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PRODUCT FACTORABILITY OF INTEGRAL BILINEAR

OPERATORS ON BANACH FUNCTION SPACES

E. ERDOĞAN AND E. A. SÁNCHEZ PÉREZ∗

Abstract. This paper deals with bilinear operators acting in pairs of Ba-
nach function spaces that factor through the pointwise product. We find
similar situations in different contexts of the functional analysis, including ab-
stract vector lattices —orthosymmetric maps—, C∗-algebras —zero product
preserving operators—, and classical and harmonic analysis —integral bilin-
ear operators—. Bringing together the ideas of these areas, we show new
factorization theorems and characterizations by means of norm inequalities.
The objective of the paper is to apply these tools to provide new descriptions
of some classes of bilinear integral operators, and to obtain integral repre-
sentations for abstract classes of bilinear maps satisfying certain domination
properties.

1. Introduction

A particular class of bilinear operators that play a fundamental role in Func-
tional Analysis is the one defined by what we can call, broadly speaking, a product.
We are thinking of for example, the internal product of a Banach algebra, but
also on the pointwise product acting in a couple defined by a Banach function
space and its Köthe dual as an L1-valued bilinear map.

Consider a bilinear operator acting in a couple of Banach spaces in which a
product is defined. If the bilinear map factors through such a product, some
of the good properties of the factorization operator are preserved, and so we
can use them for the analysis of the bilinear map. This general philosophy —
factorization of maps— is one of the main techniques that inspires classical and
current developments in mathematical analysis. The first aim of the present paper
is to develop the main results on factorization of bilinear maps acting in couples
of Banach function spaces through the pointwise product (µ-a.e). The second
objective, to apply these results for the study of integral bilinear operators, a
topic of current interest.

Concretely, in this paper we present a factorization theorem for bilinear con-
tinuous operators through a product map. It is given in terms of a summability
condition, showing that this property also concerns zero product preserving bilin-
ear maps. These are bilinear maps acting in a couple of Banach spaces in which
a product is defined, and are zero valued in those couples of elements whose
products are equal to zero. In a second step, we center our attention in the
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case of bilinear maps acting in couples of Banach function spaces that are zero
product preserving with respect to the µ-a.e. pointwise product. We follow with
an analysis of the main properties of these bilinear maps, including lattice type
geometric properties and compactness. Finally, we adapt and apply our results
to the case of some particular classes of integral bilinear operators.

Let us give now some information on the concept of zero product preserving
bilinear operator. We must point out that this is a notion of transversal nature,
affecting several branches of the theory of Banach spaces and the operator the-
ory. We can find it —with different names— in several settings involving bilinear
operators: for example, in the theory of Banach lattices, and in Fourier analy-
sis. Classical operators acting in vector lattices that send disjoint elements to
disjoint elements were introduced with the names disjointness preserving maps
or separating maps; the notion was also carried to the framework of the function
algebras (see [1, 8]) .

The notion of zero product preserving bilinear operator has been studied for
bilinear maps φ : A × A → B acting in the Cartesian product of a Banach
algebra A; φ is zero product preserving if ab = 0 implies φ(a, b) = 0 for a, b ∈
A. In this context, we find that these maps are closely related with the so
called separating maps. Indeed, for a separating map S : A → B —that is a
linear operator such that S(a)S(b) = 0 if ab = 0—, we can define the bilinear
map φ(a, b) = S(a)S(b), which is clearly a zero product preserving bilinear map.
These bilinear operators have been studied by some authors searching a good
representation for them by means of linear operators. Due to the nice properties
of the algebraic multiplication in a Banach algebra, a zero product preserving
map can be factored through the product operator; we can find a lot of recently
published papers regarding linear factorization of zero product preserving maps
in the context of Banach algebras (see for example [3, 4, 5, 10, 17, 19]). For
instance, Alaminos et al showed that for some Banach algebras including the
unital and C∗- algebras, every zero product preseving bilinear operator can be
factored through the algebraic multiplication composed with a linear map (see
[3, 4, 5]).

On the other hand, in the context of abstract linear lattices Fremlin defined a
new Archimedean vector lattice by means of a tensor product construction. In
this context, the “product” of two Archimedean lattices is called the Archimedean
vector lattice tensor product, or simply the Fremlin tensor product. Originally,
he proved that every positive bilinear map can be uniquely factored through the
tensor product of the involved spaces if the range space is a uniformly complete
vector lattice [19]. Factorization for zero product preserving bilinear maps de-
fined on vector lattices was considered by Buskes and van Rooij [10]. The term
orthosymmetric is used for these operators, which in the case of Banach function
spaces can be identified with the zero product preserving bilinear maps. Recall
that in this case, two functions are disjoint if and only if their (µ-a.e.) pointwise
product equals zero. An order bounded bilinear map T : E×E → F is called or-
thosymmetric if T (f, g) = 0 for the couples f, g ∈ E such that f ∧ g = 0 where E
and F are the vector lattices, and they showed that if E and F are Archimedean
then any orthosymmetric positive –that is, T (x, y) ≥ 0 if x ≥ 0, y ≥ 0– bilinear
map satisfies the symmetry condition T (x, y) = T (y, x). As a consequence of
this theorem, it is seen that a bimorphism B : E × E → F is symmetric if and
only if it is orthosymmetric. The same authors gave the connection between the
orthosymmetric bilinear operators and squares and powers of vector lattices (see
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[11]). Moreover, the commutators of orthosymmetric bilinear maps were recently
investigated by Ben Amor, who gave a more general class of orthosymmetric
bilinear maps related to the symmetry condition by defining the concept of rela-
tively uniform continuity [6]. Finally, let us report that Erdoğan et al have given
a factorization theorem for zero product preserving maps defined on the Carte-
sian product of Hilbert spaces through the convolution product [17]. For detailed
information on the orthosymmetric operators we refer the interested reader to
[9].

In the first part of the present paper we show a factorization theorem for
Banach-space-valued bilinear operators B : X × Y → Z acting in couples of
Banach spaces through a particular product ~ : X × Y → G. The first basic
result of the paper states that such kind of factorization can be characterized by
a summability condition associated to the product (Lemma 2.4). Our main tech-
nical theorem (Theorem 2.7) establishes that if we consider bilinear maps acting
in Banach function spaces, and the pointwise product, this factorization gives
the class of symmetric bilinear operators, that coincide with the so called zero
product preserving operators –maps that are zero valued for couples of functions
whose pointwise product is zero–. These results are presented in Section 2, in
which we also provide some properties of this class of operators —more specific
factorizations involving geometric requirements, Calderón spaces, compactness
properties, among others—. In Section 3 we face the problem of enriching the
factorization schemes for zero product preserving maps under some lattice geo-
metric requirements expressed by domination inequalities. We will give a com-
plete characterization of those bilinear maps that can be written as integrals with
respect to a vector measure, or even as integrals with a Bochner density, by means
of simple q-concavity-type inequality, obtaining in this way new representation
formulas. Finally, in Section 4 we present an exhaustive analysis of what can be
said when the definition of an integral bilinear operator involves the pointwise
product composed with measurable transformations, starting with the general-
ized Hilbert bilinear transform as example. We show that this may provide a
general new framework for understanding classical integral bilinear operators.

We will use standard notation and notions from Banach space theory. The
letters X,Y, Z describe the Banach spaces over the scalar field K = C or R and N
denotes the natural numbers. BX and X∗ denote the unit ball and the topological
dual of a Banach space X, respectively. We write χA to denote the characteristic
function of a given set A. The space of all bounded linear and bilinear operators
will be denoted by L(X,Y ) and B(X × Y,Z), respectively.

Let (Ω,Σ, µ) be a complete σ-finite measure space. L0(µ) denotes the space
of (equivalence classes of) all µ-measurable functions on Ω. Lp(µ) (p ≥ 1) is the
Banach space of functions for which the p-th power of the absolute value is µ-
integrable equipped with its standard norm ‖f‖ = (

∫
Ω |f |

pdµ)1/p. For a positive
real number p, `p(Γ) denotes the space of absolutely p-summable sequences.

A Banach space (X(µ), ‖ ·‖) of (equivalence classes of) µ-measurable functions
is a Banach function space —sometimes called also a Köthe function space—
(briefly B.f.s) over µ if

(i) if g ∈ X(µ) and f is a measurable function such that |f | ≤ |g| µ−a.e.,
then f ∈ X(µ) and ‖f‖ ≤ ‖g‖,

(ii) for all A ∈ Σ with positive measure there exists B ∈ Σ such that B ⊂
A, µ(B) > 0 and χB ∈ X(µ).
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The assumption (ii) is equivalent to saturation property, that is, there is no A ∈ Σ
with µ(A) > 0 such that fχA = 0 a.e. for all f ∈ X(µ). Since the measure space
is assumed to be σ-finite, this is also equivalent to X(µ) having a weak unit, i.e.
a function g ∈ X(µ) such that g > 0 a.e. (see [22]).

