be seen in the following graphs. 



 

Figure 6. Probability of the energy consumed, with a 
Gaussian distribution with mean value m = 4800 J and 

dispersion m / 3 

 

 
 

Figure 7. Ordered values of the energy 
consumed for the whole distribution and for 

the 101 selected cases 

 

 

Of all the possible values of the energy consumed, those that appear in red have been selected 
(see Figure 6 and 7). They are values centered on the mean value m with a dispersion m / 3. It is 
not appropriate to select all of them in order to draw conclusions regarding the behavior of the 
working parameters as a function of the energy consumed. 

5. Results and Findings  

From the 101 trajectories generated according to the conditions described in section 4, the results 
obtained are shown below. 

 
Figure 8. Energy consumed versus the time needed to run the trajectory 

It can be seen in Figure 8 that for severe energy constraints (below 4000 Joules), high times are 
required and also the gradient is very high, while for high values of the constraint (from 5000 
Joules) the trajectory time stabilizes. It can be observed how increasing the energy consumed does 
not improve the trajectory time above a certain threshold. 
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Figure 9. Dissipated energy versus energy consumed 

Figure 9 shows the relationship between energy dissipated in the brakes and the energy consumed 
by the engine for different trajectories. It can be seen that there is a practically linear relationship: 
very high values of consumed energy imply a great dissipation associated with use of the brakes. 
Therefore, reducing trajectory times implies an increase in dissipated energy, which means there 
is a loss of energy. 

 
Figure 10. Maximum velocity reached versus the energy consumed in the trajectory 

From the results shown in Figure 10, it can be seen that when the energy consumed is below 5400 
Joules, the ratio between the maximum velocity reached by the vehicle and the energy consumed 
while running the trajectory is practically linear, and for higher values it remains stable. That is, 
large energy inputs do not lead to increases in speed. This behavior is associated with the 
limitations in the dynamic behavior of the vehicle, both for the limitations of the engine and for 
adhesion of the tires. 
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Figure 11. Power associated with the rear wheels for the fastest path (solid line) and for the 

slowest (dashed line), versus time 

In the modeled vehicle, braking is allowed on all 4 wheels, with the front train tires braking more, 
while the traction is rear and thus the energy contribution is made only by the rear tires. It can be 
seen in Figure 11 that for the fastest path (solid line) the rear wheels brake (negative values in the 
power curve), leading to energy dissipation, while in the slowest case (dashed line) the power 
associated with the rear wheels is positive except for the last moments. In the case of the slowest 
trajectory the energy dissipation in the brakes is very low (24.34 Joules), so the energy is 
dissipated basically by rolling. 

  
Figure 12. Distance traveled by the car-like 

robot against the energy consumed  
 

Figure 13. Distance traveled by the car-like 
robot versus the time taken to run the 

trajectory 
 

The results shown in Figures 12 and 13 have a large dispersion, from which we can deduce that 
the distance traveled by the robot is influenced by factors other than the energy consumed. In 
addition, it should be noted that the difference between the longest and the shortest trajectory is 
less than 6 meters, which is 7.8% of the maximum distance. 
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Figure 14. a) Trajectory with 5824 Joules consumed; b) Trajectory with 5874 Joules consumed 

Figure 14 shows two trajectories with very different paths but a similar energy consumption; in 
case a) the distance traveled is 77.03 m and in case b), 71.62 m. 

 

6. Conclusions 

A main target of the paper is to look for patterns and relationships between the energy consumed 
by the car-like robot and the main operating parameters in order to optimize and reduce energy 
consumption. 

From the 101 examples whose results are presented in section 5, a series of characteristics can be 
deduced regarding the behavior of the car-like robot as a function of the energy consumed, which 
makes it possible to establish a target energy consumption capable of improving the performance 
of the robot’s work. 

The following characteristics associated with the energy consumption of the robot can be 
highlighted: 

• Very high energy consumption has little influence on the running times and the maximum 
velocities reached in the trajectories, but it does imply a significant increase in energy 
dissipation and it also means high expenses. 

• Very low energy consumption has a great influence on the time needed to carry out the 
trajectories. 

• The distances traveled by the robot have maximum differences of less than 8% of the 
maximum distance, but they are not dependent exclusively on the energy or the running time 
of the trajectory. 

Working in a controlled industrial environment, mainly with regard to the adherence of the robot’s 
tires that would allow it to maintain stable limits for the dynamic performance, a maximum 
profitability energy consumption restriction could be established by weighing the energy cost 
against the processing time. 
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