We will shortly write X instead of X(µ) if the measure is clear in the context.
A Banach function space X(µ) is order continuous (briefly o.c.) if decreasing

positive sequences converging µ-a.e. to 0 converge also in the norm. It is known
that the set of simple functions is dense in an order continuous Banach function
space [22, Lemma 3]. The Köthe dual, also called associate space of a Banach
function space X is the Banach function space defined by

X ′ = {f ∈ L0(µ) :

∫
Ω
|fg|dµ <∞ for all g ∈ X}.

It coincides with the topological dual X∗ if and only if the Banach function space
X is order continuous (see [26, Section 1.b]). A Banach function space X(µ) has
the Fatou property if any increasing positive sequence {fn}n converging µ-a.e.
to a measurable function f with supn∈N ‖fn‖X(µ) < ∞ implies f ∈ X(µ) and
‖fn‖X(µ) ↗ ‖f‖X(µ). The Köthe dual X ′ of any Banach function space X has
the Fatou property.

We will write E(p) (p ≥ 1) for the p-convexification of the Banach lattice E in
the sense of [26, Ch. 1.d] (see also the equivalent notion of 1/p-th power in [29,
Ch.2] for a more explicit description). Recall that, when E is a Banach function
space, this is the space defined by the functions f that satisfy |f |p ∈ E. In this

case, E(p) is also a Banach function space with the norm ‖f‖E(p) = ‖|f |p‖1/pE , for
f ∈ E (see [28, Prop.1]).

For a couple of Banach function spaces (E0, E1) and a concave, positively
homogeneous function ϕ : [0,∞) × [0,∞) → [0,∞) such that ϕ(a, b) = 0 ⇔
a = b = 0, the Calderón- Lozanovskii space ϕ(E0, E1) generated by the couple
(E0, E1) and the function ϕ is defined as all z ∈ L0(Ω) such that for some
a ∈ E0, b ∈ E1 with ‖a‖E0 ≤ 1, ‖b‖E1 ≤ 1 and for α > 0 we have |z| ≤ αϕ(|a|, |b|)
a.e. on Ω. The norm of an element z ∈ ϕ(E0, E1) is the infimum of α satisfying the
above inequality. If the power function ϕθ(a, b) = aθb1−θ(0 < θ < 1), ϕθ(E0, E1)

is the Calderón space Eθ0E
1−θ
1 (see [13]).

A continuous linear operator between Banach spaces T : X → Y is said to be
(p, q)-summing (T ∈ Πp,q(X,Y )) if there is a constant k > 0 such that for every
x1, ..., xn ∈ X and for all positive integers n,( n∑

i=1

∥∥T (xi)
∥∥p
Y

)1/p
≤ k sup

x′∈BX′

( n∑
i=1

|〈xi, x′〉|q
)1/q

.

We say that an operator T : X → Y is p summing if it is (p, p)-summing.

2. Product factorability of bilinear maps

Let us fix some basic concepts and terminology regarding what can be un-
derstood as the general setting for the factorization of bilinear maps through a
particular bilinear operator ~ that we call a product. In this paper, this operator
~ will be fixed as acting as the pointwise product in a couple of Banach function
spaces that will be required to be compatible, as we will explain later. However,
the fundamental factorization is satisfied for any product having the following
property.
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Let X and Y be Banach spaces. Consider a Banach space valued bilinear map
~ : X × Y → Z, (x, y)  ~(x, y) = x ~ y. We will call it a norming preserving
product (n.p. product for short) if the inclusion BZ ⊆ ~(BX × BY ) holds, and
we have that

‖~ (x, y)‖Z = inf{‖x′‖X‖y′‖Y : x′ ∈ X, y′ ∈ Y, ~(x, y) = ~(x′, y′)},

for every (x, y) ∈ X × Y .

Remark 2.1. The fact that the pointwise product X � Y of Banach function
spaces X and Y is an n.p. product is related to the Fatou property of the spaces
involved. In the case that

G = X � Y = {f · g : f ∈ X, g ∈ Y }

is a Banach function space with the norm

‖h‖X�Y = inf{‖f‖X‖g‖Y : h = fg, f ∈ X, g ∈ Y },

we have that the Fatou property of both X and Y implies the Fatou property
of G (see [23, Corollary 1] or [32, Theorem 2.3]). By Theorem 2.4 in [32], we
have that for all h ∈ G there are f ∈ X and g ∈ Y such that h = f · g and
‖h‖G = ‖f‖X ‖g‖Y , what means that BG ⊆ �(BX ×BY ).

(Notation: we will use the symbol � for the pointwise product of Banach func-
tion spaces in those cases in which we want to remark its nature as n.p. product.
In other case, we will simply use the usual notation X · Y .)

Example 2.2. Let us give a canonical example. The pointwise product � :
`p × `q → `r, ((xn), (yn))  xn · yn, where 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1/r, is an
n.p. product (see [23, Example 1] and the references therein).

As in the example above, the pointwise product defines a norming preserving
product in several couples of Banach spaces in which a “pointwise product” makes
sense. For more examples of n.p. products, including the Lorentz and Cesaro
function spaces, see the references [7, 12, 23, 32].

Now, we state our fundamental tools. Using the terminology coming from
Banach algebras, we say that a bilinear map B : X × Y → Z is zero product
preserving with respect to the n.p. product ~ if

x~ y = 0 implies B(x, y) = 0

for all (x, y) ∈ X × Y .

Definition 2.3. Let X,Y, Z be Banach spaces. We will say that a bilinear
continuous operator B : X × Y → Z is ~-factorable through an n.p. product
~ : X × Y → G if it can be written as B = T ◦ ~ for a linear bounded map
T : G→ Z.

Lemma 2.4. Consider a bilinear continuous operator B : X×Y → Z. The map
B is ~-factorable through the n.p. product ~ if and only if there exists a constant
k > 0 such that for every finite set of vectors (xi)

n
i=1 ∈ X and (yi)

n
i=1 ∈ Y , the

following inequality holds;∥∥ n∑
i=1

B(xi, yi)
∥∥
Z
≤ k

∥∥ n∑
i=1

xi ~ yi
∥∥
G
. (1)
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In this case, the following triangular diagram commutes;

X × Y B //

~
��

Z.

G
T

;;wwwwwwwwww

Proof. If the map B is ~-factorable with the norming preserving product ~, then
it can be factored through a linear continuous operator T such that B = T ◦ ~
by the definition of ~-factorability. Since T is linear and continuous, it implies
the required inequality as follows.∥∥ n∑

i=1

B(xi, yi)
∥∥
Z

=
∥∥ n∑
i=1

T ◦~(xi, yi)
∥∥
Z

=
∥∥T (

n∑
i=1

xi ~ yi)
∥∥
Z
≤ k

∥∥ n∑
i=1

xi ~ yi
∥∥
G
.

For the converse, consider the map T : X ~ Y → Z defined by

T
( n∑
i=1

xi ~ yi
)

=
n∑
i=1

B(xi, yi) = B′
( n∑
i=1

xi ⊗ yi
)

where
∑n

i=1 xi⊗ yi is a tensor in the projective tensor product space X⊗̂πY and
B′ denotes linearization of B from X⊗̂πY to Z (see [30]).

The map T is a well-defined and linear operator. Indeed, T is linear since
it is defined by the linear map B′. To show that it is well-defined, consider∑n

i=1 xi ~ yi = 0. Then by the inequality (1), we get that ‖T (
∑n

i=1 xi ~ yi)‖ =
‖
∑n

i=1B(xi, yi)‖Z = 0. It follows that T (
∑n

i=1 xi ~ yi) = 0 and the map T is
well defined. Again from the inequality (1), it is easily seen that the linear map
T is bounded. This completes the proof. �

From now on, we will center our attention in the case when the product ~
is the pointwise product among Banach function spaces �. Notice that this
product is commutative and associative. Together with the specific structure of
these spaces, this will allow to improve the basic characterization of ~-factorable
operators given by Lemma 2.4.

Let X(µ) and Y (µ) be Banach function spaces over the measure µ. We will
say that they are compatible —or that they form a compatible couple— if the
product space

X(µ) · Y (µ) := {f · g ∈ L0(µ) : f ∈ X(µ), g ∈ Y (µ)}

is a Banach function space again when it is endowed with the norm ‖h‖ =
inf{‖f‖ ‖g‖ : f · g = h}, in case it is indeed a norm (see [12, 23, 32]).

Let us show now how Lemma 2.4 allows us to characterize the family of �-
factorable operators as the class of symmetric operators defined below. The
reader can find —versions of— this definition in different articles. We follow the
one given in [31].

Definition 2.5. Let X(µ), Y (µ), and Z(µ) be Banach function spaces over the
(σ-finite) measure µ. A continuous bilinear map B : X(µ) × Y (µ) → Z(µ)
is called symmetric if the equality B(χA, χC) = B(χA∩C , χA∪C) is satisfied for
every A,C ∈ Σ.
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Remark 2.6. It is clearly seen that a symmetric bilinear map B satisfies

B(χA, χC) = B(χC , χA) for every A,C ∈ Σ,

since

B(χA, χC) = B(χA∩C , χA∪C) = B(χC∩A, χC∪A) = B(χC , χA).

The inverse is not true in general. To show that consider the bilinear continuous
formB : L1(µ)×L1(µ)→ R defined byB(f, g) =

∫
fdµ·

∫
gdµ for all f, g ∈ L1(µ).

It holds the equality B(χA, χC) = B(χC , χA). Indeed, B(χA, χC) = µ(A)·µ(C) =
µ(C) · µ(A) = B(χC , χA) for all A, C ∈ Σ.

However, it does not satisfy the equality B(χA, χC) = B(χA∩C , χA∪C), since
in general B(χA, χC) = µ(A) ·µ(C) 6= µ(A∩C) ·µ(A∪C) = B(χA∩C , χA∪C). As
a result, this shows that Definition 2.5 is not equivalent to the usual symmetry
condition B(f, g) = B(g, f) for all f, g ∈ X, where B : X ×X → Z is a bilinear
continuous operator.

Theorem 2.7. Let (Ω,Σ, µ) be a σ−finite measure space and let X(µ), Y (µ) be
B.f.s. over µ such that simple functions are dense in both X(µ) and Y (µ). Let
B be a continuous bilinear map X(µ)× Y (µ) → E, where E is a Banach space.
Suppose that there is a Banach function space G(µ) such that the pointwise prod-
uct � : X(µ) × Y (µ) → G(µ) is an n.p. product. Then the following assertions
are equivalent.

(1) B is a symmetric operator.
(2) B is �-factorable, that is, there is a continuous linear operator R :

G(µ)→ E such that B = R ◦ �.
(3) There is K > 0 such that for all f1, ... , fn ∈ X(µ) and g1, ... , gn ∈ Y (µ)

∥∥ n∑
i=1

B(fi, gi)
∥∥
E
≤ K

∥∥ n∑
i=1

fi � gi
∥∥
G(µ)

. (2)

(4) The operator B is zero product preserving. That is, B(f, g) = 0 whenever
f � g = 0 for all f ∈ X(µ) and g ∈ Y (µ).

Proof. Let us assume that B : X(µ)×Y (µ)→ E is a symmetric operator. Thus,
we get B(χA, χC) = 0 whenever µ(A ∩ C) = 0.

Since Ω is σ−finite, then there exists a sequence {Ek}k∈N in Σ such that Ω =⋃∞
k=1Ek and µ(Ek) < ∞ for all k ∈ N. Let us define the sequence of increasing

sets Ym =
⋃m
k=1Ek. Consider a couple of simple functions f =

∑p
i=1 λiχAi

and g =
∑r

j=1 γjχCj , where (Ai) and (Cj) are sequences of pairwise disjoint
measurable sets. Definition of the simple functions gives rise to define a common
partition for each couple (f, g) of simple functions. Let us rewrite them by a
common partition f =

∑r
i=1 λiχDi and g =

∑r
j=1 γjχDj , where (Di) is sequence

of pairwise disjoint measurable sets.
By the properties of a characteristic function, the pointwise product of a simple

function f and χYm is obtained as f �χYm =
∑r

i=1 λiχDi�χYm =
∑r

i=1 λi(χDi�
χYm) =

∑r
i=1 λiχDi∩Ym . For every m ∈ N, let us define the bilinear operator

Bm : X(µ) × Y (µ) → E, Bm(f, g) = B(f � χYm , g � χYm). Then {Bm}m∈N
is a sequence of well-defined, continuous, bilinear maps. The symmetry and
bilinearity properties of the operator B gives the following equality with some set
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operations;

Bm(f, g) = B(f � χYm , g � χYm) = B(
r∑
i=1

λiχDi∩Ym ,
r∑
j=1

γjχDj∩Ym)

=
r∑
i=1

λiγiB(χDi∩Ym , χDi∩Ym) =
r∑
i=1

λiγi
[
B(χDi∩Ym , χYm)

]
= B(

r∑
i=1

λiγiχDi∩Ym , χYm) = B(f � g � χYm , χYm).

Thus, Bm(f, g) = B(f � g � χYm , χYm) holds for every couple of simple func-
tions.

Now let us show Bm(f, g) = B(f�g�χYm , χYm) holds for the elements of X(µ)
and Y (µ) which are not simple functions. By density, there are sequences {fn}
and {gn} of simple functions such that f = lim

n→∞
fn and g = lim

n→∞
gn. Applying

the separate continuity of both the bilinear map B and the product �, we obtain

Bm(f, g) = lim
n→∞

B(fn � χYm , gn � χYm)

= lim
n→∞

B(fn � gn � χYm , χYm)

= B( lim
n→∞

fn � lim
n→∞

gn � χYm , χYm)

= B(f � g � χYm , χYm)

holds. Therefore, we get that for every m ∈ N the bilinear operator Bm can be
written as Bm(f, g) = B(f � g � χYm , χYm) for all f ∈ X(µ), g ∈ Y (µ).

Now define the map Rm : G(µ) → E by Rm(h) = Bm(f, g) = B(f � g �
χYm , χYm) for every function h = f �g and every m ∈ N. {Rm}m∈N is a sequence
of well-defined continuous linear operators from G(µ) = X(µ)�Y (µ) to E. Since
it is easy to see that it is well-defined and linear, we only show the continuity.
By the continuity of B, and taking into account that � is an n.p. product, we
have that

sup
h∈BG(µ)

‖Rm(h)‖E = sup
(f,g)∈BX(µ)×BY (µ)

‖B(f � g � χYm , χYm)‖E <∞.

Indeed, note that the supremun over all the pairs (f, g), where the functions f
and g are in the corresponding unit balls, coincides with the supremum for all
functions h in the ball of G(µ) as a direct consequence of the definition of n.p.
product.

It follows that {Rm}m∈N is a sequence of bounded, linear operators. Moreover,
it is pointwise convergent. Indeed, for each f � g, the sequence {Rm(f � g)}m∈N
satisfies the following

lim
m→∞

Rm(f � g) = lim
m→∞

B(f � χYm , g � χYm)

= B( lim
m→∞

f � χYm , lim
m→∞

g � χYm)

= B(f, g).

Consequently, we have the pointwise limit operator R := lim
m→∞

Rm. It is clear

that this operator is well-defined and linear. By the Uniform Boundedness the-
orem, it is obtained that R is a continuous operator. This shows that there is a
linear continuous operator R : G(µ) → E such that R(f � g) = B(f, g) for all
f ∈ X(µ), g ∈ Y (µ).
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Moreover, it is independent of the representation of f � g. Assume that h =
f1 � g1 = f2 � g2. Then, R(f1 � g1) − R(f2 � g2) = B(f1, g1) − B(f2, g2) = 0.
Therefore, we obtain the required factorization for a symmetric operator. The
equivalence of (2) and (3) is proved in Lemma 2.4, and it is obvious that (3)
implies (4).

Finally, it only remains to show that for every A,C ∈ Σ, the symmetry condi-
tion B(χA, χC) = B(χA∩C , χA∪C) holds when the operator is zero product pre-
serving. The characteristic functions corresponding to the sets A,C ∈ Σ satisfy
χA�χC = χA∩C . It follows that χA�χC = 0 µ-a.e. if and only if µ(A∩C) = 0.
By considering the assumption (4), we conclude that B(χA, χC) = 0 whenever
µ(A ∩ C) = 0. It is already trivial that B(χA∩C , χA∪C) = 0 if µ(A ∩ C) = 0.
Thus, we get that the symmetry condition holds for disjoint sets. To see that
it is satisfied for arbitrary sets, consider M,N ∈ Σ such that µ(M ∩ N) 6= 0.
By the fact that B(χA, χC) = 0 whenever µ(A ∩ C) = 0, the following equality
holds for the sets M,N ∈ Σ by set operations and properties of the characteristic
functions;

B(χM , χN ) = B(χ(M∩Nc)∪(M∩N), χN )

= B(χ(M∩Nc) + χ(M∩N) − χ(M∩Nc)∩(M∩N), χN )

= B(χ(M∩N), χN ) = B(χ(M∩N), χ(N∩Mc)∪(N∩M))

= B(χ(M∩N), χ(N∩M)) = B(χ(M∩N), χ(N∪M))

Thus, the equality B(χM , χN ) = B(χ(M∩N), χ(M∪N)) is obtained for arbitrary
sets M,N ∈ Σ and it follows that B is a symmetric operator. This completes the
proof. �

Remark 2.8. If we have a finite measure space (Ω,Σ, µ), the factorization is
obtained easily. Indeed, χΩ ∈ X(µ) and χΩ ∈ Y (µ) since the measure µ is finite.
We can obtain in this case an equivalent definition of symmetric operators, that
is, the map B is symmetric if and only if B(χA, χC) = B(χA∩C , χΩ) for all
A, C ∈ Σ. Using the density as in the proof of the Theorem 2.7, we get that for a
symmetric operator holds the equality B(f, g) = B(fg, χΩ) for all f ∈ X(µ), g ∈
Y (µ). If we define a map T : G(µ) → E, T (h) = T (f � g) = B(f � g, χΩ), we
get a bounded linear continuous operator T such that B := T ◦ �.

Remark 2.9. The abstract requirement on the space G(µ) in Theorem 2.7 is
clearly fulfilled when G(µ) is the product space of X(µ) and Y (µ), when they form
a compatible couple. This can be easily checked just by considering its definition.
Order continuity of this space will be relevant through the paper, in particular be-
cause it implies density of simple functions. When a product space is order contin-
uous in terms of the properties of the factor spaces is nowadays well-known. The
reader can find complete characterizations or sufficient conditions for this prop-
erty to hold in several recent papers. For example, the reader can find in Section 5
of [15] (Corollary 5.3) the following result: if X(µ) and Y (µ) define a compatible
couple of order continuous B.f.s. over a finite measure µ such that X(µ) ⊆ Y (µ)′,
then the product X(µ) ·Y (µ) is order continuous. Another result in this direction

is the following. It is known that X(µ) ·Y (µ) = (X(µ)1/2Y (µ)1/2)(1/2) for the Ba-

nach function spaces X(µ) and Y (µ), where X(µ)1/2Y (µ)1/2 is the interpolation
lattice, also called the Calderón space [23, Theorem 1(iv)]. Then X(µ) · Y (µ) is
order continuous if at least one of the spaces X(µ) and Y (µ) is order continuous
[32].
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A necessary and sufficient condition for the order continuity of the Banach
function space X(µ) · Y (µ) can be given by means of the notion of jointly order
discontinuity. Let Xa denote the subspace of all order continuous elements of
the Banach function space X, that is, the space of the elements f ∈ X such
that for any sequence (fn) ⊂ X satisfying 0 ≤ fn ≤ |f | and fn → 0 µ−a.e.
one has ‖f‖X → 0. A couple of Köthe spaces (X,Y ) is said to be jointly order
discontinuous if there are elements f ∈ X \ Xa, g ∈ Y \ Ya and a sequence of
measurable sets An ↘ ∅ such that for each sequence (Bn) ∈ Σ with Bn ⊂ An for
all n ∈ N there are a number a > 0 and a subsequence (nk) ∈ N such that either

‖fχBnk‖X ≥ a and ‖gχBnk‖Y ≥ a for all k ∈ N,
or

‖fχB′nk‖X ≥ a and ‖gχB′nk‖Y ≥ a for all k ∈ N,
where B′n = An \Bn (see [24, Definition 12]). Corollary 1 in the paper [23] states
that the Banach function space X(µ) · Y (µ) is order continuous if and only if
X(µ) and Y (µ) are not jointly order discontinuous.

2.1. Factorization through the r-convexification of Banach function spaces.
For the aim of simplicity, in this subsection and the next one we will use the no-
tation E for a Banach function space over a fixed measure µ.

Remark 2.10. Let us consider the bilinear operator defined by the (µ-a.e.) point-

wise product � : E(p) × E(q) → E(r), (f, g)  f · g, where
1

p
+

1

q
=

1

r
for

1 ≤ r < p, q < ∞. This bilinear map is a norming preserving product (cf. [23,
Example 1], [28, Lemma 1] or [29, Lemma 2.21(i)]).

Note that if we consider the Banach function space E = L1(µ) we obtain that
the pointwise product is an n.p. product from Lp(µ)×Lq(µ) to Lr(µ). It follows

immediately by the definition that the p-convexification E(p) (0 < p < ∞) of E
is order continuous, if E is. Therefore, in this case simple functions are dense in
E(p), 1 ≤ p <∞. We immediately obtain the following corollary.

Corollary 2.11. Let E be an order continuous Banach function space. Let 1 ≤
r < p, q <∞, where

1

p
+

1

q
=

1

r
. If B : E(p)×E(q) → Y is a Banach space valued

bilinear continuous operator, the following statements imply each other.

(i) The operator B is symmetric.
(ii) The bilinear operator B is �-factorable, that is, there exists a bounded

operator T : E(r) → Y such that B := T ◦ �.
(iii) The operator B is zero product preserving.

2.2. Factorization through the duality map acting in Banach function
spaces. Let E be an order continuous Banach function space over µ with the
Fatou property and consider its Köthe dual space E′. In this section we will show
the case when we consider the pointwise product � : E ×E′ → L1(µ) associated
to the duality map, as product. Several well-known results allow to assert that
it is in fact an n.p. product.

Remark 2.12. Recall that the well-known factorization theorem of Lozanovskii
states that for any Banach function space E having the Fatou property and its
associate space E′, the product space E�E′ := E ·E′ is a product Banach function
space that is isometrically equal to L1(µ) (see [27], also [20]). In other words, E
and E′ always form a compatible couple.
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By Theorem 2.7 we immediately obtain the following.

Corollary 2.13. Let the set of simple functions be dense in both E and its
associate space E′, and assume that E has the Fatou property and Y is a Banach
space. Then, for any bilinear continuous operator B : E × E′ → Y the following
statements are equivalent.

(i) The bilinear operator B : E × E′ → Y is �-factorable.
(ii) The operator B is zero product preserving, that is, for each pair of ele-

ments f ∈ E and h ∈ E′ we have that

〈f, h〉 =

∫
Ω
f h dµ = 0 ⇒ B(f, h) = 0.

(iii) The operator B is symmetric.

Unifying the classical setting for the relation among the Calderón construction
and the pointwise product, Kolwicz et al have considered the product spaces
with the Calderón construction in [23]. For example, for a couple of Banach

function spaces X(µ) and Y (µ) the following isometric equalities hold: X(µ)(p)�
Y (µ)(p′) = X(µ)1/pY (µ)1/p′ for 1 < p < ∞ and 1

p + 1
p′ = 1, X(µ)(p) � Y (µ)(p) =

(X(µ)� Y (µ))(p) for 0 < p <∞, and X(µ)� Y (µ) = (X(µ)1/2Y (µ)1/2)(1/2) (see
[23, Theorem 1]). Thus, we get the following

Corollary 2.14. Let X(µ) and Y (µ) be order continuous Banach function spaces.
Then

i) If 1 < p < ∞ and 1
p + 1

p′ = 1, the Banach space valued symmetric

bilinear continuous operator B : X(µ)(p) × Y (µ)(p′) → Z factors through

a linear operator T : X(µ)1/pY (µ)1/p′ → Z, where X(µ)1/pY (µ)1/p′ is the
corresponding Calderón space.

ii) If X(µ)(p) and Y (µ)(p) form a compatible couple, then every symmetric

bilinear continuous operator B : X(µ)(p)×Y (µ)(p) → Z factors through a

linear operator T : (X(µ)� Y (µ))(p) → Z, where 0 < p <∞.
iii) If X(µ) and Y (µ) form a compatible couple, then every symmetric bilin-

ear continuous operator B : X(µ) × Y (µ) → Z factors through a linear
operator

T : (X(µ)1/2Y (µ)1/2)(1/2) → Z.

Corollary 2.15. Consider order continuous Banach function spaces E, F and G
over the same measure space µ. Suppose that E and F have the Fatou property, G′

is order continuous, and E�F = G. Then if the bilinear continuous operator B :
E × F → F is symmetric with factorization operator TB, the bilinear continuous
operator A : E ×G′ → G′ given by A = T ′B ◦ � is symmetric too. Conversely, if
a bilinear continuous operator A : E × G′ → G′ is symmetric with factorization
operator TA, then the operator B : E × F → F given by B = T ′A ◦ � is also
symmetric.

Proof. Assume that B is a symmetric operator. Then there is a linear operator
TB : G→ F defined by B(e, f) = T (e�f), e ∈ E, f ∈ F . The linear operator TB
has an adjoint operator T ′B that can be defined having the image in G′, due to the
order continuity of G, and so T ′B : F ′ → G′ is defined by 〈g, T ′B(f ′)〉 = 〈TB(g), f ′〉.
Theorem 3.7 in [32] states that if E, F have the Fatou property and E �F = G,
then E � G′ = F ′ holds, and so F ′ is also a product Banach function space.
Thus, we can write f ′ = e1 � g′ for every f ′ ∈ F ′, where e1 ∈ E and g′ ∈ G′.
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It is clear that for the linear adjoint operator T ′B there is a symmetric operator
A : E × G′ → G′ defined by T ′B(f ′) = T ′B(e1 � g′) = A(e1, g

′). Moreover by
the definition of the adjoint operator we obtain the symmetric operator A such
that A(e1, g

′)g = 〈TB(g), e1 � g′〉. Conversely, consider a symmetric operator
A : E ×G′ → G′. Since the space G′ is order continuous, it contains the simple
functions densely. Thus, it allows us to get a factorization for the bilinear operator
A such that TA : F ′ → G′. Therefore, by using adequately the duality properties
of the spaces F, G we obtain a well-defined adjoint operator T ′A : G→ F and we
conclude that the operator B = T ′A ◦ � is also a symmetric operator. �

Corollary 2.16. Suppose that the order continuous Banach function spaces E, F, G
defined over the same measure space have the Fatou property, and E forms a com-
patible couple with both F and G such that E�F = E�G isomorphically. Then,
a bilinear continuous operator B1 : E × F → Y is symmetric if and only if there
is a symmetric bilinear continuous operator B2 : E×G→ Y and an isomorphism
φ : F → G such that B2(·, ·) = B1(·, φ(·)).

Proof. Let us assume that B1 is symmetric, then it has a linear factorization T1 :
E�F → Y such that B1(e, g) = T1(e�g). Since E�F = E�G isomorphically, it
follows that F = G isomorphically (see [32, Corollary 2.6]). Therefore, we obtain
a bilinear operator B2 : E ×G→ Y defined by B2(e, g) = T1 ◦ � ◦ (Id× φ)(e, g),
where Id denotes the identity operator defined on E and the φ is the isomorphism
between the function spaces F and G. Conversely, assume that B2 is symmetric.
Then, there is a linear operator T2 : E �G→ Y such that T2(e� g) = B2(e, g).
Define the map B1(e, f) = T2 ◦�◦ (Id−1×φ−1)(e, f) = B2(e, g). It is easily seen
that this is a bilinear map and symmetric. �

2.3. Compactness and weak compactness of symmetric operators. Let
us show now some compactness properties of symmetric maps. Recall that we
say that a continuous bilinear map is (weakly) compact if it maps the unit ball
to a relatively (weakly) compact set. Let us consider an n.p. product defined
from X(µ)×Y (µ) to G(µ) and a symmetric map B : X(µ)×Y (µ)→ Z. Assume
that simple functions are dense in both X(µ) and Y (µ). It is easily seen that
the symmetric map B is (weakly) compact if and only if the linear operator T
appearing in its factorization is (weakly) compact, due to the definition of the
product.

Corollary 2.17. If 1 < r < p, q < ∞ and
1

p
+

1

q
=

1

r
, each symmetric bilinear

continuous operator B : Lp(µ)× Lq(µ)→ Z is weakly compact.

Proof. By Corollary 2.11 B factors through a linear factorization operator T :
Lr(µ) → Z. Since Lr(µ) is reflexive for 1 < r < ∞, the linear operator T is
weakly compact. Therefore, the map B is weakly compact. �

Corollary 2.18. Let X(µ) and Y (µ) be an order continuous compatible couple
with the Fatou property, and assume that (X(µ) · Y (µ))′ is order continuous.
Then, any symmetric bilinear continuous operator B : X(µ) × Y (µ) → Z is
weakly compact.

Proof. Since both X(µ) and Y (µ) have order continous norm and Fatou property,
the Banach function space X(µ) · Y (µ) has order continous norm and Fatou
property, too (see [23, Corollary 1]). Then, direct dual spaces computations
show that the assumption on the product X(µ) · Y (µ) implies that it is reflexive
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as a Banach space. By the symmetry of B, it factors through a reflexive space,
and so it is weakly compact. �

For a range space Z with the Schur property this result can be improved.
Recall that a Banach space has Schur property if weak and norm convergent
sequences coincide in it: the sequence space `1 has this property.

Corollary 2.19. Under the assumptions on the compatible couple defined by
X(µ) and Y (µ) given in Corollary 2.18, we have that every symmetric bilinear
continuous map B : X(µ)× Y (µ)→ Z is compact if Z has the Schur property.

The following theorem is a consequence of some well-known results on inte-
gral representation of weakly compact linear operators defined on L1(µ) and our
previous arguments.

Theorem 2.20. Let (Ω,Σ, µ) be a finite measure space. Assume that the set of
simple functions is dense in both E(µ) and its associate space E′(µ) and E has the
Fatou property. A symmetric bilinear continuous operator B : E(µ)×E′(µ)→ Z
is weakly compact if and only if it has a representation as B(f, g) =

∫
Ω fghdµ

for all f ∈ E(µ), g ∈ E′(µ), where h is an essentially bounded Z-valued Bochner
integrable function defined on µ with a µ−essentially relatively weakly compact
range.

Proof. The symmetric map B has a linear factorization through L1(µ), that is,
there is an operator T such that B(f, g) = T (f · g), T : L1(µ)→ Z. On the other
hand, B is weakly compact if and only if T is weakly compact by the definition of
the product acting in B.f.s. Dunford-Pettis-Philips’ theorem states that a linear
operator T defined on L1(µ) to Z is weakly compact if and only if there exists an
essentially bounded Z-valued Bochner integrable function h defined on µ with a
µ−essentially relatively weakly compact range such that T (k) =

∫
Ω khdµ for all

k ∈ L1(µ) (see [18, Ch. III, Theorem 2.12]). Since T (k) = T (f · g) = B(f, g),
we get B(f, g) =

∫
Ω fghdµ for all f ∈ E(µ), g ∈ E′(µ). This gives the desired

representation. �

Recall now that a linear continuous operator T between Banach lattices is
called positive if T (x) ≥ 0 whenever x ≥ 0. Let us assume that the space Z is
also a Banach lattice. We will say that a bilinear operator B : X(µ)×Y (µ)→ Z
is positive product preserving if B(f, g) ≥ 0 whenever f �g ≥ 0 for f ∈ X(µ) and
g ∈ Y (µ). It is clear that a symmetric bilinear map B : X(µ)×Y (µ)→ Z with an
order continuous compatible couple X(µ), Y (µ) is positive product preserving if
and only if its factorization operator T : G(µ)→ Z defined by T (f�g) = B(f, g)
is a positive linear operator.

Corollary 2.21. Let X(µ) and Y (µ) be a compatible couple such that both are
order continuous. A symmetric positive product preserving bilinear map B :
X(µ)×Y (µ)→ `1 is weakly compact –hence, compact– if and only if the associate
space (X(µ) · Y (µ))′ of X(µ) · Y (µ) has order continuous norm.

Proof. By Theorem 2.7, a symmetric map B is weakly compact positive product
preserving if and only if it has a weakly compact positive linear factorization
operator T : X(µ) · Y (µ)→ `1 defined by T (f � g) = B(f, g). It is known that a
positive linear operator from a Banach function space to `1 is weakly compact if
and only if the associate space of its domain has order continuous norm (see [25,
pp. 275]). Therefore, T is weakly compact and compact by the Schur property
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of `1 if and only if the associate space (X(µ) · Y (µ))′ has order continuous norm,
what implies that B is compact also. �

For example, if 1 < r < p, q < ∞ and
1

p
+

1

q
=

1

r
, every symmetric positive

product preserving bilinear map B : Lp(µ)× Lq(µ)→ `1 is compact. Finally, we
show another result for C(K)-type spaces. Recall that a Banach lattice Z has a
strong order unit if there is an element e in Z with the property that for every
z ∈ Z there exists a real number α such that |z| ≤ αe.

Corollary 2.22. Let Z be a Dedekind complete Banach lattice with a strong order
unit. Consider a compatible couple X(µ) and Y (µ) such that both are order con-
tinuous.Then every symmetric bilinear continuous operator B : X(µ)×Y (µ)→ Z
can be written as a difference of two positive product preserving symmetric bilin-
ear continuous operators.

Proof. Since B is symmetric, there is a linear operator acting in the factorization
space T : X(µ) · Y (µ) → Z such that B factors through T . The operator T is
regular, that is, it can be written as a difference of two positive linear operators
T1 − T2, since the space Z is Dedekind complete Banach lattice with a strong
order unit (see [2, Theorem 4.1 ]). Thus, the operator B can be written as
B = T ◦ � = (T1 − T2) ◦ � = T1 ◦ � − T2 ◦ �. Since T1 and T2 are positive
linear operators, it follows that T1 ◦� and T2 ◦� are positive product preserving
symmetric bilinear operators. Therefore, B is written as a difference of two
positive product preserving symmetric bilinear operators. �

For finishing this section, let us provide some direct applications on summa-
bility of certain bilinear operators. Suppose that E is a Banach function space
over a measure µ with associate space E′ and let H be a Hilbert space. By
Grothendieck’s Theorem, we know that L(L1(µ), H) = Π1(L1(µ), H) [16, Chap-
ter 3]. Using this result and Pietsch Domination Theorem (see [16, Theorem
2.12]), we directly obtain the next

Corollary 2.23. Let the set of simple functions be dense in both E and E′ and
assume that E has the Fatou property. For any symmetric Hilbert space valued
bilinear continuous map B : E×E′ → H, there is a positive constant c such that
the following equivalent statements hold.

i) For f1, f2, ..., fn ∈ E and g1, g2, ..., gn ∈ E′,

n∑
i=1

∥∥B(fi, gi)
∥∥
H
≤ c sup

φ∈BL∞

n∑
i=1

|〈fi · gi, φ〉|.

ii) For f ∈ E and g ∈ E′,

‖B(f, g)‖H ≤ c
∫
φ∈BL∞

|〈f · g, φ〉|dν(φ),

where ν is regular probability measure on the unit ball of L∞(µ).

In particular by the Dunford-Pettis property of L1(µ) the bilinear map factors
through a completely continuous linear operator.
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3. Lattice geometric inequalities and integral representations for
�-factorable maps

Recall that a Banach function space X(µ) is p-convex (with p-convexity con-
stant equal to one), if for every f1, ..., fn ∈ X(µ),∥∥∥( n∑

i=1

|fi|p
)1/p∥∥∥

X(µ)
≤
( n∑
i=1

∥∥fi∥∥pX(µ)

)1/p
.

A Banach-space-valued linear operator T : X(µ) → E is p-concave (with p-
concavity constant equal to one) if for every f1, ..., fn ∈ X(µ),( n∑

i=1

∥∥T (fi)
∥∥p
E

)1/p
≤
∥∥∥( n∑

i=1

|fi|p
)1/p∥∥∥

X(µ)
.

Let µ be a measure. As usual, we write [f ]µ for the equivalence class of almost
everywhere equal measurable functions that are associated with f . Recall that, if
X(µ) and Z(η) are Banach function spaces such that η � µ, if the identification
[f ]µ 7→ [f ]η is well-defined, we can use this assignation to define a (continuous)
inclusion/quotient operator X(µ) ↪→ Z(η).

We are going to apply some classical arguments on factorization of operators
for giving a particular integral representation for linear maps with good concavity
properties.

Theorem 3.1. Consider a compatible couple of Banach function spaces X(µ) and
Y (µ) having order continuous norms. Suppose that the product space X(µ) ·Y (µ)
is p-convex for 1 ≤ p <∞. Consider a bilinear (continuous) Banach-space-valued
operator B : X(µ)× Y (µ)→ E. The following statements are equivalent.

(i) For f1, ..., fn ∈ X(µ) and g1, ..., gn ∈ Y (µ),( n∑
i=1

∥∥B(fi, gi)
∥∥p)1/p

≤
∥∥∥( n∑

i=1

|fi · gi|p
)1/p∥∥∥

X(µ)·Y (µ)
.

(ii) There are a multiplication operator Mh : X(µ) · Y (µ) → Lp(µ) such that
‖Mh‖ = 1 and a linear operator T : Lp(µ) → E such that B factors as
B = T ◦Mh ◦ �, that is, it factors through the scheme

X(µ)× Y (µ)
B //

�
��

E.

X(µ) · Y (µ)
Mh // Lp(µ)

T

OO

(iii) There is an E-valued vector measure ν such that Lp(µ) ↪→ L1(ν), and

B(f, g) =

∫
Ω
f(t) g(t)h(t) dν(t),

where h defines a multiplication operator Mh : X(µ) · Y (µ)→ Lp(µ).

Proof. (i) ⇒ (ii) Note that the inequality in (i) directly implies that B is 0-
product preserving. This means by Theorem 2.7 that it factors through a linear
continuous map S : X(µ) · Y (µ)→ E such that( n∑

i=1

∥∥S(fi · gi)
∥∥p)1/p

≤
∥∥∥( n∑

i=1

|fi · gi|p
)1/p∥∥∥

X(µ)·Y (µ)
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for f1, ..., fn ∈ X(µ) and g1, ..., gn ∈ Y (µ) by the inequality in (i) again. Con-
sequently, we get that S is p-concave. By hypothesis, we have that the product
space X(µ) · Y (µ) is p-convex. A standard application of Maurey-Rosenthal ar-
gument ([14, Cor. 5]) gives the existence of a norm one multiplication operator
Mh : X(µ) · Y (µ) → Lp(µ) such that S = T ◦Mh, where T : Lp(µ) → E is a
linear continuous map. Composing all the elements, we get the desired diagram:
B = T ◦Mh ◦ �.

(ii) ⇒ (iii) Since the space Lp(µ) is order continuous, we get that the operator
T : Lp(µ) → E defines a (countably additive) vector measure ν(A) := T (χA),
where A ∈ Σ. Moreover, we have that Lp(µ) ↪→ L1(ν) due to the optimality
of the space L1(ν). The reader can find this result in [29, Th.4.14] under the
assumption that T is µ-determined; note that by the proof given there, the result
is still true if this is not the case, that is, if T is not µ-determined. It is well-
known that the space L1(ν) is a Banach function space over a Rybakov measure
η for ν, and η � µ because of the continuity of T ; we can change then the
inclusion by the identification of classes [f ]µ 7→ [f ]η, what is sometimes called an
inclusion/quotient map, and the factorization is still preserved. Summing up all
these comments, we get that

B(f, g) =

∫
Ω
f(t) g(t)h(t) dν(t)

for all f ∈ X(µ) and g ∈ Y (µ).
(iii) ⇒ (i) A direct computation just using the formula gives this implication.

Indeed, if f1, ..., fn ∈ X(µ) and g1, ..., gn ∈ Y (µ),( n∑
i=1

∥∥B(fi, gi)
∥∥p
E

)1/p
≤
( n∑
i=1

∥∥fi gi h∥∥pL1(ν)

)1/p
≤
( n∑
i=1

∥∥fi gi h∥∥pLp(µ)

)1/p

=
∥∥∥h( n∑

i=1

|fi · gi|p
)1/p∥∥∥

Lp(µ)
≤
∥∥∥( n∑

i=1

|fi · gi|p
)1/p∥∥∥

X(µ)·Y (µ)
.

�

An integral with respect to a vector measure is still a rather abstract represen-
tation for the bilinear operator B. However, using the same result for p = 1 we
can still improve the representation for getting a kernel-type operator whenever
the range space E has the Radon-Nikodym property. Although we will show
an special representation for the specific case of classical bilinear integral opera-
tors, we can improve the integral formula given above for the case of 0-product
preserving bilinear operators factoring through a 1-concave linear map. As in
Theorem 3.1, we suppose w.l.o.g. that the constant appearing in the inequality
in (i) equals to 1, that is, no specific constant appears.

Corollary 3.2. Let µ be a finite measure. Consider a compatible couple of Ba-
nach function spaces X(µ) and Y (µ) with order continuous norms. Suppose that
E is a Banach space with the Radon-Nikodym property. For a continuous bilinear
operator B : X(µ)× Y (µ)→ E, the following statements are equivalent.

(i) For f1, ..., fn ∈ X(µ) and g1, ..., gn ∈ Y (µ),

n∑
i=1

∥∥B(fi, gi)
∥∥ ≤ ∥∥∥ n∑

i=1

|fi · gi|
∥∥∥
X(µ)·Y (µ)

.
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(ii) There is a (norm one) E-valued vector measure Bochner integrable func-
tion Φ ∈ L∞(µ,E) such that

B(f, g) =

∫
Ω
f(t) g(t)h(t) Φ(t) dµ(t),

where h ∈
(
X(µ) · Y (µ)

)′
.

Proof. (i) ⇒ (ii) Applying the assumption (i) and Theorem 3.1 we conclude that
the variation of the vector measure is finite. Then, this result is obtained as an
application of Theorem 3.1. Indeed, by hypothesis the vector measure ν provided
by this theorem defines an operator w 7→

∫
Ω w dν : L1(µ) 7→ E that closes a

factorization diagram as in the theorem. Using the Radon-Nikodym property of
E (see for instance [18] for a complete explanation of this notion) we get that
there is an integrable vector-valued density Φ for the vector measure, in such a
way that dν = Φdµ and so w(t) 7→

∫
Ω Φ(t)v(t) dµ(t). This gives (ii).

(ii) ⇒ (i) Taking into account that Σ 3 A 7→
∫
A Φdν ∈ E defines a vector

measure, (iii) ⇒ (i) in Theorem 3.1 for the case p = 1 gives (i). �

4. Applications: weak representation formulas for integral
bilinear operators

In this section we apply the results given in the paper to some particular classes
of bilinear operators that are defined by integral formulas. In order to do that,
we will have to enlarge the notion of product preserving map by including some
measurable transformations. We are interested in considering classical operators
as the Hilbert transform, but the class we will deal with is broader than this. Let
us start with a simple example.

Example 4.1. For 1 ≤ p, q <∞ such that 1
p + 1

q = 1
2 , let us consider the bilinear

operator B : Lp([0, 1])× Lq([0, 1])→ L2([0, 1]) defined by

B(f, g)(x) =

n∑
i=1

(∫ 1

0
rn(y)f(y)g(y)dy

)
gn(x),

where rn denotes the nth Rademacher function,

gn(x) = 2−(n+1)/2χ[2−n,2(−n+1)](x) for x ∈ [0, 1]

and n = 1, 2, · · · . It is clear that this bilinear operator is zero product preserving
since B(f, g)(x) = 0 if f(y)g(y) = 0 a.e. for all y ∈ [0, 1]. Therefore, by Theorem
2.7, it can be written as a linear integral operator such that T (f � g) = T (h) =∑n

i=1

( ∫ 1
0 rn(y)h(y)dy

)
gn(x), where h ∈ L2([0, 1]) = Lp([0, 1])� Lq([0, 1]).

Example 4.2. The Hilbert transform of a function f(x) is given by

H(f)(x) =
1

π
p.v.

∫
R
f(x− t)dt

t

where p.v. denotes the Cauchy principal value. This transform can be considered
as the convolution of f(x) with the tempered distribution p.v. 1

πt . The bilinear
Hilbert transform was introduced by Calderón as the following

Hα1, α2(f, g)(x) = p.v.

∫
R
f(x− α1t)g(x− α2t)

dt

t
.
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Grafakos and Li [21] have obtained a uniform bound for the bilinear Hilbert trans-
form H1, α : Lp1×Lp2 → Lp for the real parameter α and 1 > 1

p = 1
p1

+ 1
p2
> 1

2 . If

we suppose α = 1, then it is obviously seen that H1, 1(f, g)(x) = (f�g)∗(p.v.1t ) =
H(f � g)(x). Since H1, 1(f, g)(x) = 0 if f � g = 0, the operator H1, 1 is a zero
product preserving map. Then it has a linear factorization that is the Hilbert
transform defined on Lp1 � Lp2 = Lp into Lp.

We can give a more general result for the bilinear Hilbert transform when it
is considered as acting on products of Lorentz spaces. Villarroya defined the
generalized bilinear Hilbert transform by using an arbitrary distribution instead
of tempered distribution [33]. The generalized bilinear Hilbert transform is given
by

Hu, α(f, g)(x) =

∫
R
f(x− t)g(x− αt)u(t)dt

where u is a distribution, α ∈ R and f, g are elements of the function space
C∞0 (R) of the smooth functions with a compact support in R. A generalized
bilinear Hilbert transform Hu, α is said to be (pi, qi)i=1,2,3 bounded if it is possible
to extend it to a bounded operator from Lp1, q1 × Lp2, q2 to Lp3, q3, where 0 < pi <
∞, 0 < qi <∞ for i = 1, 2, 3. Now, consider a (pi, qi)i=1,2,3 bounded generalized
Hilbert transform with the parameter α = 1 (where Lpi, qi denotes the Lorentz
function space, see [26, Section 2.a]). Then, it is seen that the transform Hu, 1

is a zero product preserving operator and Hu, 1(f, g)(x) = (f � g) ∗ u. Since
simple functions are dense in a Lorentz space Lp, q for 0 < p, q < ∞, we get a
factorization such that T : [(Lp1, q1)1/2(Lp2, q2)1/2](1/2) → Lp3, q3 defined by Hu, 1 =

T (f � g) = (f � g) ∗ u, where [(Lp1, q1)1/2(Lp2, q2)1/2](1/2) = Lp1, q1 � Lp2, q2.

Although pointwise product of functions appears explicitly in many of the
classical examples of integral operators, most of them are not strictly 0-product
preserving. For example, consider operators defined by the formula of the bilinear
Hilbert transform given above but with compact support,

H(f, g) :=

∫
K
f(x− t)g(x− αt)dt

t
, f, g ∈ L2(µ),

where (K,Σ, dt) is Lebesgue space on a compact set of the real line K, are not
product preserving in general except that α = 1. In this section we show that is
also possible to find a weak version of our representation theorem in this case. In
order to do that, let us introduce some concepts and notation.

Let (Ω,Σ, µ) be a σ-finite measure space and let X(µ) be a Banach function
space over µ. Let φ : Ω → Ω a bimeasurable (measurable in both directions)
bijection. We define Xφ(µ) as the space of (classes of µ-a.e. equal) functions

Xφ(µ) :=
{
f ∈ L0(µ) : f ◦ φ−1 ∈ X(µ)

}
endowed with the norm

‖f‖Xφ(µ) := ‖f(φ−1(·))‖X(µ), f ∈ Xφ(µ).

Note that such a φ defines an isometry, that is, the transformation

∆φ : X(µ)→ Xφ(µ) given by h 7→ ∆φ(h) = h ◦ φ ∈ Xφ(µ),

that is clearly defined for all h ∈ X(µ), is an isometric isomorphism. The
functions φ we are thinking about are typically simple transformations as, for
the case of Lebesgue measure space ([0, 1],B([0, 1]), dx), φ1/2(x) = x + 1/2
mod 1, x ∈ [0, 1]. If we take a rearrangement invariant space, for example if
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X(µ) = Lp([0, 1]) for 1 ≤ p ≤ ∞, we have that Lpφ1/2([0, 1]) = Lp([0, 1]) isometri-

cally.
We will consider couples of parametric families {φ1

x}x∈Ω and {φ2
x}x∈Ω of such

bimeasurable bijections satisfying the requirement that Xφ1x
(µ) and Yφ2x(µ) are

compatible for each x ∈ Ω. Our idea is to recover using these tools a similar
definition that the one that gives for example the bilinear Hilbert transform.
Note that the simplest example of such a parametric family is when φ1

x = φ1 and
φ2
x = φ2 for fixed functions φ1 and φ2; we use it just below.
We are now ready to define a general class of integral-type bilinear operators.

Let Z(µ) be a Banach function space over µ. Let X(µ) and Y (µ) be compatible
Banach function spaces over µ. In this context, we will say in what follows that
a bilinear operator B : X(µ)× Y (µ)→ Z(µ) is an integral bilinear operator if it
is defined by a formula as

B(f, g)(x) :=

∫
Ω
f(φ1

x(t)) g(φ2
x(t))K(x, t) dt, x ∈ Ω, f ∈ X(µ), g ∈ Y (µ),

where K : Ω× Ω→ R is an integrable kernel such that the expression inside the
integral is well-defined for each x, t, f and g, and integrable, in such a way that
B(f, g)(·) ∈ Z(µ).

Independently of the case of pointwise type bounds depending on x that we
will explain later, we can get direct results when the functions φ1 and φ2 are fixed
from the general framework constructed along the paper. So, let us assume for
the next result that φ1

x and φ2
x do not depend on x. As a consequence of Lemma

2.4 we obtain the following general result. Note that it is not restricted to the case
of integral bilinear operators, although it can be applied to this concrete context
by its definition. It can be easily checked that the requirements in the following
result are fulfilled in some simple —but meaningful— cases. For example, using
for φ1 and φ2 the transformation φ1/2 explained above, we have that clearly the

formula f ~ g := f ◦ φ1 · g ◦ φ2 defines an n.p. product.

Corollary 4.3. With the same notation and in the setting explained above, sup-
pose that Xφ1(µ) and Yφ2(µ) define a compatible couple. Assume also that the

map given by X(µ)×Y (µ) 3 (f, g) 7→ f ◦φ1 · g ◦φ2, is an n.p. product. Then the
following assertions are equivalent.

(i) There is a constant k > 0 such that for every f1, ..., fn ∈ X(µ) and
g1, ..., gn ∈ Y (µ),∥∥∥ n∑

i=1

B(fi, gi)
∥∥∥ ≤ k∥∥∥ n∑

i=1

fi ◦ φ1 · gi ◦ φ2
∥∥∥
Xφ1 (µ)·Yφ2 (µ)

.

(ii) B is an integral bilinear map that factors through Xφ1(µ) · Yφ2(µ) as

B(f, g) = T (f ◦ φ1 · g ◦ φ2), f ∈ X(µ), g ∈ Y (µ),

where T : Xφ1(µ) · Yφ2(µ)→ Z(µ) is a linear continuous operator.

Inspired in part by the example of the general Hilbert transform with compact
support explained above, we start now to give a more accurate analysis of the
problem of representing integral bilinear operators.

Lemma 4.4. Let X(µ) and Y (µ) be order continuous Banach function spaces
over the measure space (Ω,Σ, µ). Consider an integral bilinear operator B :
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X(µ) × Y (µ) → Z(µ). Fix x ∈ Ω, and let φ1
x and φ2

x be two measurable bi-
jections defining isometries X(µ) → Xφ1x

(µ) and Y (µ) → Yφ2x(µ), respectively.
Assume also that Xφ1x

(µ) and Yφ2x(µ) define a compatible couple.
Then there is a factorization through the product space Xφ1x

(µ) · Yφ2x(µ) of the
bilinear continuous functional Bx : X(µ)× Y (µ)→ R defined by

Bx(f, g) := B(f, g)(x) =

∫
Ω
f(φ1

x(t)) g(φ2
x(t))K(x, t) dt, f ∈ X(µ), g ∈ Y (µ).

Moreover, the functional ϕx ∈ (Xφ1x
(µ) · Yφ2x(µ))∗ that closes the factorization

diagram is ϕx(h(t)) :=
∫

Ω h(t)K(x, t)dt ∈ R, and so we have that

B(f, g)(x) =
〈
f(φ1

x(·)) · g(φ2
x(·)), ϕx(·)

〉
, f ∈ X(µ), g ∈ Y (µ).

Proof. It is worth noting that clearly order continuity of the spaces X(µ) and
Y (µ) is automatically transferred to the spacesXφ1x

(µ) and Yφ2x(µ). So, the lemma
is just a consequence of the factorization theorem for zero product preserving
operators and the construction. Indeed, taking into account that ∆φ1x

and ∆φ2x
are isometries, we can define a bilinear map

B′x : Xφ1x
(µ)× Yφ2x(µ)→ R

by B′x = Bx ◦ (∆−1
φ1x
×∆−1

φ2x
). So, we have a factorization as

X(µ)× Y (µ)
Bx //

∆
φ1x
×∆

φ2x
��

R,

Xφ1x
(µ)× Yφ2x(µ)

B′x

77nnnnnnnnnnnnnn

where B′x is a bilinear integral and symmetric operator. Therefore, by Theorem
2.7, and taking into account that the spaces are order continuous —and so simple
functions are dense—, it can be also factored as

Xφ1x
(µ)× Yφ2x(µ)

B′x //

�
��

R.

Xφ1x
(µ) · Yφ2x(µ)

Tx

77oooooooooooooo

Once the existence of the factorization through the product space Xφ1x
(µ) ·Yφ2x(µ)

has been established, it is clear that Tx has to be the linear and continuous
functional

ϕx(h) := h 7→
∫

Ω
h(t)K(x, t)dt ∈ R,

that belongs to the dual space
(
Xφ1x

(µ)·Yφ2x(µ)
)∗
. Thus, we get that the pointwise

evaluation of B(f, g) at x can be written as

Bx(f, g) = B(f, g)(x) =
〈
f(φ1

x(·)) · g(φ2
x(·)), ϕx(·)

〉
.

�

Fubini’s Theorem gives directly the next result.

Lemma 4.5. Let Z(µ) be order continuous. In the same setting and with the
same notation that in Lemma 4.4 and assuming also that K(x, t) (and so ϕx)
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depends only on t, —that is ϕx = ϕ for all x for a certain functional ϕ—, we
have that for every element ψ ∈ Z(µ)′,〈

B(f, g), ψ
〉

=
〈∫

Ω
(f ◦ φ1

x)(t) · (g ◦ φ2
x)(t)ψ(x)dµ(x), ϕ(t)

〉
for every pair f ∈ X(µ) and g ∈ Y (µ).

The previous results suggest that our general class of integral bilinear opera-
tors can be analyzed in the product factorization framework constructed in the
present paper whenever some requirements on the pointwise domination are as-
sumed. Thus, next theorem gives a characterization of general bilinear operators
by means of inequalities involving bimeasurable bijections. As the reader can
see, the arguments used in the proof are adaptations of the ones we have used
in the rest of the paper and belong to the same cycle of ideas. We use the nota-
tion of Lemmas 4.4 and 4.5. Note that, as we explained before, the requirement
on the equality of the products is natural if we are working with the class of
rearrangement invariant Banach function spaces.

Theorem 4.6. Let X(µ) and Y (µ) be a compatible couple of order continuous
Banach function spaces such that its product is also order continuous, and con-
sider a bilinear continuous operator B : X(µ)×Y (µ)→ Z(µ). Consider a couple
of parametric families {φ1

x}x∈Ω and {φ2
x}x∈Ω of bimeasurable bijections satisfying

that Xφ1x
(µ) · Yφ2x(µ) = X(µ) · Y (µ) isometrically for each x ∈ Ω.

The following assertions are equivalent.

(i) There is a constant k > 0 such that for every f1, ..., fn ∈ X(µ), g1, ..., gn ∈
Y (µ) and x1, ..., xn ∈ Ω,

n∑
i=1

B(fi, gi)(xi) ≤ k
∥∥∥ n∑
i=1

fi ◦ φ1
xi · gi ◦ φ

2
xi

∥∥∥
X(µ)·Y(µ)

.

(ii) There is a constant k > 0 and a function h0 such that the bilinear con-
tinuous map B is an integral map that can be written as

B(f, g)(x) = k

∫
Ω

(f ◦ φ1
x)(t) · (g ◦ φ2

x)(t) h0(t) dµ(t),

where f ∈ X(µ), g ∈ Y (µ), x ∈ Ω, and h0 ∈ B(X(µ)·Y(µ))′.

Proof. For (i)⇒ (ii) we use a standard separation argument in a Maurey-Rosenthal
fashion, as in the previous section. Consider all the functions Φ : B(X(µ)·Y (µ))′ →
R defined as

Φ(h) :=
n∑
i=1

B(fi, gi)(xi)− k
n∑
i=1

∫
Ω
fi ◦ φ1

xi · gi ◦ φ
2
xi h dµ

for given fi ∈ X(µ), gi ∈ Y (µ) and xi ∈ Ω. Each of these functions is convex
and weak* continuous, the whole family is concave and for each fixed function,
by the Hahn-Banach Theorem and the inequality in (i), there is an element
hΦ ∈ B(X(µ)·Y (µ))′ such that Φ(hΦ) ≤ 0. Then we get a function h0 ∈ B(X(µ)·Y (µ))′

such that

B(f, g)(x) ≤ k
∫

Ω
f ◦ φ1

x · g ◦ φ2
x h0(t) dµ(t)

for all functions f, g and all x ∈ Ω. Since this must happen for all functions f and
g we can change the signus in the inequality above just by changing for example
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f by −f. Thus, we obtain for all f, g and x that

B(f, g)(x) = k

∫
Ω
f ◦ φ1

x · g ◦ φ2
x h0(t) dµ(t).

(ii) ⇒ (i) is given by a direct calculation. �

The authors would like to thank the referee for the careful reading of the paper
and some comments that helped to improve it.
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[25] Kühn, B.: Banachverbände mit ordnungsstetiger dualnorm. Mathematische Zeitschrift.
167(3), 271–277 (1979)

[26] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II: Function spaces. Vol. 97. Springer
Verlag, Berlin Heidelberg, (1979)

[27] Lozanovskii, G. Ya.: On some Banach lattices. Sibirsk. Mat. Zh. 10, 584–599 (1969)(Rus-
sian); English transl. in Siberian Math. J. 10(3), 419–431 (1969)

[28] Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Nederl.
Akad. Wetensch. Indag. Math. 51(3), 323–338 (1989)
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